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Analyticity, also known as the subformula property, typically guarantees decidability of derivability in

propositional sequent calculi. To utilize this fact, two substantial gaps have to be addressed: (i) what makes

a sequent calculus analytic? and (ii) how to obtain an efficient decision procedure for derivability in an

analytic calculus? In the first part of this paper we answer these questions for pure calculi—a general family

of fully structural propositional sequent calculi whose rules allow arbitrary context formulas. We provide

a sufficient syntactic criterion for analyticity in these calculi, as well as a productive method to construct

new analytic calculi from given ones. We further introduce a scalable decision procedure for derivability in

analytic pure calculi, by showing that it can be (uniformly) reduced to classical satisfiability. In the second

part of the paper, we study the extension of pure sequent calculi with modal operators. We show that such

extensions preserve the analyticity of the calculus, and identify certain restricted operators (which we call

‘Next’ operators) that are also amenable for a general reduction of derivability to classical satisfiability. Our

proofs are all semantic, utilizing several strong general soundness and completeness theorems with respect to

non-deterministic semantic frameworks: bivaluations (for pure calculi) and Kripke models (for their extension

with modal operators).
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1 INTRODUCTION
More than eighty years after its introduction [25], the framework of sequent calculi is by now a

mainstream proof theoretic framework. When a given logic is accompanied with a well-behaved

sequent calculus, the latter often provides a useful representation of the logic, which allows one to

study various properties of it. For propositional logics, which are the focus of this paper, a sequent

calculus may be used to establish decidability, and, in turn, to develop a proof search method. To

this end, it is typically required that the calculus is analytic. Roughly speaking, analyticity (a.k.a.

the subformula property) ensures that every derivable sequent Γ ⇒ ∆ has a derivation that uses

only the syntactic material available inside Γ ∪ ∆.1

The current paper is devoted to a general and uniform study of propositional sequent calculi,

aiming to understand: (i) what guarantees that a given sequent calculus is analytic? and (ii) how
analyticity can be utilized to obtain an effective decision procedure for derivability in the calculus?

Answering these questions may assist future development of sequent calculi and proof search

methods, which are traditionally tailored to specific logics.

Our investigation encompasses a wide family of sequent calculi, called pure sequent calculi, as well

as the extensions of pure sequent calculi with derivation rules for modal operators. Pure sequent

calculi are propositional fully-structural calculi. (By fully-structural, we mean that they include

all ordinary structural rules: exchange, contraction and weakening.) In addition, the important

restriction on derivation rules in these calculi is that they do not enforce any limitations on the

formulas that may be used as context in applications of the rules (following [3], the adjective

"pure" stands for this requirement). While being a simple framework, pure calculi were shown

1
Often, analyticity is obtained as a simple corollary of cut-elimination. Nevertheless, our interest here is on analyticity,

which we find more fundamental than cut-elimination in propositional sequent calculi. In fact, there are well-known

examples of logics (e.g., the modal logics B and S5) that have a simple analytic sequent calculus, but no (known) cut-free

sequent calculus.
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to be adequate for a wide range of logics, including important three and four valued logics and

various paraconsistent logics. By further studying the extension of pure calculi with rules for modal

operators, our work covers also multi-modal logics.

We first generalize the usual notion of analyticity by employing a parametrized generalization a

subformula. The general notion applies to more calculi (e.g., it may allow one to use ¬φ in a proof

of ⇒ φ), and still inherits the important consequences of analyticity, including decidability. Then,

the crux of this paper addresses questions (i) and (ii) above:

(i) We provide a simple syntactic criterion that ensures analyticity, and present a method

for constructing analytic sequent calculi. The latter allows one to obtain an analytic-by-

construction calculi by collecting certain instances of logical rules in some given analytic

calculus. In particular, this method is useful to obtain calculi for non-classical logics (especially

for paraconsistent logics) that are naturally developed as restrictions of classical logic. We

also show that the addition of various rules for modal operators preserves analyticity, which

provides a uniform approach to analytic calculi for (non-classical) modal logics.

(ii) We show that derivability in analytic pure calculi can be reduced in polynomial time to

(the complement of) SAT—the classical satisfiability problem. While SAT is NP-hard, it is

considered "easy" when it comes to real-world applications. Indeed, there are many off-the-

shelf SAT solvers, that, despite an exponential worst-case time complexity, are considered

extremely efficient (see, e.g., [27]). Our reduction constitutes a scalable uniform decision

procedure for logics that can be represented by analytic pure sequent calculi. We further

extend this reduction for the extension of such calculi with Next operators, a restricted type

of modal operators used in temporal and access control logics; and identify a subfamily of

calculi for which the reduction generates Horn clauses, leading to a linear time decision

procedure (using a HORNSAT solver). This provides a systematic approach for developing

calculi for particular applications that require extremely efficient decision procedure (as was

recently done for an access control logic called “primal infon logic” [19]).

Our main tool to achieve the above is a semantic interpretation of sequent calculi. As observed

in [12], there is a simple correspondence between pure sequent calculi and two-valued valuation

semantics. We utilize this correspondence and extend it for characterizing derivations that are

confined to use only a certain set of formulas. Thus, we obtain a purely semantic equivalent

definition of analyticity (roughly speaking, analyticity is equivalent to the ability to extend partial

countermodels), which is very useful in our general study of sequent calculi. When considering

rules for modal operators, we follow a similar approach, and use a correspondence (i.e., a general

soundness and completeness theorem) between pure sequent calculi extended with modal operators

and certain Kripke-style models.

Related Work
Analyticity in subfamilies of pure sequent calculi has been investigated in previous works. A

particularly well-behaved subfamily of pure calculi, called canonical calculi, was studied by Avron

and Lev [10]. For these calculi, it was shown that analyticity and cut-admissibility are equivalent,

and both are precisely characterized by a simple and decidable criterion, called coherence. A similar

criterion was later provided by Avron in [7] for an extended subfamily of quasi-canonical calculi.

Our results apply for significantly more general family of calculi, allowing us to derive these existing

criteria for analyticity as particular instances. In addition, the general framework of Miller and

Pimentel [38] allows one to encode all pure calculi in linear logic, and use linear logic to reason

about them. Among the pure calculi, it is again only the canonical ones for which a decidable

criterion for cut-admissibility is given.
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The study of uniform decision procedures parametrized by a given formal calculus is the subject

of the LoTREC [24] and MetTeL [43] projects, where the underlying framework is that of Tableuax

calculi, rather than sequent calculi, which are the focus of the current work. The decision procedure

that we propose here can be seen as a generalization of the one given by Beklemishev and Gure-

vich [11] for quotations-free primal infon logic. For the case of primal infon logic with quotations,

the proposed reduction to SAT produces practically equivalent outputs as the reduction in [13] from

this logic to Datalog. A general methodology for translating derivability questions in Hilbertian

deductive systems to Datalog was introduced in [14] by Blass and Gurevich. However, this method

may produce infinitely many Datalog premises. In contrast, our SAT instances are always finite.

A SAT-based decision procedure for classical modal logics was presented in [26]. The reduction

that we present here is different in three aspects. On the one hand, we cover modal logics that are

not necessarily classical. On the other hand, the reduction that is presented here is valid only for

Next operators, while [26] covers other modal operators. Finally, while our decision procedure is

obtained by a “one-shot" reduction to SAT, the procedure of [26] generates several SAT-instances

in different part of its algorithm.

A leitmotif of this paper is the use of the semantic approach, which is particularly useful when

cut-elimination is beyond the reach and general families of calculi are studied (see also [39]). The

general semantic framework that we use here for pure calculi extends bivaluation semantics [12, 16].

The semantic framework that we use here for pure calculi with modal operators closely follows the

one developed by Lahav and Avron in [34], adapted and simplified for our needs. To the best of out

knowledge, no previous work considered the preservation of analyticity when extending a calculus

with modal operators.

Finally, we note that preliminary short versions of different parts of this paper were included

in [35] and [36]. Besides the addition of full proofs, we significantly strengthened the previous

results so as to cover a more general notion of analyticity, as well as the extension of pure calculi

with various rules for modal operators.

Outline
§2 defines the family of pure sequent calculi and established their semantic interpretation, which

plays a major role in subsequent sections. In §3, a generalized analyticity property is defined. §4

describes the reduction of derivability in analytic pure calculi to SAT. Methods for identifying

analyticity and for constructing analytic calculi are introduced in §5. Next, §6 extends the theory

of pure calculi to accommodate rules for modal operators, and §7 generalizes the reduction to SAT

for pure calculi augmented with modal Next operators. Finally, §8 includes conclusions and further

research questions.

2 PURE SEQUENT CALCULI
In this section we define the family of pure sequent calculi (§2.2), provide a uniform semantic

interpretation for them (§2.3), and introduce useful transformations on pure calculi that do not

affect the induced derivability relation (§2.4).

2.1 Preliminaries
In what follows, L denotes an arbitrary propositional language, consisting of a countable infinite set

of atomic variablesAt = {p1,p2, ...} and a finite set ♦L
of propositional connectives. For every n ≥ 0,

the set of all n-ary connectives of L is denoted by ♦n
L
. Well-formed formulas in a propositional

language L are defined as usual, and we usually identify L with its set of well-formed formulas

(e.g., when writingψ ∈ L). Given a set F ⊆ L, we say that a formulaψ is an F -formula ifψ ∈ F .
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A substitution is a function from At to some propositional language. A substitution σ is extended

to formulas by σ (⋄(ψ1, ... ,ψn)) = ⋄(σ (ψ1), ... ,σ (ψn)) for every connective ⋄, and to sets of formulas

by σ (F ) = {σ (ψ ) | ψ ∈ F }.

A sequent is a pair ⟨Γ,∆⟩, denoted Γ ⇒ ∆, where Γ and ∆ are finite sets of formulas. For a

sequent Γ ⇒ ∆, frm(Γ ⇒ ∆) = Γ ∪ ∆. This notation is naturally extended to sets of sequents.

A sequent Γ ⇒ ∆ is called an F -sequent if frm(Γ ⇒ ∆) ⊆ F . We employ the standard sequent

notations, e.g., when writing expressions like Γ,ψ ⇒ ∆ or ⇒ ψ . The union of sequents is given by

(Γ1 ⇒ ∆1) ∪ (Γ2 ⇒ ∆2) = (Γ1 ∪ Γ2) ⇒ (∆1 ∪ ∆2). A sequent Γ1 ⇒ ∆1 is a subsequent of a sequent

Γ2 ⇒ ∆2, denoted Γ1 ⇒ ∆1 ⊆ Γ2 ⇒ ∆2, if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2. Substitutions are also extended to

sequents by σ (Γ ⇒ ∆) = σ (Γ) ⇒ σ (∆) and sets of sequents by σ (S) = {σ (s) | s ∈ S}.

2.2 Pure Sequent Calculi
Roughly speaking, pure sequent calculi are propositional fully-structural calculi (sequent calculi

that include all the usual structural rules: exchange, contraction, cut, identity and weakening),

whose derivation rules do not enforce any limitations on the side formulas. This family of calculi is

a prominent proof-theoretic framework, adequate for many propositional logics, including classical

logic, many-valued logics, and various paraconsistent logics.

We start by defining pure rules and their applications, namely the steps that form derivations

in pure calculi. Following [10], we find it convenient to use the object propositional language for

specifying derivation rules, instead of meta-variables which are often used to present derivation

schemes. Accordingly, applications of rules are obtained by applying a substitution on the premises

and the conclusion of the rule, and freely adding context formulas.

Definition 2.1. A pure rule is a pair ⟨S, s⟩, denoted S / s , where S is a finite set of sequents and s
is a sequent. The elements of S are called the premises of the rule and s is called the conclusion of

the rule. An application of a pure rule {s1, ... , sn} / s is a pair of the form〈
{σ (s ′

1
) ∪ c1, ... ,σ (s

′
n) ∪ cn},σ (s) ∪ c1 ∪ ... ∪ cn

〉
where σ is a substitution, s ′i is a subsequent of si for every 1 ≤ i ≤ n, and c1, ... , cn are sequents

(called context sequents). The sequents σ (s ′i ) ∪ ci are called the premises of the application and the

sequent σ (s) ∪ c1 ∪ ... ∪ cn is called the conclusion of the application.We often denote an application

as a derivation step:

σ (s ′
1
) ∪ c1, ... ,σ (s

′
n) ∪ cn

σ (s) ∪ c1 ∪ ... ∪ cn

Example 2.2 (Pure rules for classical implication). The following is a pure rule (we omit the curly

braces to improve readability):

p1 ⇒ p2 / ⇒ p1 ⊃ p2

Applications of this rule have the following forms:

Γ,ψ1 ⇒ ψ2,∆

Γ ⇒ ψ1 ⊃ ψ2,∆

Γ,ψ1 ⇒ ∆

Γ ⇒ ψ1 ⊃ ψ2,∆

Γ ⇒ ψ2,∆

Γ ⇒ ψ1 ⊃ ψ2,∆

Γ ⇒ ∆

Γ ⇒ ψ1 ⊃ ψ2,∆

Notice that the first application uses the full sequent in its premise, while the others use proper

subsequents of the premises.

Applications of the following rules

⇒ p1 ; p2 ⇒ /p1 ⊃ p2 ⇒ / ⇒ p1 ⊃ p1
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have respectively the forms:

Γ1 ⇒ ψ1,∆1 Γ2,ψ2 ⇒ ∆2

Γ1, Γ2,ψ1 ⊃ ψ2 ⇒ ∆1,∆2 ⇒ ψ ⊃ ψ

In contrast, the usual rule for introducing implication on the right-hand side in intuitionistic

logic is not a pure rule, since it allows only left context formulas.

Applications of rules are multiplicative—allowing a different context sequent in each premise.

Since all usual structural rules are assumed, one may equivalently consider additive applications,

that require one context sequent in all premises. We freely interchange multiplicative or additive

applications in the rest of this paper, as they are equivalent, and each is technically convenient in

different contexts. Note that we allow applications of pure rules to make use of subsequents of the

premises, and not necessarily the full premises (i.e., by defining an application of a rule s1, ... , sn / s
to have the form σ (s1) ∪ c1, ... ,σ (sn) ∪ cn /σ (s) ∪ c1 ∪ ... ∪ cn ). While this is technically convenient

(e.g., in §2.4), again, using the structural rules, both options are equivalent.

Pure sequent calculi are finite sets of pure rules. To make them fully-structural (in addition to

defining sequents as pairs of sets), the weakening rule, the identity axiom and the cut rule may

be used in derivations. A derivation in a pure calculus G is defined as usual, where in addition to

applications of the pure rules of G, the following standard application schemes may be used:
2

(weak)

Γ ⇒ ∆

Γ′, Γ ⇒ ∆,∆′
(id)

Γ,ψ ⇒ ψ ,∆
(cut)

Γ1 ⇒ ψ ,∆1 Γ2,ψ ⇒ ∆2

Γ1, Γ2 ⇒ ∆1,∆2

Note that the structural rules (cut), (weak) and (id) can be simulated by pure rules: ⇒ p1 ; p1 ⇒

/ ⇒ for (cut), ⇒ / ⇒ p1 and ⇒ /p1 ⇒ for (weak), and /p1 ⇒ p1 for (id). However, it is

technically convenient to distinguish them from the other pure rules.

Henceforth, unless stated otherwise, we consider only pure rules and pure calculi, and may

refer to them simply as rules and calculi. By an L-rule (L-calculus) we mean a rule (calculus)

that mentions only connectives of L. For an L-calculus G, a set F ⊆ L of formulas, a set S of

F -sequents and an F -sequent s , we write S ⊢FG s if there is a derivation of s from S in G consisting

only of F -sequents. For S ⊢LG s (i.e., F = L), we may also write S ⊢G s . As before, we often omit

the curly braces, writing, e.g., ⇒ p1 ; ⇒ p2 ⊢
F
G ⇒ p2.

Next, we present several examples of pure sequent calculi. The most fundamental example is

Gentzen’s system for classical logic [25]:

Example 2.3 (Classical logic). The propositional fragment of Gentzen’s sequent calculus for

classical logic can be directly presented as the following pure calculus, denoted henceforth by LK:

(¬ ⇒) ⇒ p1 / ¬p1 ⇒ (⇒ ¬) p1 ⇒ / ⇒ ¬p1

(∧ ⇒) p1,p2 ⇒ /p1 ∧ p2 ⇒ (⇒ ∧) ⇒ p1 ; ⇒ p2 / ⇒ p1 ∧ p2

(∨ ⇒) p1 ⇒ ; p2 ⇒ /p1 ∨ p2 ⇒ (⇒ ∨) ⇒ p1,p2 / ⇒ p1 ∨ p2

(⊃ ⇒) ⇒ p1 ; p2 ⇒ /p1 ⊃ p2 ⇒ (⇒ ⊃) p1 ⇒ p2 / ⇒ p1 ⊃ p2

(⊥ ⇒) /⊥ ⇒ (⇒ ⊤) / ⇒ ⊤

Besides LK there are many sequent calculi for non-classical logics that fall in this framework.

These include calculi for well-known three and four-valued logics, various calculi for paraconsistent

logics, and all canonical and quasi-canonical sequent calculi [8–10, 12].

2
By defining sequents as pairs of sets (rather than lists or multisets) we implicitly include the schemes of exchange and

contraction in our calculi.
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Example 2.4 (Primal infon logic). Primal infon logic [19] was designed to efficiently reason about

access control policies, by taking much weaker disjunction and implication, but still expressive

enough to describe access control policies. The quotations-free fragment of its sequent calculus [11]

can be presented as a pure calculus, which we denote by P. It is obtained from the negation–free

fragment of LK by dismissing the rule (∨ ⇒), and replacing the rule (⇒ ⊃)with: ⇒ p2 / ⇒ p1 ⊃ p2.

Quotations, whose rules are not pure, can be seen as modal operators, and are handled in §6 (in

particular, see Example 6.15).

Example 2.5 (The paraconsistent logic C1). The calculus for da Costa’s historical paraconsistent

logic C1 from [8] is a pure calculus, which we call C1. It consists of the rules of LK except for (¬ ⇒)

that is replaced by the following rules:

p1 ⇒ /¬¬p1 ⇒

⇒ p1 ; ⇒ ¬p1 / ¬(p1 ∧ ¬p1) ⇒ ¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∧ p2) ⇒

¬p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ∨ p2) ⇒ p1,¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∨ p2) ⇒

p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ p1,¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ⊃ p2) ⇒

Example 2.6 (Łukasiewicz three-valued logic). A sequent calculus for Łukasiewicz three-valued

logic was presented in [5]. This calculus, which we call Ł3, can be directly presented as a pure

calculus. For example, the rules involving implication are the following:

¬p1 ⇒ ; p2 ⇒ ; ⇒ p1,¬p2 /p1 ⊃ p2 ⇒ p1 ⇒ p2 ; ¬p2 ⇒ ¬p1 / ⇒ p1 ⊃ p2

p1,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ ⇒ p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

Next, we present a useful lemma that establishes structural properties of pure sequent calculi.

Lemma 2.7. If S ⊢FG s , then:

(1) σ (S) ⊢σ (F)G σ (s) for every substitution σ .

(2) {s ′ ∪ c | s ′ ∈ S} ⊢
F∪frm(c)
G s ∪ c for every sequent c .

