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Abstract

In this work, we study the performance of Reed–Solomon codes against adver-
sarial insertion-deletion (insdel) errors.

We prove that over fields of size nO(k) there are [n, k] Reed-Solomon codes that
can decode from n−2k+1 insdel errors and hence attain the half-Singleton bound.
We also give a deterministic construction of such codes over much larger fields
(of size nkO(k)

). Nevertheless, for k = O(log n/ log log n) our construction runs in
polynomial time. For the special case k = 2, which received a lot of attention in the
literature, we construct an [n, 2] Reed-Solomon code over a field of size O(n4) that
can decode from n− 3 insdel errors. Earlier constructions required an exponential
field size. Lastly, we prove that any such construction requires a field of size Ω(n3).
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1 Introduction

Error-correcting codes are among the most widely used tools and objects of study in
information theory and theoretical computer science. The most common model of cor-
ruption that is studied in the TCS literature is that of errors or erasures. The model
in which each symbol of the transmitted word is either replaced with a different symbol
from the alphabet (an error) or with a ‘?’ (an erasure). The theory of such codes began
with the seminal work of Shannon, [Sha48], who studied random errors and erasures and
the work of Hamming [Ham50] who studied the adversarial model for errors and erasures.
These models are mostly well understood, and today we know efficiently encodable and
decodable codes that are optimal for Shannon’s model of random errors. For adversarial
errors, we have optimal codes over large alphabets and good codes (codes of constant
relative rate and relative distance) for every constant sized alphabet.

Another important model that has been considered ever since Shannon’s work is that
of synchronization errors. These are errors that affect the length of the received word.
The most common model for studying synchronization errors is the insertion-deletion
model (insdel for short): an insertion error is when a new symbol is inserted between
two symbols of the transmitted word. A deletion is when a symbol is removed from the
transmitted word. For example, over the binary alphabet, when 100110 is transmitted, we
may receive the word 1101100, which is obtained from two insertions (1 at the beginning
and 0 at the end) and one deletion (one of the 0’s at the beginning of the transmitted
word). Observe that compared to the more common error model, if an adversary wishes
to change a symbol, then the cost is that of two operations - first deleting the symbol
and then inserting a new one instead.

Insdel errors appear in diverse settings such as optical recording, semiconductor de-
vices, integrated circuits, and synchronous digital communication networks. Another
important example is the trace reconstruction problem, which has applications in com-
putational biology and DNA-based storage systems [BLC+16, YGM17, HMG19]. See the
surveys [Mit09, MBT10] for a good picture of the problems and applications of error-
correcting codes for the insdel model (insdel codes for short).

Reed-Solomon codes are the most widely used family of codes in theory and prac-
tice. Indeed, they have found many applications both in theory and in practice (their
applications include QR codes [Soo08], secret sharing schemes [MS81], space transmission
[WB99], encoding data on CDs [WB99] and more. The ubiquity of these codes can be
attributed to their simplicity as well as to their efficient encoding and decoding algo-
rithms. As such, it is an important problem to understand whether they can also decode
from insdel errors. This problem received a lot of attention recently [SNW02, WMSN04,
TSN07, DLTX19, LT21, CZ21, LX21], but besides very few constructions (i.e., evaluation
points for Reed-Solomon codes), not much was known before our work. We discuss this
line of work in more detail in Section 1.2.

In this paper, we first prove that there are Reed-Solomon codes that achieve the half-
Singleton bound. In other words, there are optimal Reed-Solomon codes also against
insdel errors. We also give a set of evaluation points that define a Reed-Solomon code
that achieves this bound. As the field size that we get grows very fast, our construction
runs in polynomial time only for very small values of δ. We also explicitly construct
2-dimensional RS codes over a field size smaller than the previous known constructions.
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Unfortunately, we could not develop efficient decoding algorithms for our Reed-Solomon
constructions, and we leave this as an open problem for future research.

1.1 Basic definitions and notation

For an integer k, we denote [k] = {1, 2, . . . , k}. Throughout this paper, log(x) refers to
the base-2 logarithm. For a prime power q, we denote with Fq the field of size q.

We denote the ith symbol of a string s (or of a vector v) as si (equivalently vi).
Throughout this paper, we shall move freely between representations of vectors as strings
and vice versa. Namely, we shall view each vector v = (v1, . . . , vn) ∈ Fn

q also as a
string by concatenating all the symbols of the vector into one string, i.e., (v1, . . . , vn)↔
v1 ◦ v2 ◦ . . . ◦ vn. Thus, if we say that s is a subsequence of some vector v, we mean that
we view v as a string and s is a subsequence of that string.

An error correcting code of block length n over an alphabet Σ is a subset C ⊆ Σn. The
rate of C is log |C|

n log |Σ| , which captures the amount of information encoded in every symbol
of a codeword. A linear code over a field F is a linear subspace C ⊆ Fn. The rate of a
linear code C of block length n is R = dim(C)/n. Every linear code of dimension k can
be described as the image of a linear map, which, abusing notation, we also denote with
C, i.e., C : Fk → Fn. Equivalently, a linear code C can be defined by a parity check matrix
H such that x ∈ C if and only if Hx = 0. When C ⊆ Fn

q has dimension k we say that
it is an [n, k]q code. The minimal distance of C with respect to a metric d(·, ·) is defined
as distC := minv 6=u∈C d(v, u). Naturally, we would like the rate to be as large as possible,
but there is an inherent tension between the rate of the code and the minimal distance
(or the number of errors that a code can decode from). In this work, we focus on codes
against insertions and deletions.

