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Large scale cancer genomics data provide crucial information about the disease

and reveal points of intervention. However, systematic data have been collected

in specific cell lines and their collection is laborious and costly. Hence, there is a

need to develop computational models that can predict such data for any

genomic context of interest. Here we develop novel models that build on

variational graph auto-encoders and can integrate diverse types of data to

provide high quality predictions of genetic interactions, cell line dependencies

and drug sensitivities, outperforming previous methods. Our models, data and

implementation are available at: https://github.com/aijag/drugGraphNet.
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1 Introduction

Large scale cancer genomics data provide crucial information about the disease and

reveal points of intervention. However, systematic data haven been collected in specific

cell lines and their collection is laborious and costly. Hence, there is a need to develop

computational models that can predict such data for any genomic context of interest.

Several large scale data sets that can be used for developing such models exist. The

cancer dependency map project pinpoints potential drug targets in cancer lines whose

knockdown leads to decreased cell fitness (DepMap, 2021). Systematic genetic interaction

screens conducted in yeast and in human provide complementary information on

potential cell-specific targets (Lee et al., 2018). The GDSC project performs systematic

drug screens to identify sensitive cancer cell lines (Iorio et al., 2016).

There is a plethora of previous methods to predict these large scale data sets. Genetic

interactions have been predicted based on gene ontology information (Yu et al., 2016; Ma

et al., 2018), mutation and expression data (Lee et al., 2018), protein-protein interaction

(PPI) data (Hao et al., 2021) and by specifically-designed deep learning models (Ma et al.,

2018; Cai et al., 2020). Gene dependencies have been predicted based on expression

information (Itzhacky and Sharan, 2021; Lin and Lichtarge, 2021), pathway information

(Lin and Lichtarge, 2021), genetic essentiality profiles (Wang et al., 2019), and PPI and

genomic alteration information (Benstead-Hume et al., 2019). Drug sensitivity data have
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been predicted based drug structure information combined with

gene ontology information (Kuenzi et al., 2020) or gene

expression data (Wang et al., 2017; Zhang et al., 2018; Choi

et al., 2020; Itzhacky and Sharan, 2021). However, each method

uses different information sources and most are geared toward a

single prediction task.

Graph convolution networks (GCNs) and variational graph

auto encoders (VGAEs) are powerful neural network

architectures on graphs that can effectively capture the graph

structure, perform node classifications and link prediction and

are widely applicable (Scarselli et al., 2008; Kipf and Welling,

2016; Li et al., 2019). These techniques were also employed in the

cancer genomics domain but again targeting a single task each

time (Cai et al., 2020; Fan et al., 2020; Kuenzi et al., 2020; Ding

et al., 2021; Hao et al., 2021).

In this paper, we develop an integrated model that combines

VGAE with gene ontology information to perform a wide range

of predictions spanning genetic interactions, gene dependencies

and drug sensitivities. Our model is the first to propagate gene

ontology information within a combined network of genetic

interactions, gene-cell line relations and drug-target relations.

It is shown to outperform previous methods for each of the

prediction tasks. Its unique features include a new normalization

layer and a modular architecture that allows the prediction of

multiple attributes, represented as links in this model.

2 Methods

2.1 Data collection

2.1.1 Genetic interaction (GI) data
We used genetic interactions from three different sources: (i)

A yeast GI dataset from (Costanzo et al., 2016) downloaded from

https://thecellmap.org/costanzo2016/. We used the provided

thresholds of p-value threshold ≤0.05 and GI score ≤0.08, to
extract ~240K negative GIs. For the neutral pairs we used the

same p-value threshold and score higher than 0.08. (ii) A human

GI dataset collected in 2 cell lines, K562 and Jurkat, from

(Horlbeck et al., 2018). We focused on the larger K562 dataset

due to the high correlation between the two datasets. We used the

reported threshold of -3, resulting in 1,678 negative GIs. (iii)

SynLethDB collection of human synthetic lethality (SL)

interactions from (Guo et al., 2016) with 19,667 SL pairs

among 6,375 genes.

