Studying Sequent Systems via Non-deterministic Many-Valued Matrices

Ori Lahav
Tel Aviv University

Eighth International Tbilisi Summer School in Logic and Language Tbilisi 2012

"Logic"

(1) A formal language \mathcal{L}, based on which \mathcal{L}-formulas are constructed.
(2) A binary relation \vdash between sets of \mathcal{L}-formulas and \mathcal{L}-formulas, satisfying:

Reflexivity: if $A \in \Gamma$ then $\Gamma \vdash A$.
Monotonicity:
if $\Gamma \vdash A$ and $\Gamma \subseteq \Gamma^{\prime}$, then $\Gamma^{\prime} \vdash A$.
Transitivity: if $\Gamma \vdash B$ and $\Gamma^{\prime}, B \vdash A$ then $\Gamma, \Gamma^{\prime} \vdash A$.

Languages

We will only consider propositional languages, consisting of:

- Atomic formulas (we usually use p_{1}, p_{2}, \ldots)
- A finite set of logical connectives
- Parentheses: '(',')'

We denote by $\operatorname{wff}_{\mathcal{L}}$ the set of well-formed formulas of \mathcal{L}.
$\mathcal{L}_{c l}$ (a language for classical logic) includes the unary connective \neg, and the binary connectives \wedge, \vee, and \supset.

Languages

We will only consider propositional languages, consisting of:

- Atomic formulas (we usually use p_{1}, p_{2}, \ldots)
- A finite set of logical connectives
- Parentheses: '(',')'

We denote by wff $_{\mathcal{L}}$ the set of well-formed formulas of \mathcal{L}.
$\mathcal{L}_{c l}$ (a language for classical logic) includes the unary connective \neg, and the binary connectives \wedge, \vee, and \supset.

The set of well-formed formulas $w f f_{\mathcal{L}_{c l}}$:

- All atomic formulas are in wff $\mathcal{L}_{\mathcal{C}_{c l}}$.
- If $A, B \in$ wff $_{\mathcal{L}_{c l}}$, then $(\neg A),(A \wedge B),(A \vee B),(A \supset B) \in w f f_{\mathcal{L}_{c l}}$.

Syntactic Approach to Define Logics

\vdash is defined using a notion of a derivation in a given proof system.
For example, we can use Hilbert-style systems:

- A Hilbert-style system consists of: (i) a set of formulas called axioms, and (ii) a set of inference rules.
- A derivation of A from Γ in a Hilbert-style system \mathbf{H} is a finite sequence of formulas, where the last formula is A, and each formula is: (i) an axiom of \mathbf{H}, (ii) a member of Γ, or (iii) obtained from previous formulas by applying some inference rule of \mathbf{H}.
- The consequence relation \vdash_{H} is defined by:
$\Gamma \vdash_{\mathbf{H}} A$ if A has a derivation from Γ in \mathbf{H}

The system HCL

Axiom schemata:

$$
\begin{array}{lll}
I 1 & A \supset(B \supset A) & D 1
\end{array} \quad A \supset A \vee B
$$

Inference Rule:
MP $\frac{A \quad A \supset B}{B}$

Definition

Classical logic $=$ the language $\mathcal{L}_{c l}+$ the consequence relation $\vdash_{H C L}$

Gentzen-style Systems

- Hilbert-style systems operate on formulas.

Gentzen-style systems operate on sequents.

- Sequents are objects of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite sets of formulas.
- A Gentzen-style proof system consists of a set of sequent rules (usually given by schemes).

Semantic Intuition for Sequents

$$
A_{1}, \ldots, A_{n} \Rightarrow B_{1}, \ldots, B_{m} \quad A_{1} \wedge \ldots \wedge A_{n} \supset B_{1} \vee \ldots \vee B_{m}
$$

Semantic Intuition for Sequents

$$
\begin{array}{cc}
A_{1}, \ldots, A_{n} \Rightarrow B_{1}, \ldots, B_{m} & A_{1} \wedge \ldots \wedge A_{n} \supset B_{1} \vee \ldots \vee B_{m} \\
\Rightarrow B_{1}, \ldots, B_{m} & B_{1} \vee \ldots \vee B_{m} \\
\Rightarrow B & B \\
A \Rightarrow & \neg A \\
A_{1}, \ldots, A_{n} \Rightarrow & \neg A_{1} \vee \ldots \vee \neg A_{n} \\
\Rightarrow & \text { False }
\end{array}
$$

Gentzen-style Systems

- A derivation of a sequent $\Gamma \Rightarrow \Delta$ from a set of sequents Ω in \mathbf{G} is a finite sequence of sequents, where the last sequent is $\Gamma \Rightarrow \Delta$, and each sequent is: (i) a member of Ω, or (ii) obtained from previous sequents in the sequence by applying some rule of \mathbf{G}.
- We write $\Omega \vdash_{G}^{\text {seq }} \Gamma \Rightarrow \Delta$ if there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in G.

Gentzen-style Systems

- A derivation of a sequent $\Gamma \Rightarrow \Delta$ from a set of sequents Ω in \mathbf{G} is a finite sequence of sequents, where the last sequent is $\Gamma \Rightarrow \Delta$, and each sequent is: (i) a member of Ω, or (ii) obtained from previous sequents in the sequence by applying some rule of \mathbf{G}.
- We write $\Omega \stackrel{{ }_{G}^{s e q}}{\text { sed }} \Gamma \Rightarrow \Delta$ if there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in G.

A consequence relation (between formulas) is obtained by:

$$
\Gamma \vdash_{\mathbf{G}} A \quad \Longleftrightarrow \quad\{\Rightarrow B \mid B \in \Gamma\} \vdash_{\mathbf{G}}^{\text {seq }} \Rightarrow A
$$

LK

Gentzen 1934

Logical Rules:

$$
(\neg \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad(\Rightarrow \neg) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta}
$$

LK

Gentzen 1934

Logical Rules:

$$
\begin{aligned}
& (\neg \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad(\Rightarrow \neg) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta} \\
(\supset \Rightarrow) & \frac{\Gamma \Rightarrow A_{1}, \Delta \Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta} \quad(\Rightarrow \supset) \frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{aligned}
$$

LK

Gentzen 1934

Logical Rules:

$$
\begin{aligned}
&(\neg \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad(\Rightarrow \neg) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta} \\
&(\supset \Rightarrow) \frac{\Gamma \Rightarrow A_{1}, \Delta \Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta}(\Rightarrow \supset) \frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta} \\
&(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \\
&(\vee \Rightarrow) \frac{\Gamma \Rightarrow A_{1}, \Delta \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta} \\
& \Gamma, A_{1} \vee A_{2} \Rightarrow \Delta
\end{aligned}(\Rightarrow \vee) \frac{\Gamma \Rightarrow A_{1}, A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \vee A_{2}, \Delta} .
$$

LK (cont.)

