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Abstract

This work gives an explicit construction of a family of error correcting codes
for the binary deletion channel and for the Poisson repeat channel. In the binary
deletion channel with parameter p (BDCp) every bit is deleted independently with
probability p. A lower bound of (1 − p)/9 is known on the capacity of the BDCp

[MD06], yet no explicit construction is known to achieve this rate. We give an
explicit family of codes of rate (1 − p)/16, for every p. This improves upon the
work of Guruswami and Li [GL18] that gave a construction of rate (1 − p)/120.
The codes in our family have polynomial time encoding and decoding algorithms.

Another channel considered in this work is the Poisson repeat channel with
parameter λ (PRCλ) in which every bit is replaced with a discrete Poisson number
of copies of that bit, where the number of copies has mean λ. We show that our
construction works for this channel as well. As far as we know, this is the first
explicit construction of an error correcting code for PRCλ.
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1 Introduction

This work deals with constructing error correcting codes for the channels called the binary
deletion channel (BDC for short) and the Poisson repeat channel (PRC for short).

Loosely speaking, a channel is a medium over which messages are sent. A channel
is defined by the way in which it introduces errors to the transmitted messages (also
called codewords when they come from an error correcting code). Before describing the
channels that we consider in this work, we first discuss the two main error models - a
worst case model and an average case model.

The first model, which is very common in the theory of computation and has found
many applications there, is called the Hamming model [Ham50]. This is a worst case
setting in which a transmitted message is subjected to an adversarial corruption of a
fraction p of its entries and we must recover the original message regardless of the location
of the errors. Thus, if the adversary is allowed to corrupt a fraction p of the entries of
a transmitted message, then an error correcting code for this channel that allows perfect
recovery is a subset of the messages such that any two codewords (i.e. elements of the
code) have normalized hamming distance larger than 2p. The second error model, which
is the one relevant to our work, was first considered by Shannon in his pioneering work
[Sha48]. This is an average case model in which a transmitted message is subjected to
a random corruption such as bit flips, bit erasures, bit deletions, etc., where each bit
is corrupted independently at random according to some distribution.1 A channel is
basically determined by the probability distribution of corruptions. Since the corruption
is random, it can be the case that the whole word is corrupted. In particular, in this
setting, the most we can expect from the decoder is to decode the original word with
high probability (over the randomness of the corruptions).

The two most studied channels are the Binary Erasure Channel (BECp) where each
bit is independently replaced by a question mark with probability p and the Binary
Symmetric Channel (BSCp) where each bit is independently flipped with probability p.

In this work we consider the BDC with parameter p. This channel models the situ-
ation where bits of a transmitted message are deleted (i.e. removed) from the message
randomly and independently with probability p. In particular, if a message of length n
was transmitted on the BDCp then the length of the received message is concentrated
around (1 − p) · n. We note that the output of the BDC is very different from that of
the BEC or the BSC. For example, if we transmit the message 1110101 over each of the
channels and corruptions occurred in locations 2 and 5, then the BEC will return the
word 1?10?01, the BSC will return 1010001, and the BDC will return 11001. In par-
ticular, while the BEC and the BSC do not affect the length of messages transmitted
over them, the BDC does exactly that. Thus, unlike the BEC and BSC, the BDC causes
synchronization errors. In fact, one of the main reasons for introducing the BDC was to
model synchronization errors in communication.

The motivation to study the BDC is obvious. It is not just a theoretical object as it
describes a real-life scenario in which there is a loss of information that was sent on some
physical layer as well as synchronization errors. Moreover, the surveys [Mit09, MBT10]
indicate that tools that were developed in the context of the BDC are useful in the study
of other questions. An example of such a question is the trace reconstruction problem,

1This description corresponds to a memoryless channel, which is the most common model.
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which has applications in computational biology and DNA storage systems [BLC+16].
The problem that we study in this work is the construction of explicit error correcting
codes of (relatively) high rate (we will soon explain this notion) for the BDCp.

Another model that we consider is the PRC that was first introduced in the work
of Mitzenmacher and Drinea [MD06]. In the PRC with parameter λ, each bit of the
message is (randomly and independently) replaced with a discrete number of copies of
that bit, distributed according to the Poisson distribution with parameter 0 < λ. In
particular, with probability e−λ the bit is deleted from the message (i.e. this channel can
cause synchronization errors similar to the BDC). This channel can model, for example,
messages sent using a keyboard that has tendency to get stuck so a key cannot be pressed
or can get stuck and then its symbol is repeated several times. While the PRC is less
motivated by practical applications (we are unaware of any applications of this channel
besides in the study of the BDC), it is closely related to the BDC as demonstrated in
the work of Mitzenmacher and Drinea [MD06], Drinea and Mitzenmacher [DM07] and
Cheraghchi [Che18]. In particular, the lower bound on the capacity (a notion that we
explain shortly) of BDCp of (1− p)/9 [MD06] relies on a reduction from the PRCλ. We
too exploit the connection between the BDC and the PRC, and using our construction
for the BDC we obtain explicit constructions of error correcting codes for the PRC.

To explain the question that we study we need some basic notions from coding theory.
Recall that a binary2 error correcting code can be described either as an encoding map
C : {0, 1}k → {0, 1}n or, abusing notation, as the image of such a map C. The rate of
such a code C is Rate(C) = k/n, which intuitively captures the amount of information
encoded in every bit of a codeword. Naturally, we would like the rate to be as large as
possible, but there is a tension between the rate of the code and the amount of errors/noise
it can tolerate.

One of the most fundamental questions when studying a channel is to determine its
capacity, i.e., the maximum achievable transmission rate over the channel that still allows
recovering from the errors introduced by the channel, with high probability. Shannon
proved in his seminal work [Sha48] that the capacity of the BSCp is 1− h(p), where h(·)
is the binary entropy function (for 0 < x < 1, h(x) = −x log x− (1− x) log 1− x).3 I.e.,
there are codes with block lengths going to infinity, whose rates converge to 1−h(p), that
can recover with high probability from the errors inflicted by the channel. Elias [Eli55],
who introduced the BECp, proved that its capacity is 1− p.

What about the capacity of the BDCp? In spite of many efforts (see [Mit09]), the
capacity of the BDCp is still not known and it is an outstanding open challenge to deter-
mine it. Yet, for the extremal cases, the asymptotic behavior is somewhat understood. In
the regime where p→ 0 the capacity approaches to 1− h(p) [KMS10], i.e. it approaches
the capacity of the BSCp. In [MD06], the authors showed that the capacity is at least
(1− p)/9 for all p ∈ (0, 1). In particular, even if p is extremely close to 1, there are codes
of positive rate that allow reliable communication over this channel. Another somewhat
surprising aspect of this result is that the asymptotic behavior is only a constant off from
the capacity of the related BECp. In the BECp, we know how to build codes that nearly
achieve its capacity of 1 − p for every p. This is not the case for the BDCp, where the

2The case of codes over non-binary alphabets is very important of course, but in this work we only
focus on binary codes.

3All logarithms in this paper are base 2.
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best explicit construction known for the regime p → 1, prior to this work, has rate of
(1− p)/120 [GL18].

In this work we present and analyze a polynomial time construction of a family of
codes for the BDCp that achieves rate higher than (1 − p)/16 for every p and have
polynomial time encoding and decoding algorithms. We also show that this construction
yields a family of codes for PRCλ of rate R > λ/17 for λ ≤ 0.5. This further emphasizes
that these channels have much in common.

1.1 Previous Work

Much of the major results on the capacity of deletion type channels can be found in the
excellent surveys of Mitzenmacher’s and Mercier et al. [Mit09, MBT10]. We highlight
some of the results related to the regime where p tends to 1 as this regime is the focus of
this paper.

The best known lower bound on the capacity is due to Mitzenmacher and Drinea
[MD06] that showed a lower bound of (1− p)/9 for all p, meaning that there are codes of
this rate such that every transmitted codeword is decoded correctly with high probability.
Their proof is existential and does not yield an explicit construction with this rate. As
far as we know there is no explicit construction that achieves rate of (1− p)/9. A more
recent work by Guruswami and Li [GL18] presents a deterministic code construction for
the BDCp with rate (1−p)/120 for all values of p. This rate is smaller then Mitzenmacher’s
bound, but it is the first construction with rate that scales proportionally to (1− p) for
p→ 1. In [Dal11] an upper bound of 0.4143(1− p) was shown on the capacity of BDCp

for p→ 1, meaning that there are no error correcting codes that achieve this rate for the
BDCp.

4

Deletion correction is studied also in the adversarial model, i.e., when there is an
adversary that can delete up to some threshold number of symbols. In fact, works dealing
with the adversarial model considered the more general case in which the adversary
is also allowed, in addition to deletions, to insert symbols, i.e., to add a new symbol
from the alphabet between two adjacent symbols in the codeword. In this context of
adversarial deletions and insertions, the work of Haeupler and Shahrasbi [HS17] gave
efficient insertion-deletion (insdel for short) codes over large alphabet, which are almost
optimal in rate-distance trade-off. In particular, for every ε > 0 and δ ∈ (0, 1) there is
a code C with rate 1 − δ − ε that can efficiently correct a δ fraction of insertions and
deletions and its alphabet size is given by |Σ| = Oε(1). We note that this construction
does not give a binary code. In the high rate regime, Guruswami and Wang [GW17]
showed that there are binary codes of rate 1 − Õ(

√
δ) that can correct δn worst-case

deletions in polynomial time.

1.2 Our Results

In this work, we improve the construction presented in [GL18] and construct an explicit
family of codes for the binary deletion channel with rate at least (1 − p)/16 for any

4We note that Dalai’s proof was computer assisted. A recent work by Cheraghchi [Che18] gave an
upper bound on the capacity of the BDCp for p ≥ 1/2 of (1 − p) log((1 +

√
5)/2) without computer

assistance.
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p ∈ (0, 1) that have polynomial time encoding and decoding algorithms.

Theorem 1.1. Let p ∈ (0, 1). There exist a family of binary error correcting codes
{Ci}∞i=1 for the BDCp where the block length of Ci goes to infinity as i→∞ and

1. Ci can be constructed in time polynomial in its block length.

2. Ci has rate at least (1− p)/16.

3. Ci is decodable in quadratic time and encodable in linear time.

As mentioned earlier, we show that the same construction works for the PRCλ as well.
In particular we prove,

Theorem 1.2. Let λ ≤ 0.5. There exist a family of binary error correcting codes {Ci}∞i=1

for PRCλ where the block length of Ci goes to infinity as i→∞ and

1. Ci can be constructed in time polynomial in its block length.

2. Ci has rate Ri > λ/17.

3. Ci is decodable in quadratic time and encodable in linear time.

To the best of our knowledge, this is the first explicit construction of an error correcting
code for the PRCλ.

1.3 Construction and Proof Overview

Our construction follows the footsteps of the construction of Guruswami and Li [GL18]
with some important modifications. We next describe the construction and then its
analysis.

Construction: There are several layers to our construction as depicted in Figure 1 on
page 7. The first two layers come from code concatenation while the third and fourth
layers blow-up the code further by repeating symbols and inserting “buffers” between
inner codewords. These four layers are similar to those in the construction of [GL18] and
the main difference between the constructions is that we use a different inner code and
the blow-up in our construction is considerably smaller. We now describe each step in
more detail.

Recall that code concatenation is the operation of viewing the message as a shorter
message over a larger alphabet, then applying an error correcting code over the large
alphabet (the outer code) to the message and, finally, viewing each symbol of the encoded
message as a short message over {0, 1}, it is encoded using a binary error correcting code
(the inner code).

In our construction, we view the messages as strings of length k over the alphabet
Σ = {0, 1}m′ (where m′ is some constant that we later optimize). As an outer code, we
use the code from [HS17], which is an efficient insertion-deletion code with rate close to
1 over Σ. This code returns a word (σ1, σ2, . . . , σn) ∈ Σn.

We construct our inner code using a greedy algorithm. First we consider all binary
strings of length m which consist of exactly β1m 1-runs and 0.5(1 − β1)m 2-runs (i.e.
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message

σ1 σ2 . . . σn

(1) Outer encoding

c
(in)
σ1 c

(in)
σ2

(2) Concatenation:
encoding σi using in-
ner encoding

. . . c
(in)
σn

c
(in)
σ1 0 . . . 0 c

(in)
σ2 0 . . . 0 . . .

(3) Buffering

0 . . . 0 c
(in)
σn

· · · 1 00 1 0 11 · · ·

· · · 1111 000000000000 1111 0000 111111111111 · · ·

(4) Blow-up

Figure 1: The encoding process.

alternating blocks of 0’s and 1’s where each block length is ≤ 2) where β1 is a parameter
that we will optimize later. Then, we add a codeword to our codebook if it does not
contain a subsequence of length ≥ m−δm that is also a subsequence of any codeword that
is already in our codebook. Note that even though the construction time is exponential
in m, as m = O(1) in our construction this does not affect the run time by more than a
constant factor.

The encoding process is thus as follows (see also Figure 1). We first encode the message
using the outer code to a codeword of length n over Σ. Then, the concatenation process
takes every symbol, σi of the outer codeword and maps it to a codeword from the inner
code, i.e., a concatenated codeword is of the form c1 ◦ c2 ◦ · · · ◦ cn where ci = ENCin(σi),
where ENCin is the encoding function of the inner code. This is not the end of the story.
In order for the concatenated code to overcome a large amount of deletions caused by
the channel we add an additional layer of encoding:

1. We place long buffers of zeros (of length NB) between inner codewords. This step
helps the decoder identify where an inner codeword starts and where it ends.