2.1.2 Achilles gene dependency data
We downloaded gene dependency data from https://depmap.

org (Dempster et al., 2019; DepMap, 2021), version 21Q4. We

used a dependency threshold of 0.5 as in the recently published

method (BioVNN, described below) (Lin and Lichtarge, 2021).

For constructing our model we also downloaded CCLE (Ghandi

et al., 2019) mutations for each cell line and selected the

damaging mutations by the variant annotations. We excluded

genes which were either nearly all dependent (up to 6) across cell

lines, as in BioVNN. The final constructed dataset contains

922 cell lines and their affect among 5,975 genes, spanning

~1.4M dependent pairs.

2.1.3 Drug sensitivity data
We downloaded the GDSC binarized IC50 dataset from

http://www.cancerrxgene.org/(Iorio et al., 2016). The dataset

consists of 1,001 cancer cell line and 265 tested drugs,

spanning ~20K sensitive pairs. In addition, we downloaded

from the same site the gene targets for each drug and the

mutated genes for each cell line that were used to construct

our model. Due to lack of variant annotation information in this

datasource, we focused on nonsense, frame shift, exonic splicing

silencer and gene fusion mutations that we considered as

harmful.

2.1.4 Gene ontology (GO)
For our feature generation we downloaded the latest version

of ontology file from http://geneontology.org/. We used all the

terms from the three GO subnetworks: biology process (BP),

cellular components (CC) and molecular functions (MF).

Following the original publication we removed terms with the

evidence code ‘inferred by genetic interaction’ (IGI), to avoid

potential circularity in predicting genetic interactions. In

addition, terms that do not connect to any gene in the

model’s graph were removed.

2.2 Link prediction algorithm

Graph autoencoder (GAE) and variational graph

autoencoder (VGAE) models have been demonstrated as

efficient tools to learn graph embeddings in an unsupervised

way and serving as an infrastructure for link prediction (Kipf and

Welling, 2016). Here we combined the VGAE model with gene

ontology information to generate a modular graph structure that

models the connections between drugs, cell lines and genes and

could be used to a wide range of tasks: predicting genetic

interactions, cell line dependencies and drug sensitivities.

Given a graph G on a set of n vertices V and a real adjacency

matrix A, a graph convolutional network (GCN) model receives

twomatrices as inputs: A ∈ Rn×n and X ∈ Rn×f as the feature matrix

of V. The output of a single layer is σ(Âδ(X)W) Where σ is the

activation function, δ is a dropout applied on the input,
�A ≔ A + I, �D the corresponding diagonal degree matrix and

Â ≔ �D−1
2 �A �D−1

2, W the learnable weight matrices.

2.2.1 Encoder
In our model we use a normalization layer that we find to

improve model performance, followed by a 2-layer GCN which

computes the node embedding distribution by Eqs. 1, 2: μ ∈ Rn×f
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is the matrix of mean vectors, log σ2 ∈ Rn×f is (log of) the

variance matrix, and f represents the dimension of the

embedding node vectors. From those distribution matrices

we draw the embedding matrix Z by z = μ + σ p ϵ, where
ϵ ~ N (0, 1). In the equations, σj are the activation functions,

Wis are learnable weight matrices and b is a learnable bias

vector. The contribution of the additional normalization layer,

compared to the standard VGAE performance, is summarized

in Supplementary Figure S1.

�X � XW0 + b (1)
μ � σ2 Âσ1 Â �XW1( )W2( ); log σ2 � σ2 Âσ1 Â �XW1( )W3( ) (2)

2.2.2 Decoder
The decoder is defined by the dot product between latent Z

variables, and the output is a reconstructed adjacency matrix ~A as

follows:

~A � σ3 ZZT( ) (3)

where σ3 is the sigmoid function.