Structural Rules:

$$
\begin{aligned}
& (W \Rightarrow) \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad(\Rightarrow W) \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow A, \Delta} \\
& \text { (id) } \frac{}{A \Rightarrow A} \quad(c u t) \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}
\end{aligned}
$$

(other structural rules are built-in when sequents are pairs of sets).

Soundness and Completeness

$\mathbf{L K}$ is sound and complete for classical logic, i.e. $\Gamma \vdash_{\mathbf{L K}} A$ iff $\Gamma \vdash_{H C L} A$.

For example:

$$
\vdash_{\mathbf{L k}} \neg(O b \wedge R o) \supset \neg O b \vee \neg R_{0}
$$

Soundness and Completeness

LK is sound and complete for classical logic, i.e. $\Gamma \vdash_{\mathbf{L K}} A$ iff $\Gamma \vdash_{H C L} A$.

For example:

$$
\vdash_{\mathbf{L k}} \neg(O b \wedge R o) \supset \neg O b \vee \neg R_{0}
$$

We show:

$$
\vdash_{L K}^{s e q} \Rightarrow \neg(O b \wedge R o) \supset \neg O b \vee \neg R o
$$

Soundness and Completeness

LK is sound and complete for classical logic, i.e. $\Gamma \vdash_{\mathbf{L K}} A$ iff $\Gamma \vdash_{H C L} A$.

For example:

$$
\vdash_{\mathbf{L k}} \neg(O b \wedge R o) \supset \neg O b \vee \neg R_{0}
$$

We show:

$$
\begin{aligned}
& \vdash_{\mathrm{LK}}^{\text {seq }} \Rightarrow \neg(O b \wedge R o) \supset \neg O b \vee \neg R o
\end{aligned}
$$

LK has many good properties

LK has many good properties

The Subformula Property

If $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in LK consisting solely of subformulas of the formulas in Ω and $\Gamma \Rightarrow \Delta$.

LK has many good properties

The Subformula Property

If $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in LK consisting solely of subformulas of the formulas in Ω and $\Gamma \Rightarrow \Delta$.

Cut-Admissibility

If $\vdash_{\mathrm{LK}}^{\mathrm{seq}} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ in $\mathbf{L K}$ with no applications of (cut).

LK has many good properties

The Subformula Property

If $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in LK consisting solely of subformulas of the formulas in Ω and $\Gamma \Rightarrow \Delta$.

Cut-Admissibility

If $\vdash_{\mathrm{LK}}^{\mathrm{seq}} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ in LK with no applications of (cut).

Axiom-Expansion

Atomic axioms (i.e. axioms of the form $p_{i} \Rightarrow p_{i}$) always suffice.

LK has many good properties

The Subformula Property

If $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in LK consisting solely of subformulas of the formulas in Ω and $\Gamma \Rightarrow \Delta$.

Cut-Admissibility

If $\vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ in LK with no applications of (cut).

Axiom-Expansion

Atomic axioms (i.e. axioms of the form $p_{i} \Rightarrow p_{i}$) always suffice.

Invertibility of Logical Rules

The premises of each logical rule can be derived from its conclusion.

LK has many good properties

The Subformula Property

If $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in LK consisting solely of subformulas of the formulas in Ω and $\Gamma \Rightarrow \Delta$.

Cut-Admissibility

If $\vdash_{\mathrm{LK}}^{\mathrm{seq}} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ in LK with no applications of (cut).

Axiom-Expansion

Atomic axioms (i.e. axioms of the form $p_{i} \Rightarrow p_{i}$) always suffice.

Invertibility of Logical Rules

The premises of each logical rule can be derived from its conclusion.
LK has an effective semantics.

Semantics of Classical Logic

- Two truth values: F and T
- Truth tables:

		\supset
F	F	T
F	T	T
T	F	F
T	T	T

		\wedge
F	F	F
F	T	F
T	F	F
T	T	T

- A valuation function assigns values to the atomic formulas, and they determine the values of the compound formulas according to the tables.
- 「 $\vdash A$ iff
for every valuation v : if $v(B)=\mathrm{T}$ for every $B \in \Gamma$ then $v(A)=\mathrm{T}$.

Semantic Approach to Define Logics

\vdash is defined using the notion of a model:

$$
\Gamma \vdash A \text { if every "model" of } \Gamma \text { is a "model" of } A
$$

For example, we can use many-valued matrices:
A many-valued matrix for a language \mathcal{L} consists of:

- A set \mathcal{V} of truth values.
- A subset $\mathcal{D} \subseteq \mathcal{V}$ of designated truth values.
- A truth table for every connective of \mathcal{L}, i.e. for every connective \diamond we have a function $\widetilde{\diamond}$ from \mathcal{V}^{n} to \mathcal{V}, where n is the arity of \diamond.

Many-valued Matrices

Let \mathbf{M} be a many-valued matrix.

- An M -valuation is a function $v:$ wff $_{\mathcal{L}} \rightarrow \mathcal{V}$ that respects all truth tables, i.e. for every compound formula $\diamond\left(A_{1}, \ldots, A_{n}\right)$:

$$
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)
$$

- An M-valuation is a model of a formula A if $v(A) \in \mathcal{D}$.

A consequence relation is defined by:

$\Gamma \vdash_{\mathbf{M}} A$ if every model of (every formula in) Γ is a model of A.

