Semantic Investigation of Basic Sequent Systems

Ori Lahav

Tel Aviv University
Workshop on Abstract Proof Theory, Unilog 2013

Semantic Investigation of Basic Sequent Systems

Ori Lahav

Tel Aviv University
Workshop on Abstract Proof Theory, Unilog 2013

围 Ori Lahav and Arnon Avron, A Unified Semantic Framework for Fully-structural Propositional Sequent Systems, to be published in Transactions on Computational Logic, 2013.

- A correspondence between a wide class of proof-systems (called basic systems) and Kripke semantics.
- More precisely, a general soundness and completeness result which uniformly provides Kripke semantics for each basic system.
- Extension of the previous result to obtain semantic characterizations of crucial proot-theoretic properties of basic systems:
- The subformula property
- Cut-admissibility

Basic Systems: General Framework

(1) Propositional sequent systems
(2) Manipulate two-sided multiple-conclusion sequents
(3) Fully structural:

- Sequents are finite sets of signed formulas, e.g.

$$
\psi, \varphi \Rightarrow \varphi, \psi \wedge \varphi \equiv \quad\{f: \psi, f: \varphi, t: \varphi, t:(\psi \wedge \varphi)\}
$$

- Identity axiom, cut, weakening rules always present
(4) The logical rules are all basic rules

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \quad \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

- Introducing context-relations to handle the context part:

$$
\frac{\square \Gamma \Rightarrow}{\square \Gamma \Rightarrow} \rightsquigarrow \pi_{1}=\left\{\left\langle f: \square p_{1}, f: \square p_{1}\right\rangle\right\}
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \quad \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

- Introducing context-relations to handle the context part:

$$
\frac{\square \Gamma \Rightarrow}{\square \Gamma \Rightarrow} \rightsquigarrow \pi_{1}=\left\{\left\langle f: \square p_{1}, f: \square p_{1}\right\rangle\right\} \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \quad \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

- Introducing context-relations to handle the context part:

$$
\frac{\square \Gamma \Rightarrow}{\square \Gamma \Rightarrow} \rightsquigarrow \pi_{1}=\left\{\left\langle f: \square p_{1}, f: \square p_{1}\right\rangle\right\} \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

- The final formulation:

$$
\left\langle\Rightarrow p_{1}, \pi_{1}\right\rangle / \Rightarrow \square p_{1}
$$

$$
\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle / \square p_{1} \Rightarrow
$$

- A basic rule:

$$
\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C
$$

- Premises: sequents s_{1}, \ldots, s_{n}
- Corresponding context-relations: π_{1}, \ldots, π_{n}
- Conclusion: sequent C
- A basic rule:

$$
\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C
$$

- Premises: sequents s_{1}, \ldots, s_{n}
- Corresponding context-relations: π_{1}, \ldots, π_{n}
- Conclusion: sequent C
- Its application:

$$
\frac{\sigma\left(s_{1}\right) \cup c_{1} \ldots \sigma\left(s_{n}\right) \cup c_{n}}{\sigma(C) \cup c_{1}^{\prime} \cup \ldots \cup c_{n}^{\prime}}
$$

where :

- σ is a substitution
- for every $1 \leq i \leq n,\left\langle c_{i}, c_{i}^{\prime}\right\rangle$ is a π_{i}-instance

Basic Rules - More Examples

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}$ $\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\Gamma, \varphi \Rightarrow \psi, \Delta$
$\left.p_{1} \Rightarrow p_{2}, \pi /\right\rangle p_{1}$	
$\left\langle\Rightarrow p_{1}, \pi_{K 4}\right\rangle / \Rightarrow \square p_{1}$	$\Gamma \Gamma_{1}, \square \Gamma_{2} \Rightarrow \psi$

$$
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

Basic Rules - More Examples

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\frac{\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\left\langle p_{1} \Rightarrow p_{2}, p_{1}\right.$	
$\left\langle\Rightarrow p_{1}, \pi_{K_{4}}\right\rangle / \Rightarrow \square p_{1}$	$\square \Gamma_{1}, \square \Gamma_{2} \Rightarrow \square \psi$

$$
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

Basic Rules - More Examples

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\frac{\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{i}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\left\langle\Rightarrow p_{1}, \pi_{K_{4}}\right\rangle / \Rightarrow \square p_{1}$	$\Gamma_{1}, \square \Gamma_{2} \Rightarrow \psi$
$\Gamma_{1}, \square \Gamma_{2} \Rightarrow \square \psi$	

$$
\begin{gathered}
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\} \\
\pi_{i}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle\right\}
\end{gathered}
$$

Basic Rules - More Examples

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\frac{\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{i}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\left\langle\Rightarrow p_{1}, \pi_{K 4}\right\rangle / \Rightarrow \square p_{1}$	$\frac{\Gamma_{1}, \square \Gamma_{2} \Rightarrow \psi}{\square \Gamma_{1}, \square \Gamma_{2} \Rightarrow \square \psi}$
$\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}$	

Basic Systems

Many useful sequent systems are basic.
This includes systems for (the propositional fragments of):

- Classical logic
- Intuitionistic logic, its dual, and bi-intuitionistic logic
- Variety of modal logics
- Intuitionistic modal logics
- Many-valued logics
- Variety of paraconsistent logics

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times$ wff $\rightarrow\{\mathrm{T}, \mathrm{F}\}$

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times w f f \rightarrow\{T, F\}$

To obtain Kripke semantics for a basic system \mathbf{G}, we identify a set of \mathbf{G}-legal frames for which \mathbf{G} is sound and complete, i.e. $\vdash_{G} s$ iff every G-legal frame is a model of s.