2.2.3 Loss function
The loss function of VGAE includes two parts. The first part

is the binary cross-entropy between the target A and the model

output, while the second part is the KL-divergence between

q(Z|X,A) � ΠN
i�1q(zi|X,A) � ΠN

i�1N (zi|μi, diag(σ2i )) and

p(Z) � Πip(zi) � ΠiN (zi|0, I), this part aims to generate the

latent dimension with Gaussian distribution. The final loss

function is defined as follows:

L � Eq Z|X,A( ) logp A|Z( )[ ] −KL q Z|X,A( )‖p Z( )[ ] (4)

The full model we developed is illustrated in Figure 1. Details

about the underlying graphs and features are provided below.

2.2.4 Graph construction
The graphs underlying our models are gradually built in three

parts. The first part is a graph of GIs only (Figure 2A), here the

nodes represent genes and the edges represent GIs. We will

represent this model as VGAEG. The second part are nodes

representing cell lines that are connected to the first part nodes

using dependency relations (Figure 2B), we will represent this

model asVGAECD. The final part consists also of drug nodes which

are connected to the gene part using drug-target relations. The

connections between drugs and cell lines represent the drug

sensitivity, which is the target of our prediction in this model,

we will represent this model as VGAEDS (Figure 2C). In the

VGAEDS graph, cell lines are connected to their mutated genes

(rather than using dependency relations like in VGAECD).

2.2.5 Feature generation
To generate the features vector for each node we used the

ontotype method (Yu et al., 2016), where each gene is represented

by a binary vector of its GO terms and a gene set by the sum of its

member gene vectors. Specifically, we associated cell-lines nodes

with their sets of mutated genes, and drug nodes with their sets of

gene targets. All nodes vectors were normalized by dividing by

the number of genes they represent. The final features included

the terms that were connected to at least one of the drugs, cell

lines or genes, so all the three types of nodes is sharing the same

FIGURE 1
An illustration of our final constructed model for drug sensitivity prediction. The adjacency matrix Awith themasked sensitivity interactions and
feature matrix X serve as inputs. The final output is the reconstructed ~A adjacency matrix, allowing the prediction of new drug-cell line interactions.
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features dimension. GO annotations with the evidence code

“inferred by genetic interaction” (IGI) were removed to avoid

potential circularity in predicting genetic interactions.

2.3 Training procedure and performance
evaluation

To evaluate ourmodel we performed five-fold cross-validation

(CV). For highly imbalanced datasets, like drug sensitivity, we also

generated temporary balanced datasets by randomly sampling

neutral samples of the same size as the positive samples, and

performed 10 repetitions of the CV. For our model training we

used randomly selected 10% edges from the training data as a

validation set. The validation set was used for the evaluation of the

model during the training for selecting the model from the epoch

best performances, and for early stopping of the training process in

the case of overfitting. We optimized the model’s hyperparameters

using the validation data, choosing the hyperparameter

configuration that performed best.

As a benchmark in all prediction tasks we compared to the

ontotypemethod (Yu et al., 2016) that we build on. In this method,

the ontotype feature vectors are fed into a random forest (RF)

classifier in the prediction phase rather than being propagated in a

graph as in our new model. For the RF training, we used the same

split on the edges. The input features for the cell dependency and

drug sensitivity tasks are the sum of the cell line and drug features

that we used in our model.

We calculated true positive rate (TPR), false positive rate

(FPR), precision and recall by varying the preset thresholds to

construct receiver operating characteristic (ROC) and

precision–recall (PR) curves. We then generated two metrics,

namely the area under the ROC curve (AUROC) and the area

under the PR curve (AUPRC), to evaluate the performance of our

model and other methods. We averaged the results from all cross-

validation splits to calculate the overall AUROC and AUPRC.

FIGURE 2
Graph model structures that underlie our VGAE model. (A)
VGAEG—GI part with gene nodes. (B) VGAECD—Cell line
dependency part with nodes representing genes and cell lines. (C)
VGAEDS—Drug sensitivity part with nodes representing
genes, cell-lines and drugs.