Definition 1.1. Let s be a string over the alphabet Σ. The operation in which we remove
a symbol from s is called a deletion and the operation in which we place a new symbol
from Σ between two consecutive symbols in s, in the beginning, or at the end of s, is called
an insertion.

A substring of s is a string obtained by taking consecutive symbols from s. A sub-
sequence of s is a string obtained by removing some (possibly none) of the symbols in
s.

The relevant metric for such codes is the edit-distance that we define next.

Definition 1.2. Let s, s′ be strings over the alphabet Σ. A longest common subsequence
between s and s′, is a subsequence ssub of both s and s′, of maximal length. We denote
by LCS(s, s′) the length of a longest common subsequence.1

The edit distance between s and s′, denoted by ED(s, s′), is the minimal number of
insertions and deletions needed in order to turn s into s′. One can verify that this measure
indeed defines a metric (distance function).

Lemma 1.3 (See e.g. Lemma 12.1 in [CR03]). It holds that ED(s, s′) = |s| + |s′| −
2LCS(s, s′).

1Note that a longest common subsequence may not be unique as there can be a number of subsequences
of maximal length. For example in the strings s = (1, 0) and s′ = (0, 1).
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We next define Reed-Solomon codes (RS-codes from now on).

Definition 1.4 (Reed-Solomon codes). Let α1, α2, . . . , αn ∈ Fq be distinct points in a
finite field Fq of order q ≥ n. For k ≤ n the [n, k]q RS-code defined by the evaluation set
{α1, . . . , αn} is the set of codewords

{cf = (f(α1), . . . , f(αn)) | f ∈ Fq[x], deg f < k} .

In words, a codeword of an [n, k]q RS-code is the evaluation vector of some polynomial
of degree less than k at n predetermined distinct points. It is well known (and easy to
see) that the rate of [n, k]q RS-code is k/n and the minimal distance, with respect to the
Hamming metric, is n− k + 1.

1.2 Previous results

Linear codes against worst-case insdel errors were recently studied by Cheng, Guruswami,
Haeupler, and Li [CGHL21]. Correcting an error in a preceding work, they proved that
there are good linear codes against insdel errors.

Theorem 1.5 (Theorem 4.2 in [CGHL21]). For any δ > 0 and prime power q, there
exists a family of linear codes over Fq that can correct up to δn insertions and deletions,
with rate (1− δ)/2− h(δ)/ log2(q).

The proof of Theorem 1.5 uses the probabilistic method, showing that, with high
probability, a random linear map generates such code. Complementing their result, they
proved that their construction is almost tight. Specifically, they provided the following
upper bound, which they call “half-Singleton bound,” that holds over any field.

Theorem 1.6 (Half-Singleton bound: Corollary 5.1 in [CGHL21]). Every linear insdel
code which is capable of correcting a δ fraction of deletions has rate at most (1−δ)/2+o(1).

The performance of RS-codes against insdel errors was studied much earlier than the
recent work of Cheng et al. [CGHL21]. To the best of our knowledge, Safavi-Naini
and Wang [SNW02] were the first to study the performance of RS-codes against insdel
errors. They gave an algebraic condition that is sufficient for an RS-code to correct
from insdel errors, yet they did not provide any construction. In fact, in our work, we
consider an almost identical algebraic condition, and by simply using the Schwartz-Zippel-
Demillo-Lipton lemma, we prove that there are RS-codes that meet this condition and,
in addition, achieve the half-Singleton bound. In particular, RS-codes are optimal for
insdel errors (see discussion in Section 2). Wang, McAven, and Safavi-Naini [WMSN04]
constructed a [5, 2] RS-code capable of correcting a single deletion. Then, in [TSN07],
Tonien and Safavi-Naini constructed an [n, k] generalized-RS-codes capable of correcting
from logk+1 n − 1 insdel errors. Similar to our results, they did not provide an efficient
decoding algorithm.

In another line of work Duc, Liu, Tjuawinata, and Xing [DLTX19], Liu and Tjuaw-
inata [LT21], Chen and Zhang [CZ21], and Liu and Xing [LX21] studied the specific case
of 2-dimensional RS-codes.

In [DLTX19, LT21], the authors presented constructions of [n, 2] RS-codes that for
every ε > 0 can correct from (1 − ε) · n insdel errors, for codes of length n = poly(1/ε)
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over fields of size Ω(exp((log n)1/ε)) and Ω(exp(n1/ε)), respectively. In [DLTX19, CZ21],
the authors present constructions of two-dimensional RS-codes that can correct from
n − 3 insdel errors where the field size is exponential in n. After a draft of this work
appeared online, Liu and Xing [LX21] constructed, using different approach than us, a
two dimensional RS-codes over that can correct from n− 3 insdel errors, over a field size
O(n5). Specifically, they prove the following.

Theorem 1.7. [LX21, Theorem 4.8] Let n ≥ 4. If q > n(n−1)2(n−2)2

4
, then there is an

[n, 2]q RS-code, constructed in polynomial time, that can decode from n− 3 insdel errors.

1.3 Our results

First, we prove that there are RS-codes that achieve the half-Singleton bound. Namely,
they are optimal linear codes for insdel errors.