2. We replace each 1-run with an N1-run and each 2-run will become an N2-run (runs
of length N1 and N2). This helps the decoder identify if the run in the inner
codeword was a run of length 1 or 2.

This step is also similar to the construction of [GL18], however, perhaps surprisingly,
since we restrict our inner codewords to have a fixed number of 1-runs and 2-runs, this
enables us to have N1 and N2 considerably smaller than the blow-up parameter used
in [GL18]. It is clear that the code construction is efficient as the outer code of [HS17]
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can be encoded efficiently and the inner code is of constant length and thus can also be
encoded efficiently. The last step is clearly efficient (as B,N1 and N2 are constants).

Decoding: We now describe our decoding algorithm. First, we identify the buffers in
order to divide the string into “decoding windows” that should ideally represent corrupted
inner codewords. Second, every decoding window is decoded in the following way: Every
run longer than some threshold T is replaced with a 2-run (of the same symbol) and
every run of length ≤ T is replaced with a 1-run. The third step of the decoding is to
use a brute force decoding algorithm on each decoded window to find the closest inner
codeword. Since the inner code’s block length is constant this step takes constant time
for every such window and hence runs in linear time in the length of the word. The last
step in the decoding algorithm is to run the decoding algorithm of the outer code as given
in [HS17]. This algorithm runs in time quadratic in the outer code’s block length. Hence
the total run time of our decoder is quadratic in the length of the message.

Analysis: Our analysis classifies errors to three types:

1. Buffer deletions: these are deletions that caused a buffer between inner codewords
to completely disappear.

2. Spurious buffers: these are deletions of many 1’s that caused the algorithm to
mistakenly identify a buffer inside an inner codeword.

3. Wrong decoding of inner codewords: these occur when the algorithm fails to decode
correctly a corrupted inner codeword.

The first and second error types can happen in the first stage of the algorithm, i.e., when
the decoder identifies the buffers between blown-up inner codewords. First, the decoder
might not identify a buffer when a large portion of the buffer was deleted and second, the
decoder might mistakenly think that there is a buffer inside an inner codeword if many
consecutive runs of the symbol 1 were deleted. We show by using simple concentration
bounds that both error types happen with exponentially small probability in m, the inner
code block length (as m = O(1) this is a constant probability, but it is still small enough
to allow our construction to work). The third error type we consider is when the edit
distance between the sent inner codeword and the corresponding string obtained from
the second step of the decoding algorithm is greater than δinm, the inner code’s decoding
radius. In this case, the decoding algorithm of the inner code might output a wrong
codeword. While this can happen, we show that the expected edit distance between the
original inner codeword and the decoded inner codeword5 is smaller than δinm, for a large
enough m, and furthermore, the edit distance is concentrated around its mean. Hence,
we expect to decode successfully most of the inner codewords. Finally, we show that this
reasoning implies that the decoding algorithm of the outer code, which is executed at the
last step of our decoding algorithm, succeeds with probability 1− exp(−Ω(n)).

5In the proof we use the term decoded window as we are never really sure when a codeword started
and ended, but this does not affect the intuition.
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In terms of complexity, we show that even though the construction and decoding of
the inner code are exponential in the inner code’s block length, the overall complexity
(construction, encoding, and decoding) is dominated by the complexity of the outer code
which has polynomial time encoding and decoding algorithms thanks to [HS17].

Comparison to [GL18]. We end this high-level summary by elaborating more on the
main similarities and differences between our construction and the construction of Gu-
ruswami and Li [GL18]. Our scheme, as well as our decoding algorithm, follow closely the
scheme and algorithm of Guruswami and Li. In particular, at a high level, the encoding
layers are the same as in [GL18], meaning that both constructions use concatenation with
the outer code from [HS17], place long buffers between inner codewords and blow-up the
code. Since the encoding layers are similar, the decoding steps in both papers are also
similar: first identify the buffers, then use a threshold to distinguish between 1-runs and
2-runs, then use brute force to decode the inner codewords, and finally use the decoder
of [HS17]. The main differences between our scheme and the scheme from [GL18] are in
the inner code that is used, the blow-up process which is finer in our scheme and our
analysis which is more fine-tuned:

� The inner code that was used in [GL18] has the property that every codeword
consists of 1-runs and 2-runs, but they do not have restriction on the number of
1-runs and 2-runs. In contrast, in our work, all inner codewords have the same
number of 1-runs and 2-runs. This property allows us to increase the rate of the
inner code compared to [GL18] (See Propositions 3.4 and 3.5 and the discussion
following them), while maintaining its robustness against insertions and deletions.

� In [GL18] the authors blow-up the code by replacing every bit with 60/(1−p) copies
of that bit. Instead of blowing-up every single bit, we blow-up each 1-run to an N1-
run and each 2-run to an N2-run where N1 6= N2 and both are significantly smaller
than 60/(1 − p) (N1 ≈ 6/(1 − p) for example). Thus, the effect of the blow-up on
the rate of our code is significantly smaller than in [GL18].

� We improve on the analysis in [GL18], of the edit distance between decoded inner
codewords and the original inner codewords, by better accounting the effect of
decoding errors on the edit distance. One more improvement lies in our analysis
where instead of using the Chernoff bound to upper bound the probability of certain
events, we use the fact that binomial distributions with fixed expectations converge
to a Poisson distribution. This gives a better upper bound which eventually leads to
some saving when optimizing parameters. Our analysis further highlights the tight
connection between the BDC and the PRC via the convergence of the binomial
distribution to the Poisson distribution.

These modifications, as well as a careful choice of parameters, is the reason for the
great saving in the rate compared to [GL18].

1.4 Organization

The paper is organized as follows. In Section 2 we introduce the basic notation as well as
some well known facts from probability and from previous papers. Section 3 contains the
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construction of our inner code. In Section 4 we give our construction and in Section 5
we give its analysis. We give slightly improved bounds for fixed values of p in Section 6.
Finally, Section 7 explains how to carry our construction and analysis to the PRC.

2 Preliminaries

For an integer k, we denote [k] = {1, 2, . . . , k}. Throughout this paper, log(x) refers
to the base-2 logarithm and h(x) denotes the binary entropy function, that is, h(x) =
−x log(x)− (1− x) log(1− x), for 0 < x < 1. We use Σ to denote an alphabet and Σ∗ to
denote all the finite length strings over Σ. For s ∈ Σ∗ we denote by |s| the length of s.

Definition 2.1. Let s ∈ Σ∗. The operation in which we remove a symbol from s is
called a deletion and the operation in which we place a new symbol from Σ between two
consecutive symbols in s is called an insertion.

A substring of s is a string obtained by taking consecutive symbols from s. A sub-
sequence of s is a string obtained by removing some (possibly none) of the symbols in
s.

Definition 2.2. Let s, s′ ∈ Σ∗. A longest common subsequences between s and s′, is a
subsequence ssub of both s and s′, of maximal length. We denote by |LCS(s, s′)| the length
of a longest common subsequence.6

The edit distance between s and s′, denoted by ED(s, s′), is the minimal number of
insertions and deletions needed in order to turn s into s′.

Lemma 2.3 (See e.g. Lemma 12.1 in [CR03]). It holds that ED(s, s′) = |s| + |s′| −
2 |LCS(s, s′)|.

Definition 2.4. Let s be a string. A run r in s is a single-symbol substring of s such
that the symbol before the run and the symbol after the run are different from the symbol
of the run. A run of length ` will be denoted as `-run.

For example, consider the string 〈0111001〉. It can be written as the (string) concate-
nation of the alternating runs 0◦111◦00◦1. Clearly, every binary string is a concatenation
of runs of alternating symbols. The following lemma of Levenshtein will be useful in the
analysis of the rate of our inner code.

Lemma 2.5. [Lev66] Let s be a string and let r(s) be the number of runs in s. There
are at most (

r(s) + d− 1

d

)
different subsequences of s of length |s| − d.

6Note that a longest common subsequence may not be unique as there can be a number of subsequences
of maximal length.
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2.1 Facts from Probability

We use two probability distributions in this paper. The binomial distribution with pa-
rameters n and p, denoted Bin(n, p), is the discrete probability distribution of the number
of successes in a sequence of n independent trials, where the probability of success in each
trial is p and the probability of failure is 1 − p. The second distribution is the discrete
Poisson distribution with parameter λ, denoted as Poisson(λ) which is defined with the
following probability mass function

Pr [X = k] =
e−λλk

k!
.

A well known fact about Poisson distribution is

Lemma 2.6. [MU05, Lemma 5.2] Let X and Y be two independent Poisson random
variables with parameters µ1 and µ2. I.e., X ∼ Poisson(µ1) and Y ∼ Poisson(µ2). Then
Z = X + Y is a Poisson random variable with parameter µ1 + µ2.

We shall use the following simple lemma in our analysis:

Lemma 2.7. Fix T to be a non negative integer and let Y (λ) ∼ Poisson(λ). Then the
function

f(λ) := Pr[Y (λ) ≤ T ] = e−λ
T∑
i=0

λi

i!

is monotonically decreasing in λ.

Proof. It holds that

df

dλ
(λ) = −e−λ

T∑
i=0

λi

i!
+ e−λ

T−1∑
i=0

λi

i!
= −e−λλ

T

T !
< 0 .

The next theorem shows that if we let n tend to infinity and p tend to zero under
the restriction that p · n = λ, then the binomial distribution converges to the Poisson
distribution with parameter λ.

Theorem 2.8. [MU05, Theorem 5.5] Let λ > 0 be fixed. Let {Xn} be a sequence of
binomial random variables such that Xn ∼ Bin(n, p), and limn→∞ np = λ. Then, for any
fixed k,

lim
n→∞

Pr[Xn = k] =
e−λλk

k!
.

The next theorem provides more information about the binomial distribution in the
regime where np = λ. Specifically, it tells us when is Pr[X ≤ T ] an increasing function
of n.

Theorem 2.9. [AS65, Theorem 2.1] Let {Xn} be a sequence of binomial random vari-
ables with parameters n and p = λ/n. Let T be some parameter. Set f(n) := Pr[Xn ≤ T ].

11



1. If T ≤ λ− 1 then for every n ≥ λ, f(n) is monotonically increasing in n.

2. If λ ≤ T then for every n ≥ T , f(n) is monotonically decreasing in n.

For concentration bounds, we will use the following versions of the Chernoff bounds.

Lemma 2.10. [MU05, Theorems 4.4 and 4.5] Suppose X1, . . . , Xn are independent iden-
tically distributed random variables taking values in {0, 1}. Let X =

∑n
i=1Xi and

µ = E [Xi]. Then, for any 0 < α < 1:

Pr [X ≥ (1 + α)nµ] ≤ e−
µnα2

3

and

Pr [X ≤ (1− α)nµ] ≤ e−
µnα2

2 .

When we have a Poisson random variable we shall use the following Chernoff bound

Lemma 2.11. [MU05, Theorem 5.4] Let X be a Poisson random variable with parameter
µ.

1. If x > µ, then

Pr(X ≥ x) ≤ e−µ(eµ)x

xx
.

2. If x < µ,

Pr(X ≤ x) ≤ e−µ(eµ)x

xx
.

Another concentration bound we use is Hoeffding’s inequality

Theorem 2.12. [Hoe94, Theorem 2] If X1, X2, . . . , Xn are independent random variables
with finite first and second moment and ai ≤ Xi ≤ bi for 1 ≤ i ≤ n. Let X =

∑n
i=1Xn

and µ = E[X] then for t > 0

Pr[X − µ > t] < exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

To approximate binomial coefficients we shall use the following lemma

Lemma 2.13. For any n, k ∈ N such that k/n ≤ 1/2 we have,

2nh(
k
n)−O(logn) ≤

(
n

k

)
≤ 2nh(

k
n) .

The proofs of the bounds follow from Stirling’s formula, e.g., see [GRS12, Section 3.2]

2.2 The Code of Haeupler and Shahrasbi [HS17]

Our construction relies on the following code of Haeupler and Shahrasbi [HS17].

Theorem 2.14 ([HS17, Theorem 1.1]). For every εout > 0 and δout ∈ (0, 1) there exists
n0 so that for every n > n0 there is an integer k satisfying k/n > 1 − δout − εout, an
alphabet Σ of size Oεout(1) and encoding and decoding maps E : Σk 7→ Σn, D : Σ∗ 7→ Σk,
respectively, such that if ED(E(x), y) ≤ δoutn then D(y) = x. Further E and D are
explicit and can be computed in linear and quadratic time in n, respectively.

We shall denote with Rout := k/n the rate of this code, which will be used as the
outer code in our construction.
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3 The Inner Code

In this section we describe the construction of our inner code. Before giving the construc-
tion we define a set of strings from which we shall pick our codewords.

Definition 3.1. We denote with S ⊂ {0, 1}∗ the set containing all binary strings s that
start and end with the symbol 1 and that contain only 1-runs and 2-runs.

Let β1 ∈ [0, 1]. Define Sm,β1 ⊂ S to be the set of all s ∈ S of length m, such
that the number of 1-runs in s is exactly β1m and the number of 2-runs in s is exactly
β2m = (1− β1)m/2. Denote β := β1 + β2.

