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Abstract

The binary deletion channel with deletion probability d (BDCd) is a random
channel that deletes each bit of the input message i.i.d with probability d. It has
been studied extensively as a canonical example of a channel with synchronization
errors [Mit09, MBT10, CR20].

Perhaps the most important question regarding the BDC is determining its ca-
pacity. Mitzenmacher and Drinea [MD06] and Kirsch and Drinea [KD09] show
a method by which distributions on run lengths can be converted to codes for
the BDC, yielding a lower bound of C(BDCd) > 0.1185 · (1 − d). Fertonani
and Duman [FD10], Dalai [Dal11] and Rahmati and Duman [RD14] use computer
aided analyses based on the Blahut-Arimoto algorithm to prove an upper bound of
C(BDCd) < 0.4143 · (1− d) in the high deletion probability regime (d > 0.65).

In this paper, we show that the Blahut-Arimoto algorithm can be implemented
with a lower space complexity, allowing us to extend the upper bound analyses, and
prove an upper bound of C(BDCd) < 0.3745·(1−d) for all d ≥ 0.68. Furthermore, we
show that an extension of the Blahut-Arimoto algorithm can be used to select better
run length distributions for Mitzenmacher and Drinea’s construction, yielding a
lower bound of C(BDCd) > 0.1221 · (1− d).
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1 Introduction

In this paper we focus on the binary deletion channel (BDC) which deletes each bit
from the input message randomly and independently with a given deletion probability d.
Loosely speaking, a channel is a medium over which messages are sent. A channel is
defined by the way in which it introduces errors to the transmitted messages (also called
codewords when they come from an error correcting code).

Two of the most well-studied channels are the Binary Erasure Channel (BECd) where
each bit is independently replaced by a question mark with probability d and the Binary
Symmetric Channel (BSCd) where each bit is independently flipped with probability
d. We note that the BDC is very different from the BEC and the BSC. For example,
consider the case where the transmitted message was 1110101 and corruptions occurred
in locations 2 and 5. In this scenario, the BEC will return the word 1?10?01 and the BSC
will return 1010001, while the BDC would return 11001.

In other words, while the BEC and the BSC may corrupt some bits in the message, the
BDC can change the length of a codeword and the index in which a bit may appear. This
makes the BDC a “synchronization channel”, and significantly complicates its analysis. In
fact, one of the main reasons for introducing the BDC was to model synchronization errors
in communication. More recently, codes correcting from deletions found applications in
a variety of fields such as computational biology and DNA storage [BLC+16, YGM17,
HMG19]. For a more detailed review of synchronization channels and their applications,
we refer the interested reader to the excellent surveys by Mitzenmacher [Mit09], Mercier
et al. [MBT10], and Cheraghchi and Ribeiro [CR20].

To explain the question that we study we need some basic notions from coding theory.
Recall that a binary error correcting code can be described either as an encoding map
C : {0, 1}k → {0, 1}n or, abusing notation, as the image of such a map C. The rate of
such a code C is Rate(C) = k/n, which intuitively captures the amount of information
encoded in every bit of a codeword. Naturally, we would like the rate to be as large as
possible, but there is a tension between the rate of the code and the amount of errors/noise
it can tolerate.

One of the most fundamental questions when studying a channel is to determine its
capacity, i.e., the maximum achievable transmission rate over the channel that still allows
recovering from the errors introduced by the channel, with high probability. Shannon
proved in his seminal work [Sha48] that the capacity of the BSCd is 1− h(d), where h(·)
is the binary entropy function (for 0 < x < 1, h(x) = −x log x − (1 − x) log 1− x).1

Elias [Eli55], who introduced the BECd, proved that its capacity is 1− d.
What about the capacity of the BDCd? In spite of significant efforts by many re-

searchers, much less is known about the capacity of the BDC. This is because the asyn-
chronous nature of the BDC which makes it interesting also makes it harder to analyse.

In the extremal parameter regimes, the behavior of the capacity of the BDC is partially
understood. When d → 0 the capacity approaches 1 − h(d) [KMS10]. For all d ∈ (0, 1),
the capacity is bounded from below by C(BDCd) > 0.1185 · (1 − d) [MD06], and when
d > 0.65, it is bounded from above by C(BDCd) < 0.4143 · (1− d) [FD10, Dal11, RD14],
giving us the asymptotic scaling as d → 1. For a more detailed picture of the known
bounds on the capacity of the BDC, see Figure 1.

1All logarithms in this paper are base 2.
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1.1 Previous Work

Our focus in this paper is in bounding the capacity of the BDC in either the bulk of the
parameter regime d ∈ (ε, 1 − ε), or in the high-deletion probability regime d → 1. We
will list here the best known results for these regimes.

Lower bounds The best known lower bound on the capacity is due to Mitzenmacher
and Drinea [MD06, DM07] who showed a lower bound of 0.1185 ·(1−d) for all d, meaning
that there are codes of this rate such that every transmitted codeword is decoded correctly
with high probability. This lower bound is the best known lower bound for the high
deletion probability regime (d ≥ 0.95). For smaller values of d, Drinea and Mitzenmacher
prove stronger bounds in [DM07, Table 1]. Their proof is constructive, but it does not
directly yield an efficient decoding algorithm for the family of codes they construct.

Since then, several constructions of efficiently decodable codes for the BDC have
been published [GL18, CS22], culminating in several constructions of efficiently decodable
codes that achieve capacity [TPFV21, Rub22, PLW22]. In particular, [Rub22] presents
a method for converting any code for the BDC to an efficiently decodable one with an
arbitrarily close rate. Therefore, the codes generated using Mitzenmacher and Drinea’s
construction can be converted to explicit and efficient constructions of high rate codes
for the BDC.

Upper bounds Fertonani and Duman [FD10] proved several upper bounds on the
capacity of the BDC. They do this by providing the transmitter and the receiver with
“hints” about the noise of the channel. Adding these hints only increases the information
rate, allowing them to bound the capacity of the BDC from above by bounding the
capacity of some auxiliary channels using the Blahut-Arimoto algorithm.

Dalai [Dal11] and Rahmati and Duman [RD14] refine this analysis and prove that
for any d ∈ (0.65, 1), the capacity of the BDC is bounded from above by C(BDCd) ≤
0.4143(1− d). Given unlimited computational resources, these methods will converge to
the capacity of the channel, but this convergence is extremely slow.

1.2 Our results

In this work, we improve both the upper and the lower bounds on the capacity of the BDC.
To improve the upper bound, we integrate into the classical Blahut-Arimoto algorithm
several ingredients that reduce its memory requirements. These ingredients include loop
nest optimization, caching, symmetries, and compressing sparse matrices. This allows us
to extend the previous analyses to more computationally challenging regimes and gives
us the following new upper bound

Theorem 1.1. For any d ≥ 0.68, it holds that

C(BDCd) ≤ 0.3745 · (1− d) .

