Semantic Investigation of Basic Sequent Systems

Ori Lahav

Tel Aviv University

Workshop on Abstract Proof Theory, Unilog 2013

Semantic Investigation of Basic Sequent Systems

Ori Lahav

Tel Aviv University

Workshop on Abstract Proof Theory, Unilog 2013

Ori Lahav and Arnon Avron, A Unified Semantic Framework for Fully-structural Propositional Sequent Systems, to be published in Transactions on Computational Logic, 2013.

- A correspondence between a wide class of proof-systems (called basic systems) and Kripke semantics.
- More precisely, a general soundness and completeness result which uniformly provides Kripke semantics for each basic system.
- Extension of the previous result to obtain semantic characterizations of crucial proot-theoretic properties of basic systems:
 - The subformula property
 - Cut-admissibility

Basic Systems: General Framework

- Propositional sequent systems
- ② Manipulate two-sided multiple-conclusion sequents
- Fully structural :
 - Sequents are finite sets of signed formulas, e.g.

 $\psi, \varphi \Rightarrow \varphi, \psi \land \varphi \quad \equiv \quad \{f:\psi, f:\varphi, t:\varphi, t:(\psi \land \varphi)\}$

- Identity axiom, cut, weakening rules always present
- The logical rules are all basic rules

$$\frac{\Box \Gamma \Rightarrow \psi}{\Box \Gamma \Rightarrow \Box \psi}$$

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \hline \Box \Gamma \Rightarrow \Box \psi \end{array} \end{array} \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

Distinction between active and context formulas

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \hline \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \qquad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \qquad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

• Introducing context-relations to handle the context part:

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \qquad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

• Introducing context-relations to handle the context part:

$$\frac{\Box \Gamma \Rightarrow}{\Box \Gamma \Rightarrow} \rightsquigarrow \pi_{1} = \{ \langle f:\Box p_{1}, f:\Box p_{1} \rangle \} \qquad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0} = \{ \langle f:p_{1}, f:p_{1} \rangle, \langle t:p_{1}, t:p_{1} \rangle \}$$

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \hline \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \quad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

Introducing context-relations to handle the context part:

$$\frac{\Box \Gamma \Rightarrow}{\Box \Gamma \Rightarrow} \rightsquigarrow \pi_{1} = \{ \langle f:\Box p_{1}, f:\Box p_{1} \rangle \} \qquad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0} = \{ \langle f:p_{1}, f:p_{1} \rangle, \langle t:p_{1}, t:p_{1} \rangle \}$$

- The final formulation:
 - $\langle \Rightarrow p_1, \pi_1 \rangle / \Rightarrow \Box p_1 \qquad \langle p_1 \Rightarrow, \pi_0 \rangle / \Box p_1 \Rightarrow$

• A basic rule:

$$\langle \boldsymbol{s}_1, \pi_1 \rangle, \ldots, \langle \boldsymbol{s}_n, \pi_n \rangle / \boldsymbol{C}$$

- Premises: sequents *s*₁,...,*s*_n
- Corresponding context-relations: π_1, \ldots, π_n
- Conclusion: sequent C

• A basic rule:

$$\langle \boldsymbol{s}_1, \pi_1 \rangle, \ldots, \langle \boldsymbol{s}_n, \pi_n \rangle / \boldsymbol{C}$$

- Premises: sequents *s*₁,...,*s*_n
- Corresponding context-relations: π₁,..., π_n
- Conclusion: sequent C
- Its application:

$$\frac{\sigma(s_1)\cup c_1 \quad \dots \quad \sigma(s_n)\cup c_n}{\sigma(C)\cup c'_1\cup\ldots\cup c'_n}$$

where :

- σ is a substitution
- for every $1 \le i \le n$, $\langle c_i, c'_i \rangle$ is a π_i -instance