Proof. By induction on the length of derivations. □

2.3 Semantics
In this section we introduce a semantic interpretation of pure calculi, based on (possibly non-

deterministic) two-valued valuation functions. This semantics will be used to characterize analyticity

in pure calculi and provide a decision procedure for analytic pure calculi.

Our semantics follows [12] and uses bivaluations—functions assigning a binary truth value to

each formula. The simple framework of bivaluations is applicable to a wide variety of propositional

logics. The price for this simplicity and generality is the loss of truth-functionality: the truth value

assigned to a compound formula is not always uniquely determined by the truth values assigned to

its subformulas. Accordingly, it does not suffice to define bivaluations over atomic formulas, as

done in ordinary truth-tables semantics.

For the purpose of characterizing analyticity, we extend the bivaluation framework by considering

also partial bivaluations that assign truth values to some formulas. These allows us to have finite

models which are essential in semantic decision procedures. Next, we precisely define (partial)

bivaluations, and provide a general soundness and completeness theorem, supplying each pure

calculus G and a set F of formulas with a set of partial bivaluations for which G is sound and

complete when only F -formulas may appear in derivations.

Definition 2.8. A bivaluation is a function v from some set of propositional formulas, denoted

dom(v), to {0, 1}. A bivaluation v is extended to dom(v)-sequents by: v(Γ ⇒ ∆) = 1 iff v(φ) = 0 for
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some φ ∈ Γ or v(φ) = 1 for some φ ∈ ∆. A bivaluation v is extended to sets (of dom(v)-formulas

or of sequents) by v(X ) = min{v(x) | x ∈ X }, where min ∅ = 1. Given a set F of formulas, by an

F -bivaluation we refer to a bivaluation v with dom(v) = F .

To relate sequent calculi and bivaluations, we simply read pure rules as semantic constraints on

bivaluations. This is formally defined as follows:

Definition 2.9. A bivaluation v respects a rule s1, ... , sn / s if v({σ (s
′
1
), ... ,σ (s ′n)}) ≤ v(σ (s)) for

every subsequents s ′
1
⊆ s1, ... , s

′
n ⊆ sn and substitution σ such that σ (frm({s ′

1
, ... , s ′n, s})) ⊆ dom(v).

A bivaluation v is called G-legal for a calculus G if it respects all rules of G.

Example 2.10. A {p1,¬¬p1}-bivaluation v respects the rule p1 ⇒ /¬¬p1 ⇒ iff either v(p1) =

v(¬¬p1) = 0 or v(p1) = 1. A {p1,p1 ∨ p2}-bivaluation v respects the rule ⇒ p1,p2 / ⇒ p1 ∨ p2

iff either v(p1) = 0 or v(p1 ∨ p2) = 1 (note that p2 < dom(v)). It is easy to verify that LK-legal
L-bivaluations (where L is the language of LK) coincide with the well-known classical valuations.

Next, we prove a general soundness and completeness theorem, that ties the domain of bivalua-

tions to the set of formulas that are allowed to appear in derivations.

Theorem 2.11 (Soundness and Completeness). S ⊢FG s iff v(S) ≤ v(s) for every G-legal F -

bivaluation v .

Proof. To prove soundness, let v be a G-legal F -bivaluation, such that v(S) = 1. We prove

that v(s) = 1 by induction on the length of the derivation of s from S in G (which consists only

of F -sequents). If s ∈ S , or s is the conclusion of an application of (id), (cut), or (weak), then

this is straightforward. If s is the conclusion of an application of some rule s1, ... , sn / s0 ∈ G, then
there are subsequents s ′

1
⊆ s1, ... , s

′
n ⊆ sn , a substitution σ , and F -sequents c1, ... , cn such that

s = σ (s0) ∪ c1 ∪ ... ∪ cn , σ (frm({s ′
1
, ... , s ′n, s0})) ⊆ F , and S ⊢FG σ (s ′i ) ∪ ci for every 1 ≤ i ≤ n. By

the induction hypothesis, v(σ (s ′i ) ∪ ci ) = 1 for every 1 ≤ i ≤ n. If v(ci ) = 1 for some 1 ≤ i ≤ n,
then v(σ (s0) ∪ c1 ∪ ... ∪ cn) = 1. Otherwise, for every 1 ≤ i ≤ n, v(σ (s ′i )) = 1. Since v is G-legal,
v(σ (s0)) = 1 and hence v(σ (s0) ∪ c1 ∪ ... ∪ cn) = 1.

To prove completeness, assume that S ̸⊢FG s . We construct a G-legal F -bivaluation v such

that v(S) = 1 and v(s) = 0. Since F may be infinite, this construction requires the following

generalization of sequents: An ω-sequent is a pair ⟨L,R⟩, denoted L ⇒ R, where L and R are

(possibly infinite) subsets of F . We write S ⊢FG L ⇒ R if S ⊢FG Γ ⇒ ∆ for some finite Γ ⊆ L and

∆ ⊆ R. Other definitions and notations for sequents are adapted for ω-sequents in the obvious way.

Call an ω-sequent L ⇒ R maximal unprovable if the following hold:

• L ∪ R ⊆ F

• S ̸⊢FG L ⇒ R

• S ⊢FG L,φ ⇒ R for every φ ∈ F \ L

• S ⊢FG L ⇒ φ,R for every φ ∈ F \ R

It is routine to extend s to a maximal unprovable ω-sequent L ⇒ R. Using (cut), it can be easily

shown that L ∪ R = F . Then, a countermodel v is defined by v(φ) = 1 if φ ∈ L, and v(φ) = 0

if φ ∈ R. Clearly, v(S) = 1 and v(s) = 0. It remains to show that v is G-legal. Let r = Γ1 ⇒

∆1, ... , Γn ⇒ ∆n / Γ0 ⇒ ∆0 be a rule of G, Γ′1 ⇒ ∆′
1
, ... , Γ′n ⇒ ∆′

n respective subsequents of Γ1 ⇒

∆1, ... , Γn ⇒ ∆n , and σ a substitution, such that σ (frm({Γ′
1
⇒ ∆′

1
, ... , Γ′n ⇒ ∆′

n, Γ0 ⇒ ∆0})) ⊆ F

and v(σ (Γ′i ⇒ ∆′
i )) = 1 for every 1 ≤ i ≤ n. We prove that v(σ (Γ0 ⇒ ∆0)) = 1. By our assumption,

for every 1 ≤ i ≤ n, there exists either φ ∈ Γ′i such that v(σ (φ)) = 0 (and then σ (φ) ∈ R) or φ ∈ ∆′
i

such that v(σ (φ)) = 1 (and then σ (φ) ∈ L). We construct a sequent Γ ⇒ ∆ as follows. For every

1 ≤ i ≤ n, we include in Γ a formula σ (φ) for some φ ∈ ∆′
i such that v(σ (φ)) = 1, or, if such φ does



Ori Lahav and Yoni Zohar

not exist, we include in ∆ a formula σ (φ) for some φ ∈ Γ′i such that v(σ (φ)) = 0. Then, we have

(Γ ⇒ ∆) ⊆ (L ⇒ R). In addition, using (id), we have S ⊢FG σ (Γ′i ), Γ ⇒ σ (∆′
i ),∆ for every 1 ≤ i ≤ n.

By applying the rule r with Γ ⇒ ∆ as a context sequent, we obtain that S ⊢FG σ (Γ0), Γ ⇒ σ (∆0),∆.

Since S ̸⊢FG L ⇒ R, we have σ (Γ0 ⇒ ∆0) ̸⊆ L ⇒ R, and so either v(ψ ) = 0 for some ψ ∈ σ (Γ0) or

v(ψ ) = 1 for someψ ∈ σ (∆0). Either way, we have v(σ (Γ0 ⇒ ∆0)) = 1. □

Well-known soundness and completeness theorems from the literature can be obtained as

particular instances of Thm. 2.11, by taking F to be the entire propositional language. Examples

include, e.g., soundness and completeness of LK with respect to the classical truth tables, and

soundness and completeness of P (Example 2.4) with respect to the non-deterministic semantics

from [19].

2.4 Streamlining Pure Calculi
In many cases, two calculi allow for exactly the same sequents to be derived, although they employ

different derivation rules. In this section we present several useful streamlining transformations

that transform one calculus into another, without affecting the induced derivability relation.

Definition 2.12 (Equivalent calculi and rules). Two calculi G1 and G2 are called equivalent if

⊢FG1

=⊢FG2

for every set F of formulas. Equivalence is naturally defined also between single rules

(and between a rule and a calculi) by identifying a rule r with the calculus {r }.

Lemma 2.13 (Basic eqivalences). The following hold:

(1) S / Γ ⇒ ψ ,∆ is equivalent to S ;ψ ⇒ / Γ ⇒ ∆.
(2) S / Γ,ψ ⇒ ∆ is equivalent to S ; ⇒ ψ / Γ ⇒ ∆.
(3) {S ; s1 / s , S ; s2 / s} is equivalent to S ; s1 ∪ s2 / s .

Proof. All claims are handled similarly. We show only the left-to-right direction of the third

claim. Using Thm. 2.11, it suffices to show that every bivaluation that respects the rule S ; s1 ∪ s2 / s
also respects the rules S ;s1 / s and S ;s2 / s . Letv be a bivaluation that respects S ;s1∪s2 / s . We prove,

w.l.o.g., that it respects the rule S ; s1 / s . Let S = {q1, ... ,qn}. Let q
′
1
⊆ q1, ... ,q

′
n ⊆ qn , and let s ′

be a subsequent of s1, and σ a substitution such that σ (frm{q′
1
, ... ,q′n, s

′, s}) ⊆ dom(v). Suppose
that v(σ (q′i )) = 1 for every 1 ≤ i ≤ n and that v(σ (s ′)) = 1. Clearly, s ′ ⊆ s1 ∪ s2. Since v respects

S ; s1 ∪ s2 / s , we have that v(σ (s)) = 1. □

Note that the use of subsequents in applications of pure rules is essential for the poof of

Lemma 2.13.

We call a rule axiomatic if it has an empty set of premises. In turn, call a calculus axiomatic if

it consists solely of axiomatic rules (the non-axiomatic schemes (weak) and (cut) are allowed).

We point out a useful application of Lemma 2.13, which allows us to convert every calculus to an

axiomatic one. In particular, it will allow us to consider only axiomatic calculi in §4 and §7.

Example 2.14. The rule ⇒ p1 ; ⇒ p2 / ⇒ p1 ∧ p2 of LK is equivalent to the axiomatic rule

∅ /p1,p2 ⇒ p1 ∧ p2, and the rule ¬p1 ⇒ ; p2 ⇒ ; ⇒ p1,¬p2 /p1 ⊃ p2 ⇒ of Ł3 (Example 2.6) is

equivalent to the axiomatic rules ∅ /p1,p1 ⊃ p2 ⇒ ¬p1,p2 and ∅ /¬p2,p1 ⊃ p2 ⇒ ¬p1,p2.

Theorem 2.15. Every calculus is equivalent to an axiomatic calculus.

Proof. Without loss of generality, we assume that no rule of G includes an empty premise. If

such a rule exists, it can be simply omitted. Consider the following transformations of pure rules

(all of them are instances of the equivalences in Lemma 2.13):

(1) S ;ψ ⇒ / Γ ⇒ ∆ 7−→ S / Γ ⇒ ψ ,∆
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(2) S ; ⇒ ψ / Γ ⇒ ∆ 7−→ S / Γ,ψ ⇒ ∆
(3) S ; Γ,ψ ⇒ ∆ / s 7−→ {S ; Γ ⇒ ∆ / s , S ;ψ ⇒ / s} for Γ ∪ ∆ , ∅ andψ < ∆
(4) S ; Γ ⇒ ψ ,∆ / s 7−→ {S ; Γ ⇒ ∆ / s , S ; ⇒ ψ / s} for Γ ∪ ∆ , ∅ andψ < Γ

Given a calculus G, we apply these four transformations on the rules of G as long as it is possible.

By Lemma 2.13, each step in this process results in a calculus which is equivalent to G. Observing
that at least one transformation is applicable to any non-axiomatic rule, it remains to establish

termination. For each rule S / s , let ∥S / s∥ =
∑

Γ⇒∆∈S (|Γ |+ |∆|). For every set R of rules, we associate

the multisetMR , given byMR = λn ∈ N. |{r ∈ R | ∥r ∥ = n}|. We prove that if R2 is obtained from R1

by one of the transformations, thenMR2
≺ MR1

, where ≺ is the Dershowitz-Manna well founded

ordering over multisets of natural numbers [21]. Clearly, R2 = (R1 \ {r }) ∪ R for some set R that is

obtained from r by one of the transformations. If the transformation is 1 or 2, then, w.l.o.g., r has
the form S ⊎ {ψ ⇒ } / Γ ⇒ ∆ and R has the form {S / Γ ⇒ ψ ,∆}. This means thatMR2

is obtained

fromMR1
by replacing one copy of ∥S ;ψ ⇒ / Γ ⇒ ∆∥ with a new copy of ∥S ;ψ ⇒ / Γ ⇒ ∆∥ − 1.

If the transformation is 3 or 4, then, w.l.o.g., r has the form S ⊎ {Γ ⇒ ψ ,∆} / s where ψ < ∆ and

Γ ∪ ∆ , ∅, and R has the form {S ; Γ ⇒ ∆ / s, S ; ⇒ ψ / s}. This means that MR2
is obtained

from MR1
by replacing a copy of ∥S ; Γ ⇒ ψ ,∆ / s∥ with a copy of ∥S ; Γ ⇒ ∆ / s∥ and a copy of

∥S ; ⇒ ψ / s ∥. Both are smaller than ∥S ; Γ ⇒ ψ ,∆ / s∥. □

Transformations 3 and 4 in the proof of Theorem 2.15 replace one rule by two rules, and thus,

translating a calculus into an equivalent axiomatic calculus may require exponential time.

Using the rewriting rules in the proof of Theorem 2.15, written as pure rules, (cut) can be trans-

lated into (id). This, however, has nothing to do with cut-elimination, as our notion of equivalence

(Definition 2.12) allows the use of (cut).

3 ANALYTICITY
Analyticity is a crucial property of proof systems. In the case of fully-structural propositional

sequent calculi, analyticity often implies their decidability and consistency (the fact that the empty

sequent is not derivable). Roughly speaking, a calculus is analytic if whenever a sequent s is

derivable in it from a set S of sequents, s can be proven using only the “syntactic material available

inside S∪{s}". This “material" is usually taken to consist of all subformulas occurring in S∪{s}, and
then analyticity amounts to the subformula property. However, weaker restrictions on the formulas

that are allowed to appear in derivations of a given sequent may also suffice for decidability and

consistency. For example, in C1 and Ł3 (Examples 2.5 and 2.6), there are sequents whose derivations

require not only subformulas, but also of negations of subformulas of the derived sequent.

In this section we provide a generalized definition of analyticity, which is parametrized by a

distinguished set of unary connectives and a natural number. This generalized notion holds for a

larger family of calculi and still suffices to ensure decidability and consistency. We then equip this

definition with a semantic characterization, which, in addition to providing another viewpoint of

(generalized) analyticity, is our main tool for proving this property.

In what follows, ⊚ denotes an arbitrary subset of unary connectives in ♦1

L
and k denotes an

arbitrary positive integer. We denote the set of strings over ⊚ of length at most k by ⊚≤k
(e.g.,

{¬, ◦}≤2 = {ϵ,¬, ◦,¬¬, ◦◦,¬◦, ◦¬}, where ϵ denotes the empty string). For convenience, we use

the following notations: for a unary connective ◦ and a set F of formulas, ◦F = {◦φ | φ ∈ F }, and

for a set ⊚ of unary connectives, ⊚φ = {◦φ | ◦ ∈ ⊚}, ⊚F =
⋃

◦∈⊚ ◦F , ⊚≤kφ = {◦̄φ | ◦̄ ∈ ⊚≤k },

and ⊚≤kF =
⋃
φ ∈F ⊚≤kφ.

Definition 3.1. A formula φ is an immediate ⊚-k-subformula of a formula ψ if either ψ ∈ ⊚φ,
or ψ = ⋄(ψ1, ... ,ψn) and φ ∈ ⊚≤kψi for some n-ary connective ⋄ < ⊚, formulas ψ1, ... ,ψn , and
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1 ≤ i ≤ n. The ⊚-k-subformula relation is the reflexive transitive closure of the immediate ⊚-

k-subformula relation. We denote the set of ⊚-k-subformulas of a formula ψ by sub
⊚
k (ψ ). This

notation is naturally extended to sequents, sets of sequents, etc.

Intuitively, ⊚-k-subformulas of formulas whose main connective is not in ⊚ are obtained by

prefixing ordinary subformulas with a sequence of ⊚-elements of length ≤ k . For formulas whose

main connective is in⊚, we only take usual subformulas (until we reach a connective outside of⊚).

Note that ⊚ = ∅ (and so ⊚≤k = {ϵ} for any k), the ⊚-k-subformula relation amounts to the

usual subformula relation. In this case we call φ a subformula ofψ .

Example 3.2.

sub
{¬}

1
(¬(p1 ⊃ p2)) = {p1,p2,¬p1,¬p2,p1 ⊃ p2,¬(p1 ⊃ p2)}

sub
{¬}

2
(◦p1) = {p1,¬p1,¬¬p1, ◦p1}

sub
{¬,◦}
2

(◦p1) = {p1, ◦p1}

Before defining analyticity, we study the properties of this generalized subformula relation. The

first step is to define an adequate complexity measure cc on formulas. For every ψ ∈ L, denote

by ◦̄ψ the longest (possibly empty) prefix ofψ consisting of ⊚-elements, and by bψ the formula in

L \⊚L for whichψ = ◦̄ψbψ . Let c : L → N be a usual complexity measure on formulas (so that

c(φ) < c(ψ ) whenever φ is a proper subformula ofψ ). The function cc : L → (N ×N) is then given

by cc(ψ ) =
〈
c(bψ ), |◦̄ψ |

〉
, where |◦̄ψ | denotes the length of ◦̄ψ .

Proposition 3.3. cc(φ) < cc(ψ ) whenever φ is a proper ⊚-k-subformula of ψ (where < is the

standard lexicographic order over N × N).

Proof. We consider the case that φ is an immediate⊚-k-subformula ofψ . The claim then follows

by standard induction. First, ifψ = ⋄(ψ1, ... ,ψn) and φ ∈ ⊚≤kψi for some 1 ≤ i ≤ n and ⋄ < ⊚, then

c(bφ ) = c(bψi ) ≤ c(ψi ) < c(ψ ) = c(bψ ), and so cc(φ) < cc(ψ ). Second, if ψ = ◦φ for ◦ ∈ ⊚, then

◦̄ψ = ◦◦̄φ , and bψ = bφ . Hence, c(bψ ) = c(bφ ), but |◦̄ψ | = |◦̄φ | + 1, and so cc(φ) < cc(ψ ). □

Using this complexity measure, it easily follows that the ⊚-k-subformula relation is anti-

symmetric. Since every formula has finitely many immediate ⊚-k-subformulas, it also follows (by

König’s lemma) that sub
⊚
k (ψ ) is finite for everyψ ∈ L.

In addition, we have the following useful property of the generalized relation:

Lemma 3.4. σ (sub⊚k (ψ )) ⊆ sub
⊚
k (σ (ψ )) for every formulaψ and substitution σ .

Next, we define our generalized notion of analyticity.