The Matrix $\mathbf{M}_{c l}$

The Matrix $\mathbf{M}_{c l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}\}$
- Designated values: $\mathcal{D}=\{\mathrm{T}\}$
- Tables:

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	T
F	T	T
T	F	F
T	T	T

x_{1}	x_{2}	$\widetilde{\wedge}\left(x_{1}, x_{2}\right)$
F	F	F
F	T	F
T	F	F
T	T	T

Soundness and Completeness

$\Gamma \vdash_{\mathbf{L K}} A$ iff $\Gamma \vdash_{\mathbf{M}_{c l}} A$

The Matrix $\mathbf{M}_{c l}$

The Matrix $\mathbf{M}_{c l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}\}$
- Designated values: $\mathcal{D}=\{\mathrm{T}\}$
- Tables:

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	T
F	T	T
T	F	F
T	T	T

x_{1}	x_{2}	$\widetilde{\wedge}\left(x_{1}, x_{2}\right)$
F	F	F
F	T	F
T	F	F
T	T	T

Soundness and Completeness

$$
\Gamma \vdash_{\mathbf{L K}} A \text { iff } \Gamma \vdash_{\mathbf{M}_{c l}} A
$$

Example:

$$
\vdash_{\mathbf{L k}} \neg(O b \wedge R o) \supset \neg O b \vee \neg R o
$$

Indeed, every $\mathbf{M}_{c l}$-valuation is a model of this formula.

Example: Kleene Logic

The Matrix $\mathbf{M}_{k l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}, \mathrm{I}\}$
- Designated values: $\mathcal{D}=\{\mathrm{T}\}$
- Tables:

$\widetilde{\partial}$	F	T	I
F	T	T	T
T	F	T	I
I	I	T	I

$\widetilde{\wedge}$	F	T	I
F	F	F	F
T	F	T	I
I	F	I	I

Example: Kleene Logic

The Matrix $\mathbf{M}_{k l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}, \mathrm{I}\}$
- Designated values: $\mathcal{D}=\{\mathrm{T}\}$
- Tables:

$\widetilde{\supset}$	F	T	I
F	T	T	T
T	F	T	I
I	I	T	I

$\widetilde{\wedge}$	F	T	I
F	F	F	F
T	F	T	I
I	F	I	I

Idea: If there is enough information to determine the value then we put the classical value in the table. Otherwise, we put I.

Example: Kleene Logic

The Matrix $\mathbf{M}_{k l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}, \mathrm{I}\}$
- Designated values: $\mathcal{D}=\{\mathrm{T}\}$
- Tables:

$\widetilde{\partial}$	F	T	I
F	T	T	T
T	F	T	I
I	I	T	I

$\widetilde{\wedge}$	F	T	I
F	F	F	F
T	F	T	I
I	F	I	I

Idea: If there is enough information to determine the value then we put the classical value in the table. Otherwise, we put I.

$$
\forall \mathbf{M}_{k l} O b \supset O b \quad O b \vdash \vdash_{k l} O b
$$

Example: Kleene Logic

The Matrix $\mathbf{M}_{k l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}, \mathrm{I}\}$
- Designated values: $\mathcal{D}=\{\mathrm{T}\}$
- Tables:

$\widetilde{\partial}$	F	T	I
F	T	T	T
T	F	T	I
I	I	T	I

$\widetilde{\wedge}$	F	T	I
F	F	F	F
T	F	T	I
I	F	I	I

Idea: If there is enough information to determine the value then we put the classical value in the table. Otherwise, we put I.

$$
\forall \mathbf{M}_{k l} O b \supset O b \quad O b \vdash \vdash_{\mathbf{M}_{k l}} O b
$$

If we take $\mathcal{D}=\{\mathrm{T}, \mathrm{I}\}$, we get Priest's logic of paradox.

Example: Kleene Logic

The Matrix $\mathbf{M}_{k l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}, \mathrm{I}\}$
- Designated values: $\mathcal{D}=\{\mathrm{T}\}$
- Tables:

$\widetilde{\partial}$	F	T	I
F	T	T	T
T	F	T	I
I	I	T	I

$\widetilde{\wedge}$	F	T	I
F	F	F	F
T	F	T	I
I	F	I	I

Idea: If there is enough information to determine the value then we put the classical value in the table. Otherwise, we put I.

$$
\forall \mathbf{M}_{k l} O b \supset O b \quad O b \vdash \vdash_{\mathbf{M}_{k l}} O b
$$

If we take $\mathcal{D}=\{\mathrm{T}, \mathrm{I}\}$, we get Priest's logic of paradox.

$$
\vdash_{\mathbf{M}_{p r}} O b \supset O b
$$

Matrices for Sequents Derivability

- Recall:
- $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ if there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in LK.
- $\Gamma \vdash_{\text {Lk }} A$ if $\{\Rightarrow B \mid B \in \Gamma\} \vdash_{\mathrm{LK}}^{\text {seq }} \Rightarrow A$.
- We would like to have semantics for $\vdash_{\text {LK }}^{\text {seq }}$ as well, and not only for $\vdash_{\text {LK }}$.

Matrices for Sequents Derivability

- Recall:
- $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ if there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in LK.
- $\Gamma \vdash_{\text {Lk }} A$ if $\{\Rightarrow B \mid B \in \Gamma\} \vdash_{\mathrm{LK}}^{\text {seq }} \Rightarrow A$.
- We would like to have semantics for $\vdash_{\text {LK }}^{\text {seq }}$ as well, and not only for $\vdash_{\text {LK }}$.
- Instead of one set of designated values \mathcal{D}, we have two sets:
- $\mathcal{D}_{\text {left }}$ of left designated values.
- $\mathcal{D}_{\text {right }}$ of right designated values.
- An M-valuation v is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(A) \in \mathcal{D}_{\text {left }}$ for some $A \in \Gamma$ or $v(A) \in \mathcal{D}_{\text {right }}$ for some $A \in \Delta$.

Matrices for Sequents Derivability

For $\mathbf{M}_{\boldsymbol{c l}}$, we define:

$$
\mathcal{D}_{\text {left }}=\{\mathrm{F}\} \quad \mathcal{D}_{\text {right }}=\{\mathrm{T}\}
$$

Soundness and Completeness

$\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ iff every $\mathbf{M}_{c l}$-valuation which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Matrices for Sequents Derivability

For $\mathbf{M}_{\boldsymbol{c l}}$, we define:

$$
\mathcal{D}_{\text {left }}=\{\mathrm{F}\} \quad \mathcal{D}_{\text {right }}=\{\mathrm{T}\}
$$

Soundness and Completeness

$\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ iff every $\mathbf{M}_{c l}$-valuation which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Example:

$$
p_{1} \Rightarrow \vdash_{\mathrm{LK}}^{\text {seq }} p_{3} \Rightarrow p_{1} \supset p_{2}
$$

Matrices for Sequents Derivability

For $\mathbf{M}_{\boldsymbol{c}}$, we define:

$$
\mathcal{D}_{\text {left }}=\{\mathrm{F}\} \quad \mathcal{D}_{\text {right }}=\{\mathrm{T}\}
$$

Soundness and Completeness

$\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ iff every $\mathbf{M}_{c l}$-valuation which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Example:

$$
p_{1} \Rightarrow \vdash_{\mathrm{LK}}^{\text {seq }} p_{3} \Rightarrow p_{1} \supset p_{2}
$$

Recall:

$$
\Gamma \vdash_{\mathbf{G}} A \quad \Longleftrightarrow \quad\{\Rightarrow B \mid B \in \Gamma\} \vdash_{\mathbf{G}}^{\text {seq }} \Rightarrow A
$$

If \mathbf{M} characterizes $\vdash_{\mathbf{G}}^{\text {seq }}$, take $\mathcal{D}=\mathcal{D}_{\text {right }}$ to obtain a matrix for $\vdash_{\mathbf{G}}$.