Theorem 1.8. Let k and n be positive integers such that 2k − 1 ≤ n. For q = O(n4k−2)
there exists an [n, k]q RS-code defined by n distinct evaluation points α1, . . . , αn ∈ Fq,
that can recover from n− 2k + 1 adversarial insdel errors.

Observe that the constructed code achieves the half Singleton bound: its rate is
R = k/n = (1− δ)/2 + o(1) and δ = (n− 2k + 1)/n.

Theorem 1.8 is an existential result and does not give an explicit construction. Using
ideas from number theory and algebra, we construct RS-codes that can decode from
n− 2k+ 1 adversarial insdel errors, in particular, they achieve the half-Singleton bound.
Specifically,

Theorem 1.9. Let k and n be positive integers, where 2k−1 ≤ n. There is a deterministic
construction of an [n, k]q RS-code that can correct from n−2k+1 insdel errors where q =

O
(
nk2·((2k)!)2

)
. The construction runs in polynomial time for k = O(log(n)/ log(log(n))).

We note that for k = ω(log(n)/ log log(n)) the field size is exp(nω(1)) and in particular,
there is no efficient way to represent arbitrary elements of Fq in this case.

As discussed before, special attention was given in the literature to the case of two
dimensional RS-codes. By using Sidon spaces that were constructed in [RRT17], we
explicitly construct a family of [n, 2]q RS-codes that can decode from n− 3 insdel errors
for q = O(n4). Besides improving on all previous constructions in terms of field size, our
construction also requires a smaller field size than the one guaranteed by the randomized
argument in Theorem 1.8. Such phenomena, where a deterministic algebraic construction
outperforms the parameters obtained by a randomized construction, are scarce in coding
theory and combinatorics. Well-known examples are AG codes that outperform the GV-
bound [TVZ82] and constructions of extremal graphs with “many” edges that do not
contain cycles of length 4, 6 or 10 (see [Con21]).

Theorem 1.10. For any n ≥ 4, there exists an explicit [n, 2]q RS-code that can correct
from n− 3 insdel errors, where q = O(n4).

We also prove a (very) weak lower bound on the field size.
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Proposition 1.11. Any [n, k]q RS-code that can correct from n−2k+1 worst case insdel
errors must satisfy

q ≥ 1

2
·
(

n

(2k − 1)(k − 1)

) 2k−1
k−1

.

While for large values of k, this bound is meaningless, it implies that when k = 2,
the field size must be Ω(n3). Thus, the construction given in Theorem 1.10 is nearly
optimal. The gap between the field size in our construction and the one implied by the
lower bound raises an interesting question: what is the minimal field size q for which an
optimal [n, 2]q RS-code exists?

1.4 Proof idea

To show that RS-codes can be used against insdel errors, we first prove an algebraic
condition that is sufficient for n evaluation points to define an RS-code that can decode
from insdel errors. This condition requires that a certain set of nO(k) matrices, determined
by the evaluation points, must all have full rank. Then, a simple application of the
Schwartz-Zippel-DeMilo-Lipton lemma [Sch80, Zip79, DL78] implies the existence of good
evaluation points over fields of size nO(k). To obtain a deterministic construction, we show
that by going to much larger field size, one can find evaluation points satisfying the full-
rank condition. While the field size needs to be of size roughly Ω(nkk), we note that, for
not too large values of k, it is of exponential size, and in this case, our construction runs
in polynomial time. A key ingredient in the analysis of this construction is our use of the
‘abc theorem’ for polynomials over finite fields [VW03].

For the case of k = 2, we use a different idea that gives a better field size than the
one implied by the probabilistic argument above. We do so by noting that in this case
the full-rank condition can be expressed as the requirement that no two different triples
of evaluation points (x1, x2, x3) and (y1, y2, y3) satisfy

y1 − y2

x1 − x2

=
y2 − y3

x2 − x3

.

This condition is reminiscent of the condition behind the construction of Sidon spaces
of [RRT17], and indeed, we build on their construction of Sidon spaces to define good
evaluation points in a field of size O(n4).

1.5 Organization

The paper is organized as follows. In Section 2, we prove Theorem 1.8. In Section 3, we
prove Theorem 1.9. Finally, in Section 4, we prove Theorem 1.10 and Proposition 1.11.
Section 5 is devoted to conclusion and open questions.

2 Reed-Solomon codes achieving the half-Singleton

bound

In this section, we prove our results concerning RS-codes. Specifically, we prove that
RS-codes achieve the half-Singleton bound and give some explicit constructions. The
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proofs will follow by standard analysis of the LCS between any two distinct codewords.
We begin by reformulating the condition on the maximum length of an LCS as an

algebraic condition (invertibility of certain matrices). Then we show that an RS-code
that satisfies this condition would have the maximum possible edit distance and hence
would be able to decode from the maximum number of insdel errors. We remark that a
similar approach already appeared in [SNW02, Section 2.2] and we shall repeat some of
the details here.

2.1 An algebraic condition

The following proposition is the main result of this section as it provides a sufficient
condition for an RS-code to recover from the maximum number of insdel errors. We first
make the following definitions: We say that a vector of indices I ∈ [n]s is an increasing
vector if its coordinates are monotonically increasing, i.e., for any 1 ≤ i < j ≤ s, Ii < Ij,
where Ii is the ith coordinate of I. For a codeword c of length n and an increasing vector I,
let cI be the restriction of c to the coordinates with indices in I, i.e., cI = (cI1 , . . . , cIs). For
two vectors I, J ∈ [n]2k−1 with distinct coordinates we define the following (variant of a)
vandermonde matrix of order (2k−1)×(2k−1) in the formal variables X = (X1, . . . , Xn):

VI,J(X) =


1 XI1 . . . Xk−1

I1
XJ1 . . . Xk−1

J1

1 XI2 . . . Xk−1
I2

XJ2 . . . Xk−1
J2

...
... . . .