Definition 3.5 (Analyticity). A calculus G is called ⊚-k-analytic if S ⊢G s implies S ⊢
sub

⊚
k (S∪{s })

G s
for every set S of sequents and a sequent s .

Just like the usual subformula property,⊚-k-analyticity of a pure calculus entails its decidability.3

Formally:

Definition 3.6. The derivability problem for an L-calculus G is given by:

Input: A finite set S of L-sequents and an L-sequent s .
Question: Does S ⊢G s?
3
Obviously, one cannot expect to have decision procedures for derivability in every pure calculus. Indeed, any Hilbert

calculus H (without side conditions on rule applications) can be translated to a pure sequent calculus GH , by taking a rule

of the form ⇒ ψ1 ; ... ; ⇒ ψn / ⇒ ψ for each Hilbert-style derivation rule that derives ψ from ψ1, ... ,ψn (where n = 0

for axioms). It is easy to show that ψ is derivable from Γ in H iff ⊢GH
Γ ⇒ ψ .
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Proposition 3.7. The derivability problem is decidable for every ⊚-k-analytic pure calculus.

Proof. For every ⊚-k-analytic calculus G, finite set S of sequents, and sequent s , we have that

S ⊢G s iff S ⊢FG s for F = sub
⊚
k (S ∪ {s}). Since F is finite, the latter can be checked by an exhaustive

search for derivations of s from S in G that include only F -formulas. □

Moreover, ⊚-k-analyticity guarantees the consistency of the calculus provided that the calculus

is not trivial:

Proposition 3.8. The empty sequent is not derivable in any ⊚-k-analytic calculus that does not
include the rule ∅ / ⇒ .

Proof. A proof of the empty sequent in a ⊚-k-analytic calculus would entail the existence of a

proof that includes no formulas at all. This is only possible in the presence of the rule ∅ / ⇒ . □

∅-k-analytic calculi are calculi that enjoy the usual subformula property. We call such calculi

simply analytic. Note that whenever two calculi are equivalent (as defined in Def. 2.12), then one is

⊚-k-analytic iff the other is.

Analyticity of a given calculus is traditionally proved as a corollary of cut-admissibility. Indeed, if

all rules in a pure calculus (except for (cut)) admit the local subformula property (i.e., the premises of

each rule consist only of subformulas of the formulas its conclusion), then cut-admissibility implies

analyticity. This argument can be easily generalized for ⊚-k-analyticity. For example, the calculi

LK, P, C1 and Ł3 (Examples 2.3 to 2.6) admit cut-elimination. Taking into account the structure of

their rules, this entails that LK and P are analytic, and that C1 and Ł3 are {¬}-1-analytic.
There are cases, however, in which a sequent calculus does not enjoy cut-admissibility, although

it is analytic. Examples include, e.g., sequent calculi for the modal logics S5 and B [41, 44], bi-

intuitionistic logic [40], and several calculi for paraconsistent logics [6]. Other methods for proving

⊚-k-analyticity (independent of cut-admissibility) are thus needed.

Next, we provide a semantic characterization of analyticity that is independent of cut-admissibility.

Roughly speaking, to apply this criterion, one has to consider partial bivaluations and show that

the existence of a countermodel in the form of such a partial bivaluation entails the existence of an

(infinite) full countermodel.

Theorem 3.9. An L-calculus G is ⊚-k-analytic iff every G-legal bivaluation v can be extended to

a G-legal L-bivaluation, provided that dom(v) is finite and closed under ⊚-k-subformulas.

Proof. Suppose that S ⊢G s but S ̸⊢FG s for F = sub
⊚
k (S∪{s}). By Thm. 2.11, there exists aG-legal

F -bivaluation v such that v(S) = 1 and v(s) = 0, but u(S) ≤ u(s) for every G-legal L-bivaluation u.
Therefore, v cannot be extended to a G-legal L-bivaluation. In addition, dom(v) = F is finite and

closed under ⊚-k-subformulas.

For the converse, suppose that v is a G-legal bivaluation, dom(v) is finite and closed under

⊚-k-subformulas, and v cannot be extended to a G-legal L-bivaluation. Let s = Γ ⇒ ∆, where
Γ = {ψ ∈ dom(v) | v(ψ ) = 1} and ∆ = {ψ ∈ dom(v) | v(ψ ) = 0}. Then, dom(v) = frm(s) = sub

⊚
k (s)

and v(s) = 0. We show that u(s) = 1 for every G-legal L-bivaluation u. Indeed, every such u does

not extend v , and so u(ψ ) , v(ψ ) for some ψ ∈ dom(v). Then, u(ψ ) = 0 if ψ ∈ Γ, and u(ψ ) = 1 if

ψ ∈ ∆. In either case, u(s) = 1. By Thm. 2.11, ̸⊢
sub

⊚
k (s)

G s and ⊢G s . □

Notice that the proof of Theorem 3.9 does not rely on any particular property of the sub
⊚
k

operator, except for the facts that sub
⊚
k (φ) is always finite and φ ∈ sub

⊚
k (φ).

Often, a slightly weaker notion of analyticity is employed, by considering only cases where

S = ∅. We say that a calculus G is weakly ⊚-k-analytic if ⊢G s implies ⊢
sub

⊚
k (s)

G s for every sequent
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s . The proof of Thm. 3.9 shows that this seemingly weaker notion is actually equivalent to the

stronger one for pure calculi. Indeed, the second direction of the proof actually shows that if G is

weakly ⊚-k-analytic then every G-legal bivaluation v can be extended to a G-legal L-bivaluation,

provided that dom(v) is finite and closed under ⊚-k-subformulas.
4

Example 3.10. Consider a calculus G consisting of the following rules:

p1 ⇒ /◦p1 ⇒ p1 ⇒ / ⇒ ◦p1

The G-legal bivaluation v defined by dom(v) = {p1} and v(p1) = 0 cannot be extended to a full

G-legal bivaluation: the first rule forces v(◦p1) = 0, while the second requires v(◦p1) = 1. Indeed,

G is not analytic, as the sequent ⇒ p1 is derivable in it, but only using (a cut on) the formula ◦p1.

In the next section (§4), we show that ⊚-k-analyticity also allows for a uniform SAT-based

decision procedure. Section 5 studies methods for constructing ⊚-k-analytic calculi.

4 SAT-BASED DECISION PROCEDURE
As shown in §3, the derivability problem of a given calculus is decidable whenever the calculus is

⊚-k-analytic for some ⊚ and k . However, the mere decidability of this problem does not provide

an efficient decision procedure. A great deal of ingenuity is often required for developing efficient

proof-search algorithms for sequent calculi (see, e.g., [20]).

In this section we show that for ⊚-k-analytic pure calculi it is possible to replace proof-search

by SAT solving. This is done using a polynomial-time reduction of the derivability problem to the

complement of SAT. While SAT is NP-complete, it is considered “easy” when it comes to real-world

applications. Indeed, there are many off-the-shelf SAT solvers, that, despite an exponential worst-

case time complexity, are considered extremely efficient (see, e.g., [27]). Indeed, our implementation

of the reduction, once integrated with a modern SAT solver has good performance.

To achieve the above, we utilize the semantic view of pure sequent calculi (see §2.3), that allows

us to reduce the derivability problem in a given analytic sequent calculus to small countermodel

search, which can be be easily given in terms of a SAT instance. We start by precisely defining the

reduction, proceed by proving its correctness, and its polynomial time complexity. Then we briefly

describe the implementation.

SAT instances are taken to be CNFs represented as sets of clauses, where clauses are sets of

literals (that is, atomic variables and their negations, denoted by overlines). The set {xψ | ψ ∈ L}

is used as the set of atomic variables in the SAT instances. The translation of sequents to SAT

instances is naturally given by:

SAT+(Γ ⇒ ∆) = {{xψ | ψ ∈ Γ} ∪ {xψ | ψ ∈ ∆}}

SAT−(Γ ⇒ ∆) = {{xψ } | ψ ∈ Γ} ∪ {{xψ } | ψ ∈ ∆}

This translation captures the semantic interpretation of sequents. Indeed, given an L-bivaluation v
and a classical assignment u that assigns true to xψ iff v(ψ ) = 1, we have that for every L-sequent

s: v(s) = 1 iff u satisfies SAT+(s), and v(s) = 0 iff u satisfies SAT−(s). Now, for a bivaluation to be

G-legal for some calculus G, it should satisfy the semantic restrictions arising from the rules of G
(recall Def. 2.9). These restrictions can be directly encoded as SAT instances (as done, e.g., in [31]

for the classical truth tables).

In the following reduction, we assume that the given calculus is axiomatic. If it is not, it can be

transformed into an equivalent axiomatic calculus (see Thm. 2.15).

4
The equivalence of strong and weak analyticity in pure calculi was also proved in [33] by a syntactic argument, similar to

the one in [4] that shows the equivalence of weak and strong cut-admissibility.
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Definition 4.1. The SAT instance associated with a given axiomatic L-calculus G, a subset ⊚
of ♦1

L
, a natural number k ≥ 0, a set of L-sequents S and an L-sequent s , denoted SAT⊚k (G, S, s),

consists of the following clauses:

(1) SAT+(s ′) for every s ′ ∈ S
(2) SAT−(s)
(3) SAT+(σ (s ′)) for every rule ∅ / s ′ of G and substitution σ such that σ (frm(s ′)) ⊆ sub

⊚
k (S ∪ {s})

Example 4.2. Consider the {¬}-1-analytic calculus Ł3 for Łukasiewicz three-valued logic (Example 2.6).

Its axiomatic version, Ax(Ł3), contains the rules ∅ /p1,p1 ⊃ p2 ⇒ ¬p1,p2 and ∅ /¬p2,p1 ⊃ p2 ⇒

¬p1,p2 (Example 2.14). Accordingly, SAT{¬}
1

(Ax(Ł3), S, s) includes the clauses {xψ1
, xψ1⊃ψ2

, x¬ψ1
, xψ2

}

and {x¬ψ2
, xψ1⊃ψ2

, x¬ψ1
, xψ2

} for every formula of the formψ1 ⊃ ψ2 in sub
{¬}

1
(S ∪ {s}).

The correctness of this reduction directly follows from our definitions and Thm. 2.11:

Theorem 4.3. For any ⊚-k-analytic axiomatic L-calculus G, we have S ⊢G s iff SAT⊚k (G, S, s) is
unsatisfiable.

Proof. Suppose that S ̸⊢G s . By Thm. 2.11, there exists a G-legal L-bivaluation v such that

v(S) > v(s). The classical assignment u that assigns true to xψ iff v(ψ ) = 1 satisfies SAT⊚k (G, S, s).
For the converse, let u be a classical assignment satisfying SAT⊚k (G, S, s). Let F = sub

⊚
k (S ∪ {s}).

Consider the F -bivaluation v defined by v(ψ ) = 1 iff u assigns true to xψ . v is G-legal, and
v(S) > v(s). By Thm. 2.11, S ̸⊢FG s . Since G is ⊚-k-analytic, we may conclude that S ̸⊢G s . □

Now, we show that this reduction is computable in polynomial time.

Definition 4.4. The ⊚-k-complexity of an axiomatic rule ∅ / s , denoted c⊚k (∅ / s), is the minimal

size of a set Γ ⊆ frm(s) such that frm(s) ⊆ sub
⊚
k (Γ). The ⊚-k-complexity of an axiomatic calculus

G, denoted c⊚k (G), is given by max{c⊚k (r ) | r ∈ G}. If ⊚ = ∅, we denote c⊚k by c .

Example 4.5. c(∅ /p1,p2 ⇒ p1 ∧ p2) = 1, c(∅ /p1,p1 ⊃ p2 ⇒ ¬p1,p2) = 2 and c {¬}
1

(∅ /p1,p1 ⊃

p2 ⇒ ¬p1,p2) = 1. By similar calculations for the other rules of LK and Ł3, we obtain that

c(Ax(LK)) = 1, c(Ax(Ł3)) = 2, and c {¬}
1

(Ax(Ł3)) = 1.

Theorem 4.6. Let G be an axiomatic L-calculus. Given S and s , the SAT instance SAT⊚k (G, S, s) is
computable in O(nm) time, where n is the length of the string representing S and s andm = c⊚k (G).

Proof. The following algorithm computes SAT⊚k (G, S, s):
(1) Build a parse tree for the input using standard techniques. As usual, every node represents

an occurrence of some subformula in S ∪ {s}.
(2) Using, e.g., the linear time algorithm from [15], compress the parse tree into an ordered

dag by maximally unifying identical subtrees. After the compression, the nodes of the dag

represent subformulas of S ∪ {s}, rather than occurrences. Hence we may identify nodes

with their corresponding formulas.

(3) Traverse the dag. For every ◦̄ ∈ ⊚≤k
and node v that has a parent that is labeled with an

element from ♦
L
\ ⊚, add a new path ending with v , such that the concatenation of the

path is ◦̄, if such a path does not exist. To do so it is possible to maintain in each node v a

constant-size list of all elements of ⊚≤k
that end with v . Note that after these additions, the

nodes of the dag one-to-one correspond to sub
⊚
k (S ∪ {s}).

(4) SAT−(s) is obtained by traversing the dag and generating {xψ } for everyψ on the left-hand

side of s and {xψ } for everyψ on the right-hand side of s .
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(5) For every s ′ ∈ S , SAT+(s ′) is obtained similarly.

(6)

⋃ {
SAT+(σ (s ′)) | ∅ / s ′ ∈ G,σ (frm(s ′)) ⊆ sub

⊚
k (S ∪ {s})

}
is generated by iterating over the

rules of G. For each rule ∅ / s ′, let φ1, ... ,φm′ (m′ ≤ m) be formulas such that frm(s ′) consists
only of ⊚-k-subformulas of φ1, ... ,φm′ . Go over allm′

-tuples of nodes in the dag. For each

m′
nodes v1, ... ,vm′ check whether v1, ... ,vm′ match the pattern given by φ1, ... ,φm′ , and

if so, construct a mapping h from the formulas in sub
⊚
k (s

′) to their matching nodes. Then,

construct a clause consisting of a literal xh(φ) for every φ on the left-hand side of s ′, and
a literal xh(φ) for every φ on the right-hand side of s ′. Note that only a constant depth of

the sub-dags rooted at v1, ... ,vm′ is considered—that is the complexity of φ1, ... ,φm′ , in

addition to nodes on paths that represent elements of ⊚≤k
. These are independent of the

input S ∪ {s}. To see that we generate exactly all required clauses, note that a substitution σ
satisfies σ (frm(s ′)) ⊆ sub

⊚
k (S ∪ {s}) iff σ ({φ1, ... ,φm′}) ⊆ sub

⊚
k (S ∪ {s}). Thus, there exists

a substitution σ satisfying σ (frm(s ′)) ⊆ sub
⊚
k (S ∪ {s}) iff there arem′

nodes matching the

patterns given by φ1, ... ,φm′ .

Steps 1,2,3,4 and 5 require linear time. Each pattern matching in step 6 is done in constant time,

and so handling a rule r with c⊚k (r ) ≤ m takes O(nm) time. Thus step 6 requires O(nm) time. □

Remark 1. We employ the same standard computation model of analysis of algorithms used

in [19]. An efficient implementation of this algorithm cannot afford the variables xψ to literally

include a full string representation of ψ . Thus we assume that each node has a key that can be

printed and manipulated in constant time (e.g., its memory address).

Corollary 4.7. For any ⊚-k-analytic calculus G, the derivability problem for G is in co-NP.

4.1 Linear Time Decision Procedure
Theorem 4.6 shows that the SAT instance SAT⊚k (G, S, s) can be efficiently generated. Thus, it is

natural to identify calculi whose corresponding SAT instances can be also efficiently decided. For

example, when the generated clauses are all Horn clauses, satisfiability (HORNSAT) can be decided

in linear time [22]. This is the case for Horn calculi, as defined next.

Definition 4.8. A rule is called a Horn rule if the sum of the number of formulas in the right-hand

side of the conclusion and the number of premises with a non-empty left-hand side is at most one.

A calculus is called a Horn calculus if each of its rules is a Horn rule.

Example 4.9. All rules of LK except for (⇒ ¬), (∨ ⇒) and (⇒ ⊃) are Horn.

Definition 4.8 captures the structure of a calculus that ensures that its equivalent axiomatic

calculus consists solely of single-conclusion sequents (sequents with at most one formula on the

right-hand side). In turn, the corresponding SAT-instances (see Def. 4.1) are all Horn clauses:

Proposition 4.10. Let G be a Horn calculus, S a set of single-conclusion sequents, and s a sequent.
Then SAT⊚k (G, S, s) consists solely of Horn clauses.

Proof. By Thm. 2.15, there exists an axiomatic calculus G′
that is equivalent to G. It is easy

to verify that G′
is also a Horn calculus, and that when S is a set of single-conclusion sequents,

SAT⊚k (G
′, S, s) consists solely of Horn clauses. □

As a corollary, we obtain a O(nc
⊚
k (G))-time decision procedure for the derivability problem for

every ⊚-k-analytic Horn calculus G. When c⊚k (G) = 1 (that is, when each rule r has some ‘main’

formula φ so that all other formulas that appear in r are ⊚-k-subformulas of the φ), a linear time

decision procedure is obtained.
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Example 4.11. [11] presents a reduction from the derivability problem for P to HORNSAT. This

reduction is a particular instance of the reduction presented above, and produces a linear time

decision procedure for this logic. One may also require that the disjunction of P is symmetric by

adding the pure axiomatic rule r = ∅ /p1 ∨p2 ⇒ p2 ∨p1. The obtained calculus is also analytic and

Horn. However, c(r ) = 2, and so the resulting calculus will no longer have a complexity measure

of 1, but of 2. The algorithm described in Thm. 4.6 will then require quadratic time, and thus the

entire decision procedure will also require quadratic time.

Below (see Example 5.14) we also consider an extension of P, called EP, that is still a Horn

calculus with c(EP) = 1, and thus, as P, it admits a linear-time HORNSAT-based decision procedure.

Another example presented below is the Horn calculus DY (Example 5.8) for the Dolev-Yao model

of intruder deductions, which again admits a linear-time HORNSAT-based decision procedure.

Example 4.12. The linear time decision procedure for dual-Horn clauses can be utilized as well.

For example, consider the analytic calculus Pd that consists of the rules (∨ ⇒), (⇒ ∨), (∧ ⇒) of

LK and the following ones for “dual primal implication":

(≺ ⇒) p1 ⇒ /p1 ≺ p2 ⇒ (⇒ ≺) ⇒ p1 ; p2 ⇒ / ⇒ p1 ≺ p2

Clearly, c(Pd ) = 1. In addition, for any sequent s and a set S of “single-assumption sequents"

(sequents of the form Γ ⇒ ∆ with |Γ | ≤ 1), SAT∅k (Pd , S, s) consists of dual-Horn clauses (for any k).
Thus the derivability problem for Pd can be decided in linear time.

4.2 Implementation
We have implemented our reduction in a tool called Gen2sat, available at http://www.cs.tau.ac.il/

research/yoni.zohar/gen2sat.html, and described and evaluated in [46]. Gen2sat is implemented

in Java, and uses the SAT-solver sat4j [37]. For a given pure calculus G (possibly augmented by

Next-operators as described in §7) and an input sequent s , Gen2sat decides whether s is derivable
in G. If s is not derivable, the tool provides a countermodel. If it is derivable, the tool provides a

sub-calculus in which s is already derivable (using the explanation for the lack of a countermodel

given by sat4j). The input toGen2sat can also be the output of a tool called Paralyzer that transforms

Hilbert calculi of a certain general form into equivalent analytic sequent calculi [17]. Gen2sat was

recently used for educational purposes in a logic course for Information Systems graduate students

at the University of Haifa [45].