One Step in the Soundness Proof

Soundness

If $\Omega \vdash_{\mathrm{LK}}^{\text {seq }} s$ then every $\mathbf{M}_{c \mid}$-valuation which is a model of Ω is also a model of s.

Proof by induction on the length of the derivation.

- Consider an application of the rule $(\neg \Rightarrow)$. It has the form:

$$
\frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta}
$$

Suppose that v is a model of $\Gamma \Rightarrow A, \Delta$.
We prove that it is a model of $\Gamma, \neg A \Rightarrow \Delta$.
Recall: v is a model of a sequent iff $v(B) \in \mathcal{D}_{\text {left }}$ for some B on the left side or $v(B) \in \mathcal{D}_{\text {right }}$ for some B on the right side.
If $v(B)=\mathrm{F}$ for some $B \in \Gamma$, we are done.
If $v(B)=\mathrm{T}$ for some $B \in \Delta$, we are done.
Otherwise, $v(A)=\mathrm{T}$.
Since v is an $\mathbf{M}_{c \mid}$-valuation: $v(\neg A)=\widetilde{\neg}(v(A))=\widetilde{\neg}(\mathrm{T})=\mathrm{F}$.

Matrices for Sequents Derivability

A many-valued matrix for a language \mathcal{L} consists of:

- A set \mathcal{V} of truth values.
- Subsets $\mathcal{D}_{\text {left }}, \mathcal{D}_{\text {right }} \subseteq \mathcal{V}$ of designated truth values.
- A truth table for every connective of \mathcal{L}, i.e. for every connective \diamond we have a function $\widetilde{\diamond}$ from \mathcal{V}^{n} to \mathcal{V}, where n is the arity of \diamond.

Matrices for Sequents Derivability

A many-valued matrix for a language \mathcal{L} consists of:

- A set \mathcal{V} of truth values.
- Subsets $\mathcal{D}_{\text {left }}, \mathcal{D}_{\text {right }} \subseteq \mathcal{V}$ of designated truth values.
- A truth table for every connective of \mathcal{L}, i.e. for every connective \diamond we have a function $\widetilde{\diamond}$ from \mathcal{V}^{n} to \mathcal{V}, where n is the arity of \diamond.
- An M -valuation is a function $v:$ wff $_{\mathcal{L}} \rightarrow \mathcal{V}$ that respects all truth tables, i.e. for every compound formula $\diamond\left(A_{1}, \ldots, A_{n}\right)$:

$$
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)
$$

- An M-valuation v is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(A) \in \mathcal{D}_{\text {left }}$ for some $A \in \Gamma$ or $v(A) \in \mathcal{D}_{\text {right }}$ for some $A \in \Delta$.

Matrices for Sequents Derivability

A many-valued matrix for a language \mathcal{L} consists of:

- A set \mathcal{V} of truth values.
- Subsets $\mathcal{D}_{\text {left }}, \mathcal{D}_{\text {right }} \subseteq \mathcal{V}$ of designated truth values.
- A truth table for every connective of \mathcal{L}, i.e. for every connective \diamond we have a function $\widetilde{\diamond}$ from \mathcal{V}^{n} to \mathcal{V}, where n is the arity of \diamond.
- An M -valuation is a function $v:$ wff $_{\mathcal{L}} \rightarrow \mathcal{V}$ that respects all truth tables, i.e. for every compound formula $\diamond\left(A_{1}, \ldots, A_{n}\right)$:

$$
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)
$$

- An M-valuation v is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(A) \in \mathcal{D}_{\text {left }}$ for some $A \in \Gamma$ or $v(A) \in \mathcal{D}_{\text {right }}$ for some $A \in \Delta$.

A matrix \mathbf{M} is sound and complete for a sequent system \mathbf{G} iff:
$\Omega \vdash_{\mathrm{G}}^{\text {seq }} \Gamma \Rightarrow \Delta$ iff every \mathbf{M}-valuation which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Classical Logic

The Matrix $\mathbf{M}_{c l}$

- Values: $\mathcal{V}=\{\mathrm{F}, \mathrm{T}\}$
- Designated values: $\mathcal{D}_{\text {left }}=\{\mathrm{F}\}$ and $\mathcal{D}_{\text {right }}=\{\mathrm{T}\}$.
- Thus, a valuation v is a model of a sequent iff $v(A)=\mathrm{F}$ for some A on the left side, or $v(A)=\mathrm{T}$ for some A on the right side.
- Tables:

x_{1}	x_{2}	$\tilde{\partial}\left(x_{1}, x_{2}\right)$
F	F	T
F	T	T
T	F	F
T	T	T

x	$\widetilde{\neg}(x)$
F	T
T	F

Soundness and Completeness

$\Omega \vdash_{\mathrm{LK}}^{\text {seq }} \Gamma \Rightarrow \Delta$ iff iff every $\mathbf{M}_{c l}$-valuation which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Questions

- What happens if we play with LK?
e.g. add new rules, omit some rules, change some rules.
- Do we still have an effective semantics?
- What about the subformula property? cut-admissibility? axiom-expansion? invertibility of the logical rules?

Motivations

Known examples:

- If we omit $(\neg \Rightarrow)$ from LK, we obtain a system for the paraconsistent logic CluN [Batens].
- Primal implication is defined by $\frac{\Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}$ instead of $(\Rightarrow \supset)$
[Gurevich et al.]

Motivations

Known examples:

- If we omit $(\neg \Rightarrow)$ from LK, we obtain a system for the paraconsistent logic CluN [Batens].
- Primal implication is defined by $\frac{\Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}$ instead of $(\Rightarrow \supset)$ [Gurevich et al.]