Our second contribution is an improved lower bound on the capacity of the BDC
based on Mitzenmacher and Drinea’s construction [DM07]. Mitzenmacher and Drinea’s
construction is parametrized by a distribution on “run lengths” and outputs a provable
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Figure 1: Our new upper and lower bounds compared to previous state-of-the-art upper and
lower bounds. The best known lower bound is given in [DM07, MD06] and the best known
upper bounds are taken from [DMP07, FD10, Dal11, RD14]

lower bound on the capacity of the BDC. Mitzenmacher and Drinea apply their con-
struction to various geometric run length distributions, but give no argument for why
geometric distributions should be optimal. We propose a heuristic approach to selecting
better run length distributions to be used as parameters for Mitzenmacher and Drinea’s
rigorous analysis, yielding an improved lower bound (Theorem 1.2).

Theorem 1.2. For any d ∈ (0, 1)

C(BDCd) > 0.1221 · (1− d) .

Using the result of [Rub22] as a black box, we can efficiently construct a binary code
that achieves this rate and has efficient encoding and decoding algorithms.

For a full characterization of the lower and upper bounds on the capacity of the BDC
as a function of d, see Tables 1 and 2, and Figure 1.

1.3 Organization

In Section 2, we describe the main components of the Blahut-Arimoto algorithm and the
best known upper bounds. In Section 3, we construct a memory efficient version of the
Blahut-Arimoto algorithm and show that it can be used to prove tighter upper bounds
on the capacity of the BDC. Finally, in Section 4 we present a heuristic approach to
optimizing the input to Mitzenmacher and Drinea’s construction, allowing us to prove
tighter lower bounds on the capacity of the BDC.

In the interest of reproducibility, we have made our code publicly available through
github. The code used to generate the upper bounds in Sections 2 and 3 is available here.
The code used to generate our lower bounds (see Section 4) is available here.
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2 Upper Bound Theory

In this section, we will give an overview of the theory involved in our upper bound
analysis. In Section 2.1, we will introduce discrete memoryless channels and the Blahut-
Arimoto algorithm which can be used to compute their capacity. Then, in Section 2.2,
we will introduce several auxiliary channels which will aid our analysis of the BDC. We
will show that these auxiliary channels are DMCs, allowing us to use the Blahut-Arimoto
algorithm to find their capacity, and that their capacities are related to those of the BDC.

2.1 Discrete Memoryless Channels and the Blahut-Arimoto Al-

gorithm

Our main results are achieved through improvements and extensions of the Blahut-
Arimoto algorithm for finding the capacity of discrete memoryless channels. In this
section, we will give a brief overview of these channels and the Blahut-Arimoto algorithm
(for a more detailed review, see [Yeu08, Chapter 9]).

A discrete memoryless channel (DMC) is defined by a finite input alphabet X , a

finite output alphabet Y , and a transition probability matrix P ∈ R
|X |×|Y|
+ . The channel

sends each input letter x to each output letter y with probability Px→y independently at
random. We note that the BDC is not a memoryless channel, so the results discussed
here cannot be used to bound its capacity directly. In Section 2.2, we will show that
there exists a family of DMCs whose capacities converge on the capacity of the BDC
from above.

In general, the capacity C of a channel represents the maximum rate at which infor-
mation can be communicated reliably over it [Yeu08]. For DMCs, the capacity is given
by

C = max
P

x←P

{I(x; y)} = sup
P∈RX+

{
∑

x,y

PiPx→y log

(
Px→y

∑

x′ Px′Px′→y

)}

(2.1)

where the supremum is taken over input distributions P(x) that have a nonzero probabil-
ity to output any letter x ∈ X . Both the input and the output alphabets are of finite size,
so the information rate associated with any given input distribution P can be computed
using the right-hand-side of eq. (2.1). However, it is not obvious that one can efficiently
find a distribution P that maximizes this formula.

The Blahut-Arimoto algorithm (BAA - see Algorithm 1) is an iterative algorithm which
rapidly converges to the capacity for any given DMC. It was introduced independently
by Blahut and Arimoto in [Bla72, Ari72], who showed that it can be used to quickly find
an input distribution whose rate is arbitrarily close to optimal.

We denote by P(ℓ) the input distribution used in the ℓth iteration, and by Q
(ℓ)
y,x the

transition probabilities from the output alphabet to the input alphabet which can be
thought of as the transitions of a probabilistic decoding algorithm. The algorithm runs
by performing an alternating maximization on P and Q.

Claim 2.1. [Ari72, Corollary 1] Let a > 0. The BAA algorirthm converges within O(1/a)
iterations, and returns a distribution P with an information rate of at leastR ≥ C(Ch)−a.
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Algorithm 1: The Blahut-Arimoto algorithm.

input : Input and output alphabets X ,Y

P : [0, 1]X×Y - the channel’s transition probability matrix
a - capacity approximation parameter
output: R ∈ R - an upper bound on the capacity of this channel
P ∈ R

X - an input distribution with a nearly optimal rate for this channel

[1] Set ℓ = 0 and set P(1) to be the uniform distribution.
[2] do

1. ℓ← ℓ+ 1

2. For every x ∈ X and y ∈ Y compute

Q(ℓ)
y,x =

P(ℓ)(x)Px→y
∑

x′ P
(ℓ)(x′)Px′→y

3. For every x ∈ X , compute

P(ℓ+1)(x) =

∏

y(Q
(ℓ)
y,x)Px→y

∑

x′

∏

y(Q
(ℓ)
y,x′)

Px′→y

where the product is over all y such that Q
(ℓ)
y,x > 0 and Px→y > 0.

while maxx log2

(
P(ℓ+1)(x)

P(ℓ)(x)

)

≥ a

[3] Compute

R =
∑

x

∑

y

P(ℓ)(x) · Px→y · log

(

Q
(ℓ)
y,x

P(ℓ)(x)

)

where the sums are over all x, y such that Q
(ℓ)
y,x > 0 and Px→y > 0.

[4] Return P(ℓ+1)(x),R.
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2.2 Auxiliary Deletion Channels

In Section 2.1, we defined discrete memoryless channels and presented the Blahut-Arimoto
algorithm which can be used to bound their capacities. In this section, we will present
several auxiliary channels. Originally introduced by Fertonani and Duman [FD10] and
also used by Dalai [Dal11], these auxiliary channels are both discrete memoryless channels,
allowing us to bound their capacities with the Blahut-Arimoto algorithm, and related to
the BDC, allowing us to use them to bound the capacity of the BDC.