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times w f f \rightarrow\{T, F\}$

To obtain Kripke semantics for a basic system \mathbf{G}, we identify a set of \mathbf{G}-legal frames for which \mathbf{G} is sound and complete, i.e. $\vdash_{G} s$ iff every G-legal frame is a model of s.

- A frame is a model of a sequent s if s true in every world
- A sequent s is true in a world w if s contains at least one signed formula which is true in w
- A signed formula $\mathrm{x}: \psi$ is true in a world w if $v(w, \psi)=\mathrm{x}$

For a basic system \mathbf{G} :

- Each context-relation in \mathbf{G} and each basic rule of \mathbf{G} imposes a constraint on the set of frames.
- Joining all of these constraints, we obtain the set of G-legal frames.

For a basic system \mathbf{G} :

- Each context-relation in \mathbf{G} and each basic rule of \mathbf{G} imposes a constraint on the set of frames.
- Joining all of these constraints, we obtain the set of G-legal frames.

It might produce non-deterministic semantics.

- For every context-relation π in \mathbf{G} there is a corresponding accessibility relation R_{π}, where $R_{\pi_{0}}$ is the identity relation.
- The constraint imposed by the context-relation π : if $w R_{\pi} u$ then for every π-instance $\langle\mathrm{X}: \psi, \mathrm{Y}: \varphi\rangle$, either $v(u, \psi) \neq \mathrm{X}$ or $v(w, \varphi)=\mathrm{Y}$.
- The constraint imposed by the basic rule $\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C$: For every world w, substitution σ, if for every $1 \leq i \leq n, \sigma\left(s_{i}\right)$ is true in every u such that $w R_{\pi_{i}} u$, then $\sigma(C)$ is true in w.

$$
\text { Reminder: } \pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

- For every context-relation π in \mathbf{G} there is a corresponding accessibility relation R_{π}, where $R_{\pi_{0}}$ is the identity relation.
- The constraint imposed by the context-relation π : if $w R_{\pi} u$ then for every π-instance $\langle\mathrm{X}: \psi, \mathrm{Y}: \varphi\rangle$, either $v(u, \psi) \neq \mathrm{X}$ or $v(w, \varphi)=\mathrm{Y}$.
- The constraint imposed by the basic rule $\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C$: For every world w, substitution σ, if for every $1 \leq i \leq n, \sigma\left(s_{i}\right)$ is true in every u such that $w R_{\pi_{i}} u$, then $\sigma(C)$ is true in w.

$$
\begin{aligned}
& \left\langle\Rightarrow p_{1}, \pi_{K}\right\rangle / \Rightarrow \square p_{1} \\
& \pi_{K}=\left\{\left\langle f: p_{1}, f: \square p_{1}\right\rangle\right\}
\end{aligned}
$$

$$
\frac{\Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

In legal frames:

- An accessibility relation $R_{\pi_{\kappa}} \in \mathcal{R}$.
- If $w R_{\pi_{K}} u$ then for every ψ, either $v(w, \square \psi)=\mathrm{F}$ or $v(u, \psi) \neq \mathrm{F}$, i.e. if $v(w, \square \psi)=T$, then $v(u, \psi)=T$ for every u such that $w R_{\pi_{k}} u$.
- If $v(u, \psi)=T$ for every u such that $w R_{\pi_{k}} u$, then $v(w, \square \psi)=T$.

$$
\begin{gathered}
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\} \\
\pi_{i}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle\right\} \\
\left\langle\Rightarrow p_{2}, \pi_{i}\right\rangle / \Rightarrow p_{1} \rightsquigarrow p_{2} \quad\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle,\left\langle p_{2} \Rightarrow, \pi_{0}\right\rangle / p_{1} \rightsquigarrow p_{2} \Rightarrow \\
\frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \psi \rightsquigarrow \varphi} \\
\frac{\Gamma_{1} \Rightarrow \psi, \Delta_{1} \Gamma_{2}, \varphi \Rightarrow \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \psi \rightsquigarrow \varphi \Rightarrow \Delta_{1}, \Delta_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\} \\
\pi_{i}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle\right\} \\
\left\langle\Rightarrow p_{2}, \pi_{i}\right\rangle / \Rightarrow p_{1} \rightsquigarrow p_{2} \quad\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle,\left\langle p_{2} \Rightarrow, \pi_{0}\right\rangle / p_{1} \rightsquigarrow p_{2} \Rightarrow \\
\frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \psi \rightsquigarrow \varphi} \\
\frac{\Gamma_{1} \Rightarrow \psi, \Delta_{1} \Gamma_{2}, \varphi \Rightarrow \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \psi \rightsquigarrow \varphi \Rightarrow \Delta_{1}, \Delta_{2}}
\end{gathered}
$$

In legal frames:

- A accessibility relation $R_{\pi_{i}} \in \mathcal{R}$.
- If $w R_{\pi_{i}} u$ and $v(w, \psi)=\mathrm{T}$ then $v(u, \psi)=\mathrm{T}$.
- If $v(w, \varphi)=\mathrm{T}$ then $v(w, \psi \rightsquigarrow \varphi)=\mathrm{T}$.
- If $v(w, \psi)=\mathrm{T}$ and $v(w, \varphi)=\mathrm{F}$ then $v(w, \psi \rightsquigarrow \varphi)=\mathrm{F}$.