5 IDENTIFYING AND CONSTRUCTING ANALYTIC CALCULI
Proof theory reveals a wide mosaic of possibilities for non-classical logics, and in particular, for

sub-classical logics (logics that are strictly contained in classical logic). By choosing a subset of

derivation rules that are derivable in (a proof system for) classical logic, one easily obtains a (proof

system for a) sub-classical logic. Various important and useful non-classical logics can be formalized

in this way, with the most prominent example being intuitionistic logic. In general, the resulting

logics come at first with no semantics, and might be unusable for computational purposes, since

the new calculi might not be analytic. This is evident within the framework of Hilbert-style calculi,

which are rarely analytic. But, even for Gentzen-type sequent calculi, where the initial proof system

for classical logic LK is analytic, there is no guarantee that an arbitrary collection of classically

derivable sequent rules constitutes an analytic sequent calculus.

The purpose of this section is to provide a simple criterion for a given calculus to be⊚-k-analytic,
as well as a method for constructing new ⊚-k-analytic calculi. (Once such calculi are obtained,

they are, of course, subject to the reduction to SAT presented in §4.)

http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html
http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html
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While the semantic characterization of ⊚-k-analyticity from Thm. 3.9 provides meaningful

insights on this property, it is not effective for determining ⊚-k-analyticity, as in order to use it,

one needs to go over an infinite set of bivaluations, and check whether they can be fully extended.

Therefore, a decidable syntactic criterion for ⊚-k-analyticity is desired.

In §5.1 we generalize the result of [10] in order to provide a sufficient syntactic criterion for

⊚-k-analyticity. Calculi that admit this criterion are then used in §5.2 for providing a method

to construct ⊚-k-analytic calculi. Section 5.3 includes a detailed proof of the key lemma that is

required for these results.

5.1 Sufficient Criterion for Analyticity
In this section we generalize the coherence condition from [10], which was given for canonical

calculi, and show that the generalized condition ensures analyticity. Roughly speaking, canonical

calculi are pure calculi in which each rule introduces exactly one connective in the conclusion, and

all premises include only atomic formulas. Here we relax these requirements, and allow several

connectives to be mentioned in one conclusion, as well as non atomic formulas in the premises.

We require that all premises include only ⊚-k-subformulas of the conclusion, and that only one

formula appears in the conclusion of the rule.

Definition 5.1. A rule r is called ⊚-k-ordered if every formula in its premises is a proper ⊚-k-
subformula of some formula in its conclusion. Further, r is called ⊚-k-directed if it is ⊚-k-ordered,
and its conclusion has the form ⇒ φ or φ ⇒ for some formula φ. A calculus is called⊚-k-directed
if it consists of ⊚-k-directed rules. We call a ∅-k-directed rule (calculus) directed (for any k).

Example 5.2. The calculi LK and P (Examples 2.3 and 2.4) are directed, while the calculi C1 and

Ł3 (Examples 2.5 and 2.6) are {¬}-1-directed.

In [10], a coherence property was defined for canonical calculi, and was shown to be a necessary

and sufficient condition for their analyticity. Roughly speaking, a canonical calculus is coherent if

whenever two rules share the same formula in their conclusion, but on different sides, the empty

sequent is derivable from their premises using only (cut). We generalize this requirement for the

case of ⊚-k-directed calculi:

Definition 5.3. A ⊚-k-directed calculus G is called coherent if for every two rules of G of the

forms S1 / ⇒ φ1 and S2 /φ2 ⇒ , and two substitutions σ1,σ2, if σ1(φ1) = σ2(φ2), then the empty

sequent is derivable from σ1(S1) ∪ σ2(S2) using only (cut).

For canonical calculi, this definition coincides with that of [10]. Also, it is decidable whether a

given calculus is coherent or not: for each pair of rules S1 / ⇒ φ1 and S2 /φ2 ⇒ , one can first

rename the atomic variables so that no atomic variable occurs in both rules, and then it suffices to

check the above condition for the most general unifier of φ1 and φ2.

Example 5.4. LK, P and Ł3 are coherent, while C1 is not. Indeed, for the rules p1 ⇒ / ⇒ ¬p1

and p1 ⇒ /¬¬p1 ⇒ of C1, if σ1(p1) = ¬p1 and σ2(p1) = p1, we have σ1(¬p1) = σ2(¬¬p1), but the

empty sequent cannot be derived from ¬p1 ⇒ and p1 ⇒ using only (cut).

Our notion of coherence suffices for ⊚-k-analyticity in ⊚-k-directed calculi:

Theorem 5.5. Every coherent ⊚-k-directed calculus is ⊚-k-analytic.

This theorem is obtained as a corollary of Thm. 5.10 below. Before turning to Thm. 5.10 and

deriving Thm. 5.5, we present some examples and applications.
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Example 5.6. LK and P are coherent and directed, and hence they are analytic. Ł3 is coherent
and {¬}-1-directed, and hence it is {¬}-1-analytic. Similarly, every canonical system (as defined

in [10]) is directed, and hence every coherent canonical system is analytic.

Example 5.7 (Hierarchy of double negations). The paper [29] studies an infinite family, denoted

{L2
n+2 | n ∈ N}, of pure sequent calculi for non-classical logics that admit the double negation

principle as well as its weaker forms (e.g., ¬¬¬ψ ↔ ¬ψ ). For example, the calculus L4, whose

{¬,∧,∨}-fragment captures the relevance logic of first-degree entailment [1], is obtained by aug-

menting LK \ {(¬ ⇒), (⇒ ¬)} with the following rules:

p1,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ ⇒ p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∧ p2) ⇒ ⇒ ¬p1,¬p2 / ⇒ ¬(p1 ∧ p2)

¬p1,¬p2 ⇒ /¬(p1 ∨ p2) ⇒ ⇒ ¬p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ∨ p2)

p1 ⇒ /¬¬p1 ⇒ ⇒ p1 / ⇒ ¬¬p1

This calculus is coherent and {¬}-1-directed, and hence, by Thm. 5.5, it is {¬}-1-analytic. Moreover,

it can be easily observed that for every n, L2
n+2

is coherent and {¬}-n + 1-directed, and thus, it is

{¬}-n + 1-analytic.

Example 5.8 (Dolev-Yao intruder deductions). In [18], a formal deductive system for the Dolev-Yao

intruder model was presented. Its language consists of two binary connectives: pairing, denoted ⟨·, ·⟩,
and encryption, denoted [·]· (where the argument in the subscript represents the key). Formulated

as an Hilbert calculus, which we callH , this system includes the rules of the first column in the

following table:

H G(H) DY
Pairing p1 ; p2 / ⟨p1,p2⟩ ⇒ p1 ; ⇒ p2 / ⇒ ⟨p1,p2⟩ ⇒ p1 ; ⇒ p2 / ⇒ ⟨p1,p2⟩

Unpairing ⟨p1,p2⟩ /p1 ⇒ ⟨p1,p2⟩ / ⇒ p1 p1 ⇒ / ⟨p1,p2⟩ ⇒

⟨p1,p2⟩ /p2 ⇒ ⟨p1,p2⟩ / ⇒ p2 p2 ⇒ / ⟨p1,p2⟩ ⇒

Encryption p1 ; p2 / [p1]p2

⇒ p1 ; ⇒ p2 / ⇒ [p1]p2

⇒ p1 ; ⇒ p2 / ⇒ [p1]p2

Decryption [p1]p2

; p2 /p1 ⇒ [p1]p2

; ⇒ p2 / ⇒ p1 p1 ⇒ ; ⇒ p2 / [p1]p2

⇒

The middle column of the table provides a pure sequent calculus, denoted G(H), that is obtained

from H (as sketched in Footnote 3). The right column includes a calculus, which we call DY,
obtained from G(H) by streamlining (see Lemma 2.13). DY is coherent and directed, and thus by

Thm. 5.5, it is analytic.

5.2 Constructing Analytic Calculi
While Thm. 5.5 allows us to prove that many calculi are ⊚-k-analytic (by observing that they

are ⊚-k-directed and coherent), some calculi are left out. For example, C1 (Example 2.5) is {¬}-1-

analytic, but it is not coherent. To capture C1 and other useful calculi, we introduce a more general

method to prove ⊚-k-analyticity, which is, in fact, a method for obtaining calculi that are analytic

by construction.

As a motivating example, consider the atomic paraconsistent logic P1 from [42], that allows

contradictions on atomic formulas, but forbids them on compound ones. That is, in P1 we have

that every formula φ follows from {ψ ,¬ψ } whenψ is compound, but not from {p,¬p}. Since the
explosion principle is manifested in LK through the rule (¬ ⇒), a natural way to design a sequent

calculus for P1 is to allow applications of (¬ ⇒) only on compound formulas. This is achieved

by the following calculus, denoted P1, obtained from LK by replacing (¬ ⇒) with several weaker
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variants of it, namely, with its following applications:

⇒ ¬p1 / ¬¬p1 ⇒ ⇒ p1 ∧ p2 / ¬(p1 ∧ p2) ⇒

⇒ p1 ∨ p2 / ¬(p1 ∨ p2) ⇒ ⇒ p1 ⊃ p2 / ¬(p1 ⊃ p2) ⇒

As we shall see in what follows, this type of construction is subject to the criterion that we propose

in this section. Thus, the analyticity of P1 is established in Example 5.11 below (note that P1 is

directed and coherent, and so one could also use Thm. 5.5 above).

The general construction of ⊚-k-analytic calculi that we present is obtained by joining appli-

cations of rules of a certain basic coherent ⊚-k-directed calculus. The derivable rules that are

collected to create new calculi will be applications of existing rules. Note that, following our defi-

nitions, every pure rule is an application of itself (using the identity substitution and the empty

context sequents), and every application of a pure rule constitutes a new, perhaps weaker, pure

rule. In particular, we may apply Def. 5.1 to applications of rules, and speak about ⊚-k-ordered
applications (i.e., an application in which every formula that occurs in the premises is a proper

⊚-k-subformula of some formula that occurs in the conclusion). Also observe that an applica-

tion ⟨σ (s1) ∪ c1, ... ,σ (sn) ∪ cn /σ (s) ∪ c1 ∪ ... ∪ cn⟩ of a rule s1, ... , sn / s is ⊚-k-ordered iff every

formula of the context sequents c1, ... , cn is a proper ⊚-k-subformula of some formula in σ (s).

Example 5.9. The following are ordered, {¬}-1-ordered and {¬}-2-ordered applications of the

rule (⊃ ⇒) of LK (respectively):

p2 ⇒ p1 ∧ p2 p1,p2 ⇒

p1,p2, (p1 ∧ p2) ⊃ p2 ⇒

¬p1 ⇒ p1 ∧ p2 ¬p1,p2 ⇒

¬p1, (p1 ∧ p2) ⊃ p2 ⇒

¬¬p3 ⇒ p1 ∧ p2 ¬(p2 ⊃ p3) ⇒ ¬(p1 ∧ p2)

¬¬p3, (p1 ∧ p2) ⊃ (p2 ⊃ p3) ⇒ ¬(p1 ∧ p2)

Our main result for this section is the following theorem that provides a method for constructing

⊚-k-analytic calculi.

Theorem 5.10. LetGB be a⊚-k-directed coherent calculus. Then, every calculus consisting of rules
that are ⊚-k-ordered applications of rules of GB is ⊚-k-analytic.

First, observe that Thm. 5.5 is obtained as a corollary:

Proof of Theorem 5.5. Every rule of GB is a trivial ⊚-k-ordered application of itself, and, by

Thm. 5.10, GB itself is ⊚-k-analytic. □

Before proving Thm. 5.10, we present several examples. For these examples we collect applications

of LK (i.e., we take GB = LK), which is coherent and ⊚-k-directed for every ⊚ and k .

Example 5.11 (Atomic paraconsistent logic). The calculus P1 described above for Sette’s atomic

paraconsistent logic can be constructed using the method of Thm. 5.10. Begin with LK \ {(¬ ⇒)},

and add the above ordered applications of (¬ ⇒) to allow left-introduction of negation only for

compound formulas. By Thm. 5.10, this calculus is analytic. Note that P1 is equivalent to the calculus
given in [2] for this logic.

In some cases, when adding a new rule r to an existing calculus G, some premises of r are already
derivable inG. For example, consider augmenting P (Example 2.4) with the rule⊥ ⇒ p1 / ⇒ ⊥ ⊃ p1,

which is an application of (⇒ ⊃). Since ⊥ ⇒ p1 is derivable in P, it is a redundant premise: one can

alternatively add the rule ∅ / ⇒ ⊥ ⊃ p1. The next proposition is used for omitting such redundant

premises in the following examples.
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Proposition 5.12. Let G be a pure calculus, and let r = S / s be a rule of G such that ⊢G s ′ for
some s ′ ∈ S . LetG′ = (G\ {r })∪{r ′}, where r ′ = (S \ {s ′}) / s . Then ⊢G=⊢G′ , and ifG is⊚-k-analytic
then so is G′

.

Proof. To see that ⊢G=⊢G′ , note that every derivation in G is also a derivation in G′
, and every

derivation in G′
can be turned into a derivation in G, by first deriving σ (s ′) for an appropriate σ ,

and then applying r instead of r ′. Now, suppose that G is ⊚-k-analytic. We prove that so is G′
. Let

S0 be a set of sequents and s0 a sequent such that S0 ⊢G′ s0. Let F = sub
⊚
k (S0 ∪ {s0}). We show that

S0 ⊢FG′ s0. Since ⊢G=⊢G′ , we have S0 ⊢G s0. Since G is ⊚-k-analytic, it follows that S0 ⊢FG s0. The

derivation of s0 from S0 in G that uses only F -formulas is also a derivation in G′
, and thus we have

S0 ⊢
F
G′ s0. □

Example 5.13. In [8], it was shown that C1 (Example 2.5) is {¬}-1-analytic, as a corollary of cut-

admissibility. Using the methods of this section, we provide a simpler proof of the {¬}-1-analyticity

of C1. For this purpose, we construct a calculus which is equivalent to C1, which we call C1
′
.

Take GB to be LK, and G to be LK \ {(¬ ⇒)}. By Thm. 5.5, G is {¬}-1-analytic. C1
′
is obtained by

augmenting G with the following rules:

∅ /¬¬p1 ⇒ p1

∅ /p1,¬p1,¬(p1 ∧ ¬p1) ⇒ ∅ /¬(p1 ∧ p2) ⇒ ¬p1,¬p2

∅ /¬(p1 ∨ p2) ⇒ ¬p1,p2 ∅ /¬(p1 ∨ p2) ⇒ ¬p1,¬p2

∅ /¬(p1 ∨ p2) ⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2) ⇒ p1,p2

∅ /¬(p1 ⊃ p2) ⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2) ⇒ ¬p1,¬p2

Every rule here has the form ∅ / s , where s is the conclusion of a {¬}-1-ordered application of the

rule (¬ ⇒) of GB, whose premises are all derivable in G. For example, ¬(p1 ∧p2) ⇒ ¬p1,¬p2 is the

conclusion of the following {¬}-1-ordered application of (¬ ⇒), whose premise is derivable in G:

⇒ p1 ∧ p2,¬p1,¬p2

¬(p1 ∧ p2) ⇒ ¬p1,¬p2

By Thm. 5.10 and Prop. 5.12, C1
′
is {¬}-1-analytic. Using Lemma 2.13, it is easy to see that C1

′
is

equivalent to C1, and furthermore, its {¬}-1-analyticity entails the {¬}-1-analyticity of C1.

Example 5.14. The calculus P (Example 2.4) is analytic, as shown in Example 5.6. Its analyticity

also follows from the fact that it consists of ordered applications of rules of LK (the only rule in P
which is not in LK is ⇒ p2 / ⇒ p1 ⊃ p2, which is an ordered application of p1 ⇒ p2 / ⇒ p1 ⊃ p2).

It is also possible to augment P with additional rules in order to make it somewhat closer to LK,
without compromising its analyticity. For example, an extended calculus, which we denote by EP,
is obtained by augmenting P with the following set of rules, which recover some natural properties

of the classical connectives (none of them is derivable in P):

∅ / ⇒ ⊥ ⊃ p1 ∅ /p1 ∨ p1 ⇒ p1 ∅ / ⇒ p1 ⊃ p1

∅ /⊥ ∨ p1 ⇒ p1 ∅ /p1,¬p1 ⇒ ∅ / ⇒ (p1 ∧ p2) ⊃ p1

∅ /p1 ∨ ⊥ ⇒ p1 ∅ /p1 ∨ (p1 ∧ p2) ⇒ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p2

∅ / (p1 ∧ p2) ∨ p1 ⇒ p1 ∅ / ⇒ p2 ⊃ (p1 ⊃ p2)

Each of these rules has the form ∅ / s , where s is the conclusion of an ordered application of a rule

of LK, whose premises are all derivable in P. By Thm. 5.10 and a repeated application of Prop. 5.12,

augmenting P with these axiomatic rules results in an analytic calculus.
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5.3 Proof of Theorem 5.10
Let G be a calculus that consists of ⊚-k-ordered applications of rules of a ⊚-k-directed coherent

calculus GB. We prove that G is⊚-k-analytic. Using Thm. 3.9, it suffices to prove that every G-legal
bivaluation v can be extended to a G-legal L-bivaluation, provided that dom(v) is finite and closed

under ⊚-k-subformulas. Thus, in what follows, we fix an arbitrary G-legal bivaluation v such that

dom(v) is finite and closed under ⊚-k-subformulas.

We extend v iteratively: in each step we add a single formula to the domain of v . Thus, we
construct a sequence of G-legal bivaluations that extend v , and use this sequence in order to define

a G-legal L-bivaluation that extends v .
Since the ⊚-k-subformula relation is a partial order, sub

⊚
k (ψ ) is finite for everyψ , and dom(v) is

finite, there exists an enumerationψ1,ψ2, ... of L such that:

(1) Ifψi ∈ dom(v) andψj < dom(v) then i < j.
(2) Ifψi is a ⊚-k-subformula ofψj then i ≤ j.

We define a sequence v0,v1, ... of bivaluations inductively by:

(1) v0 = v .
(2) For every i > 0, vi is defined over dom(v) ∪ {ψ1, ... ,ψi } as follows:
(a) vi (φ) = vi−1(φ) for every φ ∈ dom(vi−1).

(b) If ψi < dom(vi−1), then vi (ψi ) = 1 iff there exists a rule of the form s1, ... , sn / ⇒ φ in

GB, sequents s
′
1
⊆ s1, ... , s

′
n ⊆ sn , and a substitution σ such that σ (frm({s ′

1
, ... , s ′n})) ⊆

dom(vi−1), σ (φ) = ψi and vi−1(σ (s
′
j )) = 1 for every 1 ≤ j ≤ n. Otherwise, vi (ψi ) = 0.

The following lemma is needed in order to show that each bivaluation in the sequence is G-legal.