Let W d
n be the binary deletion channel with fixed input length n. Denote by Cn(d) :=

max I(Xn
1 ; Y ) its capacity where the maximum is taken over all input distributions on n

bits, and Y = W d
n (X

n
1 ) (i.e., the output of the channel on input X).

Claim 2.2. [Dal11, Lemma 1] For any n ∈ N and d ∈ [0, 1],

C(BDCd) ≤
1

n
· Cn(d) .

Similarly, we denote by Wn,k the channel with n-bit input whose output is uniformly
chosen within the

(
n
k

)
k-bit subsequences of the input (i.e. the channel deletes n − k of

the bits at random). Denote its capacity by Cn,k := max I(Xn
1 ; Y ) where Y = Wn,k(X

n
1 ).

Fertonani and Duman, and then Dalai showed that the values of Cn,k can be used to
bound Cn(d) from above with the following inequality.

Cn(d) ≤

n∑

k=1

(
n

k

)

dn−k(1− d)k · Cn,k (2.2)

Proof of (2.2). The proof of this inequality is contained in the proof Lemma 4 in [Dal11].
We repeat the details for completeness. Let Xn

1 be an optimal distribution for W d
n and

let Y = W d
n(X

n
1 ) be the output distribution of the channel on Xn

1 . Define the random
variable L = |Y | (the length of Y ). Let Sd(n, k) be the probability that a string of length
n is transformed into a string of length k after being transmitted through W d

n , namely,

Sd(n, k) =

(
n

k

)

dn−k(1− d)k .

Then,

Cn(d) = I(Xn
1 ; Y |L) =

n∑

k=0

Sd(n, k) · I(X
n
1 ; Y |L = k) ≤

n∑

k=1

Sd(n, k) · Cn,k

Where the first equality is due to the fact that X → Y → L is a Markov chain. The
inequality follows since I(Xn

1 ; Y |L = k) ≤ Cn,k and Cn,0 = 0.

Clearly, Cn,k describes the capacity of a channel with a finite input and a finite output

size. Therefore, we can describe it with a transition matrix P ∈ R
2n×2k

+ and use the BAA
algorithm to compute its capacity to within a given additive error. In [FD10], Fertonani
and Duman, bounded Cn,k for all 1 ≤ k ≤ n ≤ 17, and for the specific case where k = n−1
up to n = 22. However, they did not manage to go beyond these parameters due to the
high computational complexity required [FD10]. In particular, we note the high memory
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complexity of the BAA which is the main bottleneck in applying it to channels with large
alphabets.

In Section 3, we will discuss several ways of decreasing the space complexity of the
näıve BAA implementation (Algorithm 1). Before that, we present several properties of
Cn,k that we will use when computing the upper bound on Cn(d).

Lemma 2.3. [FD10, Lemma 1] For all n and k, it holds that Cn+1,k ≤ Cn,k.

Lemma 2.4. [FD10, Lemma 3] For all n and k ≥ 1, it holds that

Cn+1,k ≤ Cn,k−1 ·

(

1−
k

n+ 1

)

+ (Cn,k + 1) ·
k

n+ 1
.

The following claim can be seen as a straight forward generalization of Lemma 2.4.

Lemma 2.5. For every s ∈ [n], it holds that

Cn,k ≤
s∑

i=0

(
s
i

)
·
(
n−s
k−i

)

(
n
k

) · (Cs,i + Cn−s,k−i)

Proof. Let Xn
1 be an optimal distribution for the channel Wn,k. Denote by Rs the random

variable that corresponds to the number of bits that survived the transmission of the last
s bits of X . It holds that

Cn,k = I(Xn
1 ; Y ) ≤ I(Xn

1 ; Y |Rs) =

s∑

i=0

Pr[Rs = i] · I(Xn
1 ; Y |Rs = i)

where the inequality follows since Rs and Xn
1 are independent. Now, Pr[Rs = i] =

(si)·(
n−s
k−i)

(nk)
so we are left to show that I(Xn

1 ; Y |Rs = i) ≤ Cs,i + Cn−s,k−i. Indeed, let

Z(0) := Wn−s,k−i(X
n−s
1 ), Z(1) := Ws,i(X

n
n−s+1), and consider the following markov chain

Xn
1 → (Z(0), Z(1))→ Z where the second step is just the concatenation of Z(0) and Z(1).

Thus, by the data processing inequality,

I(Xn
1 ; Y |Rs = i) = I(Xn

1 ;Z) ≤ I(Xn
1 ; (Z

(0), Z(1))) ≤ Cs,i + Cn−s,k−i .

3 Memory Efficient Implementation of the Blahut-

Arimoto Algorithm

Our ultimate goal is to run the Blahut-Arimoto algorithm on these auxiliary channels
with larger input and output alphabets in order to find tighter upper bounds on the
capacity of the BDC.

The main bottleneck in applying Algorithm 1 to larger input alphabets (X ) and output
alphabets (Y), is its memory requirement. Recall that Algorithm 1 stores two |X × Y|-
sized arrays: the transition probability matrix of the channel and the intermediate array
Q

(ℓ)
y,x computed in each iteration. This requires us to store and frequently access large

arrays of floating point numbers, which increases the memory complexity of the algorithm,
and poses the main technical limitation on our ability to scale to larger alphabets.
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To get a sense of how quickly the memory usage of Algorithm 1 becomes impractical,
assume that we want to compute upper bound on C25,12 using the BAA algorithm (Al-
gorithm 1). In this case, |X | = 225, |Y| = 212 and saving just the transition matrix, P ,
where each entry is represented by a double type floating point, would require a terabyte
of RAM storage!

In the following section, Section 3.1, we use a combination of caching computation
results and loop nest optimization to significantly reduce the asymptotic memory require-
ments of the BAA algorithm, albeit with a small increase in runtime. In Section 3.2, we
present a “sparse” version of Algorithm 1 that enables more efficient storage of the arrays.
By employing these techniques, we were able to compute upper bounds on Cn,k for values
of n and k that were unknown prior to this work. Finally, in Section 3.3, we present our
computation which takes as input the upper bounds on Cn,k and produces the improved
upper bounds on the capacity of the BDC.

3.1 Caching and Loop Nest Optimization

The main method we use to compute the bulk of our Cn,k capacity bounds is by remov-
ing the requirement for storing the |X × Y| sized matrices Px→y,Qy,x altogether, and
replacing them with asymptotically smaller arrays instead.

We can remove the memory requirements for the transition probability matrix from
the Blahut-Arimoto algorithm by accepting an oracle access to its entries instead. Doing
this requires a method of computing the channel’s transition probabilities quickly. The
transition probabilities are proportional to the number of ways in which a given output
string can be represented as a subsequence of a given input string, and the common
approach to this computation would be to use the dynamic programming method shown
in Algorithm 2.