...
... . . .

...
1 XI2k−1

. . . Xk−1
I2k−1

XJ2k−1
. . . Xk−1

J2k−1

 . (1)

Proposition 2.1. Consider the [n, k]q RS-code defined by an evaluation vector α =
(α1, . . . , αn). If for every two increasing vectors I, J ∈ [n]2k−1 that agree on at most k−1
coordinates, it holds that det(VI,J(α)) 6= 0, then the code can correct any n−2k+1 insdel
errors. Moreover, if the code can correct any n − 2k + 1 insdel errors, then the only
possible vectors in Kernel (VI,J(α)) are of the form (0, f1, . . . , fk−1,−f1, . . . ,−fk−1).

Proof. Assume that the claim does not hold; therefore, there exist two distinct codewords
c 6= c′ whose LCS is at least 2k− 1, i.e., cI = c′J for two increasing vectors I, J ∈ [n]2k−1.
Assume further that c and c′ are the encodings of the degree k−1 polynomials f =

∑
i fix

i

and g =
∑

i gix
i, respectively. If I` = J` for at least k coordinates, then for every such `

f(αI`) = cI` = c′J` = g(αI`) .

Hence f ≡ g, in contradiction to the fact that c 6= c′. Thus, we can assume that
I, J agree on at most k − 1 coordinates. In this case, VI,J(α) is singular, since the
vector (f0 − g0, f1, . . . , fk−1,−g1, . . . ,−gk−1)t is in its right kernel, which contradicts our
assumption. From Lemma 1.3 it follows that the code can correct n−2k+1 insdel errors.

To prove the moreover part note that the argument above implies that if the
code can correct any n − 2k + 1 insdel errors and f 6= g then the vector (f0 −
g0, f1, . . . , fk−1,−g1, . . . , gk−1) is not in the kernel.

In [SNW02] Safavi-Naini and Wang identified (almost) the same condition (see Re-
mark 2.2 below) and used it in their construction of traitor tracing schemes. Interestingly,
the later work of [TSN07], which gave a construction of RS-codes capable of decoding
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from logk(n+ 1)− 1 insdel errors, did not use this condition. In particular, as far as we
know, prior to this work the condition in Proposition 2.1 was not used in order to show
the existence of optimal RS-codes.

The following remark explains the difference between Proposition 2.1 and the condi-
tion in [SNW02].

Remark 2.2. The main difference between the condition presented in [SNW02] and ours,
is that they considered a 2k × 2k matrix and a generalized RS-code. Given evaluation
points (α1, . . . , αn) and a vector with nonzero coordinates (v1, . . . , vn) ∈ Fn

q , the gener-
alized [n, k]q RS-code is defined as the set of all vectors (v1 · f(α1), . . . , vn · f(αn)), such
that deg(f) < k. The matrix studied in [SNW02] is:

V v
I,J(X) =


vI1 vI1 ·XI1 . . . vI1 ·Xk−1

I1
vJ1 vJ1 ·XJ1 . . . vJ1 ·Xk−1

J1

vI2 vI2 ·XI2 . . . vI2 ·Xk−1
I2

vJ2 vJ2 ·XJ2 . . . vJ2 ·Xk−1
J2

...
... . . . . . .

...
... . . .

...
vI2k vI2k ·XI2k . . . vI2k ·Xk−1

I2k
vJ2k vJ2k ·XJ2k . . . vJ2k ·Xk−1

J2k

 . (2)

In our matrix, we saved a coordinate (which leads to optimal codes) as we did not have
two columns for the free terms of f and g (as defined in the proof). In contrast, the
matrix (2) has a column for the free term of f (the first) and a column for the free term
of g (the column (vJ1 , . . . , vJ2k)). This also leads to the requirement that I and J are of
length 2k (they can still agree on at most k − 1 indices).

2.2 Optimal Reed-Solomon codes exist

In this section, we show that over large enough fields, there exist RS-codes that attain
the half-Singleton bound. Specifically, we show that there exist RS-codes that can decode
from a δ fraction of insdel errors and have rate R = (1 − δ)/2 + o(1). For convenience,
we repeat the statement of Theorem 1.8.

Theorem 1.8. Let k and n be positive integers such that 2k − 1 ≤ n. For q = O(n4k−2)
there exists an [n, k]q RS-code defined by n distinct evaluation points α1, . . . , αn ∈ Fq,
that can recover from n− 2k + 1 adversarial insdel errors.

For a vector I and an element a, we write a ∈ I if a appears in one of the coordinates
of I; otherwise, we write a /∈ I.

Lemma 2.3. Let s ≥ 2 be an integer and I, J ∈ [n]s two increasing vectors that do not
agree on any coordinate, i.e., Ii 6= Ji for all 1 ≤ i ≤ s. Then, there are two distinct
indices i 6= j ∈ [s] such that Ii /∈ J and Jj /∈ I.

Proof. W.l.o.g. assume that I1 < J1. Since J is an increasing vector, I1 /∈ J . In
addition, some coordinate among {J1, . . . , Js} does not appear in {I2, . . . , Is}, and any
such coordinate is clearly different from I1.