Lemma 5.15. Let r̂ =
〈
{σ (s ′

1
) ∪ c1, ... ,σ (s

′
n) ∪ cn},σ (s) ∪ c1 ∪ ... ∪ cn

〉
be a ⊚-k-ordered appli-

cation of a ⊚-k-directed rule r = s1, ... , sn / s , and let φs be the single formula in frm(s). Then, all
formulas in sub

⊚
k (σ (s

′
i ) ∪ ci ) are proper ⊚-k-subformulas of σ (φs ) for every 1 ≤ i ≤ n. In particular,

sub
⊚
k ({σ (s

′
1
) ∪ c1, ... ,σ (s

′
n) ∪ cn,σ (s)}) ⊆ sub

⊚
k (σ (s)).

Proof. Let ψ be a ⊚-k-subformula of some φ ∈ σ (frm(s ′i )) ∪ frm(ci ). We show that φ is a

proper ⊚-k-subformula of σ (φs ). Since ψ is a ⊚-k-subformula of φ, it would then follow that

ψ is also a proper ⊚-k-subformula of σ (φs ). If φ = σ (φ ′) for some φ ′ ∈ frm(s ′i ), then since r is

⊚-k-directed, φ ′
is a proper ⊚-k-subformula of φs . By Lemma 3.4, φ is a proper ⊚-k-subformula of

σ (φs ). Otherwise, φ ∈ frm(ci ), and since r̂ is ⊚-k-ordered, φ is a proper ⊚-k-subformula of some

formula in frm(σ (s) ∪ c1 ∪ ... ∪ cn). If φ is a proper ⊚-k-subformula of some formula in frm(σ (s)),
then this formula must be σ (φs ). Otherwise, let θ be a formula in frm(c1 ∪ ... ∪ cn) such that φ is a

proper ⊚-k-subformula of θ , and θ has a maximal number of connectives. Since r̂ is ⊚-k-ordered, θ
is also a proper ⊚-k-subformula of some formula θ ′ ∈ frm(σ (s) ∪ c1 ∪ ... ∪ cn). By the maximality

of θ , we have that θ ′ ∈ frm(σ (s)), which means that θ ′ = σ (φs ). Since φ is a proper⊚-k-subformula

of θ , we also have that φ is a proper ⊚-k-subformula of σ (φs ). □

Next, we show by induction on i , that each vi is G-legal. For i = 0, this holds by our assumption

regarding v . Let i > 0, and r be a rule of G. Then, there exist a rule s1, ... , sn / s of GB, sequents

s ′
1
⊆ s1, ... , s

′
n ⊆ sn , a substitution α , and sequents c1, ... , cn such that r = α(s ′

1
) ∪ c1, ... ,α(s

′
n) ∪

cn /α(s)∪c1 ∪ ...∪cn . Let s
′′
1
⊆ s ′

1
, ... , s ′′n ⊆ s ′n , c

′
1
⊆ c1, ... , c

′
n ⊆ cn and σ be a substitution such that

σ (frm({α(s ′′
1
)∪c ′

1
, ... ,α(s ′′n )∪c

′
n,α(s)∪c1∪...∪cn})) ⊆ dom(vi ). We show thatvi ({σ (α(s

′′
j )∪c

′
j ) | 1 ≤

j ≤ n}) ≤ vi (σ (α(s) ∪ c1 ∪ ... ∪ cn)). Ifψi < σ (frm({α(s ′′
1
) ∪ c ′

1
, ... ,α(s ′′n ) ∪ c ′n,α(s) ∪ c1 ∪ ... ∪ cn)})

or ψi ∈ dom(vi−1), then σ (frm({α(s ′′
1
) ∪ c ′

1
, ... ,α(s ′′n ) ∪ c ′n,α(s) ∪ c1 ∪ ... ∪ cn})) ⊆ dom(vi−1), and

hence this holds by the induction hypothesis. Assume now thatψi ∈ σ (frm({α(s ′′
1
) ∪ c ′

1
, ... ,α(s ′′n ) ∪

c ′n,α(s) ∪ c1 ∪ ... ∪ cn)}) andψi < dom(vi−1). Let φs be the single formula in frm(s). We first prove
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thatψi = σ (α(φs )). Otherwise, σ (α(φs )) ∈ dom(vi−1). By Lemma 5.15, the set of formulas that occur

in r is contained in sub
⊚
k (α(φs )), and by Lemma 3.4, we also have that for every formula φ that

occurs in r , σ (φ) ∈ σ (sub⊚k (α(φs ))) ⊆ sub
⊚
k (σ (α(φs ))). dom(vi−1) is closed under ⊚-k-subformulas,

and σ (α(φs )) ∈ dom(vi−1). Thus we haveψi ∈ dom(vi−1), which is a contradiction.

Similarly, we show that σ (frm(α(s ′′j ) ∪ c ′j )) ⊆ dom(vi−1) for every 1 ≤ j ≤ n. Indeed, let

φ ∈ σ (frm(α(s ′′j )∪c
′
j )) and letφ

′ ∈ frm(α(s ′′j )∪c
′
j ) such thatφ = σ (φ

′). By Lemma 5.15,φ ′
is a proper

⊚-k-subformula of α(φs ), and hence by Lemma 3.4, φ is a proper ⊚-k-subformula ofψi = σ (α(φs )).
In particular, φ , ψi . Since σ (frm(α(s ′′j ) ∪ c ′j )) ⊆ dom(vi ), it follows that φ ∈ dom(vi−1).

Now, suppose that vi (σ (α(s
′′
j ) ∪ c ′j )) = 1 for every 1 ≤ j ≤ n. We prove that vi (σ (α(s) ∪ c1 ∪ ... ∪

cn)) = 1. If vi (σ (c
′
1
∪ ... ∪ c ′n)) = 1, then we are clearly done. Assume otherwise. Hence, we have

vi (σ (α(s
′′
j ))) = 1 for every 1 ≤ j ≤ n. Since σ (α(frm(s ′′j ))) ⊆ dom(vi−1) for every 1 ≤ j ≤ n, we

have vi−1(σ (α(s
′′
j ))) = 1 for every such j. Distinguish two cases:

• s = ⇒ φs : Since σ (α(frm(s ′′j ))) ⊆ dom(vi−1) for every 1 ≤ j ≤ n, σ (α(φs )) = ψi , and

vi−1(σ (α(s
′′
j ))) = 1 for every 1 ≤ j ≤ n, by the definition of vi we have vi (ψi ) = 1, and so

vi (σ (α(s))) = 1.

• s = φs ⇒ : To prove that vi (σ (α(s))) = 1, we show that vi (ψi ) = 0. By the definition

of vi , it suffices to prove that for every rule of the form q1, ... ,qm / ⇒ φ ′
in GB, se-

quents q′
1
⊆ q1, ... ,q

′
m ⊆ qm and substitution σ ′

such that σ ′(frm(q′j )) ⊆ dom(vi−1) for

every 1 ≤ j ≤ m and σ ′(φ ′) = ψi , we have vi−1(σ
′(q′j )) = 0 for some 1 ≤ j ≤ m . Let

q1, ... ,qm / ⇒ φ ′
and σ ′

as above. Since GB is coherent, the empty sequent is derivable from

{σ (α(s1)), ... ,σ (α(sn)),σ
′(q1), ... ,σ

′(qm)} using only (cut). It can be shown by induction

on this derivation that the same holds for {σ (α(s ′
1
)), ... ,σ (α(s ′n)),σ

′(q′
1
), ... ,σ ′(q′m)}, and in

particular, we have σ (α(s ′
1
)), ... ,σ (α(s ′n)),σ

′(q′
1
), ... ,σ ′(q′m) ⊢

dom(vi−1)

G ⇒ . By Thm. 2.11,

since vi−1 is G-legal and vi−1(σ (α(s
′
j ))) = 1 for every 1 ≤ j ≤ n, we have vi−1(σ

′(q′j )) = 0 for

some 1 ≤ j ≤ m.

Finally, let v ′
be the L-bivaluation given by v ′(ψi ) = vi (ψi ) for every i > 0. Clearly, v ′

extends

v . To see that it is G-legal, let s1, ... , sn / s ∈ G, s ′
1
⊆ s1, ... , s

′
n ⊆ sn , and σ be a substitution. Let

j = max{i | ψi ∈ σ (frm({s ′
1
, ... , s ′n, s}))}. Then, v

′(ψ ) = vj (ψ ) for every ψ ∈ σ (frm({s ′
1
, ... , s ′n, s})).

Since vj is G-legal, v ′({σ (s ′i ) | 1 ≤ i ≤ n}) = min{vj (σ (s
′
i )) | 1 ≤ i ≤ n} ≤ vj (σ (s)) = v

′(σ (s)). □

6 ADDING MODAL OPERATORS TO PURE SEQUENT CALCULI
Useful non-classical logics are beyond the reach of ⊚-k-analytic pure calculi. For example, the

usual sequent rules for the modal operators □ and ^ in modal logics (e.g., K, KTB, S5 etc.) limit

the context sequents, and thus are not pure. In this section, we consider the extensions of pure

sequent calculi with rules for introducing modal operators. Our investigation is not limited to a

single modal operator, and thus the systems that we study aremultimodal. Moreover, the base logic

need not be classical, and can be any logic that is described by a pure calculus. In §6.2, we prove

a soundness and completeness theorem for the resulting calculi with respect to a Kripke-style

semantics that generalizes the bivaluation semantics of §2.3. This semantics is then used in §6.3 in

order prove the following result: if a pure calculus is ⊚-k-analytic, then it remains so when rules

for modal operators are added. The main lemma that is used in the proof of this result is proved in

Lemma 6.20. The semantics is also used in the next section, where we extend the reduction of §4 to

pure calculi that are augmented with a special kind of modal operators. Note that we focus here

on positive, Box-like modal operators. An investigation of Diamond-like modal operators, and of

negative modalities (see, e.g., [23]) is left for future research.
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(k)

Γ ⇒ φ

�Γ ⇒ �φ
(pf)

functional

Γ ⇒ φ,∆

�Γ ⇒ �φ,�∆
(4)

transitive

�Γ1, Γ2 ⇒ φ

�Γ1,�Γ2 ⇒ �φ

(45)

transitive

euclidean

�Γ1, Γ2 ⇒ φ,�∆

�Γ1,�Γ2 ⇒ �φ,�∆
(b)

symmetric

Γ ⇒ φ,�∆

�Γ ⇒ �φ,∆
(b4)

symmetric

transitive

�Γ1, Γ2 ⇒ φ,�∆1,�∆2

�Γ1,�Γ2 ⇒ �φ,�∆1,∆2

Additional reflexivity rule:

(t)

Γ,φ ⇒ ∆

Γ,�φ ⇒ ∆

Additional corresponding seriality rules:

(dk)

Γ ⇒

�Γ ⇒
(dpf)

Γ ⇒ ∆

�Γ ⇒ �∆
(d4)

�Γ1, Γ2 ⇒

�Γ1,�Γ2 ⇒

(d45)

�Γ1, Γ2 ⇒ �∆

�Γ1,�Γ2 ⇒ �∆
(db)

Γ ⇒ �∆

�Γ ⇒ ∆
(db4)

�Γ1, Γ2 ⇒ �∆1,�∆2

�Γ1,�Γ2 ⇒ �∆1,∆2

Fig. 1. Application schemes of sequent rules for a modal operator �

Let � be a finite set of unary connectives, called modal operators, such that � ∩ ♦
L
= ∅. We

denote by L� the propositional language obtained by augmenting L with the modal operators in

�. The notations �F and �F are similar to the notations from §3, and are extended to sequents

and sets of sequents in the obvious way.

Unlike the connectives of L, which may appear in any pure rule, the modal operators are

manipulated according to a predefined set of rules given in Fig. 1. These sequent rules were

previously shown to correspond to the classical modal logic axioms [30, 34, 44]. With the exception

of (t), these are not pure rules, as their applications do not allow arbitrary context sequents. To keep

the discussion modular, we assume a given specification function M specifying the derivation rules

for every � ∈ �. For every � ∈ �,M(�) is either a singleton consisting of one of the rules from the

first part of Fig. 1, or a pair consisting of such a rule (X) together with either (t) or a matching (dx)

rule. (Note that there is no need to consider the combination of both (t) and a (dx)-rule, since, by

possibly using cuts, all (dx)-rules are derivable in the presence of (t)). We exclude the combination

of (pf) and (t), as we were unable to find an appropriate semantic condition for this combination.
5

Thus, there are 6 + 6 + 5 = 17 options for rules manipulating each modal operator.

Given a pure calculusG for L, we obtain the calculusGM for L� by augmentingGwith the rules

determined by M(�) for each � ∈ �. For a set F ⊆ L� of formulas, we write S ⊢FGM
s (or S ⊢GM

s

when F = L�) if there is a derivation of a sequent s from a set S of sequents in GM consisting only

of F -sequents.

Example 6.1. Sequent calculi for classical modal logics are obtained by taking � = {□}, and
augmenting LK with the appropriate rules for the modal operators. For example, calculi for the

modal logics K and KD are obtained by respectively takingM(□) = {(k)} andM(□) = {(k), (dk)}.
The logics S4 and S5 are captured by respectively takingM(□) = {(4), (t)} andM(□) = {(b4), (t)}.

5
If classical negation is definable, the meaning of � in the presence of both (pf) and (t) becomes trivial: on the one hand, (t)

easily gives us the derivability of �φ ⇒ φ . On the other hand, φ ⇒ �φ can be proved using the rules (¬ ⇒) and (⇒ ¬) of

LK, together with (t), (pf) and (cut).
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6.1 Equivalence and Admissible Rules
Interestingly, whether or not different specifications for rules of the modal operators yield “observa-

tionally distinct” calculi might depend on the underlying pure calculus. That is, there are (families

of) pure calculi for which the addition of different rules for modal operators induces the same

derivability relation. In this section, we present two such cases. The first establishes the equivalence

of {(pf), (dpf)} and {(k), (dk)} when added to a Horn calculus (see Def. 4.8):

Proposition 6.2. Suppose that M(�) = {(pf), (dpf)} and M′(�) = {(k), (dk)} for every � ∈ �.

Let G be a Horn calculus. Then, S ⊢GM
s iff S ⊢GM′

s for every set S of of single-conclusion sequents

and sequent s .

Proof. The right-to-left direction is trivial. For the left-to-right direction, we prove that if

S ⊢GM
Γ ⇒ ∆, then S ⊢GM

Γ ⇒ E for some singleton or empty set E ⊆ ∆. This allows us to replace

any application of (pf) or (dpf) with an application of either (k) or (dk) on a single-conclusion

subsequent, and then obtaining the original conclusion using weakening. We do so by induction

on the length of the derivation of Γ ⇒ ∆.
If Γ ⇒ ∆ ∈ S or Γ ⇒ ∆ is the conclusion of an application of (id), (weak), (cut), (k), or (dk)

then this is obvious. We consider the case that Γ ⇒ ∆ is the conclusion of an application of some

pure rule Γ1 ⇒ ∆1, ... , Γn ⇒ ∆n / Γ0 ⇒ ∆0 of G. Then, there exist a substitution σ and sequents

Γ′
1
⇒ ∆′

1
, Γ′′

1
⇒ ∆′′

1
, ... , Γ′n ⇒ ∆′

n, Γ
′′
n ⇒ ∆′′

n such that for every 1 ≤ i ≤ n, Γ′i ⇒ ∆′
i ⊆ Γi ⇒ ∆i ,

Γ ⇒ ∆ = Γ′′
1
, ... , Γ′′n ,σ (Γ0) ⇒ σ (∆0),∆

′′
1
, ... ,∆′′

n , and S ⊢GM
Γ′′i ,σ (Γ

′
i ) ⇒ σ (∆′

i ),∆
′′
i with shorter

derivations for every 1 ≤ i ≤ n. Since G is Horn, one of the following holds:

(1) For every 1 ≤ i ≤ n, Γ′i = ∅ and |σ (∆0)| ≤ 1: In this case, S ⊢GM
Γ′′i ⇒ σ (∆′

i ),∆
′′
i for every

1 ≤ i ≤ n. By the induction hypothesis, for every 1 ≤ i ≤ n, S ⊢GM
Γ′′i ⇒ Ei for some

singleton or empty set Ei ⊆ σ (∆′
i )∪∆′′

i . If Ei ⊆ ∆′′
i for some 1 ≤ i ≤ n, then using (weak) we

are done. Otherwise, for every 1 ≤ i ≤ n, there exists φi ∈ σ (∆
′
i ) such that Ei = {φi }. Hence

for every 1 ≤ i ≤ n, S ⊢GM
Γ′′i ⇒ φi . Now, we may apply the rule with context sequents

Γ′′i ⇒ and get that S ⊢GM
Γ′′

1
, ... , Γ′′n ,σ (Γ0) ⇒ σ (∆0), which means that S ⊢GM

Γ ⇒ σ (∆0).

(2) There exists a single 1 ≤ i ≤ n such that Γ′i , ∅, and ∆0 = ∅: By the induction hypothesis,

there exists a singleton or empty set Ei ⊆ σ (∆′
i ) ∪ ∆′′

i such that S ⊢GM
Γ′′i ,σ (Γ

′
i ) ⇒ Ei .

Also by the induction hypothesis, for every j , i , there exists a singleton or empty set

Ej ⊆ ∆′′
j ∪ σ (∆′

j ) and S ⊢GM
Γ′′j ⇒ Ej . If Ej ⊆ ∆′′

j for some j , i , then using (weak), we get

that and S ⊢GM
Γ ⇒ Ej (and Ej ⊆ ∆). Otherwise, for every j , i there exists φ j ∈ σ (∆

′
j ) such

that Ej = {φ j }. Apply the rule with context sequents Γ′′i ⇒ Ei and Γ′′j ⇒ for every j , i and

obtain S ⊢GM
Γ′′

1
, ... , Γ′′n ,σ (Γ0) ⇒ Ei , and so S ⊢GM

Γ ⇒ Ei (for Ei ⊆ ∆). □

Next, we provide sufficient conditions for the admissibility of the seriality rules (dk), (d4), (d45)

and (dpf). Recall that Fig. 1 associates each modal rule (X) with its own seriality rule (dx). Such a

rule is needed, for instance, to derive □⊥ ⇒ , which should be derivable when the accessibility

relation is required to be serial. For a certain family of pure calculi, that we call definite calculi, we

can prove that (dk), (d4), (d45) and (dpf) are redundant:

Definition 6.3. A rule is called definite if at least one of its premises has an empty right-hand

side whenever the conclusion has an empty right-hand side. A calculus is called definite if each of

its rules is definite.

Example 6.4. All rules of LK except for (¬ ⇒) and (⊥ ⇒) are definite.
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Proposition 6.5. Suppose thatM′(�) = M(�) \ {(dk), (d4), (d45), (dpf)} for every � ∈ �. LetG be

a definite calculus. Suppose that S ⊢GM
s for some set S of sequents with non-empty right-hand sides

and sequent s . Then, S ⊢GM′
s .

Proof. First, since G is definite, using induction on the length of the derivation, it can be

shown that all sequents in the derivation of s from S in GM have a non-empty right-hand side.

Such derivations cannot use (dk) or (d4). Moreover, any application of (dpf) whose premise

has a non-empty right-hand side is also an application of (pf). Finally, consider an application

⟨�Γ1 ∪ Γ2 ⇒ �∆,�Γ1 ∪ �Γ2 ⇒ �∆⟩ of (d45). Since�∆ , ∅, we can use (weak) to obtain�Γ1, Γ2 ⇒

ψ ,�∆ for someψ ∈ ∆, and using (45) we get �Γ1,�Γ2 ⇒ �ψ ,�∆, which is s . □

Note that (db) and (db4) are not admissible under the conditions above. Indeed, when augmenting

the empty (pure) calculus with these rules, the sequent ��p1 ⇒ p1 is derivable using only (id) and

either (db) or (db4), while it is not derivable using (b) or (b4).