However, Algorithm 2 runs in time Θ (n · k), which proved to be too slow in practice.
Therefore, we used a slightly different approach shown in Algorithm 3 which runs in time
O(k), but requires a precomputed cache table of size Θ

(
2k+⌈n/2⌉

)
that are computed

using Algorithm 2.
Using large caches might seem counter-intuitive when our goal is to reduce the memory

complexity of an algorithm, but this added memory is far smaller than the original
memory complexity. For instance, in the numerical example given above with n = 25
and k = 12, this precomputed table would take up only about 256MB of RAM, making
it much more practical.

To avoid storing the intermediate array Q
(ℓ)
y,x, we use an algorithmic concept called

loop nest optimization [Wol92], meaning that we alter the order in which the operations
of the algorithm are performed, in order to reduce its memory storage and retrieval
requirements. We perform this optimization to construct Algorithm 4, where we avoid
computing the entries of Q

(ℓ)
y,x. Instead, we compute the same outputs of each iteration

of the Blahut-Arimoto algorithm using only the O (|X |+ |Y|) sized intermediate arrays

D
(ℓ)
y ,W

(ℓ)
x .

Since each step of the Blahut-Arimoto optimization is logically unchanged, Algo-
rithm 4 converges with exactly the same number of iterations as Algorithm 1. In both
algorithms, each iteration has Θ (|X × Y|) arithmetic operations and Algorithm 4 also
requires Θ (|X × Y|) queries to the transition probability oracle, each of which takes

10



Algorithm 2: A dynamic programming algorithm for computing the transition
probabilities of the Cn,k channel.
This algorithm has time and memory complexity Θ (nk).

input : Input string x ∈ X ∈ {0, 1}n

Output string y ∈ Y ∈ {0, 1}k

output: Transition probability Px→y

[1] Initialize a 2D array A of size (n + 1)× (k + 1) with all values as 0
for i from 0 to n do

for j from 0 to k do

if i = 0 and j = 0 then

Set A[i][j] := 1
end

if i > 0 and j = 0 then

Set A[i][j] := A[i− 1][j]
end

if i > 0 and j > 0 and xi = yj then
Set A[i][j] := A[i− 1][j − 1] + A[i− 1][j]

end

if i > 0 and j > 0 and xi 6= yj then
Set A[i][j] := A[i− 1][j]

end

end

end

[2] Return
A[n][k]
(
n
k

)

Algorithm 3: An algorithm for computing the transition probabilities of the
Cn,k channel.

input : Input string x ∈ X = {0, 1}n

Output string y ∈ Y = {0, 1}k

Cache table Px′→y′ of all transition probabilities of C≤⌈n/2⌉,≤k channels
output: Transition probability Px→y

[1] Set n1 =
⌈
n
2

⌉
and n2 =

⌊
n
2

⌋
.

[2] Define x1 = x:n1 and x2 = xn1+1: to be the first n1 and the last n2 bits in x
(resp).

[3] Return

Px→y =
∑

0≤k′≤k

Px1→y:k′
Px2→yk′+1:

11



O(k) time (when implemented using Algorithm 3). Therefore, the total runtime of our

optimized BAA Algorithm 4 is O(k) ·Θ (|X × Y|) · O(1/a) = O
(

k · 2
n+k

a

)

.

Using Algorithm 4, we computed bounds on Cn,k for all n + k ≤ 39 where n ∈ [28].

3.2 Using sparsity

In this section, we will use the fact that when k is close to n, the matrices P and Q
(ℓ)
y,x

are (very) sparse and thus can be represented in a compressed form. Recall that a major
bottleneck in Algorithm 1 is the memory usage that it requires. Consider for example the
case where k = n−1. In this case, the size of P is 22n−1 but each row of P has at most n
nonzero values which implies that each row contains at least 2n−1 − n zeros. Also, recall
that Algorithm 1 does not consider zero values in its computations. This motivates us to
try to modify Algorithm 1 and create a version that saves only the nonzero entries.

There are many ways of representing sparse matrices. We shall use the compressed
sparse column format (CSC), in which the sparse matrix is saved using three (one di-
mensional) arrays: the data array, the col-ind array and the row-ind array. The data
array will store all the nonzero values of the sparse matrix and the row-ind will store
the corresponding row indices of these values, respectively. The col-ind at index j will
encode the total number of nonzero values before the jth column (the size of col-ind is
the number of columns in the matrix plus 1). Another representation that we will use is
the compressed sparse row format (CSR), that is similar to the CSC format. Here, the
col-ind and row-ind array change roles. The col-ind will store the column indices of the
data and the row ind at index j will encode the total number of nonzero values above
the jth row.

In our implementation, we extend the CSC representation by incorporating two addi-
tional arrays to compress the row data in a manner similar to the CSR format. The first
of these arrays, called perm-data, stores the permutation that maps the data array of the
CSC matrix to the data array of a CSR matrix. The second array, called row-ind-CSR,
represents the row indices of the corresponding CSR matrix.

The modifications to Algorithm 1 are:

• The input to the algorithm is now the channel transition matrix P in the CSC
format.

• Prior to the loop in Step 2, we compute the two additional arrays discussed above:
the perm-data array and row-ind-CSR array.

• In Step 2, we loop over only the nonzero values of P and Q(ℓ)y, x to compute Q(ℓ)y, x
and P(ℓ+1)(x). The extension arrays we added allow us to iterate over the rows and
columns of the sparse matrix.

Another major advantage of the modifications is the significantly improved runtime
of the algorithm. By looping over just the non-zero values of Q

(ℓ)
y,x and P(ℓ+1), the number

of arithmetic operations becomes linear in the sparsity order, rather than linear in the
size of the matrices. Specifically, the runtime of the sparse BAA algorithm is O(1/a) ·

O
((

n
k

)
· 2n
)
= O

(
nk·2n

a

)

.
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Algorithm 4: A loop nest optimized implementation of the Blahut-Arimoto
algorithm.
Note that this algorithm contains arithmetic operations over real numbers, which
could lead to undefined intermediate values (e.g., due to a division by 0). We
work with the convention that the outputs of such operations are fixed to 0.

input : Input and output alphabets X ,Y
P : X × Y → [0, 1] - an oracle to the channel transition probability
a - capacity approximation parameter
output: P ∈ R