Proposition 2.4. Let I, J ∈ [n]2k−1 be two increasing vectors that agree on at most k−1
coordinates. Then, in the expansion of det(VI,J(X)) as a sum over permutations, there
is a monomial that is obtained at exactly one of the (2k − 1)! different permutations. In
particular, its coefficient is ±1, depending on the sign of its corresponding permutation.
Consequently, det(VI,J(X)) 6= 0.
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Proof. The result will follow by applying induction on k. For k = 1, VI,J(X) = 1 and
the result follows. For the induction step, assume it holds for k − 1, and we prove it for
k ≥ 2. Consider two coordinates i, j, determined as follows. If I and J agree on some
coordinate, say j, then we set i to be such that Ii /∈ J . If they do not agree on any
coordinate, then we let i, j be the two coordinates guaranteed by Lemma 2.3.

Next, in the determinant expansion of VI,J as a sum of (2k − 1)! monomials, collect
all the monomials that are divisible by Xk−1

Ii
Xk−1

Jj
, and write them together as

Xk−1
Ii

Xk−1
Jj

f(X),

for some polynomial f in the variables (X` : ` ∈ (I \ {Ii}) ∪ (J \ {Jj})). Note that the
choice of i and j guarantees that such monomials exist. Observe that any monomial in the
determinant expansion of VI,J that is divisible by Xk−1

Ii
Xk−1

Jj
must be obtained by picking

the (i, k) and the (j, 2k−1) entries in the matrix (1). Hence, f equals the determinant of
the submatrix V ′I,J obtained by removing rows i, j and columns k, 2k− 1 from VI,J . Note
that V ′I,J is a matrix satisfying the conditions of the claim: it is a (2k−3)×(2k−3) matrix
defined by two increasing vectors of length 2k−3 that agree on at most k−2 coordinates.
Indeed, i and j were chosen so that by removing them we remove one agreement, if such
existed.

Hence, by the induction hypothesis det(V ′I,J) has a monomial m (with a ±1 coeffi-
cient) that is uniquely obtained among the (2k − 3)! different monomials. Therefore,
Xk−1

Ii
Xk−1

Jj
m is a monomial of Xk−1

Ii
Xk−1

Jj
f with a ±1 coefficient. Since there is no other

way to obtain this monomial in the determinant expansion of VI,J , this monomial is
uniquely obtained in det(VI,J), and the result follows.

We proceed to prove Theorem 1.8 by a standard application of the Schwartz-Zippel
lemma.

Proof of Theorem 1.8. Define

F (X) =
∏
i<j

(Xi −Xj)
∏
I,J

det(VI,J(X)),

where the second product runs over all possible pairs of increasing vectors that agree on
no more than k−1 coordinates. Clearly, by Proposition 2.4, F (X) is a nonzero polynomial
in the ring Z[X]. Next, we make two observations regarding the polynomial F . First,
since there are

(
n

2k−1

)
increasing vectors, and the degree of each det(VI,J(X)) is at most

k(k − 1), it follows that

deg(F ) ≤ n2 +

(
n

2k − 1

)2

· k(k − 1) < n4k−2 .

Second, as each det(VI,J(X)) is a nonzero polynomial with nonzero coefficients bounded
in absolute values by (2k − 1)!, the absolute value of any nonzero coefficients of F is at
most

((2k − 1)!)(
n

2k−1)
2

≤ ((2k − 1)!)
n4k−2

((2k−1)!)2 < en
4k−2

.

We claim that there is a prime q in the range [n4k−2, 2n4k−2] that does not divide at least
one of the nonzero coefficients of the polynomial F . Indeed, consider a nonzero coefficient
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of F , and assume towards a contradiction that it is divisible by all such primes. Then,
by the growth rate of the primorial function, the absolute value of the coefficient is
Ω(en

4k−2(1+o(1))), in contradiction. Now, it is easy to verify that F is also a nonzero
polynomial in Fq[X], since the monomial whose nonzero coefficient is not divisible by q
does not vanish. Therefore, by the Schwarz-Zippel-Demillo-Lipton lemma, there is an
assignment α = (α1, . . . , αn) to X for which F (α) 6= 0 mod q. This assignment clearly
corresponds to n distinct evaluation points, which by Proposition 2.1, define an [n, k]q
RS-code that can correct any n− 2k + 1 worst-case insdel errors, as claimed.

We remark again that Theorem 1.8 merely shows the existence of [n, k]q RS-codes that
can decode from the maximum number of insdel errors over a field of size q = O

(
n4k−2

)
.

Further, the above argument is a standard union bound over all variable assignments
that make the matrix defined in (1) to be singular. This by no means implies that
such a large finite field is necessary. For example, a similar union-bound argument that
shows the existence of MDS codes would require an exponentially large field for codes
with a constant rate. In contrast, it is well-known that MDS codes over linear field
size exist (e.g., RS-codes). It would be interesting to explicitly construct codes with the
same or even better parameters than the ones given in Theorem 1.8. Unfortunately, we
could not construct such codes, and this is left as an open question for further research.
Nonetheless, in the next section, we provide a deterministic construction of an RS-code
for any admissible n, k, at the expense of a larger field size than the one guaranteed by
Theorem 1.8.