FIGURE 3
Performance of GI prediction across different datasets. (A)
AUROC results. (B) AUPRC results.
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3 Results

3.1 VGAEG model for predicting genetic
interactions

To evaluate our VGAE model we applied its first variant

VGAEG to predict genetic interactions and compared to the

ontotype method (Yu et al., 2016). We tested three data sets

from yeast (systematic GI data) and human (systematic data

from the K562 cell-line and interactions from SynLethDB) as

described in the Data section of the Methods. Our model

outperformed the previous method (Figure 3; Supplementary

Table S1). To analyze the contribution of our model on top of

the ontotype method, we split the systematic datasets to two

equal parts based on the ontotype sparsities, observing that the

higher the sparsity the higher the contribution

(Supplementary Table S2). In addition we also compared

our model to a recent GCN model, DDGCN (Cai et al.,

2020), that does not use the GO knowledge or the

additional normalization layer. The results show the benefit

of integrating GO information within a GCN and motivate the

more complex models below.

3.2 VGAECD model for predicting cancer
dependencies

Next, we tested our second model variant VGAECD on the

recent 21Q4 cell-line dependency dataset. In this application the

input genetic interactions were taken from SynLethDB. For

comparison purpose, we adapted the ontotype method to this

setting, representing a cell line by the normalized sum of

ontotype vectors of genes it depends on. In addition, we

compared our model to a recently published method

(BioVNN) which uses a visible neural network over pathway

knowledge to predict dependencies (Lin and Lichtarge, 2021).

For this comparison, we analyzed the same 19Q3 dataset used in

the previous paper containing 609 cell-lines and 683 genes. We

also employed the same cross validation procedure where cell

lines are distinct between the train, validation and test folds. The

AUROC and AUPRC results are summarized in Figure 4;

Supplementary Table S1, and again show the superiority of

our model.

3.3 VGAEDS model for predicting drug
sensitivity data

Last, we applied our full model to predict drug sensitivity

relations. For comparison purpose we again adapted the ontotype

FIGURE 4
Performance evaluation for cancer dependency prediction
on the two evaluated datasets. The presented BioVNN results are
taken from (Lin and Lichtarge, 2021).

FIGURE 5
Prediction performance on drug sensitivity data. (A) AUROC
results. (B) AUPRC results.
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method for this task by representing each drug (cell line, resp.) by

the normalized sum of the ontotype vectors of its targets

(mutated genes, resp.). We further compared ourselves to

DrugCell (Kuenzi et al., 2020), a deep network that similarly

to our model uses GO information and cell-line mutations, but

unlike our model uses drug chemical structure as additional

input. Since DrugCell is designed for a regression task, we

adapted it for classification by changing: (i) the last activation

function to sigmoid activation; and (ii) the loss function to binary

cross-entropy. In addition, we tested our model on the different

version of GDSC dataset (version 17.3) that was used for the

training of a recently published method (RefDNN), a deep NN

that uses gene expression and drug structure as inputs (Choi

et al., 2020). In this dataset, IC50 continuous values were

binarized based on the reported maximum screening

concentration threshold. The comparison results are

summarized in Figure 5; Supplementary Table S1, and show

that VGAEDS outperforms the other methods or receives similar

results in both datasets.

4 Discussion

We have presented a graph variational auto-encoder based

model for predicting genetic interactions, cell line

dependencies and drug sensitivities. The model propagates

gene ontology information over a network of gene, drug

and cell-line interactions, providing uniform

representations to genes, cell lines and drugs, allowing the

wide scale of predictions. The unique features of the

model include a new normalization layer and a modular

architecture that allows the prediction of multiple

attributes. While our models achieved promising results,

their performance in a real clinical setting where samples

come from real patients will need to be assessed when such

data becomes available.

For future work, we would like to create one model that can

predict genetic interactions, cell line dependencies and drug

sensitivities, rather than having three separate models. To this

end, the connections between cell lines and genes would

represent cancer dependency instead of cell lines mutations.

This model structure is currently not feasible due to the low

number of overlapping cell lines between dependency and

sensitivity data.
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