X - an input distribution with a nearly optimal rate for this
channel

R ∈ R - the information rate of P

[1] Set ℓ = 0 and set P(1) to be the uniform distribution.
[2] do

1. ℓ← ℓ+ 1

2. For every y ∈ Y compute

D(ℓ)
y =

∑

x∈X

P(ℓ)(x)Px→y

3. For every x ∈ X compute

W(ℓ)
x =

∏

y

(

P(ℓ)(x)Px→y

D
(ℓ)
y

)Px→y

4. For every x ∈ X , compute

P(ℓ+1)(x) =
W

(ℓ)
x

∑

x′W
(ℓ)
x′

while maxx log2

(
P(ℓ+1)(x)

P(ℓ)(x)

)

≥ a

[3] Compute

R =
∑

x

∑

y

P(x) · Px→y · log

(

Px→y

D
(ℓ)
y

)

Return P(ℓ+1)(x),R.
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For example, when k = n−2, computing Q
(ℓ)
y,x and P(ℓ) in Step 2 takes O(n2 ·2n) time

in the sparse implementation, while the näıve implementation would take O(22n−2) time
Using these modifications, we were able to compute Cn,k for all k, n such that n ∈ [18, 24]
and k ∈ [n− 3, n− 1].

3.3 Results

In Section 2, we showed how the values Cn,k for all k ∈ [n] can be used to obtain an upper
bound on Cn(d) via Equation (2.2). By employing our improved BAA algorithms, we were
able to compute many previously unknown Cn,k values. Nevertheless, for 22 ≤ n ≤ 28,
there are Cn,k values that we could not compute even with the improved algorithms. To
obtain upper bounds on these unknown Cn,k values, we used the minimum value resulting
from Lemma 2.3 and Lemma 2.5. Then, for every fixed d, we simply compute

C(BDCd) ≤ min
n∈[28]

(

1

n

n∑

k=1

(
n

k

)

dn−k(1− d)kCn,k

)

. (3.1)

To prove Theorem 1.1, we will use Rahmati and Duman’s result [RD14, Theorem 1].

Theorem 3.1. [RD14, Theorem 1] Let λ, d′ ∈ [0, 1] and denote d = λd′ + 1− λ. Then,

C(BDCd)

1− d
≤
C(BDC′d)

1− d′
.

When d′ = 0.68, we get that C(BDCd′)/(1−d′) = 0.3745 and thus, for every d ≥ 0.68,
we have that C(BDCd) ≤ 0.3745 · (1 − d). Results for smaller values of d are listed in
Table 1 and plotted in Figure 1.

4 A new Lower Bound

4.1 The framework of Drinea and Mitzenmacher

We give a brief description of the main framework given in [DM07]. Their framework
suits any channel that introduce i.i.d. deletions and also i.i.d. duplications. Such a chan-
nel is described by a probability distribution G over the nonnegative integers, where a
nonnegative integer j is sampled with probability j. The BDCd is defined with G0 = p,
G1 = 1− p, and for every j ≥ 2, Gj = 0. Another channel we consider in this work is the
PRCλ that is defined as follows

Definition 1. Let λ > 0. The Poisson repeat channel with parameter λ (PRCλ) replaces
each transmitted bit randomly (and independently of other transmitted bits), with a dis-
crete number of copies of that bit, distributed according to the Poisson distribution with
parameter λ.

This channel was first defined by Mitzenmacher and Drinea in [MD06] who used it to
prove a lower bound of (1− d) /9 on the rate of the BDC. What they observed is that a
code for the PRCλ having rate R, yields a code for the BDCd of rate (1− d) · R/λ.
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p New Upper Bound
Best Known

Upper Bound [FD10, DMP07]

0.01 0.9583 (n = 24) 0.963
0.02 0.9189 (n = 24) 0.926
0.03 0.8817 (n = 24) 0.891
0.04 0.8467 (n = 24) 0.858
0.05 0.8139 (n = 24) 0.816
0.10 0.6762 (n = 22) 0.689
0.15 0.5660 (n = 22) 0.579
0.20 0.4786 (n = 22) 0.491
0.25 0.4083 (n = 22) 0.420
0.30 0.3513 (n = 22) 0.362
0.35 0.3045 (n = 22) 0.315
0.40 0.2648 (n = 23) 0.275
0.45 0.2309 (n = 23) 0.241
0.50 0.2015 (n = 24) 0.212
0.55 0.1755 (n = 25) 0.187
0.60 0.1524 (n = 27) 0.165
0.65 0.1313 (n = 28) 0.144
0.68 0.1199 (n = 28) −

Table 1: Our upper bound compared to the upper bound computed in [FD10]. We note that
for d = 0.05 the previous best known upper bound is given in [DMP07]. Alongside the bound,
we write the value of n for which the minimum was obtained in left hand side of (3.1).
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Drinea and Mitzenmacher define their code using a run length distribution P, which
samples each non-negative integer j with probability Pj .

2

Each codeword of length N in the code is constructed as follows. The first symbol (0
or 1) is chosen uniformly at random. The rest of the codeword is generated by deciding
on the lengths of the runs that form it, where runs are defined as the maximal length
substrings of the codeword of the same symbol (e.g., the string 110001 consists of 3 runs:
11, 000 and 1, of lengths 2, 3, and 1, respectively). The lengths of the runs of the
codeword are sampled i.i.d. from P and the symbols of the runs are alternating. The
sampling stops when the length of the generating string is ≥ N . If the length of the
generated string is strictly greater than N , it is truncated.

We now define the notion of types. Consider a transmitted codeword X and let Y be
the output of the channel upon transmitting X . We write X and Y as a concatenation
of their runs, that is, X = rX0 ◦ r

X
1 ◦ · ◦ r

X
m, Y = rY0 ◦ r

Y
1 ◦ · ◦ r

Y
m′

Definition 2. Let rYj be a run of length k. Let j1, . . . , js be a sequence of consecutive
indices such that,

• The first bit of rYj corresponds to the first bit of rXj1 that was not deleted by the
channel.

• The runs rXj2 , r
X
j4
, . . . , rXjs−1 were deleted by the channel.

• The run rXjs+1
is not completely deleted by the channel.

Then, the type of rYj is an s tuple that represent the lengths of the runs indexed at

j1, . . . , js, namely
(∣
∣rXj1
∣
∣ , . . . ,

∣
∣rXjs
∣
∣
)
.