Guiding principle

The meaning of each connective is given by its introduction rules:
"... The introductions represent, as it were, the 'definition' of the symbols concerned..." [Gentzen, Investigations into logical deduction]

For example:

$$
\frac{\Gamma, A_{1} \Rightarrow \Delta \quad \Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \ngtr A_{2} \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} X A_{2}, \Delta}
$$

The system GCLuN

$$
\begin{gathered}
(\neg \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad(\Rightarrow \neg) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta} \\
\mathbf{G C L u N}=\mathbf{L K}-(\neg \Rightarrow)
\end{gathered}
$$

The system GCLuN

$$
(\neg \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad(\Rightarrow \neg) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta}
$$

$$
\mathbf{G C L u N}=\mathbf{L K}-(\neg \Rightarrow)
$$

Theorem

GCLuN has no finite-valued characteristic matrix.

Hint for the proof:

$$
p, \neg p, \ldots, \neg^{n-1} p \nvdash \mathbf{G C L u N} \neg^{n} p
$$

"Reading off" the Semantics from Sequent Rules

$$
(\neg \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad(\Rightarrow \neg) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta}
$$

x	\sim
F	T
T	F

"Reading off" the Semantics from Sequent Rules

$$
(\neg \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad(\Rightarrow \neg) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta}
$$

x	$\mathfrak{\neg}(x)$
F	T
T	F

Without $(\neg \Rightarrow)$:

x	$\simeq(x)$
F	T
T	$?$

Non-Deterministic Matrices - Main Idea

- Truth tables assign sets of truth values, and we require:

$$
\begin{gathered}
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right) \in \widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right) \\
\text { instead of } \\
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)
\end{gathered}
$$

- Valuations still assign one value to each formula!

Non-Deterministic Matrices - Intuition

\wedge	F	T
F	F	F
T	F	T

$v\left(\mathrm{in}_{1} \wedge \mathrm{in}_{2}\right)=\widetilde{\wedge}\left(\mathrm{v}\left(\mathrm{in}_{1}\right), v\left(\mathrm{in}_{2}\right)\right)$

Non-Deterministic Matrices - Intuition

\wedge	F	T
F	F	F
T	F	T

$v\left(\mathrm{in}_{1} \wedge \mathrm{in}_{2}\right)=\widetilde{\wedge}\left(\mathrm{v}\left(\mathrm{in}_{1}\right), v\left(\mathrm{in}_{2}\right)\right)$

Non-Deterministic Matrices - Intuition

\wedge	F	T
F	F	F
T	F	T

$v\left(\mathrm{in}_{1} \wedge \mathrm{in}_{2}\right)=\widetilde{\wedge}\left(\mathrm{v}\left(\mathrm{in}_{1}\right), v\left(\mathrm{in}_{2}\right)\right)$

Non-Deterministic Matrices - Intuition

\wedge	F	T
F	F	F
T	F	T

\wedge	F	T
F	$\{\mathrm{F}\}$	$\{\mathrm{F}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{T}\}$

$v\left(\mathrm{in}_{1} \wedge \mathrm{in}_{2}\right)=\widetilde{\wedge}\left(\mathrm{v}\left(\mathrm{in}_{1}\right), \mathrm{v}\left(\mathrm{in}_{2}\right)\right) \quad v\left(\mathrm{in}_{1} \mathrm{XXin} 2\right) \in \widetilde{X}\left(\mathrm{v}\left(\mathrm{in}_{1}\right), \mathrm{v}\left(\mathrm{in}_{2}\right)\right)$

Truth-Functionality

Truth-Functionality

The value of a complex formula is uniquely determined by the values of its subformulas.

In Nmatrices we do not have truth-functionality, but a weaker property.

Non-Deterministic Matrices - Formal Definition

A non-deterministic matrix \mathbf{M} (Nmatrix) for a language \mathcal{L} consists of:

- A set \mathcal{V} of truth values.
- Two subsets $\mathcal{D}_{\text {left }}, \mathcal{D}_{\text {right }} \subseteq \mathcal{V}$ of designated truth values.
- A non-deterministic truth table for every connective of \mathcal{L}, i.e. for every connective \diamond we have a function $\widetilde{\diamond}$ from \mathcal{V}^{n} to $P(\mathcal{V})$, where n is the arity of \diamond.
- An M-valuation is a function $v:$ wff $\rightarrow \mathcal{V}$ that respects all truth tables, i.e. $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right) \in \widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$.
- The notion of a model is defined exactly as for (deterministic) matrices, i.e.:
- An M-valuation v is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(A) \in \mathcal{D}_{\text {left }}$ for some $A \in \Gamma$ or $v(A) \in \mathcal{D}_{\text {right }}$ for some $A \in \Delta$.

NMatrix for GCLuN

The Matrix MCluN

- $\mathcal{V}=\{\mathrm{F}, \mathrm{T}\}, \mathcal{D}_{\text {left }}=\{\mathrm{F}\}, \mathcal{D}_{\text {right }}=\{\mathrm{T}\}$.
- Same tables as in $\mathbf{M}_{c l}$ (with singletons) except for:

x	$\approx(x)$
F	$\{T\}$
T	$\{F, T\}$

Soundness and Completeness

$\Omega \vdash_{\text {GCluN }} s$ iff every $\mathbf{M}_{\text {CluN }}$-valuation which is a model of Ω is also a model of s.

For example:

$$
\Rightarrow p_{1}, \Rightarrow \neg p_{1}, \Rightarrow \neg \neg p_{1} \vdash_{\text {GCluN }}^{\text {seq }} \Rightarrow \neg \neg \neg p_{1}
$$

(thus $p_{1}, \neg p_{1}, \neg \neg p_{1} \nvdash$ GCluN $\neg \neg \neg p_{1}$)

Canonical Systems
 Avron and Lev ('01)

A canonical system consists of:

- Structural rules as in LK (weakenings, (id), (cut)).
- Any finite set of canonical rules.
- Canonical rules are logical rule of an "ideal" form:
- Each rule introduces exactly one connective in one side.
- Exactly one occurrence of the introduced connective, and no other connectives are involved.
- No restriction on context.
- The active formulas are immediate subformulas of the principal formula.