Theorem

Every basic system \mathbf{G} is sound and complete with respect to the semantics of \mathbf{G}-legal frames.

Kripke Semantics for Basic Systems

Theorem

Every basic system \mathbf{G} is sound and complete with respect to the semantics of G-legal frames.

- General and uniform:
- Various known soundness and completeness results are specific cases of this general theorem
- Modular
- A basic system has the subformula property if $\vdash_{\mathrm{G}} s$ implies that there exists a proof of s in \mathbf{G} consisting only of subformulas of the formulas in s.
- In basic systems the subformula property implies decidability and consistency.
- Q: What is the semantic meaning of the subformula property?

The Subformula Property

- A basic system has the subformula property if $\vdash_{\mathrm{G}} s$ implies that there exists a proof of s in \mathbf{G} consisting only of subformulas of the formulas in s.
- In basic systems the subformula property implies decidability and consistency.
- Q: What is the semantic meaning of the subformula property?

Next, we strengthen the soundness and completeness theorem to characterize proofs containing only formulas from a given set \mathcal{F}.

For this we introduce \mathcal{F}-semiframes.

Frames

Definition

A frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times w f f \rightarrow\{T, F\}$

Theorem

There exists a proof in \mathbf{G} of s

> if and only if
every G-legal frame is a model of s.

Semiframes

Definition

An \mathcal{F}-semiframe consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times \mathcal{F} \rightarrow\{T, F\}$

Theorem

There exists a proof in \mathbf{G} of s containing only formulas from \mathcal{F}
if and only if
every G-legal \mathcal{F}-semiframe is a model of s.

- The last theorem leads to a semantic decision procedure for basic systems that have the subformula property (just check all possible semiframes).
- Semantic sufficient condition for the subformula property: If every G-legal \mathcal{F}-semiframe can be extended to a G-legal frame for every set \mathcal{F} of formulas closed under subformulas, then \mathbf{G} has the subformula property.
- This criterion is applicable for many interesting basic systems.

Cut-Admissibility

To characterize cut-admissibility in basic systems, we provide another soundness and completeness theorem for cut-free proofs.

Cut-Admissibility

To characterize cut-admissibility in basic systems, we provide another soundness and completeness theorem for cut-free proofs.

Intuition

An application of cut: $\frac{\psi \Rightarrow \Rightarrow \psi}{\Rightarrow}$
If cut is forbidden, we need a frame which is a model of $\psi \Rightarrow$ and $\Rightarrow \psi$.

Quasiframes

Definition

A frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times$ wff $\rightarrow\{\mathrm{T}, \mathrm{F}\}$

Quasiframes

Definition

A quasiframe consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times w f f \rightarrow\{T, F, i\}$

Quasiframes

Definition

A quasiframe consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times$ wff $\rightarrow\{T, F, i\}$

A sequent s is true in a world w if at least one of the following hold:

- $v(w, \psi)=\mathrm{F}$ for some ψ on the left side of s
- $v(w, \psi)=\mathrm{T}$ for some ψ on the right side of s
- $v(w, \psi)=\mathfrak{i}$ for some ψ in s

Quasiframes

Definition

A quasiframe consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times w f f \rightarrow\{T, F, i\}$

A sequent s is true in a world w if at least one of the following hold:

- $v(w, \psi)=\mathrm{F}$ for some ψ on the left side of s
- $v(w, \psi)=\mathrm{T}$ for some ψ on the right side of s
- $v(w, \psi)=\mathfrak{i}$ for some ψ in s

If $v(w, \psi)=\mathfrak{i}$, then both $\{f: \psi\}$ and $\{t: \psi\}$ are true in w.

Theorem

There exists a cut-free proof in \mathbf{G} of s
if and only if
every G-legal quasiframe is a model of s.

Theorem

There exists a cut-free proof in \mathbf{G} of s
if and only if
every G-legal quasiframe is a model of s.

- Semantic sufficient condition for cut-admissibility: If every G-legal quasiframe can be refined into a G-legal frame, then \mathbf{G} enjoys cut-admissibility (by refinement, we mean changing all i's to T's or F's).
- Provides a uniform basis for semantic proofs of cut-admissibility in basic systems.

Similar method is applicable to:

- Provide semantics when cut is allowed only on some formulas (to characterize strong cut-admissibility).
- Provide semantics when the identity axiom is available only for some formulas (to characterize axiom-expansion).

Thank you!