Remark 3.2. We observe that as every string in S begins and ends with the same symbol,
the number of runs in it is odd. Accordingly, βm, in the definition of Sm,β1, is an odd
integer.

Our goal in this section is to construct a code C ⊂ Sm,β1 such that the length of a
longest common subsequence of any two different codewords is < m− δm.

Remark 3.3. Observe that the deletion channel is likely to output a word that is not in
S. However, Algorithm 2 (given in Section 5), for decoding the final code, contains a
threshold decoding step (Step 2 in Algorithm 2) that always returns a binary string in S.
We further restrict our attention to Sm,β1 as it somewhat simplifies the analysis.

We construct this code using the natural greedy algorithm: We consider all strings in
Sm,β1 ⊂ S and greedily choose strings that are far from each other. To reason about the
parameters of the code, we need the following propositions.

The first proposition gives an upper bound on the size of the “deletion ball”, i.e.,
given a string s ∈ Sm,β1 it upper bounds the number of different subsequences of s of
length m− δm, that belong to S.

Proposition 3.4. Let s ∈ Sm,β1. It holds that

# {s′ ∈ S | s′ is a subsequence of s and |s′| = m− δm} ≤
(

(β + δ)m

δm

)
.

Proof. By definition, s is a binary string that contains exactly βm runs. Let H be the
set of all the subsequences obtained from s by applying δm deletions. According to
Lemma 2.5, the size of H is at most

(
βm+δm−1

δm

)
<
(
βm+δm
δm

)
. Clearly if we restrict further

and consider only those strings in H ∩ S we can only decrease the size of the set.

The second proposition upper bounds the size of the “insertion ball”, i.e., given a
string s′ ∈ S of length m − δm, it gives an upper bound on the number of strings
s ∈ Sm,β1 that can be obtained from s′ by performing δm insertions. The proof of this
proposition is considerably more elaborate.

Proposition 3.5. Let 0 < δ < β1/3. Fix ssub ∈ S such that |ssub| = m − δm. The
number of binary strings in Sm,β1 that contain ssub as a subsequence is at most

(
βm
δm

)
.
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We note that the equivalent propositions from [GL18] gave upper bounds of
(
m
δm

)
and O(δm) ·

(
m
δm

)
respectively. The main reason for our saving is that we restrict our

codewords to have exactly β1m 1-runs and β2m 2-runs. This saving is one of the places
where we improve upon [GL18]. This improvement affects the rate of the inner code as
we shall later see.

The proof of the proposition relies on an algorithm for generating all strings s ∈ Sm,β1
such that ssub is a subsequence of s. As in [GW17, Lemma 2.3], in order to avoid over
counting, we will generate all such s by finding the lexicography first occurrence of ssub
in s. We first explain the idea behind the algorithm and then prove Proposition 3.5.

Denote ssub = 〈b1b2 . . . bm−δm〉, where bi ∈ {0, 1}. In order to obtain a string s ∈ Sm,β1
from ssub we need to choose indices 1 ≤ n1 < n2 < . . . < nm−δm ≤ m for the bits of ssub
in s. Moreover, to make sure that the locations chosen are indeed the lexicography first
occurrence of ssub in s, the entries between ni and ni+1 (for 1 ≤ i ≤ m − δm − 1) must
contain the opposite bit of the symbol in location ni+1.

Since both ssub and s consist of just 1-runs and 2-runs, this puts some restrictions on
the embedding of ssub in s, e.g., we cannot have ni+1−ni > 3 (all locations between them
(and maybe longer) are identical and hence give a run that is too long). In particular,
and more formally, we have the following restrictions

1. The first bit in ssub must be located as the first bit in s. This is because the first
bit in s must be a 1 bit. I.e., n1 = 1.

2. Let bi be a 1-run in ssub and assume w.l.o.g. that it is a 0 bit. Its location, ni, must
be chosen such that the location of the next bit in ssub, bi+1, is either

(a) ni+1 = ni + 1. I.e., 〈bi, bi+1〉 = 〈01〉 in ssub is mapped to 〈01〉 in s, or

(b) ni+1 = ni + 2. I.e., 〈01〉 in ssub is mapped to 〈001〉 in s.

The case where bi = 1 is completely analogous.

3. Let bi, bi+1 be a 2-run in ssub (i.e., the symbols of bi and bi+1 are the same) and
assume w.l.o.g. that both symbols are 0. The locations ni, ni+1, ni+2 of bi, bi+1, bi+2

(bi+2 is a 1 bit) in s must be chosen in accordance with one of the following cases:

(a) ni+1 = ni + 1 and ni+2 = ni + 2. I.e., 〈001〉 in ssub is mapped to 〈001〉 is s.

(b) ni+1 = ni + 2 and ni+2 = ni + 3. I.e., 〈001〉 in ssub is mapped to 〈0101〉 in s.

(c) ni+1 = ni + 2 and ni+2 = ni + 4. I.e., 〈001〉 in ssub is mapped to 〈01001〉 in s.

(d) ni+1 = ni + 3 and ni+2 = ni + 4. I.e., 〈001〉 in ssub maps to 〈01101〉 in s.

(e) ni+1 = ni + 3 and ni+2 = ni + 5. I.e., 〈001〉 in ssub is mapped to 〈011001〉 in s.

The case where bi = 1 is completely analogous.

4. If nm−δm < m, then the remaining bits of s must be filled with 1-runs and 2-
runs such that the total number of 1-runs and 2-runs is exactly β1m and β2m,
respectively.
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It is not hard to verify that any arrangement that does not follow the restrictions
above will either contain a run of length 3 or more, will not have the right number of
1-runs, or will not correspond to the lexicographically first embedding of ssub in s.

We shall think of the cases above as describing operations that can be performed on a
string s′. E.g. if s′ = 〈101001〉 and we apply 3e to the last three bits in s′ then we will get
the string 〈101011001〉, where the bold symbols are the symbols that were added from
the application of 3e (in other words, the symbols that are not bold are the embedding
of the original string). If we then apply, say, 2b to the second and third bits of the new
string then we will get the string 〈1001011001〉 etc.

To simplify matters note that if we consider a 2-run in s′, say 〈001〉 and we wish to
apply 3c on it, i.e. map it to 〈01001〉 in s, then we can think about this as first applying
3b to 〈001〉, obtaining the string 〈0101〉 and then applying to the last two bits 2b, getting
the string 〈01001〉. I.e. we can simulate 3c by first applying 3b and then applying 2b.
Similarly, we can simulate each of the operations 3d and 3e using 3b and then applying 2b
to the appropriate bits (for 3e we need to apply 3b and then 2b to two different locations).

Using the above terminology, we next describe an algorithm that given a string ssub
generates s ∈ Sm,β1 such that ssub is a subsequence of s. The algorithm will first select a
subset of the 2-runs in ssub and apply 3b to them. Then it will add more 1-runs to the
resulting string, locating them to the right of the last bit. Finally, it will apply 2b to
several 1-runs.

There is a delicate point that we wish to stress before giving the algorithm. In this last
step we restrict the 1-runs to which we can apply 2b. To illustrate why the restriction
is needed, consider the following example: Consider the string 〈001〉 and apply 3b to
it. This generates the string 〈0101〉, where, as before, the bold symbols represent the
symbols that were added in the embedding. If we now apply 2b to the first two bits
then we would get 〈00101〉. This however, is not the first lexicographical embedding of
〈001〉 in 〈00101〉 (which is 〈00101〉). Thus, if we wish to construct a lexicographically
first embedding of ssub in the resulting string s then in the last step, where we apply 2b
to several runs, we should never apply 2b to the first bits resulting from the application
of 3b in the first step.

In view of the above discussion we say that a 1-run is frozen if it is the first bit of
a substring that resulted from applying 3b. In other words, a 1-run is not frozen if it
is either an original 1-run of ssub, a 1-run that was added in the second step, or if it is
the 2nd or 3rd bits generated by applying 3b (i.e. if we had 〈001〉 → 〈0101〉 then the
non-frozen 1-runs are the bold bits 〈0101〉, and the last bit may also be non-frozen).

Let r1 and r2 be the number of 1-runs and 2-runs in ssub and let x be an integer such
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that 0 ≤ x ≤ δm and r1 + r2 + 2x ≤ βm.

Algorithm 1: Embed

input : ssub ∈ S such that |ssub| = m− δm,
and 0 ≤ x ≤ δm where r1 + r2 + 2x ≤ βm

output: A string s ∈ Sm,β1 such that ssub is a subsequence of s
[1] Select x 2-runs in ssub and apply 3b to them.

/* total number of 1-runs is r1 + 3x and of 2-runs is r2 − x */

/* total number of non-frozen 1-runs is r1 + 2x */

[2] Add βm− r1 − r2 − 2x many 1-runs to the right of the string
/* total number of runs is βm and number of 1-runs is βm− r2 + x */

/* total number of non-frozen 1-runs is */

/* βm− r1 − r2 − 2x+ r1 + 2x = βm− r2 */

[3] Select δm− (βm− r1 − r2 − x) non-frozen 1-runs and apply 2b to each of them
/* length of resulting string is exactly m */

Claim 3.6. Algorithm 1 returns a string in Sm,β1.

Proof. Step 1 turns each of the chosen x 2-runs into three 1-runs, only two of which are
non-frozen. Hence, the number of 2-runs is r2 − x, the number of 1-runs is r1 + 3x and
the number of non-frozen 1-runs is r1 + 2x.

Step 2 completes the number of runs to βm by introducing βm − r1 − r2 − 2x new
1-runs7. The total number of 2-runs did not change, the total number of 1-runs is now

(r1 + 3x) + (βm− r1 − r2 − 2x) = βm− r2 + x

and the number of non-frozen 1-runs is

(r1 + 2x) + (βm− r1 − r2 − 2x) = βm− r2 .

Step 3 turns δm − (βm − r1 − r2 − x) 1-runs into 2-runs. We now show that this
gives a string in Sm,β1 . For this we need to show that it has only 1-runs and 2-runs and
the correct number of runs of each type. The fact that we only get 1- and 2-runs follows
from the definition of our operations. Now, the resulting number of 1-runs is

(βm− r2 + x)− (δm− (βm− r1 − r2 − x)) = 2βm− δm− 2r2 − r1
= 2βm− δm− (m− δm)

= 2βm−m
= β1m ,

where we have used the facts that m− δm = |ssub| = 2r2 + r1, that β = β1 + β2 and that
m = β1m+ 2β2m. Similarly, the number of 2-runs is

(r2 − x) + (δm− (βm− r1 − r2 − x)) = r1 + 2r2 + δm− βm
= m− δm+ δm− (β1 + β2)m

= β2m .

7Note that since r1 + r2 + 2x ≤ βm, this operation is well defined.
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Note that by our construction, the string begins with a 1 and it also ends with a 1 as the
total number of runs is odd (recall Remark 3.2). Thus, the resulting string is in Sm,β1 as
claimed.

The next claim shows that any s ∈ Sm,β1 that contains ssub as a subsequence can be
obtained from the algorithm for an appropriate choice of 0 ≤ x ≤ δm.

Claim 3.7. For any s ∈ Sm,β1 that contains ssub as a subsequence, there exists an 0 ≤ x ≤
δm and appropriate choices for the different steps of the algorithm so that the resulting
string is s.

Proof. As the proof contains many tedious details, we leave some of the arguments to the
reader. Let s ∈ Sm,β1 and denote by 1 = n1 < n2 < . . . < nm−δm ≤ [n] the embedding
of ssub in s that corresponds to the first lexicographic appearance of ssub in s. By the
discussion above, there are restrictions on the values ni. Specifically, when we embed a
1-run from ssub in s, then ni and ni+1 must satisfy one of the rules 2a or 2b and when we
embed a 2-run, we must follow one of the rules 3a–3e.

Observe that the locations n1, . . . , nm−δm determine how to embed ssub into s, simply
by going over all the runs in ssub from left to right. This can be easily proved by induction.
For example, assume that the first run of ssub is 〈110〉 and s starts with 〈10010〉. Then
n1 = 1, n2 = 4, and n3 = 5 and this implies that we need to perform 3d to the first run
in ssub. Now, our algorithm, when going over the first 2-run in Step 1, returns the string
〈1010〉. Then, in Step 3 the first 0 is a non-frozen 1-run and therefore the algorithm
performs 2b to this 0. This combination of 3b and 2b is equivalent to 3d, as required.
Thus, the algorithm correctly embeds the first run of ssub into s. We now move to the
next run etc.

Notice that by the description above, after embedding all the runs, it may be the
case that nm−δm < m. However, looking back at the algorithm, in Step 2 we add several
1-runs to the embedding. Then, in Step 3, it may be the case that some of these 1-runs
will be turned to 2-runs by the algorithm (all the added 1-runs to the right of the string
are non-frozen). This ensures that the number of runs in the resulting string after Step 3
is exactly βm and that we still have a valid embedding of ssub.

Finally, note that there is a value of x that will make the algorithm embed ssub
successfully. The proof in the previous paragraph determines x exactly. It is the number
of times that we applied 3b in the embedding. Clearly, this number is at most δm as
otherwise the size of the resulting string will be larger thanm. Also note that r1+r2+2x ≤
βm since otherwise we create a string that contains more than βm runs. Thus, x as we
just defined satisfies both requirements 0 ≤ x ≤ δm and r1 + r2 + 2x ≤ βm.