Basic Rule	Application
$\langle \boldsymbol{p}_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow \boldsymbol{p}_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} \hline \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle p_1 \Rightarrow p_2, \pi_0 \rangle / \Rightarrow p_1 \supset p_2$	$\frac{\Gamma,\varphi \Rightarrow \psi, \boldsymbol{\Delta}}{\Gamma \Rightarrow \varphi \supset \psi, \boldsymbol{\Delta}}$
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_i \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\langle \Rightarrow p_1, \pi_{K4} \rangle / \Rightarrow \Box p_1$	$\frac{\Gamma_1, \Box \Gamma_2 \Rightarrow \psi}{\Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi}$

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_i = \{ \langle f: p_1, f: p_1 \rangle \}$

Basic Rule	Application
$\langle \boldsymbol{p}_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow \boldsymbol{p}_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} & \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline & & \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_0 \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_i \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\frac{ \left\lceil , \varphi \Rightarrow \psi \right\rceil }{ \left\lceil \Rightarrow \varphi \supset \psi \right\rceil }$
$\langle \Rightarrow p_1, \pi_{K4} \rangle / \Rightarrow \Box p_1$	$\frac{\Gamma_1, \Box \Gamma_2 \Rightarrow \psi}{\Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi}$

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_i = \{ \langle f: p_1, f: p_1 \rangle \}$

Basic Rule	Application
$\langle \boldsymbol{p}_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow \boldsymbol{p}_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} \hline \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_0 \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_i \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\langle \Rightarrow p_1, \pi_{K4} \rangle / \Rightarrow \Box p_1$	$\frac{\Gamma_1, \Box \Gamma_2 \Rightarrow \psi}{\Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi}$

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_i = \{ \langle f:p_1, f:p_1 \rangle \}$

Basic Rule	Application
$\langle \boldsymbol{p}_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow \boldsymbol{p}_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} & \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline & & \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_0 \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_i \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\langle \Rightarrow p_1, \pi_{K4} \rangle / \Rightarrow \Box p_1$	$ \begin{array}{c} \Gamma_1, \Box \Gamma_2 \Rightarrow \psi \\ \hline \Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi \end{array} $

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_i = \{ \langle f:p_1, f:p_1 \rangle \}$

Many useful sequent systems are basic.

This includes systems for (the propositional fragments of):

- Classical logic
- Intuitionistic logic, its dual, and bi-intuitionistic logic
- Variety of modal logics
- Intuitionistic modal logics
- Many-valued logics
- Variety of paraconsistent logics

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- $\bullet\,$ A set of accessibility relations ${\cal R}$
- A valuation $v : W \times wff \rightarrow \{T, F\}$

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations ${\cal R}$
- A valuation $v : W \times wff \rightarrow \{T, F\}$

To obtain Kripke semantics for a basic system **G**, we identify a set of **G**-legal frames for which **G** is sound and complete, i.e. $\vdash_{\mathbf{G}} s$ iff every **G**-legal frame is a model of *s*.

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations ${\cal R}$
- A valuation $v : W \times wff \rightarrow \{T, F\}$

To obtain Kripke semantics for a basic system **G**, we identify a set of **G**-legal frames for which **G** is sound and complete, i.e. $\vdash_{\mathbf{G}} s$ iff every **G**-legal frame is a model of *s*.

- A frame is a model of a sequent *s* if *s* true in every world
- A sequent *s* is true in a world *w* if *s* contains at least one signed formula which is true in *w*
- A signed formula $X:\psi$ is true in a world *w* if $v(w, \psi) = X$

For a basic system **G**:

- Each context-relation in **G** and each basic rule of **G** imposes a constraint on the set of frames.
- Joining all of these constraints, we obtain the set of **G**-legal frames.

For a basic system **G**:

- Each context-relation in **G** and each basic rule of **G** imposes a constraint on the set of frames.
- Joining all of these constraints, we obtain the set of **G**-legal frames.

It might produce non-deterministic semantics.