Examples of Canonical Rules

- Canonical rules are logical rule of an "ideal" form:
- Each rule introduces exactly one connective in one side.
- Exactly one occurrence of the introduced connective, and no other connectives are involved.
- No restriction on context.
- The active formulas are immediate subformulas of the principal formula.

All logical rules of LK are canonical. Other examples include:

$$
\frac{\Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
$$

$$
\begin{gathered}
\frac{\Gamma, A_{1} \Rightarrow \Delta \quad \Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \nsupseteq A_{2} \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \nsupseteq A_{2}, \Delta} \\
\frac{\Gamma \Rightarrow A_{1}, A_{2}, \Delta}{\Gamma \Rightarrow \diamond\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right), \Delta}
\end{gathered}
$$

Some Non-canonical Rules

$$
\begin{gathered}
\frac{\Gamma, A_{1} \Rightarrow A_{2}}{\Gamma \Rightarrow A_{1} \supset A_{2}} \\
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma \Rightarrow \neg\left(A_{1} \supset A_{2}\right), \Delta \\
\quad \Gamma \Rightarrow A, \Delta \\
\Gamma \Rightarrow \neg \neg A, \Delta
\end{gathered}
$$

Semantics of Canonical Systems

Given a canonical system \mathbf{G}, we construct $\mathbf{M}_{\mathbf{G}}$ as follows:

$\mathcal{V}=\{\mathrm{F}, \mathrm{T}\}, \mathcal{D}_{\text {left }}=\{\mathrm{F}\}, \mathcal{D}_{\text {right }}=\{\mathrm{T}\}$.
For every n-ary connective \diamond :

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\triangleleft}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

Example: Table of Implication

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

Example: Table of Implication

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}, \mathrm{T}\}$
F	T	$\{\mathrm{F}, \mathrm{T}\}$
T	F	$\{\mathrm{F}, \mathrm{T}\}$
T	T	$\{\mathrm{F}, \mathrm{T}\}$

Example: Table of Implication

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}, \mathrm{T}\}$
F	T	$\{\mathrm{F}, \mathrm{T}\}$
T	F	$\{\mathrm{F}, \mathrm{T}\}$
T	T	$\{\mathrm{F}, \mathrm{T}\}$

Example: Table of Implication

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}, \mathrm{T}\}$
F	T	$\{\mathrm{F}, \mathrm{T}\}$
T	F	$\{\mathrm{F}, \mathrm{T}\}$
T	T	$\{\mathrm{F}, \mathrm{T}\}$

Example: Table of Implication

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}, \mathrm{T}\}$
F	T	$\{\mathrm{F}, \mathrm{T}\}$
T	F	$\{\mathrm{F}, \mathrm{T}\}$
T	T	$\{\mathrm{F}, \mathrm{T}\}$

Example: Table of Implication

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}, \mathrm{T}\}$
F	T	$\{\mathrm{F}, \mathrm{T}\}$
T	F	$\{\mathrm{F}, \mathrm{T}\}$
T	T	$\{\mathrm{F}, \mathrm{T}\}$

Example: Table of Implication

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\partial}\left(x_{1}, x_{2}\right)$
F	F	$\{F, \mathrm{~T}\}$
F	T	$\{F, \mathrm{~T}\}$
T	F	$\{\mathrm{F}, \mathrm{T}\}$
T	T	$\{\neq \mathrm{T}\}$

Example: The System GPrim

GPrim is obtained from LK by replacing the rules for \supset with the following:

$$
(\supset \Rightarrow) \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta} \quad(\Rightarrow \supset) \frac{\Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
$$

Example: The System GPrim

GPrim is obtained from LK by replacing the rules for \supset with the following:

$$
(\supset \Rightarrow) \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta} \quad(\Rightarrow \supset) \frac{\Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
$$

Here, we obtain the following (non-deterministic) table for \supset :

x_{1}	x_{2}	$\check{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}, \mathrm{T}\}$
F	T	$\{\mathrm{T}\}$
T	F	$\{\mathrm{F}\}$
T	T	$\{\mathrm{T}\}$

Semantics of Canonical Systems

Soundness and Completeness
$\Omega \vdash_{\mathbf{G}}^{\text {seq }} s$ iff every $\mathbf{M}_{\mathbf{G}}$-valuation which is a model of Ω is also a model of s.

Semantics of Canonical Systems

Soundness and Completeness

$\Omega \vdash_{\mathbf{G}}^{\text {seq }} s$ iff every $\mathbf{M}_{\mathbf{G}}$-valuation which is a model of Ω is also a model of s.

Theorem

If $\mathbf{M}_{\mathbf{G}}$ is non-deterministic then there is no finite-valued (deterministic) matrix for \mathbf{G}.

What can go wrong?

Consider the Tonk connective [Prior] defined by:

$$
\frac{\Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1}(t) A_{2} \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow A_{1}, \Delta}{\Gamma \Rightarrow A_{1}(t) A_{2}, \Delta}
$$

What can go wrong?

Consider the Tonk connective [Prior] defined by:

$$
\frac{\Gamma, A_{2} \Rightarrow \Delta}{\left.\Gamma, A_{1} \oplus\right) A_{2} \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow A_{1}, \Delta}{\Gamma \Rightarrow A_{1} \oplus A_{2}, \Delta}
$$

We obtain the table:

x_{1}	x_{2}	$\widetilde{(t}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}\}$
F	T	$\{\mathrm{F}, \mathrm{T}\}$
T	F	\emptyset
T	T	$\{\mathrm{T}\}$

What can go wrong?

Consider the Tonk connective [Prior] defined by:

$$
\frac{\Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \oplus\left(A_{2} \Rightarrow \Delta\right.} \quad \frac{\Gamma \Rightarrow A_{1}, \Delta}{\Gamma \Rightarrow A_{1} \oplus A_{2}, \Delta}
$$

We obtain the table:

x_{1}	x_{2}	$\widetilde{(t}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{F}\}$
F	T	$\{\mathrm{F}, \mathrm{T}\}$
T	F	\emptyset
T	T	$\{\mathrm{T}\}$

- Soundness and completeness still hold.
- There are no $\mathbf{M}_{\mathbf{L K}+(t)}$-valuations!
- $\vdash_{\mathbf{L K}+(t)}$ is trivial.

Empty Sets in Truth Tables

Proposition

For every canonical system G:
if we have an empty set in a table of \mathbf{M}_{G} then

$$
\Rightarrow p_{1}, \quad p_{2} \Rightarrow \vdash_{\mathrm{G}}^{\text {seq }} \Rightarrow
$$

The Subformula property

Let \mathbf{G} be an arbitrary canonical system.