The probability of a type t = (z, s1, r1, . . . , si, ri), is [DM07, Equation 3]

Pz(1− dz)

(
i∏

ℓ=1

PsℓPrℓ

)

ds ,

where s := s1+ . . . si and d := G0. Denote by T and K the random variables representing
the length and type of a runs in Y , respectively. It holds that [DM07, Equation 34],

Pr[T = t,K = k] = PzPs1Ps1 · · · PsiPri · d
s · (ρz+r,k − ρr,k · d

z) (4.1)

where ρa,b is the probability that a ≥ 1 bits transmitted over a channel with distribution
G generate b bits. Note that ρz,0 = Gz

0 = dz.
Let Qn,m be the probability that the length of m consecutive runs is exactly n. It

holds that Qn,m =
∑n−m+1

ℓ=1 Pℓ · Qn−ℓ,m−1 where Q0,0 = 1. Let D =
∑

z Pzd
z be the

probability that a run is deleted from X , the distribution K for run lengths in Y is given
by [DM07, Equation 35]

Kk := Pr[K = k] =

∞∑

i=1

Di

∞∑

z=1

∞∑

r=i

PzQr,i · (ρz+r,k − ρr,k · d
z) . (4.2)

2The distribution, P , must have a geometric decreasing tail, that is, there are two real constants
cP ∈ (0, 1], αP ∈ [0, 1) and an integer constant MP such that (i) Pj ≤ cP for 1 ≤ j ≤ MP and (ii)

Pj ≤ (1 − αP)α
j−1

P
for j > MP .
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Given the distribution P we can compute the rate of the respective code constructed
using this method with the following theorem.

Theorem 4.1. [DM07, Theorem 4] The capacity of the the channel defined by the
distribution G with G0 > 0 is lower bounded by

1
1+D
1−D
·
∑

z zPz

[
1 +D

1−D
·H(P)− (H(T,K)−H(K))

]

(4.3)

where Pr[T = t,K = k] is given in (4.1) and K is given in (4.2).

Note that evaluating numerically (4.3) for a given distribution P is not an easy task
since it involves infinite sums.

In [MD06, DM07], the authors limit themselves to the case where P is a geometric
distribution. In this case, they managed to derive simpler expressions to (4.3) (see
[MD06, Theorem 2] for the PRCλ and [DM07, Corollary 1] for the BDCd). However, the
authors do not provide an argument for why geometric distributions should be optimal.
Indeed, we will improve upon this lower bounds by constructing a better distribution P.

4.2 Our heuristic approach to find better input distributions

In this section, we will present a heuristic approach to optimizing the input run length
distribution P. Note that even though our optimization of P is heuristic, because P
is used only as parameters for Mitzenmacher and Drinea’s rigorous construction, the
resulting bounds are provably correct. Indeed, we plug in the resulting distribution in
Theorem 4.1.

Our approach is based on a heuristic score function Rheur, which should approximate
the information rate of Mitzenmacher and Drinea’s code for the given distribution. We
select the score function so that it can be optimized with a Blahut-Arimoto type algo-
rithm.

Our main observation is that for the distributions used by Mitzenmacher and Drinea,
only a small fraction of the runs are deleted. If no runs were deleted, then we could
view the channel as a DMC that maps input run lengths into output run lengths and
its information rate would be given by eq. 4.4, where Px→y is the transition probability
matrix of input run lengths to output run lengths.

RDMC =
∑

x,y

PiPx→y log

(
Px→y

∑

x′ Px′Px′→y

)

(4.4)

Equation (4.4) overlooks two key effects: that the binary deletion channel can delete
entire runs causing a loss of information, and the rate given in equation (4.4) is in bits per
run. To correct for the first effect, we subtract from RDMC a loss function ∆ · Ex←P Dx

where ∆ is a parameter and Dx is the probability that a run of length x will be deleted
by the channel. To correct for the latter effect, we normalize the rate by the inverse of
the average run length L(P) = Ex←P x.

After correcting for these effects, we get our heuristic score function in eq. (4.5). In
Section 4.3, we give a more detailed analysis of these approximations.

Rheur
def
=

1
∑

r Prr

[

RDMC −
∑

r

Pr∆Dr

]

(4.5)
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d
Best previous
lower bound

Direct lower
bound

PRC based
lower Bound

0.40 0.148410 0.149810 0.073313
0.45 0.122860 0.124700 0.067204
0.50 0.101860 0.104075 0.061094
0.55 0.084323 0.086712 0.054985
0.60 0.069564 0.071838 0.048875
0.65 0.056858 0.059012 0.042766
0.70 0.045324 0.047726 0.036657
0.75 0.035984 0.037593 0.030547
0.80 0.027266 0.028371 0.024438
0.85 0.019380 0.019531 0.018328
0.90 0.012378 0.012379 0.012219
0.95 0.005741 0.005631 0.006105

Table 2: Our lower bound compared to the lower bounds computed in [MD06, DM07].

In Section 4.4, we show how a Blahut-Arimoto type algorithm can be used to maximize
eq. (4.5) w.r.t the input distribution P in polynomial time. Roughly speaking, this
optimization works by enumerating over polynomially many potential values of L(P),
and using an extension of the BAA similar to the one used in [LC19] to optimize P under
the different constraints on the average run lengths.

In practice, this enumeration converges too slowly, so we use a heuristic basin-hopping
optimization algorithm to select the external parameters ∆, L0. For each setting of ∆, L0,
we use a BAA type algorithm to find a distribution P(∆, L0) which maximizes eq. (4.5)
under the constraint of L(P) = L0. We use the basin-hopping optimization to select
the parameters for which the distribution P(∆, L0) yields the best lower bound from
Mitzenmacher and Drinea’s construction.

Recall that we use this heuristic only to optimize the parameters needed for applying
Mitzenmacher and Drinea’s rigorous construction. Therefore, the lower-bounds obtained
by this method are rigorous (though not necessarily tight).

We use this heuristic approach to optimize the input distribution for different deletion
probabilities d ∈ (0, 1), giving us an improved lower bound in the intermediate deletion
probability regime d ∈ [0.4, 0.9] (see Table 2). In order to lower bound the capacity of
the BDC in the d→ 1 regime, we use the same technique to lower bound the capacity of
the PRC with a given parameter λ0 = 0.19, yielding the bound

C(BDCd)

1− d
≥
C(PRCλ0)

λ0

>
0.0232

0.19
> 0.1221 .

4.3 Analysis of the heuristic

In Section 4, we recalled Mitzenmacher and Drinea’s approach to converting distributions
on lengths of runs into error correcting codes for the binary deletion channel and the
Poisson repeat channel [DM07]. We gave a very high-level heuristic formula for the
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information rate a Mitzenmacher and Drinea’s type code would achieve for a given run
length distribution and optimized the input run length distribution using this heuristic
formula. In this section, we will give a slightly more formal derivation of the heuristic
formula from Section 4.