- For every context-relation π in **G** there is a corresponding accessibility relation R_{π} , where R_{π_0} is the identity relation.
- The constraint imposed by the context-relation π : if $wR_{\pi}u$ then for every π -instance $\langle X:\psi, Y:\varphi \rangle$, either $v(u, \psi) \neq X$ or $v(w, \varphi) = Y$.
- The constraint imposed by the basic rule ⟨s₁, π₁⟩,..., ⟨s_n, π_n⟩/C: For every world *w*, substitution σ, if for every 1 ≤ *i* ≤ *n*, σ(s_i) is true in every *u* such that *wR*_{πi}*u*, then σ(C) is true in *w*.

Reminder: $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

- For every context-relation π in **G** there is a corresponding accessibility relation R_{π} , where R_{π_0} is the identity relation.
- The constraint imposed by the context-relation π : if $wR_{\pi}u$ then for every π -instance $\langle X:\psi, Y:\varphi \rangle$, either $v(u, \psi) \neq X$ or $v(w, \varphi) = Y$.
- The constraint imposed by the basic rule ⟨s₁, π₁⟩,..., ⟨s_n, π_n⟩/C: For every world *w*, substitution σ, if for every 1 ≤ *i* ≤ *n*, σ(s_i) is true in every *u* such that *wR*_{πi}*u*, then σ(C) is true in *w*.

$$\langle \Rightarrow \boldsymbol{\rho}_{1}, \pi_{K} \rangle / \Rightarrow \Box \boldsymbol{\rho}_{1}$$

$$\pi_{K} = \{ \langle f: \boldsymbol{\rho}_{1}, f: \Box \boldsymbol{\rho}_{1} \rangle \}$$

$$\Gamma \Rightarrow \psi$$

$$\Box \Gamma \Rightarrow \Box \psi$$

In legal frames:

- An accessibility relation $R_{\pi_{\kappa}} \in \mathcal{R}$.
- If $wR_{\pi_{\kappa}}u$ then for every ψ , either $v(w, \Box\psi) = F$ or $v(u, \psi) \neq F$, i.e. if $v(w, \Box\psi) = T$, then $v(u, \psi) = T$ for every u such that $wR_{\pi_{\kappa}}u$.
- If $v(u, \psi) = T$ for every u such that $wR_{\pi_K}u$, then $v(w, \Box \psi) = T$.

Example - Primal Implication [Gurevich et al.]

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_i = \{ \langle f:p_1, f:p_1 \rangle \}$

Example - Primal Implication [Gurevich et al.]

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_i = \{ \langle f:p_1, f:p_1 \rangle \}$

$$\langle \Rightarrow \boldsymbol{p}_{2}, \pi_{i} \rangle / \Rightarrow \boldsymbol{p}_{1} \rightsquigarrow \boldsymbol{p}_{2} \qquad \langle \Rightarrow \boldsymbol{p}_{1}, \pi_{0} \rangle, \langle \boldsymbol{p}_{2} \Rightarrow, \pi_{0} \rangle / \boldsymbol{p}_{1} \rightsquigarrow \boldsymbol{p}_{2} \Rightarrow$$
$$\frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \psi \rightsquigarrow \varphi} \qquad \frac{\Gamma_{1} \Rightarrow \psi, \Delta_{1} \quad \Gamma_{2}, \varphi \Rightarrow \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \psi \rightsquigarrow \varphi \Rightarrow \Delta_{1}, \Delta_{2}}$$

In legal frames:

- A accessibility relation $R_{\pi_i} \in \mathcal{R}$.
- If $wR_{\pi_i}u$ and $v(w, \psi) = T$ then $v(u, \psi) = T$.
- If $v(w, \varphi) = T$ then $v(w, \psi \rightsquigarrow \varphi) = T$.
- If $v(w, \psi) = T$ and $v(w, \varphi) = F$ then $v(w, \psi \rightsquigarrow \varphi) = F$.

Theorem

Every basic system **G** is sound and complete with respect to the semantics of **G**-legal frames.

Theorem

Every basic system **G** is sound and complete with respect to the semantics of **G**-legal frames.

- General and uniform:
 - Various known soundness and completeness results are specific cases of this general theorem
- Modular

- A basic system has the subformula property if ⊢_G s implies that there exists a proof of s in G consisting only of subformulas of the formulas in s.
- In basic systems the subformula property implies decidability and consistency.
- Q: What is the semantic meaning of the subformula property?