6.2 Kripke Semantics for Modal Operators
In this section we generalize the bivaluations semantics from §2.3 and elevate it to a Kripke-style

semantics. Given a pure calculus and a specification of rules for the modal operators, the semantics

of the original connectives is governed by the bivaluation semantics in each possible world, while

the semantics of the modal connectives follows their usual meaning in Kripke models. As in the

case of bivaluations, we consider partial Kripke models in order to achieve a semantic counterpart

of analyticity.

Definition 6.6. A biframe for M is a tuple W = ⟨W ,R,V⟩ where:

(1) W is a set of elements called worlds. Henceforth, we may identifyW with this set (e.g., when

writingw ∈ W instead ofw ∈W ).

(2) R is a function assigning a binary relation onW (called accessibility relation) to every � ∈ �.

We write R� instead of R(�), and R�[w] for {w ′ ∈ W | wR�w
′}. For every � ∈ �, the

relation R� should have particular properties according to M(�) as indicated in Fig. 1. In

particular, if some (dx) ∈ M(�), then R� is serial; and if (t) ∈ M(�), then R� is reflexive.
6

(3) V is a function assigning a bivaluation Vw to every w ∈ W , such that V(w)(�ψ ) =
min{V(w ′)(ψ ) | w ′ ∈ R�[w]} whenever �ψ ∈ dom(V(w)) and ψ ∈ dom(V(w ′)) for ev-

eryw ′ ∈ R�[w].7

If dom(Vw ) = F for everyw ∈W , we call W an F -biframe for M.

Notation 6.7. Let W = ⟨W ,R,V⟩ be a biframe for M. For a setW ′ ⊆ W , we write VW ′(ψ ) to
denote min{Vw ′(ψ ) | w ′ ∈W ′}. This notation is extended to sequents and sets of sequents in the

natural way (e.g., VW ′(S) = min{Vw ′(s) | s ∈ S,w ′ ∈W ′}). In addition, we denote by dom(W) the

intersection of all sets dom(Vw ) for everyw ∈W .

In particular, we have Vw (�ψ ) = VR�[w ](ψ ) for every w ∈ W and ψ ,�ψ ∈ L� such that

�ψ ∈ dom(Vw ) andψ ∈ dom(Vw ′) for everyw ′ ∈ R�[w].

Next, we adopt the semantic viewpoint of pure rules in order to retain the connection between

sequent calculi and their semantics.

Definition 6.8. A biframe ⟨W ,R,V⟩ forM is called G-legal for an L-calculus G ifVw is G-legal
for everyw ∈W (see Def. 2.9).

6
An accessibility relation R is called transitive if wRu and uRv imply wRv ; symmetric if wRu implies uRw ; functional if

wRu and wRv imply u = v ; euclidian if wRu and wRv imply uRv ; reflexive if wRw for every w ∈ W; and serial if for

all w ∈W , we have wRu for some u .
7
Recall that min ∅ = 1.
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We turn to proving soundness and completeness.

We note that the rule (4) and its two variants (45) and (b4) are not sound for every possible set F of

formulas. For example, the sequent �φ ⇒ ��φ is derivable using (4) and (id), using only formulas

from {�φ,��φ}. However, this sequent is not valid in the {�φ,��φ}-biframeW = ⟨W ,R,V⟩,

in which R� is transitive, given byW = {w1,w2}, R� = {⟨w1,w2⟩},Vw1
(�φ) = 1,Vw1

(��φ) = 0,

Vw2
(�φ) = 0, Vw2

(��φ) = 1. The reason W is indeed a biframe is the fact that φ is missing from

the domains of the bivaluations. Thus, in the presence of any of the rules (4), (45) and (b4), we

require that F is “closed" with respect to �, that is, φ ∈ F whenever �φ ∈ F for some � ∈ �.

Theorem 6.9 (Soundness). LetG be an L-calculus, F a set of L�-formulas, S a set of F -sequents

and s an F -sequent. Suppose that for every � ∈ �, if {(4), (45), (b4)} ∩ M(�) , ∅, then ψ ∈ F

whenever �ψ ∈ F . If S ⊢FGM
s , then VW (S) ≤ VW (s) for every G-legal F -biframe ⟨W ,R,V⟩ for M.

Proof. Let W = ⟨W ,R,V⟩ be a G-legal F -biframe for M. Suppose thatVW (S) = 1. We prove

thatVW (s) = 1 by induction on the length of the derivation of s from S in GM (that consists only

of F -sequents). If s ∈ S , or s is the conclusion of an application of a non-modal rule, then this is

shown like in the proof of Thm. 2.11. If s is the conclusion of an application of some rule in M(�),

then the proof carries on according to the identity of this rule. We explicitly handle the cases of (k),

(4) and (t), leaving the other cases for the reader.

(1) If s is the conclusion of an application of (k) for some� ∈ �, then s has the form�Γ ⇒ �φ for

some Γ ⊆ F andφ ∈ F , and S ⊢FGM
Γ ⇒ φ. Suppose for contradiction thatVw (�Γ ⇒ �φ) = 0

for somew ∈W . Then,Vw (�φ) = 0, andVw (�ψ ) = 1 for everyψ ∈ Γ. In particular, there

exists a world w ′ ∈ R[w] such that Vw ′(φ) = 0, and Vw ′(ψ ) = 1 for every ψ ∈ Γ, which
contradicts the induction hypothesis, according to which Vw ′(Γ ⇒ φ) = 1.

(2) If s is the conclusion of an application of (4) for some � ∈ �, then s has the form �Γ1,�Γ2 ⇒

�φ for some Γ2 ⊆ F , φ ∈ F and Γ1 such that �Γ1 ⊆ F , and S ⊢FGM
�Γ1, Γ2 ⇒ φ. In particular,

Γ2 ⊆ F and φ ∈ F . In addition, since (4) ∈ M(�), we have Γ1 ⊆ F as well. Suppose for

contradiction that Vw (�Γ1,�Γ2 ⇒ �φ) = 0 for some w ∈ W . Then, Vw (�φ) = 0, and

Vw (�ψ ) = 1 for every ψ ∈ Γ1 ∪ Γ2. In particular, there exists a world w ′ ∈ R[w] such

that Vw ′(φ) = 0, and Vw ′(ψ ) = 1 for every ψ ∈ Γ2. Now, let ψ ∈ Γ1 and w ′′ ∈ R[w ′].

Since (4) ∈ M(�), we have that R� is transitive, which means that w ′′ ∈ R[w]. Therefore,

Vw ′′(ψ ) = 1 for every suchw ′′
, and hence Vw ′(�ψ ) = 1 for everyψ ∈ Γ1. We therefore have

Vw ′(�Γ1, Γ2 ⇒ φ) = 0, contradicting the induction hypothesis.

(3) If s is the conclusion of an application of (t) for some � ∈ �, then s has the form Γ,�φ ⇒ ∆

for some Γ,∆ ⊆ F and φ ∈ F , and S ⊢FGM
Γ,φ ⇒ ∆. Letw ∈W . By the induction hypothesis,

Vw (Γ,φ ⇒ ∆) = 1, which means that eitherVw (ψ ) = 0 for someψ ∈ Γ,Vw (ψ ) = 1 for some

ψ ∈ ∆, orVw (φ) = 0. In the first two cases, we haveVw (Γ,�φ ⇒ ∆) = 1 as well. In the third

case, note that since (t) ∈ M(�) we have that R� is reflexive. This, together with the fact

thatVw (φ) = 0, means thatVw (�φ) = 0, and hence Vw (Γ,�φ ⇒ ∆) = 1. □

We turn to completeness. Here, we follow the canonical construction of a countermodel, whose

worlds are maximal unprovable sequents, but adjust it to the case where only formulas from a

certain set F are allowed in derivations. When F is infinite, this requires us to use ω-sequents
(defined as in the proof of Thm. 2.11).

Theorem 6.10 (Completeness). Let G be an L-calculus, F a set of L�-formulas, S a set of

F -sequents and s an F -sequent. If S ̸⊢FGM
s , then VW (S) > VW (s) for some G-legal F -biframe

⟨W ,R,V⟩ for M.

Proof. We say that an ω-sequent L ⇒ R is M-S-F -maximal unprovable if the following hold:
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• L ∪ R ⊆ F

• S ̸⊢FGM
L ⇒ R

• S ⊢FGM
L,ψ ⇒ R for everyψ ∈ F \ L

• S ⊢FGM
L ⇒ ψ ,R for everyψ ∈ F \ R

We denote the set of M-S-F maximal unprovable ω-sequents byW (M, S, F ). Using (id) and (cut),

it is easy to see that L ∪ R = F and L ∩ R = ∅ for every L ⇒ R ∈W (M, S, F ). In addition, it is a

routine matter to show that every ω-sequent L ⇒ R such that L ∪ R ⊆ F and S ̸⊢FGM
L ⇒ R can be

extended to an M-S-F -maximal unprovable ω-sequent.
For every L ⇒ R ∈W (M, S, F ) and � ∈ M, let

A�
L⇒R = {L′ ⇒ R′ ∈W (M, S, F ) | L�

1
∪ L�

2
⊆ L′ ∧ R�

1
∪ R�

2
∪ R�

3
⊆ R′}

where L�
1
, L�

2
,R�

1
,R�

2
, and R�

3
are given by:

L�
1
= {φ ∈ F | �φ ∈ L}

L�
2
=

{
�F ∩ L {(4), (45), (b4)} ∩M(�) , ∅

∅ otherwise
R�

1
=

{
�F ∩ R {(45), (b4)} ∩M(�) , ∅

∅ otherwise

R�
2
=

{
F ∩ �R {(b), (b4)} ∩M(�) , ∅

∅ otherwise
R�

3
=

{
{φ ∈ F | �φ ∈ R} (pf) ∈ M(�)

∅ otherwise

Using these definitions, we define the following countermodel W = ⟨W ,R,V⟩, where:

(1) W =W (M, S, F ).

(2) for every � ∈ �, we define R� by specifying the set R�[L ⇒ R] for every L ⇒ R ∈W :

(a) if (pf) < M(�) then R�[L ⇒ R] is A�
L⇒R .

(b) If (pf) ∈ M(�) then R�[L ⇒ R] consists of a single arbitrary element from A�
L⇒R , unless

A�
L⇒R is empty, in which case so is R�[L ⇒ R].

(3) For everyψ ∈ F and L ⇒ R ∈W , VL⇒R (ψ ) = 1 ifψ ∈ L andVL⇒R (ψ ) = 0 otherwise.

We first show that VW (S) > VW (s). For every Γ ⇒ ∆ ∈ S and L ⇒ R ∈ W , since S ⊢FGM
Γ ⇒ ∆

and S ̸⊢FGM
L ⇒ R, there exist some ψ ∈ Γ \ L (and then VL⇒R (ψ ) = 0) or ψ ∈ ∆ \ R (and

then VL⇒R (ψ ) = 1). Either way, VL⇒R (Γ ⇒ ∆) = 1. In addition, since s ⊆ Ls ⇒ Rs for some

Ls ⇒ Rs ∈W (M, S, F ), we haveVLs⇒Rs (s) = 0.

It remains to prove thatW is a G-legal F -biframe for M.

• biframe: let � ∈ � and ψ ,�ψ ∈ F . Let L ⇒ R ∈ W . If VL⇒R (�ψ ) = 1 and L′ ⇒ R′ ∈

R�[L ⇒ R], then we have �ψ ∈ L, which means thatψ ∈ L′, and hence VL′⇒R′(ψ ) = 1. For

the converse, suppose thatVL⇒R (�ψ ) = 0. Then, �ψ ∈ R. We prove that S ̸⊢FGM
L�

1
, L�

2
⇒

ψ ,R�
1
,R�

2
,R�

3
, extend this sequent to an element L′ ⇒ R′

of R�[L ⇒ R], and then obtain that

VL′⇒R′(ψ ) = 0 (as ψ ∈ R′
). Assume for contradiction that S ⊢FGM

L�
1
, L�

2
⇒ ψ ,R�

1
,R�

2
,R�

3
.

Then there exist finite Γ1 ⊆ L�
1
, Γ2 ⊆ L�

2
, ∆1 ⊆ R�

1
, ∆2 ⊆ R�

2
and ∆3 ⊆ R�

3
, such that

S ⊢FGM
Γ1, Γ2 ⇒ ψ ,∆1,∆2,∆3. Let ∆

′
2
= {φ ∈ F | �φ ∈ ∆2}. By applying the only rule in

M(�) ∩ {(k), (4), (45), (b), (b4), (pf)}, we obtain S ⊢FGM
�Γ1, Γ2 ⇒ �ψ ,∆1,∆

′
2
,�∆3. Clearly,

�Γ1, Γ2 ⇒ �ψ ,∆1,∆
′
2
,�∆3 ⊆ L ⇒ R, and so S ⊢FGM

L ⇒ R, which is a contradiction.

Now, L�
1
, L�

2
⇒ ψ ,R�

1
,R�

2
,R�

3
can be extended to some element L′ ⇒ R′

ofW , and every

such extension is an element of A�
L⇒R . Thus we have some L′ ⇒ R′ ∈ R�[L ⇒ R] that

extends L�
1
, L�

2
⇒ R�

1
,R�

2
,R�

3
. In particular, since �ψ ∈ R, we must have ψ ∈ R′

, and so

VL′⇒R′(ψ ) = 0.
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• for M: let � ∈ �. We show that R� has the properties that are induced by M. We separately

consider each of the cases:

– Suppose that (dx) ∈ M(�) for some X . We show that R� is serial. Similarly to the proof

above that S ̸⊢FGM
L�

1
, L�

2
⇒ ψ ,R�

1
,R�

2
,R�

3
, it can be shown that S ̸⊢FGM

L�
1
, L�

2
⇒

R�
1
,R�

2
,R�

3
, by applying (dx) rather than X , for the only (dx) ∈ M(�), and that L�

1
, L�

2
⇒

R�
1
,R�

2
,R�

3
can be extended to some element L′ ⇒ R′

inW such that (L ⇒ R)R�(L
′ ⇒ R′).

– Suppose that (t) ∈ M(�). We show that R� is reflexive. Let L ⇒ R ∈ W . We show that

(L ⇒ R)R�(L ⇒ R), that is, L�
1
, L�

2
⇒ R�

1
,R�

2
,R�

3
⊆ L ⇒ R. Let ψ ∈ L�

1
, and assume

for contradiction that ψ < L, that is, ψ ∈ R. Since ψ ∈ L�
1
, we have that �ψ ∈ L, and

therefore, �ψ ⇒ ψ ⊆ L ⇒ R, which is impossible, as (t) ∈ M(�). The facts that L�
2
⊆ L

and R�
1
⊆ R are trivial. Now letψ ∈ R�

2
, and assume for contradiction thatψ < R, that is,

ψ ∈ L. Sinceψ ∈ R�
2
, we have thatψ = �ψ ′

for someψ ′ ∈ R, and thatψ ∈ F . This means

thatψ ⇒ ψ ′ ⊆ L ⇒ R, which is again impossible by the presence of (t) inM(�). Finally,

since (t) ∈ M(�), we have that (pf) < M(�), which means that R�
3
= ∅ ⊆ R.

In the following items, La ⇒ Ra , Lb ⇒ Rb and Lc ⇒ Rc denote arbitrary elements ofW .

– Suppose that (4) ∈ M(�). We show that R� is transitive. Suppose that (La ⇒ Ra)R�(Lb ⇒

Rb ) and (Lb ⇒ Rb )R�(Lc ⇒ Rc ). We prove that (La ⇒ Ra)R�(Lc ⇒ Rc ), that is,
(La)

�
1
, (La)

�
2

⇒ (Ra)
�
1
, (Ra)

�
2
, (Ra)

�
3

⊆ Lc ⇒ Rc . Since (4) ∈ M(�), we have (Ra)
�
1
=

(Ra)
�
2
= (Ra)

�
3
= ∅. Now, letψ ∈ (La)

�
1
. Then bothψ ∈ F and �ψ ∈ La , which means that

�ψ ∈ (La)
�
2
⊆ Lb . Together with the fact thatψ ∈ F , we haveψ ∈ (Lb )

�
1
⊆ Lc . Next, let

ψ ∈ (La)
�
2
. Thenψ = �ψ ′

for someψ ′ ∈ F , andψ ∈ Lb . Therefore,ψ ∈ (Lb )
�
2
⊆ Lc .

– Suppose that (45) ∈ M(�). We show that R� is transitive and euclidian.

∗ Transitivity: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb ) and (Lb ⇒ Rb )R�(Lc ⇒ Rc ). We

prove that (La ⇒ Ra)R�(Lc ⇒ Rc ), that is, (La)
�
1
, (La)

�
2

⇒ (Ra)
�
1
, (Ra)

�
2
, (Ra)

�
3

⊆

Lc ⇒ Rc . Since (45) ∈ M(�), we have (Ra)
�
2
= (Ra)

�
3
= ∅. Similarly to the case of (4),

(La)
�
1
, (La)

�
2

⊆ (Lc ). Now let ψ ∈ (Ra)
�
1
. Then ψ = �ψ ′

for some ψ ′ ∈ F and ψ ∈ Rb .

Therefore,ψ ∈ (Rb )
�
1
⊆ Rc .

∗ Euclideaness: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb ) and (La ⇒ Ra)R�(Lc ⇒ Rc ).
We prove that (Lb ⇒ Rb )R�(Lc ⇒ Rc ), that is, (Lb )

�
1
, (Lb )

�
2
⇒ (Rb )

�
1
, (Rb )

�
2
, (Rb )

�
3

⊆

Lc ⇒ Rc . Since (45) ∈ M(�), we have (Rb )
�
2
= (Rb )

�
3
= ∅. Letψ ∈ (Lb )

�
1
. Then �ψ ∈ Lb

and ψ ∈ F . Hence �ψ < Rb , and therefore �ψ < (Ra)
�
1
. Since we have ψ ∈ F , this

means that �ψ < Ra , and hence also �ψ ∈ La . Again, since ψ ∈ F , �ψ ∈ (La)
�
2

⊆ Lc .

Next, let ψ ∈ (Lb )
�
2
. Then ψ = �ψ ′

for some ψ ′ ∈ F and ψ ∈ Lb . In particular, ψ < Rb .

Since (Ra)
�
1
⊆ Rb , we also haveψ < (Ra)

�
1
. Together with the fact thatψ ′ ∈ F , we have

ψ < Ra . This, in turn, means that ψ ∈ La , which, together with ψ
′ ∈ F , means that

ψ ∈ (La)
�
2
⊆ Lc . The fact that (Rb )

�
1
⊆ Rc is proven symmetrically.