Notation

Let \mathcal{E} be a set of formulas.

- An \mathcal{E}-sequent is a sequent consisting solely of formulas from \mathcal{E}.
- $\Omega \vdash_{G}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in a system \mathbf{G} consisting solely of \mathcal{E}-sequents.

The Subformula Property

$$
\Omega \vdash_{\mathbf{G}}^{\text {seq }} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \Omega \vdash_{\mathbf{G}}^{\text {sub }[\Omega \cup\{\Gamma \Rightarrow \Delta\}] \operatorname{seq}} \Gamma \Rightarrow \Delta
$$

The Subformula property

Let \mathbf{G} be an arbitrary canonical system.

Notation

Let \mathcal{E} be a set of formulas.

- An \mathcal{E}-sequent is a sequent consisting solely of formulas from \mathcal{E}.
- $\Omega \vdash_{\mathbf{G}}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in a system \mathbf{G} consisting solely of \mathcal{E}-sequents.

The Subformula Property

$$
\Omega \vdash_{\mathrm{G}}^{\text {seq }} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \Omega \vdash_{\mathrm{G}}^{\text {sub }[\Omega \cup\{\Gamma \Rightarrow \Delta\}] \operatorname{seq}} \Gamma \Rightarrow \Delta
$$

Syntactic proofs are possible (as a consequence of cut-elimination). We will take a "semantic approach".

The Subformula property

Let \mathbf{G} be an arbitrary canonical system.

Notation

Let \mathcal{E} be a set of formulas.

- An \mathcal{E}-sequent is a sequent consisting solely of formulas from \mathcal{E}.
- $\Omega \vdash_{\mathbf{G}}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in a system \mathbf{G} consisting solely of \mathcal{E}-sequents.

The Subformula Property

$$
\Omega \vdash_{\mathrm{G}}^{\text {seq }} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \Omega \vdash_{\mathrm{G}}^{\text {sub }[\Omega \cup\{\Gamma \Rightarrow \Delta\}] \operatorname{seq}} \Gamma \Rightarrow \Delta
$$

Syntactic proofs are possible (as a consequence of cut-elimination). We will take a "semantic approach".

Can we find semantics for $\vdash_{G}^{\mathcal{E} s e q}$?

Semantics for $\vdash_{G}^{\mathcal{E} \text { seq }}$

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, set Ω of \mathcal{E}-sequents, and \mathcal{E}-sequent $\Gamma \Rightarrow \Delta$:
$\Omega \vdash_{\mathbf{G}}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff every partial $\mathbf{M}_{\mathbf{G}}$-valuation, defined on \mathcal{E}, which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Semantics for $\vdash_{G}^{\mathcal{E} \text { seq }}$

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, set Ω of \mathcal{E}-sequents, and \mathcal{E}-sequent $\Gamma \Rightarrow \Delta$:
$\Omega \vdash_{\mathbf{G}}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff every partial $\mathbf{M}_{\mathbf{G}}$-valuation, defined on \mathcal{E}, which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

For example, verify that:
\Rightarrow CarStarts \supset Trip,$\quad \Rightarrow \neg$ Trip $\vdash_{\text {LK }}^{\mathcal{E} \text { seq }} \Rightarrow \neg$ CarStarts
for $\mathcal{E}=\{$ CarStarts, Trip, \neg Trip, \neg CarStarts, CarStarts \supset Trip $\}$
$\Rightarrow p_{1}, p_{2} \Rightarrow \vdash_{\mathbf{L K}+(t)}^{\mathcal{E} \text { seq }} \Rightarrow$
for $\mathcal{E}=\left\{p_{1}, p_{2}\right\}$

Semantic Proof of the Subformula Property

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, set Ω of \mathcal{E}-sequents, and \mathcal{E}-sequent $\Gamma \Rightarrow \Delta$:
$\Omega \vdash_{\mathbf{G}}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff every partial $\mathbf{M}_{\mathbf{G}}$-valuation, defined on \mathcal{E}, which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Semantic Proof of the Subformula Property

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, set Ω of \mathcal{E}-sequents, and \mathcal{E}-sequent $\Gamma \Rightarrow \Delta$:
$\Omega \vdash_{\mathbf{G}}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff every partial $\mathbf{M}_{\mathbf{G}}$-valuation, defined on \mathcal{E}, which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Now, proving the subformula property for \mathbf{G} reduces to proving that every partial $\mathbf{M}_{\mathbf{G}}$-valuation (defined on a closed set of formulas) can be extended to a (full) $\mathbf{M}_{\mathbf{G}}$-valuation.

Semantic Proof of the Subformula Property

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, set Ω of \mathcal{E}-sequents, and \mathcal{E}-sequent $\Gamma \Rightarrow \Delta$:
$\Omega \vdash_{\mathbf{G}}^{\mathcal{E} \text { seq }} \Gamma \Rightarrow \Delta$ iff every partial $\mathbf{M}_{\mathbf{G}}$-valuation, defined on \mathcal{E}, which is a model of Ω is also a model of $\Gamma \Rightarrow \Delta$.

Now, proving the subformula property for \mathbf{G} reduces to proving that every partial $\mathbf{M}_{\mathbf{G}}$-valuation (defined on a closed set of formulas) can be extended to a (full) $\mathbf{M}_{\mathbf{G}}$-valuation.

For LK this is trivial!
Thus LK has the subformula property.

The Subformula Property in Canonical Systems

Consider the following procedure:

Extension Procedure

By recursion on the build-up of formulas:

- When $v(p)$ is undefined choose it arbitrarily.
- When $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)$ is undefined choose it arbitrarily from $\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$.

The Subformula Property in Canonical Systems

Consider the following procedure:

Extension Procedure

By recursion on the build-up of formulas:

- When $v(p)$ is undefined choose it arbitrarily.
- When $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)$ is undefined choose it arbitrarily from $\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$.

When does it works?

The Subformula Property in Canonical Systems

Consider the following procedure:

Extension Procedure

By recursion on the build-up of formulas:

- When $v(p)$ is undefined choose it arbitrarily.
- When $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)$ is undefined choose it arbitrarily from $\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$.

When does it works?
If we do not have any empty sets in the tables.

Coherence

Definition

A canonical system \mathbf{G} is called coherent if there are no empty sets in the tables of $\mathbf{M}_{\mathbf{G}}$.