3 Deterministic construction for any k

In this section, we give our main construction of an [n, k] RS-code that can correct
any n − 2k + 1 insdel errors. Specifically, we prove Theorem 1.9 which is restated for
convenience

Theorem 1.9. Let k and n be positive integers, where 2k−1 ≤ n. There is a deterministic
construction of an [n, k]q RS-code that can correct from n−2k+1 insdel errors where q =

O
(
nk2·((2k)!)2

)
. The construction runs in polynomial time for k = O(log(n)/ log(log(n))).

Remark 3.1. The downside of this construction is the field size q = nkO(k)
, which renders

it to run in polynomial time only for k = O(log(n)/ log(log(n))). For larger values of k,
the representation of each field element requires a super polynomial number of bits.

The Mason–Stothers theorem [Mas84, Sto81] is a result about polynomials that satisfy
a non-trivial linear dependence, which is analogous to the well-known abc conjecture in
number theory [Mas85, Oes88]. Our main tool is one of the many extensions in the
literature to the Mason–Stothers theorem. For stating the theorem we need the following
notation: For a polynomial Y (x) ∈ F[x] over a field with char(F) = p 6= 0, denote by
ν(Y (x)) the number of distinct roots of Y (x) with multiplicity not divisible by p.

Theorem 3.2 (“Moreover part” of Proposition 5.2 in [VW03]). Let m ≥ 2 and Y0(x) =
Y1(x) + . . .+Ym(x) with Yj(x) ∈ Fp[x]. Suppose that gcd(Y0(x), . . . , Ym(x)) = 1, and that
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Y1(x), . . . , Ym(x) are linearly independent over Fp(x
p).2 Then,

deg(Y0(x)) ≤ −
(
m

2

)
+ (m− 1)

m∑
j=0

ν(Yj(x)) .

Construction 3.3. Let k be a positive integer and set ` = ((2k)!)2. Fix a finite field Fp

for a prime p > k2 · ` and let n be an integer such that 2k − 1 < n ≤ p. Let Fq be a
field extension of Fp of degree k2 · ` and let γ ∈ Fq be such that Fq = Fp(γ). Hence, each
element of Fq can be represented as a polynomial in γ, of degree less than k2`, over Fp.
Define the [n, k]q RS-code by setting αi := (γ − i)` for 1 ≤ i ≤ n.

Proposition 3.4. The [n, k]q RS-code defined in Construction 3.3 can correct any n −
2k + 1 worst case insdel errors.

Proof. Let I, J ∈ [n]2k−1 be two increasing vectors that agree on at most k−1 coordinates.
By Proposition 2.1 it is enough to show that VI,J(α) is non-singular, for every such I, J .
By the Leibniz formula, det(VI,J(α)) is a sum of (2k − 1)! terms corresponding to the
different permutations. Denote these terms as Pi(γ) for i = 0, . . . , (2k − 1)! − 1. Each
of the terms is a product of the sign of the corresponding permutation with some 2k − 1
elements of the form (γ − s)`·j, for some s ∈ I ∪ J and 0 ≤ j ≤ k− 1. Assume towards a
contradiction that det(VI,J(α)) = 0 in Fq, i.e.,

det(VI,J(α)) = P0(γ) + . . .+ P(2k−1)!−1(γ) = 0 , (3)

in Fq. By viewing every term in (3) as a univariate polynomial in γ over Fp, one can
verify that, for any j, deg(Pj) = ` · k(k − 1) < k2`. As Fq is an extension of Fp of degree
k2`, it follows that (3) holds also in Fp[γ], the ring of polynomials in the variable γ over
Fp. By Proposition 2.4 the determinant of the variable matrix (1) has a monomial that is
uniquely obtained and therefore has a ±1 coefficient. Assume, without loss of generality,
that P0 is the image of this monomial under the mapping defined by the assignment
Xi 7→ (γ − i)`. Note that since this mapping is injective on the set of monomials, no
other monomial is mapped to a scalar multiple of P0. In other words, P0 and Pi are
linearly independent for any i ≥ 1. Assume further that (without loss of generality)
P1, . . . , Pm is a minimal subset among {Pi}i≥1 that spans P0 over Fp. The existence of
such a set follows from (3). Hence, we can write

P0 =
m∑
i=1

aiPi, where ai ∈ Fp\{0}. (4)

Clearly, by minimality, P1, . . . , Pm are linearly independent over Fp. Further, m ≥ 2,
since otherwise there would be an i > 0 such that Pi is a multiple of P0.

Since the Pi’s are of degree `k(k − 1), and P0 was obtained from a unique mono-
mial in the determinant expansion, it follows that the greatest common divisor Q :=
gcd(P0, . . . , Pm) has degree at most `(k(k − 1)− 1). By dividing (4) by Q we have

P0 =
m∑
i=1

aiPi, (5)

2Fp(xp) is the field of rational functions in xp. Namely, its elements are f(xp)/g(xp) where f(x), g(x) ∈
Fp[x] and g(x) 6≡ 0.
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where Pi = Pi/Q. We will need the following claim, whose proof is deferred to the end
of this section.

Claim 3.5. The polynomials P1, . . . , Pm are linearly independent over Fp(γ
p).