– Suppose that (b) ∈ M(�).We show thatR� is symmetric. Suppose that (La ⇒ Ra)R�(Lb ⇒

Rb ). We prove that (Lb ⇒ Rb )R�(La ⇒ Ra), that is, (Lb )
�
1
, (Lb )

�
2
⇒ (Rb )

�
1
, (Rb )

�
2
, (Rb )

�
3
⊆

La ⇒ Ra . Since (b) ∈ M(�), we have (Lb )
�
2
= (Rb )

�
1
= (Rb )

�
3
= ∅. Let ψ ∈ (Lb )

�
1
. Then

�ψ ∈ Lb ⊆ F , and hence �ψ < Rb , and in particular, �ψ < (Ra)
�
2
. Since �ψ ∈ F , we

have alsoψ < Ra , which means thatψ ∈ La . Next, letψ ∈ (Rb )
�
2
. Thenψ = �ψ ′

for some

ψ ′ ∈ Rb ⊆ F . Hence ψ ′ < Lb , and in particular, ψ ′ < (La)
�
1
. Since ψ ′ ∈ F , we also have

ψ < La , which means thatψ ∈ Ra .
– Suppose that (b4) ∈ M(�). We show that R� is transitive and symmetric.

∗ Transitivity: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb ) and (Lb ⇒ Rb )R�(Lc ⇒ Rc ). We

prove that (La ⇒ Ra)R�(Lc ⇒ Rc ), that is, (La)
�
1
, (La)

�
2

⇒ (Ra)
�
1
, (Ra)

�
2
, (Ra)

�
3

⊆
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Lc ⇒ Rc . First, note that (Ra)
�
3
= ∅. Second, (La)

�
1
, (La)

�
2

⊆ Lc and (Ra)
�
1

⊆ Rc are

shown similarly to the case of (45). Letψ ∈ (Ra)
�
2
⊆ Rb . Thenψ ∈ F , andψ = �ψ ′

for

someψ ′ ∈ F . Henceψ ∈ (Rb )
�
1
⊆ Rc .

∗ Symmetry: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb ). We prove that (Lb ⇒ Rb )R�(La ⇒

Ra), that is, (Lb )
�
1
, (Lb )

�
2
⇒ (Rb )

�
1
, (Rb )

�
2
, (Rb )

�
3
⊆ La ⇒ Ra . First, note that (Ra)

�
3
= ∅.

Second, (Lb )
�
1
⊆ La and (Rb )

�
2
⊆ La are shown similarly to the case of (b). Letψ ∈ (Lb )

�
2
.

Then ψ ∈ Lb , and ψ = �ψ ′
for some ψ ′ ∈ F . In particular, ψ < Rb , and hence also

ψ < (Ra)
�
1
. Together with the fact thatψ ′ ∈ F , we have thatψ < Ra , which means that

ψ ∈ La . The fact that (Rb )
�
1
⊆ Ra is shown symmetrically.

– Suppose that (pf) ∈ M(�). By definition, R� is functional.

• G-legal: For every L ⇒ R ∈W , the bivaluation VL⇒R is shown to be G-legal similarly to the

proof of Thm. 2.11. □

6.3 Analyticity with Modal Operators
In this section we show that in a wide family of calculi ⊚-k-analyticity is preserved when aug-

menting a pure calculus with rules for the modal operators. Semantics will play a major role here,

as what will actually be shown is how to use the ability to extend partial bivaluations in order to

extend partial biframes.

We focus on a slightly restricted subfamily of calculi, namely standard calculi, thus ruling out

some degenerate cases. Roughly speaking, a calculus is called standard if whenever an atomic

formula occurs in one of its rules, it also occurs as a subformula in the same rule. This is formally

defined as follows:

Definition 6.11. An atomic variable p is called shared in a rule r if it is a proper subformula of

some formula in the conclusion of r . A rule is called standard if all atomic variables that occur in it

are shared in it. A calculus is called standard if each of its rules is standard.

Example 6.12. All calculi considered in examples above are standard. In contrast, p3 is not shared

in the rule ⇒ p1,p3 / ⇒ p1 ∨p2, and so every calculus that includes this rule is not standard. Aside

from such contrived examples, we are not aware of a non-standard calculus in the literature.

The main result of this section is:

Theorem 6.13. Let G be a standard L-calculus. If G is ⊚-k-analytic then so is GM.

Note that if GM is ⊚-k-analytic, then G must also be ⊚-k-analytic: given that S and s do not

include modal operators, S ⊢G s implies S ⊢GM
s . The ⊚-k-analyticity of GM then means that there

is a derivation of s from S in GM that uses only of sub
⊚
k (S ∪ {s})-formulas. This derivation cannot

contain applications of the modal rules, and hence it is also a derivation in G.
Before turning to its proof, we present several examples of applications of Thm. 6.13.

Example 6.14. All sequent calculi for classical modal logics that are obtained from LK by the

adding the rules of Fig. 1 are known to be analytic. Thm. 6.13 makes this fact a direct consequence

of the analyticity of LK.

Example 6.15. The quotations employed in primal infon logic [19] are unary connectives of the

form q said, where q ranges over a finite set of principals. If we take � to include these connectives

and set M(q said) = {(pf), (dpf)} for every such q, we have ⊢PM Γ ⇒ ψ (see Example 2.4) iff ψ is

derivable from Γ in the Hilbert system for primal infon logic given in [19]. (This can be shown by

induction on the lengths of the derivations.) Since P is standard and analytic, so is PM. In contrast,

the Hilbert system for primal infon logic in [19] admits a similar property that concerns local
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formulas (see Def. 7.1 below) rather than subformulas. Similarly, quotations can be added to the

extension EP of P (Example 5.14), and the resulting calculus is analytic.

Example 6.16. One can add modal operators to the paraconsistent logic C1 (see Example 2.5), by

augmenting the calculus C1 with one of the rules for modal operators. The {¬}-1-analyticity of C1
will then entail the {¬}-1-analyticity of the extended calculus.

Next, we prove Thm. 6.13. We use the soundness and completeness theorems and show how

to extend partial biframes into full ones. The general notion of biframes (that allows for different

domains in each world) and the predefined semantics of the connectives from � make the proof

more challenging than that of Thm. 3.9. The following definitions are therefore needed. First, we

introduce a more delicate technical notion of closure under ⊚-k-subformulas.

Definition 6.17. A set of L�-formulas is called ⊚-k-closed if whenever it contains a formula of

the form ◦φ for some ◦ ∈ ⊚, it also contains φ, and whenever it contains a formula of the form

⋄(φ1, ... ,φn) for some ⋄ ∈ ♦
L
\⊚ it also contains ⊚≤kψi for every 1 ≤ i ≤ n.

Note that every set that is closed under ⊚-k-subformulas is also ⊚-k-closed. However, sinceψ is

a subformula of �ψ (i.e.,ψ ∈ sub
⊚
k (�ψ ) for anyψ ∈ L�, ⊚ ⊆ ♦1

L
, k > 0 and � ∈ �), the converse

may not hold. For example, {(�p1) ∧ (�p1),�p1} is ∅-k-closed for any k , but it is not closed under

∅-k-subformulas, as p1 is missing.

Next, we define ⊚-k-closed biframes:

Definition 6.18. A biframe ⟨W ,R,V⟩ for M is ⊚-k-closed if the following hold for everyw ∈W :

• dom(Vw ) is ⊚-k-closed and finite.

• For every � ∈ �, if �ψ ∈ dom(Vw ), thenψ ∈ dom(Vw ′) for everyw ′ ∈ R�[w].

Similarly to the case of pure calculi, the ability to extend partial models is essential also when

introducing modal operators. We thus explicitly define what it means to extend a biframe.

Definition 6.19. A biframe ⟨W ,R,V⟩ for M extends a biframe ⟨W ′,R ′,V ′⟩ for M ifW = W ′
,

R = R ′
, andVw extendsV ′

w (i.e., Vw (ψ ) = V ′
w (ψ ) wheneverV

′
w (ψ ) is defined) for everyw ∈W .

Finally, the main part of the proof of Thm. 6.13 is the following lemma, which is proven in the

next section. The theorem immediately follows from this lemma using Theorems 6.9 and 6.10.

Lemma 6.20. Let G be a standard ⊚-k-analytic L-calculus and W a G-legal ⊚-k-closed biframe

for M. Then, W can be extended to a G-legal L�-biframe for M.

Before proving the lemma, we use it to prove Thm. 6.13.

Proof of Theorem 6.13. Suppose that S ⊢GM
s . Let S ′ be a finite subset of S such that S ′ ⊢GM

s .

We prove that S ′ ⊢FGM
s for F = sub

⊚
k (S

′ ∪ {s}) (and so S ⊢FGM
s). Otherwise, by Thm. 6.10,

there exists a G-legal F -biframe W = ⟨W ,R,V⟩ for M such that VW (S ′) > Vw (s). W is ⊚-k-
closed, and by Lemma 6.20, it can be extended to a G-legal L�-biframeW ′ = ⟨W ,R,V ′⟩ forM.

After this extension, we still have V ′
W (S ′) > V ′

w (s). By Thm. 6.9, we have S ′ ̸⊢GM
s , which is a

contradiction. □

Note that Lemma 6.20 will also be used in the next section, where we extend the reduction of §4.

6.4 Proof of Lemma 6.20
Lemma 6.20 allows one to extend partial biframes into full ones. For the extension method that we

propose here, the following property of ⊚-k-closed sets is useful:
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Proposition 6.21. If F ⊆ L� is ⊚-k-closed and φ ∈ L is a ⊚-k-subformula of ψ ∈ L, then

σ (ψ ) ∈ F implies σ (φ) ∈ F .

Our extension method is gradual: We add all formulas of the language to the domain of the

biframe, not one by one—but many at a time. The following three lemmas establish the required

ingredients for the full extension construction.

For the rest of this section, let G be a standard ⊚-k-analytic L-calculus.

Lemma 6.22. Let W = ⟨W ,R,V⟩ be a G-legal ⊚-k-closed biframe for M. Given p ∈ At, W can

be extended to a G-legal ⊚-k-closed biframeW ′
for M, such that p ∈ dom(W ′).

Proof. Let W ′ = ⟨W ,R,V ′⟩, where V ′
is the function assigning to every w ∈ W , the

dom(Vw ) ∪ {p}-bivaluationV ′
w obtained by extendingVw with the value 0 (say) for p whenever

p < dom(Vw ). Clearly, W
′
is a ⊚-k-closed biframe for M that extends W, and p ∈ dom(W ′). It

remains to show thatW ′
isG-legal. Letw ∈W , s1, ... , sn / s ∈ G, s ′

1
⊆ s1, ... , s

′
n ⊆ sn , and σ a substi-

tution such that σ (frm({s ′
1
, ... , s ′n, s})) ⊆ dom(V ′

w ). We prove thatV ′
w (σ ({s

′
1
, ... , s ′n})) ≤ V ′

w (σ (s)).
If p < σ (frm({s ′

1
, ... , s ′n, s})) or p ∈ dom(Vw ), then this follows from the fact that Vw is G-legal.

The fact that G is standard entails that these are actually the only two options for p. Indeed, if
p ∈ σ (frm({s ′

1
, ... , s ′n, s})), then p = σ (p

′) for some atomic variable p ′ ∈ frm({s ′
1
, ... , s ′n, s}). Since G

is standard, p ′ is a proper subformula of some φ ∈ frm(s). Since σ (φ) ∈ dom(V ′
w ) and σ (φ) , p, we

have σ (φ) ∈ dom(Vw ). By Prop. 6.21, p ∈ dom(Vw ). □

Lemma 6.23. LetW = ⟨W ,R,V⟩ be aG-legal⊚-k-closed biframe forM. Then,W can be extended

to a G-legal ⊚-k-closed biframeW ′
for M, such that �dom(W) ⊆ dom(W ′).

Proof. For everyw ∈W , let Fw = dom(Vw ) ∪ �dom(W). LetW ′ = ⟨W ,R,V ′⟩, whereV ′
is

the function assigning to everyw ∈W , the Fw -bivaluation V ′
w defined by:

V ′
w (ψ ) =

{
Vw (ψ ) ψ ∈ dom(Vw )

VR�[w ](φ) ψ = �φ ∈ Fw \ dom(Vw )

We show first thatW ′
is a biframe forM. Letw ∈W . Let �ψ ∈ dom(V ′

w ) such thatψ ∈ dom(V ′
w ′)

for every w ′ ∈ R�[w]. If �ψ ∈ dom(Vw ), then since W is ⊚-k-closed, ψ ∈ dom(Vw ′) for every

w ′ ∈ R�[w]. Hence sinceW is a biframe forM,V ′
w (�ψ ) = Vw (�ψ ) = VR�[w ](ψ ) = V ′

R�[w ]
(ψ ).

If �ψ < dom(Vw ), then by the definition of V ′
in this case, V ′

w (�ψ ) = VR�[w ](ψ ) = V ′
R�[w ]

(ψ ).

Obviously, W ′
extends W and �dom(W) ⊆ dom(W ′). It remains to show that W ′

is ⊚-k-
closed and G-legal.
(1) ⊚-k-closed: For every w ∈ W , dom(Vw ) is ⊚-k-closed and finite. Since we only added a

finite number of formulas, all from �L�, dom(V ′
w ) is also ⊚-k-closed and finite for every

w ∈W . Now, suppose that �ψ ∈ dom(V ′
w ). If �ψ ∈ dom(Vw ), thenψ ∈ dom(V ′

w ′) for every

w ′ ∈ R�[w] since W is ⊚-k-closed. If �ψ < dom(Vw ), thenψ ∈ dom(W) ⊆ dom(W ′), and

in particularψ ∈ dom(V ′
w ′) for everyw ′ ∈ R�[w].

(2) G-legal: Let w ∈ W , s1, ... , sn / s ∈ G, s ′
1
⊆ s1, ... , s

′
n ⊆ sn , and σ a substitution such that

σ (frm({s ′
1
, ... , s ′n, s})) ⊆ dom(V ′

w ). We prove that σ (frm({s ′
1
, ... , s ′n, s})) ⊆ dom(Vw ), and

then V ′
w (σ ({s

′
1
, ... , s ′n})) ≤ V ′

w (σ (s)) follows from the fact that W is G-legal. Indeed, let
ψ ∈ σ (frm({s ′

1
, ... , s ′n, s})). If ψ < �L�, then ψ ∈ dom(Vw ). Otherwise, ψ = σ (p) for some

atomic variable p ∈ frm({s ′
1
, ... , s ′n, s}). Since G is standard, p is a proper subformula of some

compound L-formula φ ∈ frm(s). Since φ is a compound L-formula, we have σ (φ) < �L�,

and hence σ (φ) ∈ dom(Vw ). By Prop. 6.21, since dom(Vw ) is ⊚-k-closed,ψ ∈ dom(Vw ). □
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Lemma 6.24. LetW = ⟨W ,R,V⟩ be aG-legal⊚-k-closed biframe forM. Then,W can be extended

to a G-legal ⊚-k-closed biframe W ′
for M, such that ⊚dom(W) ⊆ dom(W ′), and for every ⋄ ∈

♦n
L
\⊚, ⋄(φ1, ... ,φn) ∈ dom(W ′) whenever ⊚≤k {φ1, ... ,φn} ⊆ dom(W).

Proof. We define W ′
in several steps.

Embedding L in L�: Let σ0 be some bijection from At to At ∪ �L�. As a substitution, σ0 is

naturally extended to apply on allL-formulas. It is straightforward to verify that its extension

is a bijection from L to L�.

TranslatingV: For every w ∈ W , let Fw = {φ ∈ L | σ0(φ) ∈ dom(Vw )}. By Prop. 6.21 and

the fact thatW is ⊚-k-closed, we have that Fw is closed under ⊚-k-subformulas for every

w ∈ W . Since σ0 is a bijection, we also have that Fw is finite for every w ∈ W . Now, for

every w ∈ W , let uw be the Fw -bivaluation given by uw = λφ ∈ Fw . Vw (σ0(φ)). We show

that uw is G-legal for everyw ∈W . Letw ∈W , s1, ... , sn / s ∈ G, s ′
1
⊆ s1, ... , s

′
n ⊆ sn , and σ a

substitution such that σ ({s ′
1
, ... , s ′n, s})) ⊆ Fw . We prove that uw (σ ({s

′
1
, ... , s ′n})) ≤ uw (σ (s)).

Consider the substitution σ ′ = σ0 ◦σ . It is easy to see that σ
′(φ) = σ0(σ (φ)) for every formula

φ. Therefore, σ ′(frm({s ′
1
, ... , s ′n, s})) = σ0(σ (frm({s ′

1
, ... , s ′n, s}))) ⊆ σ0(Fw ) ⊆ dom(Vw ). Since

W is G-legal, we have uw (σ ({s ′1, ... , s
′
n})) = Vw (σ

′({s ′
1
, ... , s ′n})) ≤ Vw (σ

′(s)) = uw (σ (s)).
Extending the translation: Letw ∈W . Then, uw is a G-legal bivaluation whose domain Fw

is a finite subset of L closed under ⊚-k-subformulas. Since G is ⊚-k-analytic, by Thm. 3.9,

uw can be extended to a G-legal L-bivaluation u∗w .
DefiningW ′: For every w ∈W , let F ′

w = dom(Vw ) ∪⊚dom(W) ∪ {⋄(φ1, ... ,φn) | ⋄ ∈ (♦n
L
\

⊚),⊚≤k {φ1, ... ,φn} ⊆ dom(W)}. Let α be the inverse of the extended σ0. α is a bijection

from L� to L. Let W ′ = ⟨W ,R,V ′⟩, where V ′
is the function assigning to everyw ∈W ,

the F ′
w -bivaluation V ′

w defined by:

V ′
w (ψ ) =

{
Vw (ψ ) ψ ∈ dom(Vw )

u∗w (α(ψ )) ψ ∈ F ′
w \ dom(Vw )

First, we prove that W ′
is a biframe for M. Let w ∈ W and ψ ,�ψ ∈ L�. Suppose that

�ψ ∈ dom(V ′
w ) andψ ∈ dom(V ′

w ′) for everyw ′ ∈ R�[w]. Then, since �ψ ∈ �L�, we have

�ψ ∈ dom(Vw ). Since W is ⊚-k-closed,ψ ∈ dom(Vw ′) for everyw ′ ∈ R�[w]. Since W is a

biframe,V ′
w (�ψ ) = Vw (�ψ ) = VR�[w ](ψ ) = V ′

R�[w ]
(ψ ).

Clearly, W ′
extends W, ⊚dom(W) ⊆ dom(W ′), and for every ⋄ ∈ ♦n

L
\⊚, ⋄(φ1, ... ,φn) ∈

dom(W ′) whenever ⊚≤k {φ1, ... ,φn} ⊆ dom(W).

It remains to show that W ′
is ⊚-k-closed and G-legal.

(1) ⊚-k-closed: Let w ∈ W . First, dom(V ′
w ) is finite since dom(W) and ♦

L
are finite. Second,

let ◦φ ∈ dom(V ′
w ) for some ◦ ∈ ⊚. If ◦φ ∈ dom(Vw ), then since W is ⊚-k-closed, φ ∈

dom(Vw ) ⊆ dom(V ′
w ). Otherwise, ◦φ ∈ F ′

w \ dom(Vw ), which means that φ ∈ dom(W) ⊆

dom(Vw ) ⊆ dom(V ′
w ). Third, let ⋄(ψ1, ... ,ψn) ∈ dom(V ′

w ). We show that ⊚≤kψi ⊆ dom(V ′
w )

for every 1 ≤ i ≤ n. If ⋄(ψ1, ... ,ψn) ∈ dom(Vw ) then this holds since dom(Vw ) is ⊚-k-
closed. Otherwise, ⋄(ψ1, ... ,ψn) ∈ F ′

w \ dom(Vw ), which means that ⊚≤kψi ⊆ dom(W) ⊆

dom(Vw ) ⊆ dom(V ′
w ) for every 1 ≤ i ≤ n. Finally, let �ψ ∈ dom(V ′

w ). Then, since �ψ ∈

�L�, �ψ ∈ dom(Vw ). Since W is ⊚-k-closed,ψ ∈ dom(Vw ′) ⊆ dom(V ′
w ′) for every

w ′ ∈ R�[w].