To conclude, if we consider all possible values x can take, and all the possibilities to
perform the choices in the algorithm we get an upper bound on the number of strings
s ∈ Sm,β1 which contain ssub as a subsequence. We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5. By the argument above it is enough to count the number of
possibilities for x and the number of possible choices made by the algorithm. For any
choice of x, there are exactly

(
r2
x

)
ways of selecting x many 2-runs in Step 1 of Algorithm 1.

In Step 2 of the algorithm we have no freedom since we add the new 1-runs at the
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end of the string. Finally, in Step 3 we have
(

βm−r2
δm−(βm−r1−r2−x)

)
many ways to choose

δm− (βm− r1 − r2 − x) many 1-runs among the non-frozen 1-runs.
We first note that(

βm− r2
δm− (βm− r1 − r2 − x)

)
≤
(
βm− r2
δm− x

)
.

Indeed, as r2 ≤ β2m+δm it follows that βm−r2 ≥ β1m+δm ≥ 2δm. In addition, observe
that δm− (βm− r1− r2−x) ≤ δm−x as otherwise Algorithm 1 performs more than δm
operations, in contradiction. As the binomial coefficients are monotonically increasing
up to (βm− r2)/2 ≥ δm the inequality follows.

Hence, the total number of strings that can be obtained from the algorithm is upper
bounded by

δm∑
x=0

(
r2
x

)(
βm− r2

δm− (βm− r1 − r2 − x)

)
≤

δm∑
x=0

(
r2
x

)(
βm− r2
δm− x

)
=

(
βm

δm

)
,

where the equality follows by Vandermonde’s identity (E.g., [Tuc94, Chapter 5.5, Identity
(10)]).

Armed with Propositions 3.4 and 3.5 we now show the existence of an appropriate
inner code.

Proposition 3.8. Let 0 ≤ β1, δ ≤ 1 be parameters. Let β = 1+β1
2

. For every ε > 0 there
is Mε so that for every m > Mε there is a set C ⊆ Sm,β1 of size |C| = 2bmRinc where

Rin = βh

(
β1
β

)
− (δ + β)h

(
δ

δ + β

)
− βh

(
δ

β

)
− ε ,

such that for every c 6= c′ ∈ C it holds that any string ssub ∈ S that is a subsequence of
both c and c′ is of length |ssub| < m− δm.

Proof. We first note that the number of binary strings in Sm,β1 is exactly
(
βm
β1m

)
as we

have
(
βm
β1m

)
ways to arrange the β1m 1-runs and the β2m 2-runs.

The construction of C is done greedily. We go over all strings s ∈ Sm,β1 and add them
to C one by one as long as they do not share a common subsequence that is too long
(from S) with any string that is already in C. Propositions 3.4 and 3.5 imply that any
s ∈ Sm,β1 contains at most

(
βm+δm
δm

)
many subsequences of length m − δm from S, and

each such string is a subsequence of at most
(
βm
δm

)
strings in Sm,β1 . Thus, whenever we

add a string to C we exclude at most(
βm+ δm

δm

)
·
(
βm

δm

)
other strings from being in C. Therefore, our codebook contains at least

|C| ≥
(
βm
β1m

)(
βm+δm
δm

)(
βm
δm

) ≥ 2m(βh(β1β )−(δ+β)h( δ
δ+β )−βh( δβ ))−O(logm)
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codewords, where the inequality follows by Lemma 2.13. Thus, for every ε > 0 there
exists large enough m > 0 such that the constructed set C ⊂ Sm,β1 is of size 2bmRinc

where Rin = βh
(
β1
β

)
− (δ + β)h

(
δ

δ+β

)
− βh

(
δ
β

)
− ε.

By construction, the code C can handle an adversary that, given a codeword c ∈ C,
returns a subsequence ssub ∈ S of c where |ssub| ≥ m − δm. That is, we can uniquely
identify the original codeword c from ssub. Our next goal is to show that our code can
handle the usual edit distance adversary. In other words, it can handle an adversary that
performs any δm insertion and deletion (and hence it is not bound to return a string in
S). The key observation is that if we look at two different codewords c, c′ ∈ C and denote
by s a longest common subsequence between c and c′ then it must be that there exists
s′ ∈ S that is also a subsequence of c and c′ and |s| = |s′|.

Proposition 3.9. Let C be the code constructed in Proposition 3.8. For any two code-
words c, c′ ∈ C it holds that ED(c, c′) > 2δm.

Proof. Let c 6= c′ ∈ C. Lemma 2.3 gives

ED(c, c′) = |c|+ |c′| − 2 |LCS(c, c′)| = 2m− 2 |LCS(c, c′)| .

Observe that if s is a longest common subsequence of c and c′ then there is a string
ssub ∈ S, such that |ssub| = |s| and ssub is also a common subsequence of c and c′. Indeed,
let s be a longest common subsequence of c and c′. Since both c and c′ start and end
with 1, s also starts and ends with 1. Moreover, for every three consecutive, equal bits in
s, we can flip the second bit and the resulting string will still be a common subsequence
of maximal length (as neither c nor c′ contain a run of length 3 or more). Repeating this
we will get a string only containing 1-runs and 2-runs, i.e. a string in S.

As C was constructed so that not two codewords in C share a common subsequence
(from S) of length larger or equal to m− δm, it follows that

ED(c, c′) = 2m− 2 |LCS(c, c′)| > 2m− 2(m− δm) = 2δm .

Remark 3.10. Note that C can be constructed in time at most O (22m ·m2) as in the
worst case we compute the edit distance between any two possible strings.

4 Construction

In this section we give a construction of a code for the BDCp. Throughout this section
we fix p.

We repeat the high level description of the construction from Section 1.3 (and as de-
picted in Figure 1 on page 7). We first do code concatenation. As outer code we use the
one given in [HS17, Theorem 1.1] (restated as Theorem 2.14 here). As the inner code we
use the code constructed in Proposition 3.8. Then, in order to protect the concatenated
codeword from a large number of deletions, we first place a buffer of zeros between every
two consecutive inner codewords. Since the decoder first looks for the buffers in order
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to identify where an inner code starts and where it ends, this step helps to reduce the
amount of synchronization errors in the outer code. Secondly, we blow-up the inner code-
words by replacing every run of length 1 with a run of length N1 and every run of length
2 with a run of length N2, where the symbols of the runs are preserved. For example, 〈11〉
turns into 〈1N2〉 and 〈0〉 is replaced with 〈0N1〉. If we choose N1 and N2 appropriately,
then (with high probability) the decoder will identify the original run length.

We now give a formal description of our construction.

The parameters: At this point, we do not specify the parameters explicitly. We prefer
to first present the scheme and analyze it before optimizing the parameters. However, the
order by which we choose the parameters is important as there are some dependencies
among them. First, we choose M1,M2, β1,MB, δout to be fixed constants. One should have
in mind that M1 < M2 are the quantities through which N1 and N2 are determined, i.e.,
they determine how we blow-up the different types of runs. Then we choose δin to be larger
than some quantity γ = γ(M1, T,M2, β1) that we later define (see Proposition 5.1). At
this point, we can compute the value of Rin, the rate of the inner code, using Proposition
3.8. Then, we choose a small enough εout that determines the alphabet size of the outer
code Cout. Denote with Rout the rate of Cout and by n its block length. Finally, we pick
m, the block length of the inner code, to satisfy8 Σ = {0, 1}m·Rin .

While this may seem a bit confusing the main thing to remember is that εout that was
picked at the end, can be taken to be as small a constant as we wish, or, in other words,
we can pick m to be as large a constant as we wish. This is important as we will bound
the probabilities of several bad events by expressions of the form exp(−Ω(m)) and it will
be important for us to be able to pick m large enough as to make all our estimates small.

Encoding: The process of encoding starts with the outer code. Given as input a
message x ∈ ΣRoutn, we encode it with the code given in Theorem 2.14 to obtain an outer
codeword c(out) = (σ1, . . . , σn) ∈ Cout ⊂ Σn. Then, every symbol in c(out), σi ∈ Σ =

{0, 1}m·Rin , is encoded using the inner code to a codeword that we denote c
(in)
σi . We thus

get a codeword in the concatenated code(
c(in)σ1

, . . . , c(in)σn

)
∈ Cout ◦ Cin .

Now that we have a codeword in the concatenated code we add additional layers of
encoding that are crucial for the decoding algorithm to succeed.

1. Every two adjacent inner codewords are separated by a buffer of zeros of length
NB = dMB ·m/(1− p)e.

2. In every inner codeword, we replace every 1-run with a run of lengthN1 = dM1/(1− p)e
where the symbol of the run is preserved.

3. In every inner codeword, we replace every 2-run with a run of lengthN2 = dM2/(1− p)e
where the symbol of the run is preserved.

8When we choose parameters we make sure that m · Rin is an integer.
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After the buffering and blow-up process we have three different run lengths
dMB ·m/(1− p)e , dM1/(1− p)e and dM2/(1− p)e. Note that the buffer’s length is much
larger than dM1/(1− p)e and dM2/(1− p)e since it grows with m.

Block length and rate: Note that as Cin contains strings in Sm,β1 , each of the n inner
codewords becomes of length dM1/(1− p)e ·β1m+ dM2/(1− p)e ·β2m. As we have n− 1
buffers between codewords the total block length is

(dM1/(1− p)e · β1m+ dM2/(1− p)e · β2m) · n+ dMB ·m/(1− p)e · (n− 1) .

Since the input to the encoding is a string in ΣRoutn (and recall that |Σ| = 2Rinm) the
rate R of the construction is given by

R =
log
(
|Σ|Routn

)
β1 dM1/(1− p)emn+ β2 dM2/(1− p)emn+ dMBm/(1− p)e(n− 1)

≥ RinRout

β1 dM1/(1− p)e+ β2 dM2/(1− p)e+MB/(1− p) + 1/m

≥ RinRout

β1M1/(1− p) + β2M2/(1− p) + β +MB/(1− p) + 1/m
(1)

=
RinRout(1− p)

β1M1 + β2M2 + β(1− p) +MB + (1− p)/m
.

We can avoid the ceilings if we consider values of p such that
dM1/(1− p)e , dM2/(1− p)e and dMBm/(1 − p)e are integers. In this case, the
rate is

R ≥ RinRout(1− p)
β1M1 + β2M2 +MB

. (2)

Run time analysis: By Theorem 2.14, the outer code can be constructed in linear
time. Constructing the inner code requires time at most O (22m ·m2) (see Remark 3.10).
As m = log |Σ| /Rin, we get that constructing the inner code takes time O(m2 · 22m) =

|Σ|O(1) = Oεout(1), which is constant. Thus, as all encoding steps are done in linear time,
the encoding time complexity is O(n).

5 Correctness and Analysis

We first present the decoding algorithm and then prove its correctness. After that, we
show how to choose the parameters to obtain Theorem 1.1.

Let y be the binary string received after transmitting Enc(x). The decoding
procedure is given in Algorithm 2 in page 22. Observe that the algorithm depends on
some integral parameter T . When analyzing the algorithm we will see what T has to
satisfy in order for the algorithm to decode successfully with high probability. For the
time being it is enough to remember that M1 < T < M2.

Before proving the correctness of the algorithm we give its run time analysis.
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Algorithm 2: Decode with threshold T

input : Binary string y which is the output of the BDCp on ENC(x)
output: A message x̃ ∈ Σk

[1] /* Identifying buffers Step: */

Every run of zeros of length longer than MB ·m/2 is identified as a buffer.
/* Denote by s1, . . . , st the strings between the identified buffers.

*/

[2] /* Threshold decoding step: */

for every si do
for every run in si do

if the length of the run is longer than T then
Decode it to a run of length 2

else
Decode it to a run of length 1

end

end

end
/* Let c̃1, . . . , c̃t be the strings obtained in this step. */

[3] /* Inner code decoding step: */

Use brute-force decoding to decode each c̃i to get σ̃i. Denote
σ̃out = (σ̃1, . . . , σ̃n) ∈ Σn

[4] /* Outer code decoding step: */

Run the decoding algorithm of the outer code on (σ̃1, . . . , σ̃t) to obtain x̃
Output x̃

Figure 2: Algorithm for decoding our code over BDCp. The algorithm is assumed to
know the parameters k, n,m,MB, T as well as Cin and Cout.

Run time analysis of Algorithm 2. It is clear that Steps 1 and 2 take linear time.
Step 3 runs the inner decoding algorithm n times. As the inner decoding algorithm is
a brute force operation that is run on strings of constant length it takes constant time.
Thus, the first three steps of the decoding algorithm require linear time. In Step 4 we
run the decoding algorithm of [HS17] (recall Theorem 2.14), that requires O(n2) time.
Therefore, the entire decoding procedure is dominated by the last step which runs in time
O(n2).

5.1 Correctness of Decoding Algorithm

In this section, we prove that Algorithm 2 succeeds with high probability.