Let P be a distribution on run lengths to be input into Mitzenmacher and Drinea’s
construction. If none of the input runs were completely deleted, then the channel could
effectively be seen as a discrete memory-less channel on runs, and the information rate
of the code (per run) would be given by

Rmemoryless =
∑

x,y

PiPx→y log

(
Px→y

∑

x′ Px′Px′→y

)

(4.6)

However, this formula for the rate overlooks two key aspects of the deletion channel
and the code. Namely, that runs can be deleted (i.e., the BDC and the PRC are not
memoryless channels) and that different run lengths have a different cost for the rate of
the code.

Consider the effects of runs being deleted by the channel. Every time a run is deleted
by the channel, this causes the preceding and following input runs to be merged and
results in a loss of information as the output run can no longer be assigned to a single
input run.

Let d denote the probability that the channel will delete any single bit (d is the deletion
rate for the deletion channel and d = e−λ for the PRCλ channel), and let D = Ex←P d

x

denote the probability that any single input run is deleted.
The first approximation that we will make is that D is small. This assumption is

reasonable for most useful distributions. For instance, for the distributions used in [MD06,
DM07], the run deletion probabilities were around D ≈ 4.4%.

If we completely neglected the deletion probability D, then we would return to the
formula for a memoryless channel and our optimization will no longer have any pressure to
prefer longer runs which are less likely to be deleted by the channel, effectively increasing
D and possibly invalidating our assumption. Therefore, we need to take into account
some effects of order O(D), but we allow ourselves to neglect those of order O (D2). In
other words, we will take into account the effects of output runs resulting from merging
at most 2 input runs.

Consider an input run of length r. The probability that this run will be deleted by
the channel is Dr = dr. Denote by rbefore, rafter the lengths of the runs immediately before
and after it, respectively. If the run r is deleted, then the latter two (rbefore, rafter) will be
merged by the channel.

The possibility of runs being deleted or merged can lead to two adverse effects. First,
the added uncertainty of determining which runs were merged with which, can increase
the entropy required for the decoding. Due to the high degree of difficulty in estimating
this effect and some evidence that it is less significant (see e.g. [KD09]), we neglect it.
The second effect, on which we will focus most of our efforts, is that some amount of
information ∆I (rbefore, rafter) is lost because we are given the output of the channel only
on the merged run of length rbefore + rafter (and not on the individual runs of lengths
rbefore, rafter). The loss of information is quantified in eq. (4.7), by comparing the infor-
mation rate of two separate runs of lengths r1, r2, with the rate of a single merged run of
length r1 + r2.
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∆I (r1, r2)
def
=
∑

o1,o2

Pr1→o1Pr2→o2

(

log

(
Pr1→o1

∑

r PrPr→o1

)

+ log

(
Pr2→o2

∑

r PrPr→o2

))

−

−
∑

o

Pr1+r2→o log

(

Pr1+r2→o
∑

ρ1,ρ2
Pρ1Pρ2Pρ1+ρ2→o

) (4.7)

Note that this information loss depends only on the lengths of the runs being merged,
and that these lengths are independent of the length of the run being deleted. Let ∆I =
Er1,r2←P ∆I(r1, r2) denote the average information lost due to such a merger. Denote
by X the distribution of input codewords, by Y the output codeword and let T denote
the random variable containing the division of input runs into types (i.e. which runs in
X were merged due to deletions by the channel). Putting our approximations into an
information theoretic language, we have:

Information Rate = I (X ; Y ) = H (X)−H (X | Y )

= H (X)−H (T , X | Y ) +H (T | X, Y )

= H (X)−H (X | Y, T )−H (T | Y ) +H (T | X, Y )

=
|X|

Er←P r

[
Rmemoryless −D∆I +O

(
D2
)]
−H (T | Y ) +H (T | X, Y )

(4.8)

Equation (4.8) gives us our separation of the exact information rate into an approxi-
mate formula (eq. (4.9)) and error terms.

Rheuristic =
1

Er←P r
[Rmemoryless −D∆I ] ≈

Information Rate

|X|
(4.9)

The neglected error terms in eq. (4.8) are D2, H (T | Y ) /|X| and H (T | X, Y ) /|X|.
The first term is negligible due to our assumption that D ≪ 1, and we neglect the other
two mainly because of the difficulty of including them in the optimization (the latter term
is also neglected by Mitzenmacher and Drinea [DM07] and both are difficult to compute
directly [KD09]).

The last heuristic step in our analysis is to neglect the dependence of ∆I on the input

distribution P. Instead, we will make estimates ∆
?
= ∆I , and maximize Rheuristic assuming

this value ∆ of information loss per merge (but without limiting P to distributions
that maintain the equation ∆I (P) = ∆). This is a heuristic approximation, but it is
somewhat justified assuming that ∆I doesn’t vary too wildly between otherwise “good”
input distributions and that this variation is then multiplied by D ≪ 1 in eq. (4.8)

Recall that the goal of eq. (4.9) is not to directly prove a lower bound, and may be far
less accurate than using a calculation similar to the one described in [DM07]. The main
reason to use this approximation is that it gives a closed formula, and that a BAA-style
convex optimization algorithm can be used to maximize it, which can then be used as
parameters for Mitzenmacher and Drinea’s construction.
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4.4 Reduction to Convex Optimization

In Section 4.3, we gave a heuristic argument for a simplified formula that can be used to
estimate the information rate of Mitzenmacher-Drinea type codes for the binary deletion
channel and the Poisson repeat channel. This formula can be seen as an information rate
formula with 2 correction terms corresponding to different “costs” of sending different run
lengths (the cost due to the information lost in the event of a deletion and the overhead of
sending longer runs). In this section we will construct a Blahut-Arimoto type algorithm
to maximize it.

In some sense, generalizing the Blahut-Arimoto algorithm to the cost types needed
for our construction can be seen as an extension of the algorithm presented by Li and
Cai [LC19] who show how to extend the Blahut-Arimoto to quantum-classical codes where
only distributions below a certain total cost are allowed. We will reduce our optimization
problem into an optimization problem in the class of problems solved by Li and Cai, and
prove that our optimization yields a ±ε-approximation of the optimal distribution score
within poly (1/ε, 1/(1− d)) and poly(1/ε, λ, 1/λ) time for the binary deletion channel
and the poisson repeat channel with parameters d and λ resp.

Our approximation for the rate of the resulting code is given by the formula

Rheuristic
def
=

1
∑

r Prr

[

Rmemoryless −
∑

r

Pr∆Dr

]

(4.10)

This approximation can be viewed as a combination of three terms:

• The basic information rate of a memory-less channel of runs Rmemoryless.

• A correction term for the information lost due to deletions
∑

r Pr∆Dr.

• A “price factor” corresponding to the average resource cost of transmitting a run
1∑

r Prr
.