The contradiction will follow by invoking Theorem 3.2. Towards this end note that
(i) By Claim 3.5 the polynomials P1, . . . , Pm are linearly independent of Fp(γ

p) (ii)
gcd(P0, . . . , Pm) = 1, and (iii) ν(Pj) ≤ 2k − 2, as Pj is the multiplication of 2k − 2
non-constant polynomials, each having a single root. Thus, by (5) and Theorem 3.2

` ≤ deg(P0)− deg(Q) = deg(P0) ≤ −
(
m

2

)
+ (m− 1) ·

m∑
i=1

ν(Pj)

< m2(2k − 2)

≤ ((2k − 1)!)2 · (2k − 2) ,

which is a contradiction by the choice of `. This completes the proof.

It remains to prove Claim 3.5.

Proof of Claim 3.5. Assume towards a contradiction that there exist λ1, . . . , λm ∈ Fp(γ
p)

not all zero, such that
m∑
j=1

λj(γ
p)Pj(γ) = 0 . (6)

By clearing the denominators of the λj’s and any common factor they might have, we can
assume that the λj’s are polynomials in the variable γp with no common factors. Since
deg(Pj) ≤ deg(Pj) < p, we get by reducing (6) modulo γp that

m∑
j=1

λj(0)Pj(γ) = 0 .

Note that λj(0) 6= 0 for some j, since otherwise γp would be a common factor of the
λi’s. Hence, P1, . . . , Pm are linearly dependent over Fp, which contradicts the fact that
P1, . . . , Pm are linearly independent over Fp.

By setting n = p in Construction 3.3 it follows that the field size of Construction 3.3
is roughly nkO(k)

which is much worse than the field size guaranteed by the existential
result in Theorem 1.8. Note, however, that the construction runs in polynomial time for
RS-codes with dimension O(log(n)/ log(log(n))). The proof of Theorem 1.9 immediately
follows.

4 Explicit construction for k = 2 with quartic field

size

In this section we prove Theorem 1.10, which is restated for convenience.

Theorem 1.10. For any n ≥ 4, there exists an explicit [n, 2]q RS-code that can correct
from n− 3 insdel errors, where q = O(n4).
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The proof of Theorem 1.10 requires the notion of Sidon spaces, which were introduced
in a work of Bachoc, Serra and Zémor [BSZ17] in the study of an analogue of Vosper’s
theorem for finite fields. Later, Roth, Raviv and Tamo gave an explicit construction of
Sidon spaces and used it to provide a construction of cyclic subspace codes [RRT17]. Our
construction relies on the construction of Sidon spaces of [RRT17], which was also recently
used in [RLT21] to construct a public-key cryptosystem. We believe that Sidon spaces
in general, and specifically the construction of [RRT17], might find more applications in
coding theory and cryptography in the future. We begin with a formal definition of a
Sidon space.

Definition 4.1. An Fq linear subspace S ⊆ Fqn is called a Sidon space if for any nonzero
elements a, b, c, d ∈ S such that ab = cd, it holds that that

{aFq, bFq} = {cFq, dFq},

where xFq = {x · α : α ∈ Fq} .

A Sidon space S has the following interesting property, from which it draws its name:
Given the product a · b of two nonzero elements a, b ∈ S, one can uniquely factor it to its
two factors a, b from S, up to a multiplication by a scalar from the base field. Clearly,
this is the best one can hope for, since for any nonzero α ∈ Fq the product of the elements
α ·a, b/α ∈ S also equals a·b. A Sidon space can be viewed as a multiplicative analogue to
the well-known notion of Sidon sets, which is a common object of study in combinatorics,
see e.g. [ET41].

We proceed to present the construction of a Sidon space given in [RRT17].

Theorem 4.2 (Construction 15, Theorem 16 in [RRT17]). Let q ≥ 3 be a prime power,
m ∈ N, and n = 2m. Then, there exists an explicit γ ∈ Fqn such that S = {u + uq · γ |
u ∈ Fqm} is an m-dimensional Sidon space over Fq.

Another component in our construction is the “long” ternary code with minimum
distance of at least 5, given in [GS86]. We note that we could also use the codes given in
[DD08].

Theorem 4.3. [GS86] For every m ≥ 1, there exits an explicit [(3m +1)/2, (3m +1)/2−
2m]3 linear code with minimum distance at least 5.

We next combine the above two algebraic objects and construct an RS-code with the
desired properties.

Construction 4.4. For q = 3 and m ∈ N. Let S ⊂ F34m be a 2m-dimensional Sidon
space over F3 as guaranteed by Theorem 4.2. Let s1, . . . , s2m be a basis of S. Let H = (hi,j)
be a (2m)× ((3m + 1)/2) parity check matrix of the code given in Theorem 4.3. Our
[n, 2]34m RS-code of length n = (3m + 1)/2 is defined by the evaluation points

αj =
2m∑
i=1

sihi,j for 1 ≤ j ≤ (3m + 1)/2 .

In other words, we can think of our evaluation points as the n coordinates of the vector
α = (s1, . . . , s2m) ·H.
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The following property of the evaluation points αj follows easily from Theorem 4.3.

Lemma 4.5. Any four distinct αj’s are linearly independent over F3.

Proof. Consider four distinct αj’s, say α1, α2, α3, α4, and assume towards a contradiction
that there exist β1, . . . , β4 ∈ F3 not all zero, such that

∑4
i=1 βiαi = 0. Then

0 =
4∑

i=1

βiαi =
4∑

i=1

βi

2m∑
j=1

sjhj,i =
2m∑
j=1

sj

4∑
i=1

βihj,i .