Proposition 5.1. Given M1, T,M2,MB, β1, δin, εin, δout (as described in Section 4) let
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Z1 ∼ Bin(dM1/(1− p)e , 1− p) and Z2 ∼ Bin(dM2/(1− p)e , 1− p). Denote

P (1)→(2) := Pr[Z1 ≥ T + 1],

P (1)→(0) := Pr[Z1 = 0],

P (2)→(1) := Pr[Z2 ≤ T ],

P (2)→(0) := Pr[Z2 = 0] ,

and define

γ := β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2)P
(1)→(0) + 4β2P

(2)→(0) (3)

(the reason for this definition of γ is revealed later). If γ < δin, then there exists ε0 =
ε0(M1, T,M2,MB, β1, δin, δout) such that for every εout < ε0 the following holds. Let x ∈
ΣRoutn (where |Σ| = Oεout(1)) be a message and let y be the string obtained after encoding
x using our code and transmitting it through the BDCp. Then, Algorithm 2 returns x
with probability 1− exp (−Ω(n)) when given y as input.

Observe that as ε0 = ε0(M1, T,M2,MB, β1, δin, δout), it does not depend on m and
n. The rest of Section 5.1 is devoted to proving Proposition 5.1. We first discuss the
structure of the proof and prove relevant lemmas. The actual proof is given at the end
of this section.

Let σout = (σ1, . . . , σn) ∈ Σn be the result of encoding x with the outer code. I.e. the

first step before concatenating with our inner code. Let c
(in)
σi be the result of encoding σi

with the inner code.
The decoding algorithm succeeds if the decoding procedure of the outer code, which

is executed in Step 4 of the algorithm, outputs the correct message. This happens if
ED(σ(out), σ̃(out)) ≤ δoutn. To prove that this holds with high probability, we classify the
errors that can be introduced at each step of the algorithm and bound the probability
that we get too many of them.

There are three error types that increase the edit distance between σ(out) and σ̃(out):

1. Deleted buffer: This happens when the channel deleted too many bits from a buffer
so that less than MBm/2 bits survived the channel, and we did not identify this
buffer in Step 1 of the algorithm.

2. Spurious buffer: In this case the algorithm mistakenly identifies a buffer inside
an inner codeword. This might happen if there are many consecutive runs of the
symbol 1 that were deleted by the channel. As a result, a long run of the symbol 0
is created and the algorithm will mistakenly identify it as a buffer in Step 1.

3. Wrong inner decoding: Here the decoding of the inner code returns a different inner
codeword. This error happens if the edit distance between an inner codeword c

(in)
σi

and the corresponding c̃j is larger9 than δinm.

In the following subsections, we analyze each error type separately and show that each
happens with probability exp(−Ω(m)) per inner codeword. Our analysis of the first two
error types is similar to [GL18], but our analysis of the third case is different.

9Note that it may be the case that due to decoding errors, the ith inner codeword was interpreted as
the jth codeword by the decoder (e.g. if a buffer was deleted or a spurious buffer was introduced).
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5.1.1 Deleted Buffer

Proposition 5.2. Let rB be a buffer in Enc(x). The probability that the decoding algo-
rithm fails to identify it as a buffer in Step 1 is at most exp(−Ω(m)).

Proof. Recall that the length of a buffer is dMBm/(1 − p)e. Therefore the expected
number of bits that survive the transmission through the BDCp is at least MBm.
The decoder misses a buffer if the number of buffer bits that survived the transmis-
sion is smaller than MBm/2. Let Z denote the random variable that corresponds to
the number of bits that survived the transmission of rB through the BDCp. Clearly,
Z ∼ Bin(dMBm/(1 − p)e, (1 − p)). By using the Chernoff bound given in Lemma 2.10,
we get that this error happens with probability

Pr

[
Z <

MBm

2

]
= Pr

[
Z <

(
1− 1

2

)
MBm

]
< exp

(
−1

8
MBm

)
.

5.1.2 Spurious Buffer

Recall that this can happen if many consecutive runs of the symbol 1 were deleted by the
channel, so a long run of the symbol 0 is created. If the length of this long run is longer
than MBm/2 then the decoder mistakenly identifies it as a buffer.

Proposition 5.3. Let c
(in)
σi be an inner codeword. Denote by Blow(c

(in)
σi ) the string obtained

by blowing up the runs in c
(in)
σi according to the encoding procedure. The probability that the

decoder in Step 1 identifies a buffer inside the string obtained by transmitting Blow(c
(in)
σi )

through the BDCp is at most exp(−Ω(m)).

Proof. We first compute the probability that a run is deleted. Recall that after encoding
the message we transmit runs of length dM1/(1− p)e or dM2/(1− p)e. The probability
that all the bits from a run of length dM1/(1− p)e are deleted by the BDCp is

pdM1/(1−p)e ≤ pM1/(1−p) ≤ e−M1 .

Equivalently, the probability that all the bits from a run of length dM2/(1− p)e are
deleted by the BDCp is

pdM2/(1−p)e ≤ pM2/(1−p) ≤ e−M2 .

Suppose that ` consecutive runs of the bit 1 are deleted. We consider two cases.
First, consider the case where ` > mMB/4M2. The probability that exactly ` runs of

the symbol 1 are deleted is at most (the highest probability is obtained when all the `
runs are dM1/(1− p)e-runs)

pdM1/(1−p)e` ≤ exp (−M1`) ≤ exp (−M1MBm/4M2) = exp (−Ω (m)) .

The probability that there exist ≥ mMB/(4M2) consecutive runs of the symbol 1 that
are deleted in a word of length m is at most O(m2) · exp (−Ω (m)) = exp(−Ω(m)) (we
just need to pick the start and end point of the consecutive runs).
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Now, if ` ≤ mMB/(4M2) consecutive runs of 1’s are deleted, then there are ` + 1
runs of zeros that are merged to a single run. Suppose that all the merged runs were
2-runs (so that the length of the run of the symbol 0 that was created is maximized).
Denote by Z the random variable that corresponds to the number of bits that survived
the transmission of these `+ 1 runs. It holds that Z ∼ Bin ((`+ 1) dM2/ (1− p)e , 1− p)
and

E [Z] = (`+ 1) dM2/(1− p)e (1− p)
≤ (`+ 1)(M2 + 1)

≤ (mMB/(4M2) + 1)(M2 + 1)

(∗)
≤ MBm+ 4M2

3

<
2

5
MBm

where inequality (∗) holds for M2 ≥ 3 and the last inequality holds for large enough10 m.
Thus, we get by the Chernoff bound that the probability that Z ≥MBm/2 is

Pr

[
Z ≥ MBm

2

]
= Pr

[
Z ≥

(
1 +

1

4

)
2

5
MBm

]
≤ exp

(
− 1

120
MBm

)
.

Hence, the probability that specific ` ≤ mMB/(4M2) consecutive runs of the symbol 1
were deleted and a spurious buffer was created is at most exp(−MBm/120). Therefore,
for such an `, the probability that there exists a spurious buffer in an inner codeword of
length m is at most m2 · exp(−MBm/120) ≤ exp(−MBm/240), for large enough m.

Remark 5.4. Proposition 5.3 upper bounds the probability that a spurious buffer is
identified in a inner codeword. However, it may be the case that the decoder identi-
fies two or more spurious buffers inside a single inner codeword. This is not an is-
sue as the maximal number of spurious buffer inside an inner codeword is ≤ 2/MB,
and therefore the expected number of spurious buffers in an inner codeword is at most
(2/MB) · exp(−Ω(m)) = exp(−Ω(m)).

5.1.3 Wrong Inner Decoding

This is the most difficult case to analyze. The inner decoding procedure might output a
wrong codeword when the edit distance between an inner codeword c

(in)
σi and the corre-

sponding word that was obtained at Step 2 of the algorithm, c̃j, is larger than δinm. The
next proposition shows that the probability of this event is exponentially small in m.

Proposition 5.5. Assume the setting of Proposition 5.1. Let c
(in)
σi be an inner codeword.

Assume that the buffers before and after c
(in)
σi were detected correctly and that there were

no spurious buffers in between. Suppose that c̃j is the corresponding string obtained at
Step 2 of the decoding algorithm on sj. Then,11

Pr
[
ED
(
c(in)σi

, c̃j
)
> δinm

]
≤ exp(−Ω(m)) .

10Recall that by the way that we choose our parameters we pick m at the end so that we can make it
as large a constant as we wish.

11Recall that we use a different index j to indicate that it may be the case that spurious buffers were
found earlier, in some other inner codeword, or that some earlier buffers were mistakenly deleted.
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We prove this claim in the remainder of this subsection, but first we give some intuition
and introduce some important notions. Recall that a run rj in an inner codeword is
replaced with a run of length N1 = dM1/(1− p)e or N2 = dM2/(1− p)e. Let Zj be the
random variable corresponding to the number of bits from this blown-up run that survived
the transmission through the BDCp. If |rj| = 1 then, Zj ∼ Bin (dM1/(1− p)e , 1− p).
If |rj| = 2 then, Zj ∼ Bin (dM2/(1− p)e , 1− p). Intuitively, in Step 2 the algorithm
reads every Zj and decides according to the threshold T if Zj corresponds to a run of
length 1 or 2. However, it may be the case that, say, Zj+1 = 0 and then the algorithm
will mistakenly base its decision according to the value of Zj + Zj+2, etc. For example,
consider an initial string 〈00100〉. After the blow-up, we transmit the string 〈0N21N10N2〉.
Suppose that the middle run (the run consisting of the symbol 1) was deleted by the
channel. The decoder then faces a long run of 0’s and treats it as a single run and in
particular, it will decode it as 〈0〉 or 〈00〉, or even as a spurious buffer. This motivates
the following definitions.

Definition 5.6. When Zj = 0 we say that rj was deleted by the channel.

Remark 5.7. We shall make a distinction between runs that were deleted by the channel
and those that our algorithm “deleted” so whenever we refer to a deleted bit we will stress
which process caused the deletion.

Definition 5.8. For every j ∈ [βm], let bj be the bit appearing in rj. We denote

r′j =


〈bjbj〉 if Zj > T
〈bj〉 if 0 < Zj ≤ T
〈〉 if Zj = 0

.

In other words, r′j is what Step 2 of our decoding algorithm would output when given

Zj as input. In particular,
∣∣r′j∣∣ can be 0, 1, 2, depending on Zj. Note that if

∣∣r′j∣∣ = 0 then
it means that the channel deleted the run.

For the next definition, we remind the reader that in our setting the total number of
runs in an inner codeword (and hence also in a blown-up word) is β1m+ β2m = βm.

Definition 5.9. A set I ⊂ [βm], |I| ≥ 2, is called a maximal merged set if the following
conditions hold:

1. For every i ∈ I it holds that Zi > 0.

2. All the bits from I are merged into one run.

3. There is no set J such that I ( J and the bits from J are merged into one run.

For example, consider the following consecutive runs that were sent through the chan-
nel 〈0N21N10N11N20N11N10N2〉. Suppose that the third run and the fifth run were deleted
by the channel and the rest of the runs were not deleted by the channel. The maximal
merged set corresponding to this deletion pattern is I = {2, 4, 6}.

Claim 5.10. Let I ⊂ [βm] be a maximal merged set. Denote j = min I and k = max I.
Then, all the runs rj+1, rj+3, . . . , rk−1 were deleted by the channel.
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Proof. Assume w.l.o.g. that rj and rk are runs of the symbol 0. For every i ∈ {j + 1, j +
3, . . . , k − 1}, ri is a run of symbol 1 and must be deleted by the channel. Otherwise, I
will not be a merged set.

Definition 5.11. Let I ⊂ [βm] be a maximal merged set and set j = min I. We denote
by r̃j the result of Step 2 of our decoding algorithm on this merged run.

Remark 5.12. It is important to remember that rj is the original run, r′j is what the
algorithm would return when given Zj as input, and r̃j is what the algorithm actually
returns when reading the bits of the merged run.

We can now see that some bits that survived the channel were deleted by our algorithm
as it failed to realize that they came from different runs. This is captured by the next
definition.

Definition 5.13. Let I ⊂ [βm] be a maximal merged set. We say that the decoding
algorithm deleted

∣∣r′j∣∣− |r̃j|+∑i∈I\{j} |ri| bits in the set I.

As
∣∣r′j∣∣ ≤ |r̃j| the following claim is obvious.

Claim 5.14. Let I be a maximal merged set and set j = min I. The number of bits
deleted by the decoding algorithm in the merged set I is at most

∑
i∈I\{j} |ri|.

We next extend Claim 5.14 and bound the total number of bits that our algorithm
deletes in an inner codeword. We assume that the buffers before and after the word were
correctly identified by the decoding algorithm in Step 1.

Claim 5.15. Let D ⊂ [βm] be the indices of the runs that were deleted by the channel.
If the last run was not deleted, i.e., βm /∈ D, then the number of bits that were deleted
by the decoding algorithm is at most

∑
i∈D |ri+1|.

If the last run was deleted by the channel, i.e., βm ∈ D, then the number of bits
deleted by the algorithm is at most

∑
i∈D\{βm} |ri+1|+ 2.

Proof. We first deal with the case where some runs were merged with the bits in the
buffers (before or after the word). This happens if the first or the last run were deleted
by the channel. If 1 ∈ D then let ri′ to be the first run of the symbol 1 that was not
deleted by the channel. Then, all runs of the symbol 0 before ri′ were merged to the
left buffer. Therefore, DL := {1, 3, . . . , i′ − 2} ⊆ D and the decoding algorithm deleted
exactly |r2|+ . . .+ |ri′−1| =

∑
`∈DL |r`+1| bits (since all these runs were considered as part

of the buffer).
Similarly, if βm ∈ D define ri′ to be the last run of the symbol 1 that was not deleted

by the channel. In this case all the runs of 0’s after ri′ were merged to the right buffer. In
this case, DR := {i′ + 2, i′ + 4, . . . , βm} ⊆ D and the decoding algorithm deleted exactly
|ri′+1|+ . . .+ |rβm−1| ≤ 2 +

∑
`∈DR\{βm} |r`+1| bits.