The main claim we will prove in this section is that a nearly optimal distribution for
this heuristic formula can be efficiently found:

Lemma 4.1. There exists an algorithm that returns a distribution P for which

Rheuristic(P) ≥ sup
P ′
{Rheuristic(P

′)} − ε

in poly (1/ε, 1/(1− d),∆) time for the deletion channel with deletion probability d and
poly (1/ε, λ, 1/λ,∆) time for Poisson repeat channel with parameter λ.

Proof of Lemma 4.1. The main difficulty in maximizing eq. (4.10) is that the price factor
term 1∑

r Prr
causes the relationship between Rheuristic and P to be non-convex. This issue

will be the main focus of this section, and we will overcome it by extracting L(P)
def
=

∑

r Prr to be an external hyperparameter of the optimization. We then separate the
search into many searches under the external condition the L(P) = ℓ for different values
of ℓ and show that polynomially many searches suffice.

Unlike ∆, neglecting the effect of the fact that P must satisfy L(P) = ℓ in each of
these searches would lead us to select distributions of runs too heavily skewed towards
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long runs, lowering the rate they can achieve. So for any given value ℓ, we limit our search
to distributions P under the condition that L(P) = ℓ. The central point of our analysis
will be to show that the supremum of Rheuristic with respect to P under the condition that
L(P) = ℓ, cannot change too rapidly with ℓ, this is what allows us to enumerate over
only polynomially many guesses for ℓ in order to approximate the optimal distribution
P to within a small additive error.

Let η
def
= max{log∆, 1}. We begin with the simple observation that

Rheuristic (P) ≥ Ω

(
1− d

η

)

, Ω

(
min{1, λ}

η

)

can be achieved for the BDC and the PRC respectively. In particular, this is true for the
Morse distribution

Pi =
1

2
δi,t +

1

2
δi,2t

which returns either t or 2t each w.p. 1/2, for

t =

⌈

η
100

1− d

⌉

,

⌈

ηmax

{

100,
100

λ

}⌉

This distribution obtains a non-negligible rate, because L(P) ≤ t = O
(

η
1−d

)
, the deletion

probability for a run from this distribution is D < e−100

∆
and the probability of missing

the reconstruction of any run is also very small, implying that

Rheuristic (P)L(P) = Rmemoryless(P)−∆D(P) = Ω(1)

It is easy to see that setting L(P) = ℓ to be extremely large would result in an infor-
mation transfer rate of at most O(log(ℓ)/ℓ) = o(1). Therefore, in order to approximately
maximize Rheuristic(P), the average lengths of runs in this distribution L(P) is at most
polynomially large in the parameters of Lemma 4.1.

Our next goal will be to prove that maximizing Rheuristic for a (small) discrete subset
of values of ℓ suffices to approximate its maximum on the whole range of run lengths.
We denote by h(P) the non-normalized version of eq. 4.10:

h(P)
def
= Rheuristic (P)L(P) = Rmemoryless −∆D

=
∑

i,j

PiPi→j log

(
Pi→j

∑

i′ Pi′Pi′→j

)

−∆
∑

i

PiDi

(4.11)

Let

Sℓ =

{

P ∈ R
N | Er←P r = ℓ ∧

∑

i

Pi = 1 ∧ ∀i Pi ≥ 0

}

be the set of distributions with average cost ℓ. We define I(ℓ)
def
= supP∈Sℓ

h(P) to be
the optimal value of the non-normalized rate when fixing the average input run length to
some value ℓ.

The main property of I that we will use in our analysis is that it is monotonously
non-decreasing in ℓ on the range (0,∞).
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Claim 4.2. For any 0 < ℓ1 < ℓ2, it holds that I(ℓ2) ≥ I(ℓ1).

We leave the proof of Claim 4.2 to the end of the section. We use it to bound from
above the speed with which our approximation for the rate of the code can change when
optimizing under slightly different L = ℓ constraints. In particular, the fact that I is
non-decreasing means that for any ℓ1, ℓ2 and for any ℓ ∈ (ℓ1, ℓ2), we have:

ℓ1
ℓ2

sup
P1∈Sℓ1

Rheuristic (P1) =
I (ℓ1)

ℓ2
< sup
P∈Sℓ

Rheuristic (P) =

=
I (ℓ)

ℓ
<

I (ℓ2)

ℓ1
=

ℓ2
ℓ1

sup
P2∈Sℓ2

Rheuristic (P2)

(4.12)

Eq. 4.12 proves that it suffices to compute I(ℓ) only in a discrete set of points ℓi, strictly
separated on the logarithmic scale, in order to approximate it everywhere. Because
we already showed that the value of ℓ for which Rheuristic is maximized is polynomially
bounded as a function of the parameters of Lemma 4.1, this implies that polynomially
many samples suffice to approximate this optimization.

The last step in our construction is to show that I(ℓ) can be efficiently approximated
for any given ℓ. To this end we employ the algorithm proposed by Li and Cai [LC19]
who show that the Blahut-Arimoto algorithm can be extended to maximize functions of
the form of h(P), under “cost limit” constraints of the form L(P) ≤ ℓ. For any given
ℓ we can generate a candidate distribution P ′ ∈

⋃

ℓ′≤ℓ Sℓ using Li and Cai’s algorithm,
and then convert it into a distribution P ∈ Sℓ for which h(P) is arbitrarily close to h(P ′)
using the same construction as in the proof of Claim 4.2.

Proof of Claim 4.2. Let 1
2
> ε > 0 be some number, and let P1 ∈ Sℓ1 be some distribution

for which h(P1) ≥ I(ℓ1)− ε. Our goal will be to show that there exists some P2 ∈ Sℓ2 for
which I(ℓ2) ≥ h(P2) ≥ h(P1)− ε ≥ I(ℓ1) − 2ε. Because we prove this for an arbitrarily
small ε, it will imply that I(ℓ2) ≥ I(ℓ1).

Let P2 = (1− c)P1 + cδN be the distribution that returns a random sample from P1

with probability 1− c and the value N otherwise, where c = ℓ2−ℓ1
N−ℓ1

> 0, and

N > max

{

2ℓ1,
1

(ℓ2 − ℓ1)
2 ,

(
Rmemoryless (P1)

10ε

)2

,

(
1

10ε

)2
}

is a sufficiently large integer. From its construction P2 ∈ Sℓ2.
Our next goal is to show that h(P2) ≥ h(P1) − ε. We do this by opening up the

definition of h:

h (P2) = Rmemoryless (P2)
︸ ︷︷ ︸

≥(1−c)Rmemoryless(P1)

− ∆Er←P2 d
r

︸ ︷︷ ︸

≤∆Er←P1
dr+c∆

≥ h (P1)− c (∆ +Rmemoryless (P1))
︸ ︷︷ ︸

≤ε

(4.13)
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