- A basic system has the subformula property if ⊢_G s implies that there exists a proof of s in G consisting only of subformulas of the formulas in s.
- In basic systems the subformula property implies decidability and consistency.
- Q: What is the semantic meaning of the subformula property?

Next, we strengthen the soundness and completeness theorem to characterize proofs containing only formulas from a given set \mathcal{F} .

For this we introduce \mathcal{F} -semiframes.

A frame consists of:

- A set of worlds W
- $\bullet\,$ A set of accessibility relations ${\cal R}$
- A valuation $v : W \times wff \rightarrow \{T, F\}$

Theorem

There exists a proof in G of s

if and only if

every **G**-legal frame is a model of s.

An *F*-semiframe consists of:

- A set of worlds W
- A set of accessibility relations ${\mathcal R}$
- A valuation $v : W \times \mathcal{F} \rightarrow \{T, F\}$

Theorem

There exists a proof in **G** of s containing only formulas from \mathcal{F}

if and only if

every **G**-legal \mathcal{F} -semiframe is a model of s.

- The last theorem leads to a semantic decision procedure for basic systems that have the subformula property (just check all possible semiframes).
- Semantic sufficient condition for the subformula property: If every **G**-legal *F*-semiframe can be extended to a **G**-legal frame for every set *F* of formulas closed under subformulas, then **G** has the subformula property.
- This criterion is applicable for many interesting basic systems.

To characterize cut-admissibility in basic systems, we provide another soundness and completeness theorem for cut-free proofs.

To characterize cut-admissibility in basic systems, we provide another soundness and completeness theorem for cut-free proofs.

Intuition An application of cut: $\psi \Rightarrow \Rightarrow \psi$ \Rightarrow If cut is forbidden, we need a frame which is a model of $\psi \Rightarrow$ and $\Rightarrow \psi$.

A frame consists of:

- A set of worlds W
- $\bullet\,$ A set of accessibility relations ${\cal R}$
- A valuation $v : W \times wff \rightarrow \{T, F\}$

A quasiframe consists of:

- A set of worlds W
- $\bullet\,$ A set of accessibility relations ${\cal R}$
- A valuation $v : W \times wff \rightarrow \{T, F, i\}$

A quasiframe consists of:

- A set of worlds W
- A set of accessibility relations ${\mathcal R}$
- A valuation $v : W \times wff \rightarrow \{T, F, i\}$

A sequent *s* is true in a world *w* if at least one of the following hold:

- $v(w, \psi) = F$ for some ψ on the left side of s
- $v(w, \psi) = T$ for some ψ on the right side of s
- $v(w, \psi) = i$ for some ψ in s

A quasiframe consists of:

- A set of worlds W
- A set of accessibility relations ${\cal R}$
- A valuation $v : W \times wff \rightarrow \{T, F, i\}$

A sequent s is true in a world w if at least one of the following hold:

- $v(w, \psi) = F$ for some ψ on the left side of s
- $v(w, \psi) = T$ for some ψ on the right side of s
- $v(w, \psi) = i$ for some ψ in s

If $v(w, \psi) = i$, then both $\{f:\psi\}$ and $\{t:\psi\}$ are true in *w*.

Semantic Characterization of Cut-Admissibility

Theorem

There exists a cut-free proof in **G** of s

if and only if

every **G**-legal quasiframe is a model of s.

Theorem

There exists a cut-free proof in **G** of s

if and only if

every **G**-legal quasiframe is a model of s.

- Semantic sufficient condition for cut-admissibility:
 If every G-legal quasiframe can be refined into a G-legal frame, then G enjoys cut-admissibility
 (by refinement, we mean changing all i's to T's or F's).
- Provides a uniform basis for semantic proofs of cut-admissibility in basic systems.

Similar method is applicable to:

- Provide semantics when cut is allowed only on some formulas (to characterize *strong* cut-admissibility).
- Provide semantics when the identity axiom is available only for some formulas (to characterize *axiom-expansion*).

Thank you!