We now account for inner deletions (i.e., those that did not cause runs to merge
with buffers). These deletions may generate what we called maximal merged sets. Let
I1, . . . , It be all maximal merged sets, excluding those that were merged with buffers.
Denote ji = min Ii and ki = max Ii and let12 Di := D ∩ [ji + 1, ki − 1] for i ∈ [t].

12Note that it may be the case that the set D′ := D \ (∪iDi) is not the empty set. In this case the
indices in D′ correspond to runs that were deleted by the channel but did not cause a merge. E.g., if
two consecutive runs are deleted by the channel and the runs before and after were not deleted, then
this does not make our algorithm to delete additional bits.
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According to Claim 5.10 it holds that {ji + 1, ji + 3, . . . , ki − 1} ⊆ Di. Thus, Ii ⊆
{ji, ji + 2, . . . , ki}. Claim 5.14, implies that the number of bits deleted by the algorithm
in Ii is at most

∑
`∈Ii\{ji} |r`|. Thus, the total number of bits deleted by the algorithm,

excluding those bits from DL ∪DR, is bounded from above by

t∑
i=1

∑
`∈Ii\{ji}

|r`| ≤
t∑
i=1

∑
`∈Di

|r`+1| ≤
∑

i∈D\(DL∪DR)

|ri+1| .

Taking into account the deleted bits from DL ∪DR the claim follows.

We now use concentration bounds to argue about the expected number of bits that
were deleted and the effect on the edit distance between the original inner codeword and
the one returned by the algorithm in Step 2.

We first study the probability that rj 6= r′j (recall Definition 5.8):

1. If |rj| = 1 then there are two possible types of errors:

(a)
∣∣r′j∣∣ = 2: We denote the probability for this to happen by

P (1)→(2) := Pr[Zj ≥ T + 1] .

We next give two estimates of this probability, one is an exact calculation and
the other is an upper bound. Direct calculation gives

P (1)→(2) = Pr[Zj ≥ T + 1] =

d M1
1−pe∑

i=T+1

(⌈ M1

1−p

⌉
i

)
(1− p)i · pd

M1
1−pe−i . (4)

We next would like to use the Poisson distribution to give a simpler bound.
For this we would like to use Theorems 2.8 and 2.9.

Lemma 5.16. Let q ≥ 1− p and T ≥M1 + q. It holds that

P (1)→(2) ≤ 1− e−M1−q
T∑
i=0

(M1 + q)i

i!
(5)

Moreover, the function f(q) := 1 − e−M1−q
∑T

i=0
(M1+q)i

i!
is monotonically in-

creasing in q.

Proof. Define Y (j, x) ∼ Bin(j, (M1 +x)/j). Observe that E[Y (j, x)] = M1 +x.
Denote n′ = dM1/(1− p)e. First note that

Pr[Zj ≥ T + 1] ≤ Pr[Y (n′, 1− p) ≥ T + 1]

since the expectation of Y (n′, (1− p)) is M1 + (1− p) whereas the expectation
of Zj is ≤M1 + (1− p) and they are both binomial distributions on n′ trials.
By the same reasoning we have that for every j ≥ n′

Pr[Y (j, (1− p)) ≥ T + 1] ≤ Pr[Y (j, q) ≥ T + 1] .
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Let P (x) ∼ Poisson(x). Theorem 2.8 implies that limj→∞ Y (j, x) = P (M1+x).
Therefore,

P (1)→(2) = Pr [Zj ≥ T + 1] ≤ Pr[Y (n′, q) ≥ T + 1]

= 1− Pr [Y (n′, q) ≤ T ]

≤ 1− lim
j→∞

Pr [Y (j, q) ≤ T ]

= 1− Pr [P (M1 + q) ≤ T ]

= 1− e−M1−q
T∑
i=0

(M1 + q)i

i!
,

where the second inequality follows from Theorem 2.9 due to monotonicity for
T ≥M1 + q.

Note that the monotonicity of f(q) = 1 − e−M1−q
∑T

i=0
(M1+q)i

i!
follows from

Lemma 2.7.

(b)
∣∣r′j∣∣ = 0: Here the blown-up run was completely deleted by the channel. The

probability for this to happen is P (1)→(0) := Pr[Zj = 0]. It holds that,

P (1)→(0) = Pr[Zj = 0] = pd
M1
1−pe. (6)

It also holds that for any p ∈ (0, 1),

P (1)→(0) = Pr[Zj = 0] ≤ e−M1 . (7)

2. Similarly, when |rj| = 2 there are two cases to consider:

(a)
∣∣r′j∣∣ = 1: The probability for this to happen is P (2)→(1) := Pr[Zj ≤ T ]. As
before, the exact calculation is

P (2)→(1) = Pr[Zj ≤ T ] =
T∑
i=0

(⌈ M2

1−p

⌉
i

)
(1− p)i · pd

M2
1−pe−i . (8)

Similarly to the calculations for P (1)→(2), we would like to upper bound P (2)→(1)

using a simpler expression coming from the Poisson distribution.

Lemma 5.17. For every p and for T ≤M2 − 1, it holds that

P (2)→(1) ≤ e−M2

T∑
i=0

M i
2

i!
. (9)

Moreover, for every q ≥ p such that M2/(1− q) is an integer, it holds that

P (2)→(1) ≤
T∑
i=0

( M2

1−q
i

)
(1− q)i · q

M2
1−q−i (10)
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Proof. For a natural number 1 ≤ i, let Y (i) ∼ Bin (i,M2/i). Let P ∼
Poisson(M2). Observe that Pr[Zj ≤ T ] ≤ Pr[Y (dM2/(1− p)e) ≤ T ] as the
latter can only have smaller expectation. Since limi→∞ Y (i) ∼ P and due to
the monotonicity implied by Theorem 2.9 we get that when T ≤ M2 − 1, for
every p it holds that:

P (2)→(1) = Pr[Zj ≤ T ] ≤ Pr[Y (dM2/(1− p)e) ≤ T ]

≤ Pr[Y (dM2/(1− q)e) ≤ T ]

= Pr[Y (M2/(1− q)) ≤ T ]

≤ lim
i→∞

Pr[Y (i) ≤ T ]

= Pr[P ≤ T ]

= e−M2

T∑
i=0

M i
2

i!
,

where the second and the third inequalities hold due to Theorem 2.9 for T ≤
M2 − 1. Note that the second inequality proves the second statement in the
lemma.

(b)
∣∣r′j∣∣ = 0: The probability for this to happen is P (2)→(0) := Pr[Zj = 0]. It holds
that,

P (2)→(0) = Pr[Zj = 0] = pd
M2
1−pe (11)

and for every p ∈ (0, 1) we have

P (2)→(0) = Pr[Zj = 0] ≤ e−M2 . (12)

Recall that c
(in)
σi is an inner codeword that consists of exactly β1m 1-runs and β2m 2-

runs. Also recall that we blow-up an inner codeword, c
(in)
σi , and send it through the BDCp.

Suppose that Step 1 of the algorithm identified the i− 1’th and the i’th buffer and that
there were no spurious buffers in between. Let sj be the binary string corresponding
to this decoding window obtained in Step 1, and let c̃j be the result of Step 2 of the
algorithm on sj.

For every j ∈ [βm− 1], Let Xj be the random variable defined by

Xj =


0 if |rj| =

∣∣r′j∣∣
1 if Zj > 0 and |rj| 6=

∣∣r′j∣∣
|rj|+ |rj+1| if Zj = 0

.

Similarly define Xβm to be

Xβm =


0 if |rβm| =

∣∣r′βm∣∣
1 if Zβm > 0 and |rβm| 6=

∣∣r′βm∣∣
|rβm|+ 2 if Zβm = 0

.

Claim 5.18. Let c
(in)
σi be an inner codeword. Assume that the buffers before and after

c
(in)
σi were detected correctly and assume that there were no spurious buffers in between.
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Suppose that c̃j is the corresponding string obtained at Step 2 of the decoding algorithm
on sj. Then,

ED
(
c(in)σi

, c̃j
)
≤

βm∑
j=1

Xj .

Proof. If rj is a 1-run and r′j is a 2-run then there was an insertion. Equivalently, if rj is
a 2-run and r′j is a 1-run then there was a deletion. If a run was completely deleted by
the channel then according to Claim 5.15, at the worst case scenario, the following run
is also deleted by the algorithm. The definition of the Xj’s accounts for all that.

Note that we may do over counting in some scenarios, e.g., if rj+1 6= r′j+1 and rj was
deleted by the channel then Xj +Xj+1 = |rj|+ |rj+1|+ 1 but the edit distance is at most
|rj|+ |rj+1|. This over counting makes the upper bound less tight.

Set X =
∑βm

j=1Xj. We next upper bound and lower bound E[X].

Claim 5.19. It holds that
E [X] ≥ ξm ,

where
ξ = β1

(
P (1)→(2) + 2 · P (1)→(0)

)
+ β2

(
P (2)→(1) + 3 · P (2)→(0)

)
.

Proof. For every Xj such that rj is a 1-run we have

E[Xj] ≥ 1 · P (1)→(2) + 2 · P (1)→(0) ,

where we used the fact that |rj| + |rj+1| ≥ 2. Similarly, for every Xj such that rj is a
2-run we have

E[Xj] ≥ 1 · P (2)→(1) + 3 · P (2)→(0) .

As there are exactly β1 1-runs and β2 2-runs, the claim follows.

Claim 5.20. It holds that
E [X] ≤ γm+ P (1)→(0) ,

where,

γ = β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2) · P (1)→(0) + 4β2 · P (2)→(0) , (13)

is the same γ as in Proposition 5.1.

For the proof we shall denote with X i,k
j the random variable Xj when rj is an i-run

and rj+1 is a k-run.

Proof. Suppose that rβm is a 1-run. As will be explained later, this is the worst case, i.e.,
the upper bound that we prove on E[X] is largest in this case. Denote by Y i,k ⊆ [βm−1]
the set of indices j ∈ [βm− 1] such that rj is an i-run and rj+1 is a k-run. From linearity
of expectation it follows that

E[X] =
∑
j∈Y 1,2

E
[
X1,2
j

]
+
∑
j∈Y 1,1

E
[
X1,1
j

]
+
∑
j∈Y 2,1

E
[
X2,1
j

]
+
∑
j∈Y 2,2

E
[
X2,2
j

]
+ E [Xβm] .
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Let λ1 be such that |Y 1,2| = λ1m. Thus, |Y 1,1| = (β1−λ1)m−1 (where the 1 is subtracted
because of the last run, which we assumed is a 1-run). By definition we have that∑

j∈Y 1,2

E
[
X1,2
j

]
=
(
1 · P (1)→(2) + 3 · P (1)→(0)

)
· λ1m

and ∑
j∈Y 1,1

E
[
X1,1
j

]
=
(
1 · P (1)→(2) + 2 · P (1)→(0)

)
· ((β1 − λ1)m− 1) .

Observe that∑
j∈Y 1,2

E
[
X1,2
j

]
+
∑
j∈Y 1,1

E
[
X1,1
j

]
+ E[Xβm]

=
(
1 · P (1)→(2) + 3 · P (1)→(0)

)
· λ1m+

(
1 · P (1)→(2) + 2 · P (1)→(0)

)
· ((β1 − λ1)m− 1)

+
(
1 · P (1)→(2) + 3 · P (1)→(0)

)
= P (1)→(2) · β1m+ P (1)→(0) · (2β1m+ λ1m+ 1) .

As there are exactly β2m 2-runs, it holds that 0 ≤ λ1 ≤ β2. Hence, this sum is maximized
for λ1 = β2. We thus have that∑

j∈Y 1,2

E
[
X1,2
j

]
+
∑
j∈Y 1,1

E
[
X1,1
j

]
+ E[Xβm]

≤β1mP (1)→(2) + (2β1 + β2)mP
(1)→(0) + P (1)→(0) .

(14)

Similarly, let λ2 be such that |Y 2,1| = λ2m. Thus, |Y 2,2| = (β2 − λ2)m. It holds that∑
j∈Y 2,1

E
[
X2,1
j

]
=
(
1 · P (2)→(1) + 3 · P (2)→(0)

)
· λ2m

and ∑
j∈Y 2,2

E
[
X2,2
j

]
=
(
1 · P (2)→(1) + 4 · P (2)→(0)

)
· (β2 − λ2)m .

Since the sum
∑

j∈Y 2,1 E
[
X2,1
j

]
+
∑

j∈Y 2,2 E
[
X2,2
j

]
is maximized for λ2 = 0 we get,∑

j∈Y 2,1

E
[
X2,1
j

]
+
∑
j∈Y 2,2

E
[
X2,2
j

]
≤ β2mP

(2)→(1) + 4β2mP
(2)→(0) . (15)

Combining (14) and (15) we obtain

E [X] =
∑
j∈Y 1,2

E
[
X1,2
j

]
+
∑
j∈Y 1,1

E
[
X1,1
j

]
+ E[Xβm] +

∑
j∈Y 2,1

E
[
X2,1
j

]
+
∑
j∈Y 2,2

E
[
X2,2
j

]
≤ β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2) · P (1)→(0) + 4β2 · P (2)→(0) + P (1)→(0)

= γm+ P (1)→(0) , (16)

as claimed.
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Note that if rβm was a 2-run, then |Y 1,2|+ |Y 1,1| = β1m (no need to subtract 1 since
the last run is now a 2-run) and we have,∑

j∈Y 1,2

E
[
X1,2
j

]
+
∑
j∈Y 1,1

E
[
X1,1
j

]
≤ β1mP

(1)→(2) + (2β1 + β2)mP
(1)→(0) .