Since the sj’s are linearly independent over F3 it follows that
∑

i βihj,i = 0 for every
j = 1, . . . , 2m. Hence, the four columns h1, h2, h3, h4 of H are linearly dependent over
F3, which contradicts the fact that the minimum distance of the code checked by H is at
least 5.

We proceed to prove that the constructed RS-code can decode from the maximum
number of insdel errors.

Theorem 4.6. The [n, 2]34m RS-code given in Construction 4.4 can correct any n − 3
worst case insdel errors.

Proof. Assume towards a contradiction that this is not the case. Proposition 2.1 implies
that there must exist two triples of distinct evaluation points (x1, x2, x3), (y1, y2, y3), that
agree on at most one coordinate, such that∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ = 0 .

Equivalently, (y1 − y2)(x2 − x3) = (y2 − y3)(x1 − x2). Since the xi’s are distinct elements
of the Sidon space S, x2−x3 and x1−x2 are nonzero elements in S. Similarly, y1−y2 and
y2 − y3 are nonzero elements in S. By definition of Sidon spaces, there exists a nonzero
λ ∈ F3 such that

λ(y1 − y2) = y2 − y3 or λ(y1 − y2) = x1 − x2,

which contradicts Lemma 4.5. Indeed, each of the equations implies a nontrivial linear
dependence over F3 between at least three and at most four evaluation points (here we
used the facts that the elements of each triple are distinct and that the two triples agree
on at most one coordinate).

We conclude this section with the proof of Theorem 1.10.

Proof of Theorem 1.10. By Theorem 4.6, the code given in Construction 4.4 is an RS-
code of length n = (3m + 1)/2, defined over the field F34m , which is of order O(n4), as
claimed.

14



4.1 A lower bound on the field size

In Section 2.2 we proved the existence of optimal [n, k]q RS-codes for worst-case insdel
errors over fields of size q = nO(k). This section complements this result by providing a
lower bound on the field size for such codes. Specifically, we ask how large must q be in
an [n, k]q RS-code that can correct from n − 2k + 1 worst-case insdel errors. We prove
the following.

Proposition 1.11. Any [n, k]q RS-code that can correct from n−2k+1 worst case insdel
errors must satisfy

q ≥ 1

2
·
(

n

(2k − 1)(k − 1)

) 2k−1
k−1

.

Proof. Consider an [n, k]q RS-code, defined by evaluation points α1, . . . , αn, that can
correct any n− 2k+ 1 insdel errors. For a non-constant polynomial f of degree less than
k let Vf be the set of all subsequences of the codeword corresponding to f , of length
2k − 1:

Vf = {(f(αi1), . . . , f(αi2k−1
)) : 1 ≤ i1 < . . . < i2k−1 ≤ n} ⊆ F2k−1

q .

By Lemma 1.3, since the code can decode from any n− 2k + 1 insdel errors, the sets Vf
and Vg for two distinct polynomials f, g, are disjoint. Therefore,3∑

1≤deg(f)<k

|Vf | ≤ q2k−1. (7)

Next, we provide a lower bound on the size of Vf . For any non-constant polynomial f , of
degree less than k, and any a ∈ Fq there are at most k − 1 indices i such that f(αi) = a.
Thus, for a fixed vector (a1, . . . , a2k−1) ∈ Vf there are at most (k − 1)2k−1 increasing
vectors of indices (i1, . . . , i2k−1) such that

(f(αi1), . . . , f(αi2k−1
)) = (a1, . . . , a2k−1).

Therefore |Vf | ≥
(

n
2k−1

)
(k − 1)−(2k−1). Combined with (7) we have(

1

k − 1

)2k−1

·
(

n

2k − 1

)
·
(
qk − q

)
≤ q2k−1 ,

By rearranging and the fact that q2k−1/(qk − q) ≤ 2qk−1 for q, k ≥ 2, we have(
1

2

) 1
k−1
(

n

(2k − 1)(k − 1)

) 2k−1
k−1

≤ q .

As one can easily verify, this bound is rather weak, as it provides an improvement over
the trivial lower bound of q ≥ n only for the vanishing rate regime of k = O(n1/4). For
codes of dimension 2, the bound implies q = Ω(n3), and it slowly degrades as one increases
k. Nevertheless, it is always at least Ω(n2) for any constant k. It is interesting to note
that by combining Proposition 1.11 and Theorem 4.6 it follows that an [n, 2]q RS-code
that can decode from n− 3 insdel errors requires that Ω(n3) ≤ q ≤ O(n4). Determining
the minimum possible value of q for this case is an interesting open problem.

3This equation remains true also if we include the constant polynomials.
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5 Open questions

This paper studies the performence of RS codes against insdel errors. We showed that
there are RS-codes are optimal against insdel errors, i.e., they achieve the half-Singleton
bound. We also construct explicit RS codes that achieve this bound and as far as we
know, this is the first linear code that is shown to achieve this bound.

As discussed, Construction 3.3 is not optimal in terms of the field size. It is a fas-
cinating open question to find an RS-code with an optimal field size. Specifically, the
challenge is to construct an RS-code that can correct from any n− 2k + 1 insdel errors,
over a field of size O(nO(k)) (Theorem 1.8 proves the existence of such codes).

The lower bound on the field size proved in Proposition 1.11 is far from giving a full
picture of the tradeoff between dimension and field size. The natural open question is to
significantly improve our lower bound or provide a better upper bound.

Finally, another interesting question is to provide an efficient decoding algorithm for
our constructions of RS-codes.
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