(2) G-legal: Let w ∈ W , s1, ... , sn / s ∈ G, s ′
1
⊆ s1, ... , s

′
n ⊆ sn , and σ a substitution such that

σ (frm({s ′
1
, ... , s ′n, s})) ⊆ dom(V ′

w ). We prove that V ′
w (σ ({s

′
1
, ... , s ′n})) ≤ V ′

w (σ (s)). For that,
we first prove that V ′

w (ψ ) = u∗w (α(ψ )) for every ψ ∈ dom(V ′
w ). If ψ < dom(Vw ), then

this holds by definition. Suppose that ψ ∈ dom(Vw ). Since σ0(α(ψ )) = ψ , α(ψ ) ∈ Fw .
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Hence u∗w (α(ψ )) = uw (α(ψ )). By definition, uw (α(ψ )) = Vw (σ0(α(ψ ))) = Vw (ψ ). Since ψ ∈

dom(Vw ), u
∗
w (α(ψ )) = V ′

w (ψ ). Now, consider the substitution σ
′ = α ◦σ . It is easy to see that

σ ′(ψ ) = α(σ (ψ )) for everyψ ∈ frm({s ′
1
, ... , s ′n, s}). Clearly, σ

′(frm({s ′
1
, ... , s ′n, s})) ⊆ L. Since

u∗w is G-legal, we have V ′
w (σ ({s

′
1
, ... , s ′n})) = u∗w (α(σ ({s

′
1
, ... , s ′n}))) = u∗w (σ

′({s ′
1
, ... , s ′n})) ≤

u∗w (σ
′(s)) = u∗w (α(σ (s))) = V ′

w (σ (s)). □

To complete the proof of Lemma 6.20, we use Lemmas 6.22 to 6.24 repeatedly, and construct a full

biframe from a partial one. First, recursively construct an infinite sequenceW0 =
〈
W ,R,V0

〉
,W1 =〈

W ,R,V1

〉
, ... such that:

• W0 =W.

• For every i ,Wi
is a G-legal ⊚-k-closed biframe for M.

• EachWi+1
extends Wi

.

• For everyψ ∈ L�,ψ ∈ dom(Wi ) for some i ≥ 0.

We begin with W0 =W. Given Wi
, Wi+1

is obtained as follows. By Lemma 6.22, Wi
can be

extended to a G-legal ⊚-k-closed biframeWi
1
forM such that pi ∈ dom(Wi

1
). In turn, Lemma 6.23

gives us thatWi
1
can be extended to aG-legal⊚-k-closed biframeWi

2
forM such that�dom(Wi

1
) ⊆

dom(Wi
2
). Finally, by Lemma 6.24,Wi

2
can be extended to a G-legal ⊚-k-closed biframeWi

3
forM

such that ⊚dom(Wi
2
) ⊆ dom(Wi

3
), and for every ⋄ ∈ ♦n

L
\⊚, ⋄(φ1, ... ,φn) ∈ dom(Wi

3
) whenever

⊚≤k {φ1, ... ,φn} ⊆ dom(Wi
2
). We take Wi+1 =

〈
W,R,Vi+1

〉
to beWi

3
.

Clearly, for every i ≥ 0, Wi+1
is a G-legal ⊚-k-closed biframe for M that extends Wi

. We

prove that for everyψ ∈ L� there exists some i ≥ 0 such thatψ ∈ dom(Wi ), by induction on the

complexity ofψ :

(1) If ψ ∈ At then ψ = pi for some i ≥ 1. By our construction, pi ∈ dom(Wi
1
) and hence

pi ∈ dom(Wi+1).

(2) Ifψ = �φ then by the induction hypothesis,φ ∈ dom(Wi ) for some i ≥ 0. By our construction,

�φ ∈ dom(Wi
2
) and henceψ ∈ dom(Wi+1).

(3) If ψ = ◦φ, then by the induction hypothesis, there exists i such that φ ∈ dom(Wi ). By our

construction, ◦φ ∈ dom(Wi
3
), and hence ◦φ ∈ dom(Wi+1).

(4) If ψ = ⋄(ψ1, ... ,ψn) then by the induction hypothesis, there exist i1, ... , in such that ψj ∈

dom(Wi j ) for every 1 ≤ j ≤ n. Let i = max{i1, ... , in}. By our construction, there exists

i0 > i such that ⊚≤kψj ⊆ dom(Wi0 ) for every 1 ≤ j ≤ n (in each step we add ◦φ for

every φ ∈ dom(Wi ) and ◦ ∈ ⊚. Since ⊚≤k
is finite, we exhaust it at some point). Hence

⋄(ψ1, ... ,ψn) ∈ dom(W
i0
3
), which means that ⋄(ψ1, ... ,ψn) ∈ dom(Wi0+1).

We now define W ′ = ⟨W ,R,V ′⟩, a G-legal L�-biframe for M that extends W. For every

ψ ∈ L�, let iψ denote the first i such that ψ ∈ dom(Wi ). For every w ∈ W , V ′
w is defined by

V ′
w (ψ ) = V

iψ
w (ψ ).

We prove that W ′
is a G-legal L�-biframe for M that extends W. Clearly, dom(W ′) = L� and

W ′
extendsW. We prove thatW ′

is a biframe: Letw ∈W andψ ,�ψ ∈ L�. Let k = max{iψ , i�ψ }.

SinceWi
extendsWi−1

for every i , we haveV ′
w ′(ψ ) = Vk

w ′(ψ ) andV ′
w ′(�ψ ) = Vk

w ′(�ψ ) for every
w ′ ∈ W . Since Wk

is a biframe, V ′
w (�ψ ) = Vk

w (�ψ ) = Vk
R�[w ]

(ψ ) = V ′
R�[w ]

(ψ ). It remains to

show that W ′
is G-legal. Let w ∈ W , s1, ... , sn / s ∈ G, s ′

1
⊆ s1, ... , s

′
n ⊆ sn , and σ a substitution.

We prove thatV ′
w (σ ({s

′
1
, ... , s ′n})) ≤ V ′

w (σ (s)). Let k = max{iψ | ψ ∈ σ (frm({s ′
1
, ... , s ′n, s}))}. Since

Wi
extendsW i−1

for every i , we have V ′
w (ψ ) = Vk

w (ψ ) for everyψ ∈ σ (frm({s ′
1
, ... , s ′n, s})). Since

Vk
w is G-legal,V ′

w (σ ({s
′
1
, ... , s ′n})) = Vk

w (σ ({s
′
1
, ... , s ′n})) ≤ Vk

w (σ (s)) = V ′
w (σ (s)). □
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7 DECISION PROCEDURE FOR PURE CALCULI WITH NEXT OPERATORS
In this section we extend the reduction from §4 to standard pure calculi with modal operators that

are defined by (pf) and (dpf).
8
The implementation described in §4.2 includes this extension.

Semantically, such calculi are characterized by biframes in which the accessibility relations are

total functions. We call such operators Next operators, as they are often employed in temporal logics

to express the “next state”. Recall, that the quotations employed in primal infon logic [19] are also

governed by these rules, and hence quotations are Next operators (Example 6.15).

We start by defining a useful variant of the ⊚-k-subformula relation in §7.1. This relation is

used in §7.2 in order to extend the reduction of §4, and to prove the correctness of the extended

reduction. In what follows, we denote the specification function M that assigns {(pf), (dpf)} to
every � ∈ � by Next. In turn, biframes for Next are called totally functional biframes.

7.1 Local Formulas
To generalize the reduction in §4, we replace ⊚-k-subformulas by ⊚-k-local formulas. This notion

generalizes the local formulas relation from [28]. A sequence �̄ = �1 ...�m (m ≥ 0) of elements of

� is called a �-prefix. We say that �̄ is a �-prefix of a formula φ if φ has the form �̄ψ for some

ψ ∈ L�. The notation �F is naturally extended to prefixes �̄.

Definition 7.1. Denote by �̄ψ the longest (possibly, empty) �-prefix ofψ , and by bψ the formula

for whichψ = �̄ψbψ . A formula φ is immediately ⊚-k-local to a formulaψ if φ = �̄ψφ
′
for some

immediate ⊚-k-subformula φ ′
of bψ . The ⊚-k-local formula relation is the reflexive transitive

closure of the immediate ⊚-k-local formula relation. We denote the set of ⊚-k-local formulas of a

formulaψ by loc
⊚,�
k (ψ ). This notation is naturally extended to sequents, sets of sequents etc. When

⊚ = ∅, we call φ a local formula ofψ .

Note that for � = ∅, we have loc
⊚,�
k (ψ ) = sub

⊚
k (ψ ) for every formulaψ .

Example 7.2. loc
{¬}, {□,⊠}

1
(□(⊠p1 ⊃ p2)) = {□⊠ p1,□¬⊠ p1,□p2,□¬p2,□(⊠p1 ⊃ p2)}.

Similarly to⊚-k-subformulas, since every formula has finitely many immediate⊚-k-local formu-

las, we have that loc
⊚,�
k (ψ ) is finite for everyψ ∈ L. The following lemma provides an alternative

inductive definition of loc
⊚,�
k (ψ ):

Lemma 7.3. (1) loc
⊚,�
k (p) = {p} for every p ∈ At.

(2) loc
⊚,�
k (◦ψ ) = {◦ψ } ∪ loc

⊚,�
k (ψ ) for every ◦ ∈ ⊚.

(3) loc
⊚,�
k (⋄(ψ1, ... ,ψn)) = {⋄(ψ1, ... ,ψn)} ∪

⋃
1≤i≤n ⊚

≤kψi ∪ loc
⊚,�
k (ψi ) for every ⋄ ∈ ♦

L
\⊚.

(4) loc
⊚,�
k (�ψ ) = �loc

⊚,�
k (ψ ).

7.2 Extending The Reduction
For the case that the set of assumptions is empty, we extend the reduction from §4 to sequent

calculi with Next operators. As before, we assume G is axiomatic.

Definition 7.4. The SAT instance associated with a given axiomatic L-calculus G and an L�-

sequent s , denoted SAT⊚,�
k (G, s), consists of the following clauses:

(1) SAT−(s)
(2) SAT+(�̄σ (s ′)) for every rule ∅ / s ′ ofG, substitution σ and�-prefix �̄ such that �̄σ (frm(s ′)) ⊆

loc
⊚,�
k (s).

8
Note that we cannot expect a similar reduction for all modalities studied here, as for example, LKM with M (�) = {(k)} is

known [32] to be PSPACE-complete.
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The following theorem states that the reduction is correct.

Theorem 7.5. Let G be a standard⊚-k-analytic L-calculus and s an L�-sequent. Then ⊢GNext

s iff

SAT⊚,�
k (G, s) is unsatisfiable.

Proof. For a totally functional biframe ⟨W ,R,V⟩ and a world w ∈ W , we denote by R�(w)

the (unique) world w ′
such that ⟨w,w ′⟩ ∈ R�. Then, we have Vw (�ψ ) = VR�(w )(ψ ) whenever

�ψ ∈ dom(Vw ) andψ ∈ dom(VR�(w )).

(⇒): Suppose that ̸⊢GNext

s . By Thm. 6.10, we have Vw (s) = 0 for some G-legal L�-biframe

W = ⟨W ,R,V⟩ for Next andw ∈W . Consider the classical assignment u that assigns true to xψ
iff Vw (ψ ) = 1. Since Vw (s) = 0, u satisfies SAT−(s). It remains to prove that Vw (�̄σ (s ′)) = 1 for

every ∅ / s ′ ∈ G, substitution σ and �-prefix �̄ such that �̄σ (frm(s ′)) ⊆ loc
⊚,�
k (s). Suppose that

�̄ = �1 ...�n , and letw = w0,w1, ... ,wn be a sequence of worlds of W such that R�i (wi−1) = wi
for every 1 ≤ i ≤ n. Then Vw0

(�1 ...�nψ ) = Vw1
(�2 ...�nψ ) = ... = Vwn (ψ ) for every ψ ∈ L�.

Since W is G-legal, the bivaluation Vwn is G-legal, and therefore, Vw (�̄σ (s ′)) = Vwn (σ (s
′)) = 1.

(⇐): Let u be an assignment that satisfies SAT⊚,�
k (G, s). Define the following biframe W =

⟨W ,R,V⟩:

(1) W is the set of all �-prefixes.

(2) For every � ∈ � and �̄ ∈W , R�(�̄) = �̄�.

(3) V�̄ is defined by induction on the length of �̄: dom(Vϵ ) = loc
⊚,�
k (s) andVϵ (ψ ) = 1 iffu satis-

fies xψ ; dom(V�1 ...�n ) = {φ | �nφ ∈ dom(V�1 ...�n−1
)} andV�1 ...�n (ψ ) = V�1 ...�n−1

(�nψ ).

Clearly, R� is a total function for every � ∈ �. Since u satisfies SAT−(s), Vϵ (s) = 0. We prove that

W is a G-legal ⊚-k-closed biframe for Next (see Def. 6.18).

(1) biframe for Next: By the definition of V .

(2) G-legal: We prove that V�1 ...�n is G-legal for every �1 ...�n ∈ W . Let ∅ / s ′ ∈ G and σ
be a substitution such that σ (frm(s ′)) ⊆ dom(V�1 ...�n ). We prove thatV�1 ...�n (σ (s

′)) = 1.

We actually prove a stronger claim, namely that V�1 ...�n (�̄σ (s ′)) = 1 for every �-prefix

�̄ (including ϵ) such that �̄σ (frm(s ′)) ⊆ dom(V�1 ...�n ). We do so by induction on n. For
n = 0 we have Vϵ (�̄σ (s ′)) = 1 because u satisfies SAT+(�̄σ (s ′)). Now, let n ≥ 1. Since

�̄σ (frm(s ′)) ⊆ dom(V�1 ...�n ), we have �n�̄σ (frm(s ′)) ⊆ dom(V�1 ...�n−1
). By the induction

hypothesis,V�1 ...�n−1
(�n�̄σ (s ′)) = 1. By V’s definition, V�1 ...�n (�̄σ (s ′)) = 1.

(3) ⊚-k-closed: dom(V�̄) is finite for every �̄ since dom(Vϵ ) = loc
⊚,�
k (s) is finite. In addition, if

�ψ ∈ dom(V�̄) then by our construction,ψ ∈ dom(V�̄�). It remains to prove that for every

�̄ ∈W , dom(V�̄) is ⊚-k-closed. First, note that every set which is closed under ⊚-k-local
formulas is also ⊚-k-closed. This holds sinceψ is ⊚-k-local to ◦ψ for every ◦ ∈ ⊚, and ◦̄ψi
is ⊚-k-local to ⋄(ψ1, ... ,ψn) for every 1 ≤ i ≤ n and ◦̄ ∈ ⊚≤k

. Therefore, it suffices to prove

that dom(V�̄) is closed under ⊚-k-local formulas for every �̄ ∈W . We do so by induction

on the length of �̄. First, we have that dom(Vϵ ) = loc
⊚,�
k (s) is closed under ⊚-k-local

formulas. Now, let�1 ...�n ∈W (n ≥ 1). We prove that loc
⊚,�
k (ψ ) ⊆ dom(V�1 ...�n ) for every

ψ ∈ dom(V�1 ...�n ). Letψ ∈ dom(V�1 ...�n ). Then, �nψ ∈ dom(V�1 ...�n−1
). By the induction

hypothesis, dom(V�1 ...�n−1
) is closed under ⊚-k-local formulas. Therefore, loc

⊚,�
k (�nψ ) ⊆

dom(V�1 ...�n−1
). Now, let φ ∈ loc

⊚,�
k (ψ ). Then, by Lemma 7.3, �nφ ∈ �n loc

⊚,�
k (ψ ) =

loc
⊚,�
k (�nψ ). Hence �nφ ∈ dom(V�1 ...�n−1

). By V’s definition, φ ∈ dom(V�1 ...�n ).

Now, since G is ⊚-k-analytic, By Lemma 6.20, W can be extended to a G-legal L�-biframe

⟨W ,R,V ′⟩ for Next. By Thm. 6.9, since V ′
ϵ (s) = 0, we have ̸⊢GNext

s . □

Note that Thm. 7.5 is restricted to derivability problems with an empty set of assumptions. The

main difficulty with encoding a countermodel for the derivability of s from S is that every element
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of S must hold in every world of the countermodel. This is in contrast to the rules of G, which are

required to hold only in worlds whose domains include the instances of the rules. We leave the

handling of non-empty sets of assumptions for future work.

For the case that ⊚ = ∅ (and S = ∅), the polynomial time algorithm from Thm. 4.6 can be

modified to accommodate Next operators. In particular, the derivability problem for such calculi is

also in co-NP.

Theorem 7.6. Let G be an axiomatic L-calculus, such that c⊚k (G) = m. Given an L�-sequent s ,

it is possible to compute SAT∅,�k (G, s) in O(nm) time, where n is the length of the string representing

the input sequent.

Proof. The algorithm in the proof of Thm. 4.6 is reused with several modifications. As in [19], an

auxiliary trie (an ordered tree data structure commonly used for string processing) for �-prefixes is

constructed in linear time, and every node in the input parse tree has a pointer to a node in this trie.

Now, each node in the parse tree corresponds to an occurrence of a formula that is local to s . The tree
is then compressed to a dag as in the proof of Thm. 4.6. The nodes of the dag one-to-one correspond

to the local formulas of s . The rest of the algorithm is exactly as in the proof of Thm. 4.6. □

Example 7.7. Following Example 4.11, our general reduction provides linear time algorithms for

the extensions of P and EP with any finite set of Next operators. (A different linear time algorithm

was developed in [19] for P.)

To conclude, we note that in some cases, Propositions 6.2 and 6.5 allow for modal operators other

than Next operators to be applicable for the reduction to SAT. Indeed, for Horn calculi (Def. 4.8),

Next is equivalent to a specification M in which M(�) = {(k), (dk)}; and if the calculus is also

definite (Def. 6.3), (dk) can be eliminated, leaving just {(k)}.

8 CONCLUSIONS
We have studied the family of pure sequent calculi focusing on (generalized) analyticity (rather than

the more traditional cut-elimination property). The key tool in this general study is a modular and

uniform semantic interpretation of pure sequent calculi. The semantics was used to characterize

analyticity, provide useful sufficient criteria for it, as well as to obtain an effective SAT-based decision

procedure for derivability in analytic pure calculi. We then further considered the extension of pure

calculi with various rules for modal operators, and showed that such extension always preserves

analyticity. This result, together with the criteria for analyticity in pure calculi, provides simple

approach to develop analytic-by-construction calculi for non-classical logics with modal operators.

Finally, the SAT-based decision procedure was extended for a restricted type of modal operators

that correspond to Next operators in temporal logics.

Further research is required for extending the methods of this paper to provide analyticity

conditions and decision procedures for many-sided sequent calculi, that are more expressive

than ordinary two-sided calculi, as well as for richer languages, which employ, e.g., diamond-like

modalities, negative modalities, and quantifiers.
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