In this case, we have that |Y 2,1| + |Y 2,2| = β2m − 1. Thus, if we let λ2 be such that
|Y 2,1| = λ2m and |Y 2,2| = (β2 − λ2)m− 1 then∑

j∈Y 2,1

E
[
X2,1
j

]
+
∑
j∈Y 2,2

E
[
X2,2
j

]
+ E[Xβm]

=
(
1 · P (2)→(1) + 3 · P (2)→(0)

)
· λ2m+

(
1 · P (2)→(1) + 4 · P (2)→(0)

)
· ((β2 − λ2)m− 1)

+
(
1 · P (2)→(1) + 4 · P (2)→(0)

)
= P (2)→(1) · β2m+ P (2)→(0) · (4β2m− λ2m) ,

and this sum is maximized for λ2 = 0. We thus have that∑
j∈Y 2,1

E
[
X2,1
j

]
+
∑
j∈Y 2,2

E
[
X2,2
j

]
+ E[Xβm] ≤ P (2)→(1)β2m+ 4P (2)→(0)β2m

Then, if rβm is a 2-run we have

E[X] ≤ β1mP
(1)→(2) + (2β1 + β2)mP

(1)→(0) + P (2)→(1)β2m+ 4P (2)→(0)β2m

= γm < γm+ P (1)→(0) .

Thus, for any constant γ′ > γ there exist a constant Mγ′ such that for all m > Mγ′ it
holds that

E[X] ≤ γm+ P (1)→(0) < γ′m .

In the following claim we use concentration bound to show that the probability that X
is greater than γ′m, for γ′ > γ, is exponentially small in m and then we conclude that
decoding of an inner codeword succeeds with high probability.

Claim 5.21. For any γ′ > γ and for every constant ν > 0 it holds that for a large enough
m,

Pr[X > (1 + ν)γ′m] < exp

(
−ν

2ξ2m

8β

)
= exp(−Ω(m)) ,

where ξ is as in Claim 5.19.

Proof. First note that

Pr[X > (1 + ν)γ′m] ≤ Pr[X > (1 + ν)E[X]] ,

where by Claim 5.20 the inequality holds for large enough m. The delicate point is
to notice that the Xj’s are independent. This is because each Xj is determined solely
according to the value of Zj (indeed, its value only depends on whether Zj = 0, Zj ≤ T
or Zj > T ), and the random variables Zj’s are independent by the definition of the binary
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deletion channel. For every Xj it holds that 0 ≤ Xj ≤ 4 and if we set t = νE[X] and
apply Theorem 2.12 then we get that

Pr [X > (1 + ν)E[X]] < exp

(
−2ν2(E[X])2

βm · 42

)
≤ exp

(
−2ν2(ξm)2

16βm

)
= exp

(
−ν

2ξ2m

8β

)
,

where the second inequality follow from Claim 5.19.

We are now ready to prove the main claim of this subsection, Proposition 5.5.

Proof of Proposition 5.5. By Claim 5.18 X is an upper bound on ED(c
(in)
σi , c̃j). Thus,

Pr
[
ED
(
c(in)σi

, c̃j
)
> δinm

]
≤ Pr[X > δinm] .

By the assumption in Proposition 5.1 we have that δin > γ. We thus get that

Pr [X > δinm] = Pr

[
X >

(
1 +

δin − γ
δin + γ

)
δin + γ

2
m

]
≤ exp

(
−
(
δin − γ
δin + γ

)2
ξ2

8β
m

)
,

where the last inequality follows from Claim 5.21 by plugging ν = δin−γ
δin+γ

and γ′ = δin+γ
2

.
This completes the proof of Proposition 5.5.

Remark 5.22. Observe that all the parameters involved in the upper bound in Proposi-
tion 5.5, namely, γ, ξ, β are independent of m. That is, they only depend on δin,M1,M2, T
and β1.

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. We would like to show that with high probability, the edit dis-
tance between the original outer codeword σ(out) and the string σ̃(out), obtained after
Step 3 of the decoding algorithm, is smaller than δoutn. To prove this we shall analyze
the contribution of each of the error types (deleted buffer, spurious buffer and wrong
inner decoding) on the edit distance.

A deleted buffer causes two inner codewords to merge and thus be decoded incorrectly
by the inner code’s decoding algorithm. When considering the effect of this on the edit
distance between σ(out) and σ̃(out), this introduces two deletions and one insertion. Sim-
ilarly, a single spurious buffer introduces one deletion and two insertions, since an inner
codeword is split into two parts. Likewise, ` spurious buffers inside an inner codeword
introduce 1 deletion and possibly ` + 1 insertions. A wrong inner decoding causes just
one deletion and one insertion. Therefore, every error type increases the edit distance
between the original outer codeword σ(out) and σ̃(out) by at most three.

As mentioned, the outer decoding algorithm fails if ED
(
c(out), c̃(out)

)
> δoutn. Thus,

for this to happen, at least one of the following bad events must occur:
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1. There were at least δoutn/9 deleted buffers.

2. There were at least δoutn/9 spurious buffers.

3. There were at least δoutn/9 inner codewords that were decoded incorrectly even
though they did not have spurious buffers and their buffers were identified.

We first treat events (1) and (3). We saw in Propositions 5.2 and 5.5 that for every
inner codeword, each error type happens with probability exp(−Ω(m)). Since δout is a
fixed constant, there exists a large enough m so that exp(−Ω(m)) ≤ δout/10 for each
error type. An important observation is that, similarly to Remark 5.22, the constants in
the exp(−Ω(m)) in the different propositions depend only on δin, β1,M1, T,M2,MB which
are fixed constants and are not related to the outer code. Thus, we can choose a small
enough εout, which determines a large enough m, so that the probability for each error
type is ≤ δout/10. By the Chernoff bound given in Lemma 2.10, for a large enough n,
each of the two bad events happens with probability exp(−Ω(n)).

We now turn to event (2). By Proposition 5.3 and Remark 5.4, the number of spurious
buffers in every inner codewrod is between 0 and 2/MB and the expected number of
spurious buffers in an inner codeword is exp(−Ω(m)). Again, we can choose a small
enough εout, which determines a large enough m, so that the expected number of spurious
buffers in an inner codeword is ≤ δout/10. By the independence of the BDCp, we can
apply the Hoeffding bound (Theorem 2.12) and get that the probability that there are
more than δoutn/9 spurious buffers is exp(−Ω(n)).

In conclusion, Algorithm 2 succeeds with probability 1− exp(−Ω(n)) as claimed.

5.2 Proof of Theorem 1.1

We now prove our main theorem.

Proof of Theorem 1.1. Our goal is to maximize the rate given in Equation (1) while assur-
ing that the parameters that we pick guarantee successful decoding with high probability.
Recall that the order by which we choose the parameters in our construction is the fol-
lowing. First, we choose M1, T,M2, β1,MB, δout to be fixed constants. Then, we compute
upper bounds on P (1)→(2), P (1)→(0), P (2)→(1), P (2)→(0). Plugging these upper bounds to
Equation (3), we get an upper bound13 on γ which we denote by γ̃. Note that γ̃ depends
only on M1, T,M2, β1, and p. Then we choose δin to be larger than γ̃, and in particular
we have γ ≤ γ̃ < δin. Proposition 5.1 guarantees that if we choose a small enough εout,
then our decoding algorithm will succeed with high probability. Thus, we only have to
make sure that the rate that we get satisfies the statement in the theorem. We calculate
the value of Rin using Proposition 3.8 and then use it to calculate the overall rate.14

We consider several regimes of p and for each regime we choose suitable parameters.

Case p ≥ 0.9: In this case we choose:

M1 = 5.41,M2 = 22.8, β1 = 0.522,MB = 10−5, δout = 2−20 and δin = 0.01052 ,

13We do not compute the value of γ exactly as it is too difficult to do parametrically.
14When applying Proposition 3.8, we set δ = δin.
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and set T = 12. From Proposition 3.8 we get that, for our choice of parameters, the
rate of the inner code is Rin = 0.5229. The upper bounds for P (1)→(0), P (2)→(1), P (2)→(0)

are computed using Equations (7), (9), and (12). To upper bound P (1)→(2), we use
Equation (5) given in Lemma 5.16 with q = 0.1. Observe that as we assume p ≥ 0.9 it
follows that q ≥ 1− p.

One can plug in the upper bounds to Equation (3) and observe that γ̃ < δin. Propo-
sition 5.1 guarantees that for a small enough εout our decoding algorithm succeeds with
high probability. To calculate the rate we use Equation (1). For a large enough m (e.g.
m > 105) we obtain

0.5229(1− p)
8.27323 + 0.761(1− p) + (1− p)/m

≥ 0.5229(1− p)
8.34933

>
(1− p)

16
.

Case 0.57 < p < 0.9: For this regime we use the parameters

M1 = 5.59,M2 = 23.5, β1 = 0.53,MB = 10−5, δout = 2−20 and δin = 0.008013 ,

and set T = 13. We get that the rate of the inner code is Rin = 0.55224. We first note
that the calculations used to upper bound P (1)→(0), P (2)→(1), P (2)→(0) were obtained by
using Equations (6), (8) and (11) with p = 0.9. This can be done since Equations (6)
and (11) are clearly monotonically increasing in p and we are considering smaller values
of p. Also, observe that since M2/(1 − 0.9) = 235 is an integer, then by Equation (10)
given in Lemma 5.17, for every p ≤ 0.9,

P (2)→(1) ≤
T∑
i=0

( M2

1−0.9
i

)
(1− 0.9)i · (0.9)

M2
1−0.9

−i ,

which is exactly what we get from Equation (8) with p = 0.9. Now, to upper bound
P (1)→(2) we use Equation (5) with q = 1 − 0.57, which is fine as p > 0.57 and thus
q > 1 − p. As before, calculations show that γ̃ < δin. Hence for a small enough εout
our decoding algorithm succeeds with high probability by Proposition 5.1. Plugging the
parameters into Equation (1) and letting m be large enough we get

0.55224(1− p)
8.48521 + 0.765(1− p) + (1− p)/m

>
0.55224(1− p)

8.81416
>

1− p
16

.

Case 0 < p ≤ 0.57: The parameters we choose for this regime are

M1 = 5.59,M2 = 20.21, β1 = 0.53,MB = 10−5, δout = 2−20 and δin = 0.006147 ,

and set T = 13. Using Proposition 3.8, we get that Rin = 0.577475. As in the previ-
ous case, the upper bounds to P (1)→(0), P (2)→(1), P (2)→(0) were obtained by using Equa-
tions (6), (8) and (11), this time with p = 0.57 (observe that M2/(1 − 0.57) is an in-
teger). In this case 13 = T ≥ dM1/(1− p)e. For a random variable Z distributed as
Z ∼ Bin (dM1/(1− p)e , 1− p), it holds that

P (1)→(2) = Pr[Z ≥ T + 1] = 0
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since bits can only be deleted by the BDCp.
One can simply verify that γ̃ < δin and hence for a small enough εout our decoding

algorithm succeeds with high probability by Proposition 5.1. Plugging the parameters
into Equation (1) and letting m be large enough we get that for the case p ≤ 0.57, the
rate of the construction is

0.57747(1− p)
7.71206 + 0.765(1− p) + (1− p)/m

>
0.57747(1− p)

8.47706
>

1− p
16

.

This completes the proof of Theorem 1.1

6 Rates For Fixed Values of Deletion Probabilities

In Theorem 1.1 we constructed codes of rate larger than (1 − p)/16 for the BDCp that
can be used for reliable communication. Note that even if p → 1 our construction gives
codes of positive rate. Now, we wish to fix p (and thus leave the regime p → 1) and
instead of using the bounds given in Equations (5), (7), (9) and (12), we can use the
exact direct calculations given in Equations (4), (6), (8) and (11), respectively. Using the
exact bounds we can improve, for any fixed value of p, the rate of the code compared to
what we obtained in Theorem 1.1. The reason that we can improve the bound is that
in the proof of Theorem 1.1 we looked for a relatively simple argument that should work
for every value of p. When p is fixed, we can use more direct calculations to get a better
bound. For example, we can get significant improvement by using Equation (6) instead
of Equation (7). E.g., for p = 0.8 there is a relatively large difference between pM1/(1−p)

and e−M1 . E.g., for M1 = 5 we have that e−5 = 0.00673 and 0.85/(0.2) = 0.00377. Such
savings allow us to choose smaller value of M1 for the case p = 0.8. Then, by reducing the
value of M1 we reduce also the values of T and M2 which eventually lead to an improved
rate.

The reason that we do not optimize the calculation using these equations for every p
is that the optimization involves complex expressions involving all our parameters and it
is not clear how to optimize it and get a closed formula for the rate for arbitrary p.

In [DM07], the authors gave constructions of probabilistic codes for the binary deletion
channel. They derived lower bounds on the capacity of the BDCp that are the best lower
bounds as far as we know for fixed values of p.

In Table 1 we compare our results to the ones obtained in [DM07]. One can see that
our rates are smaller by approximately a factor of 2. Yet, the construction presented in
this paper is deterministic, has polynomial time complexity and has a simpler analysis.

Note that as p tends to 1 the rate that we achieve approaches (1− p)/15.7 as can be
seen in Figure 3.

Remark 6.1. The calculations in Table 1 are done only for p ≥ 0.5 as the focus of
this paper is on large values of p. When p is small we know that the rate is better than
(1 − p)/9 (it approaches 1 − h(p)) and one has to take a different approach in order to
obtain good constructions.

37



p (β1, N1, T,N2,Rin, δin) Final rate [DM07]
0.50 (0.497, 8, 7, 27, 0.5456, 0.00922) 0.050682 0.10186
0.55 (0.519, 9, 8, 34, 0.5525, 0.00825) 0.043005 0.084323
0.60 (0.508, 10, 8, 38, 0.5184, 0.01120) 0.035935 0.069564
0.65 (0.519, 13, 9, 49, 0.5545, 0.00810) 0.029926 0.056858
0.70 (0.509, 15, 9, 57, 0.5267, 0.01051) 0.024353 0.045324
0.75 (0.524, 20, 10, 75, 0.5400, 0.00910) 0.019420 0.035984
0.80 (0.514, 24, 10, 96, 0.5289, 0.01022) 0.014830 0.027266
0.85 (0.526, 34, 11, 138, 0.5413, 0.00895) 0.010701 0.019380
0.90 (0.537, 54, 12, 224, 0.5534, 0.00773) 0.006845 0.012378
0.95 (0.53, 108, 12, 452, 0.5402, 0.00893) 0.003305 0.005741
0.99 (0.52, 541, 12, 2280, 0.5318, 0.00985) 0.000641 -

Table 1: Rates for fixed values of p. N1 and N2 are the lengths of the inner codeword
runs after the blow-up. I.e., N1 = dM1/(1− p)e and N2 = dM2/(1− p)e.
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Figure 3: Rates for fixed values of p.

7 Poisson Repeat Channel

We first recall the definition of the PRCλ.

Definition 7.1. Let λ > 0. The Poisson repeat channel with parameter λ (PRCλ)
replaces each transmitted bit randomly (and independently of other transmitted bits), with
a discrete number of copies of that bit, distributed according to the Poisson distribution
with parameter λ.

This channel was first defined by Mitzenmacher and Drinea in [MD06] who used it
to prove a lower bound of (1− p) /9 on the rate of the BDC. More recently, Cheraghchi
[Che18] gave an upper bound on its capacity and showed further connections to the BDC.

Before proceeding, let us describe the connection between the PRC and the BDC
discovered by Mitzenmacher and Drinea. What they observed is that a code for the
PRCλ having rate R, yields a code for the BDCp of rate (1− p) · R/λ. The reduction is
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via a probabilistic argument – from each codeword in the code for the PRCλ we generate
a codeword for the BDCp as follows: we replace each of the bits in the codeword by a
discrete number of copies of those bits, distributed according to the Poisson distribution
with parameter λ/(1− p). The intuition for the construction is that now, when we send
the codeword through the BDCp, the resulting word is distributed as if we had sent the
original codeword through the PRCλ.

To the best of our knowledge, prior to this work there were no explicit deterministic
constructions of coding schemes for the PRCλ. In this section, we prove that the scheme
that we constructed for the BDC can also be used for PRC (with slightly different pa-
rameters). We note that one can also use the construction given in [GL18] to obtain a
deterministic construction for the PRC, yet our construction yields better rates in this
case as well.

We focus on the regime where λ ≤ 0.5, as, in some sense, the PRC behaves like the
BDC for small values of λ – intuitively, the smaller λ is the more likely deletions are.

We now describe the construction for this channel. Note that most of the details are
identical to our construction for the BDCp. Therefore, in order not to repeat the entire
proof, we focus on the differences and leave the details to the reader.

7.1 Construction

We use the same inner and outer codes defined in Proposition 3.8 and Theorem 2.14. For
parameters M1 < M2 and MB our construction is as follows:

Encoding. The only differences in the encoding procedure are the length of the
buffers and the blow-up of the runs:

� We place a buffer of 0’s between every two inner codewords, where the buffers length
is dMBm/λe.

� Every run of length 1 is replaced with a run of length dM1/λe.

� Every run of length 2 is replaced with a run of length dM2/λe.

Remark 7.2. We must choose M2 > λ since otherwise all runs in the inner code will be
replaced with a run of length 1.

Decoding. Since the inner and outer codes are the same we use the decoding algorithm
given in Algorithm 2.

Rate. Similar to the calculations yielding Equation (1), the rate of this construction is

R =
log
(
|Σ|Routn

)
β1 dM1/λenm+ β2 dM2/λenm+ dMBm/λe (n− 1)

≥ RinRout

β1 dM1/λe+ β2 dM2/λe+MB/λ+ 1/m
(17)

≥ RoutRin · λ
β1M1 + β2M2 + βλ+MB + λ/m

.
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As before, we can avoid the ceilings if we consider values of λ such that dM1/λe, dM2/λe
and dMBm/λe are integers. In this case, the rate of the construction is given by

R ≥ RinRout · λ
β1M1 + β2M2 +MB

. (18)

7.2 Correctness of Decoding Algorithm

Since we use the same inner and outer codes in our encoding and the same decoding
algorithm, the analysis performed in Section 5 can be repeated to this case as well with
some minor modifications. We will briefly mention these modifications and leave the
proofs to the reader.

We start by formally stating an analogous version of Proposition 5.1 to this setting.

Proposition 7.3. Given M1, T,M2,MB, β1, δin, εin, δout (as described in Section 7.1) let
Z1 ∼ Poisson(λ dM1/λe) and Z2 ∼ Poisson(λ dM2/λe). Denote

P (1)→(2) := Pr[Z1 ≥ T + 1] ,

P (1)→(0) := Pr[Z1 = 0] ,

P (2)→(1) := Pr[Z2 ≤ T ] ,

P (2)→(0) := Pr[Z2 = 0] ,

and define

γ := β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2)P
(1)→(0) + 4β2P

(2)→(0) . (19)

Let x ∈ ΣRoutn be a message and let y be the string obtained after encoding x us-
ing our code and transmitting it through the PRCλ. If γ < δin, then there exists
ε0 = ε0(M1, T,M2,MB, β1, δin, δout) such that for every εout < ε0 it holds that Algorithm 2
returns x with probability 1− exp (−Ω(n)).

Note that the only difference between this proposition and Proposition 5.1 is in
the definitions of Z1 and Z2. Recall that the proof of Proposition 5.1 heavily relies on
Propositions 5.2, 5.3, and 5.5. Therefore, to prove Proposition 7.3, one needs to formally
state and prove analogous versions of Propositions 5.2, 5.3, and 5.5 in the setting of the
PRC.

We first observe that it is very simple to prove the analogous claims to Propositions 5.2
and 5.3 by using Lemma 2.11 instead of Lemma 2.10 (since our random variables are now
distributed according to the Poisson distribution). Hence we omit the details. We thus
have that the probability of each error type is exp(−Ω(m)) per inner codeword. We
focus on analyzing the case where we might output a wrong inner codeword in Step 3 of
Algorithm 2 (i.e. the case analyzed in Proposition 5.5).

7.2.1 Wrong Inner Decoding

Note that as we consider the same threshold decoding step for decoding the inner windows
(i.e., Step 2 in Algorithm 2) and the same inner code, the claims of Section 5.1.3 apply
here as well. The difference from Section 5.1.3 is in the computations of the probabilities
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P (1)→(2) , P (1)→(0), P (2)→(1), P (2)→(0). We focus on these computations as they play a
significant role in computing the rate in Theorem 1.2.

Recall that in the encoding process, a run rj is replaced with a run of length dM1/λe
or dM2/λe depending on rj’s length. As in Section 5.1.3, define Zj to be the random
variable corresponding to the number of bits from this blown-up run that survived the
transmission through the PRCλ. According to Lemma 2.6, Zj ∼ Poisson(λ dM1/λe) if
|rj| = 1 and Zj ∼ Poisson(λ dM2/λe) if |rj| = 2. Let r′j be exactly as defined in Definition
5.8. As before, we study the probability that rj 6= r′j:

1. If |rj| = 1 then there are two possible types of errors:

(a)
∣∣r′j∣∣ = 2: The probability for this to happen is P (1)→(2) := Pr[Zj ≥ T + 1]. We
next give two estimates, one is an exact calculation and the other is an upper
bound. For every λ we have

P (1)→(2) = Pr[Zj ≥ T + 1]

= 1− Pr[Zj ≤ T ]

= 1− e−λd
M1
λ e

T∑
i=0

(λ
⌈
M1

λ

⌉
)i

i!
.

(20)

Let Y be a random variable distributed as Y ∼ Poisson(M1 + λ). We can
upper bound P (1)→(2) by

P (1)→(2) = Pr[Zj ≥ T + 1] = 1− Pr[Zj ≤ T ]

≤ 1− Pr[Y ≤ T ]

= 1− e−M1−λ
T∑
i=0

(M1 + λ)i

i!
.

(21)

where the inequality follows from Lemma 2.7 by noting that λ dM1/λe ≤
M1 + λ.

(b)
∣∣r′j∣∣ = 0: In this case, rj was completely deleted by the channel. The proba-
bility for this to happen is

P (1)→(0) = Pr[Zj = 0] = e−λdM1/λe ≤ e−M1 . (22)

2. If |rj| = 2 then one of the following cases hold:

�

∣∣r′j∣∣ = 1: The probability for this to happen is P (2)→(1) := Pr[Zj ≤ T ]. As
before, the exact probability calculation is

P (2)→(1) = Pr[Zj ≤ T ] = e−λd
M2
λ e

T∑
i=0

(λ
⌈
M2

λ

⌉
)i

i!
. (23)

Let Y be a random variable distributed as Y ∼ Poisson(M2) then it holds that

P (2)→(1) = Pr[Zj ≤ T ] ≤ Pr[Y ≤ T ] = e−M2

T∑
i=0

M i
2

i!
, (24)

where the inequality follows from Lemma 2.7 by noting that M2 ≤ λ dM2/λe.
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∣∣r′j∣∣ = 0. The probability for this to happen is

P (2)→(0) = Pr[Zj = 0] = e−λdM2/λe ≤ e−M2 . (25)

By using these estimates and proceeding exactly as in the proof of Proposition 5.5
one gets that the probability of error in this case as well is exp (−Ω(m)). Combining ev-
erything together the proof of Proposition 7.3 follows similarly to the proof of Proportion
5.1 . In particular, Algorithm 2 decodes correctly in this setting as well.

7.2.2 Proof of Theorem 1.2

As in the proof of Theorem 1.1, we first compute an upper bound on γ (recall its definition
in Proposition 7.3) that holds for all λ ≤ 0.5, then we compute the rate of the inner code
by using Proposition 3.8 and finally we compute the rate of our code using Equation 17.

The parameters we use for our construction are

M1 = 5.49,M2 = 24.2, β1 = 0.532,MB = 10−5 and δout = 2−20 .

We pick T = 13 and set δin = 0.00954.
First observe that for every λ > 0, we can upper bound P (1)→(0), P (2)→(1), P (2)→(0)

using Equations (22), (24), and (25) respectively. As we assume λ ≤ 0.5, we can up-
per bound P (1)→(2) using Equation (21) with λ = 0.5 (due to monotonicity implied by
Lemma 2.7). Plugging these upper bounds to Equation (19), we get an upper bound on
γ which, as before, we denote by γ̃. Calculating, it is simple to verify that γ ≤ γ̃ < δin.
Therefore, for a small enough εout, our decoding algorithm succeeds with high probability.
Applying Proposition 3.8 we get an inner code of rate Rin = 0.53186 and by letting m
be large enough, the rate of our concatenated code according to Equation (17) is

R =
0.5318λ

8.58349 + 0.766λ+ λ/m
>

λ

17
.

8 Open Questions

The main open question is to further improve the construction presented in this paper
and close the gap to (and even surpass) the lower bound of (1− p)/9 on the capacity of
the BDCp. Alternatively, we can ask to come up with a deterministic construction for
the PRCλ that gives better rates. By the reduction from the PRC to the BDC this will
improve upon the constructions for the BDC.

Even though the capacity of the BDCp scales proportionally with 1 − p for p → 1,
it is an interesting open question to understand if there is a constant 1/9 ≤ µ ≤ 0.4143
such that the capacity of the channel is µ(1− p) in the regime where p is large.

Another interesting question is the maximal deletion fraction δ, for which for every
ε > 0, there exists a code with rate bounded away from 0 that can handle δ − ε fraction
of adversarial deletions. One can easily see that δ = 1/2 is an upper bound (we simply
delete all 0’s or all 1’s). Recently, Guruswami, He, and Li [GHL21] showed that the upper
bound is strictly less than one half, i.e., δ ≤ 1/2− δ0 where δ0 is extremely small. Bukh
et al. [BGH17] showed that δ ≥

√
2− 1. An interesting open question is to close the gap

between the lower and upper bound.
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