Coherence

Definition

A canonical system \mathbf{G} is called coherent if there are no empty sets in the tables of $\mathbf{M}_{\mathbf{G}}$.

Theorem

A canonical system has the subformula property iff it is coherent.

Coherence

Definition

A canonical system \mathbf{G} is called coherent if there are no empty sets in the tables of $\mathbf{M}_{\mathbf{G}}$.

Theorem

A canonical system has the subformula property iff it is coherent.

In particular, GCluN and GPrim have the subformula property.

Understanding Coherence

- We obtain an empty set iff there exists a right rule and a left rule for the same connective, whose premises are satisfied by the same n values.
- In other words, we need that the right rules and the left rules for each connective to be contradictory.
- This does not hold for the rules of Tonk:

$$
\frac{\Gamma, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \oplus\left(A_{2} \Rightarrow \Delta\right.} \quad \frac{\Gamma \Rightarrow A_{1}, \Delta}{\Gamma \Rightarrow A_{1}(t) A_{2}, \Delta}
$$

A Bigger Picture

- We demonstrated the semantic approach to establish the subformula property.
- In canonical systems, the subformula property is equivalent to semantic analyticity - the fact that every partial valuation can be extended.
- Similar approach works for many other Gentzen-type systems.
- The subformula property was proved regardless of cut-elimination.

So far

- We defined the family of canonical systems.
- We introduced the semantic framework of Nmatrices.
- We provided a method to obtain a two-valued Nmatrix for every canonical system.
- We introduced the coherence criterion - a necessary and sufficient criterion for the subformula property in canonical systems.

So far

- We defined the family of canonical systems.
- We introduced the semantic framework of Nmatrices.
- We provided a method to obtain a two-valued Nmatrix for every canonical system.
- We introduced the coherence criterion - a necessary and sufficient criterion for the subformula property in canonical systems.

What about cut-admissibility in canonical systems?

Cut-Admissibility

$$
(c u t) \frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

Cut-Admissibility

$$
\vdash_{\mathbf{G}}^{\text {seq }} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \vdash_{\mathbf{G}-(\text { cut })}^{\text {seq }} \Gamma \Rightarrow \Delta
$$

Cut-Admissibility

$$
(c u t) \frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

Cut-Admissibility

$$
\vdash_{\mathbf{G}}^{\text {seq }} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \vdash_{\mathrm{G}-(\text { cut })}^{\text {seq }} \Gamma \Rightarrow \Delta
$$

- LK enjoys cut-admissibility (Gentzen, 1934).
- What about other canonical systems?

Cut-Admissibility

$$
(c u t) \frac{\Gamma \Rightarrow \Delta, A \quad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}
$$

Cut-Admissibility

$$
\vdash_{\mathbf{G}}^{\text {seq }} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \vdash_{\mathbf{G}-(\text { cut })}^{\text {seq }} \Gamma \Rightarrow \Delta
$$

- LK enjoys cut-admissibility (Gentzen, 1934).
- What about other canonical systems?

We will take a "semantic approach".

Can we find semantics for LK - (cut)?

Semantics for LK - (cut)

- Not the same semantics as for LK!
- Cut-admissibility does not hold in the presence of assumptions, e.g.

$$
\begin{gathered}
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}}^{\mathrm{seq}} \Rightarrow \\
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}-(c u t)}^{\mathrm{seq}} \Rightarrow
\end{gathered}
$$

Semantics for LK - (cut)

- Not the same semantics as for LK!
- Cut-admissibility does not hold in the presence of assumptions, e.g.

$$
\begin{gathered}
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}}^{\mathrm{seq}} \Rightarrow \\
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}-(c u t)}^{\mathrm{seq}} \Rightarrow
\end{gathered}
$$

Theorem

$\vdash_{\mathbf{L K} \text {-(cut) }}$ does not have a finite characteristic matrix.

Semantics for LK - (cut)

$$
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}-(c u t)}^{\mathrm{seq}} \Rightarrow
$$

Semantics for LK - (cut)

$$
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}-(c u t)}^{\mathrm{seq}} \Rightarrow
$$

- Without cut, there should be a valuation which is both a model of $p_{1} \Rightarrow$ and of $\Rightarrow p_{1}$.

Semantics for LK - (cut)

$$
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}-(c u t)}^{\mathrm{seq}} \Rightarrow
$$

- Without cut, there should be a valuation which is both a model of $p_{1} \Rightarrow$ and of $\Rightarrow p_{1}$.
- Recall: An M -valuation v is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(A) \in \mathcal{D}_{\text {left }}$ for some $A \in \Gamma$ or $v(A) \in \mathcal{D}_{\text {right }}$ for some $A \in \Delta$.

Semantics for LK - (cut)

$$
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}-(\text { cut })}^{\text {seq }} \Rightarrow
$$

- Without cut, there should be a valuation which is both a model of $p_{1} \Rightarrow$ and of $\Rightarrow p_{1}$.
- Recall: An M-valuation v is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(A) \in \mathcal{D}_{\text {left }}$ for some $A \in \Gamma$ or $v(A) \in \mathcal{D}_{\text {right }}$ for some $A \in \Delta$.
- $v\left(p_{1}\right)$ should be both in $\mathcal{D}_{\text {left }}$ and in $\mathcal{D}_{\text {right }}$.

Semantics for LK - (cut)

$$
\Rightarrow p_{1}, p_{1} \Rightarrow \vdash_{\mathrm{LK}-(\text { cut })}^{\text {seq }} \Rightarrow
$$

- Without cut, there should be a valuation which is both a model of $p_{1} \Rightarrow$ and of $\Rightarrow p_{1}$.
- Recall: An M-valuation v is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(A) \in \mathcal{D}_{\text {left }}$ for some $A \in \Gamma$ or $v(A) \in \mathcal{D}_{\text {right }}$ for some $A \in \Delta$.
- $v\left(p_{1}\right)$ should be both in $\mathcal{D}_{\text {left }}$ and in $\mathcal{D}_{\text {right }}$.
- We will add a third value $T: \mathcal{V}=\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$.
- T makes a sequent true on both sides:

$$
\mathcal{D}_{\text {left }}=\{\mathrm{F}, \top\} \quad \mathcal{D}_{\text {right }}=\{\mathrm{T}, \top\}
$$

- The construction of the tables is done using the same method used for canonical systems.

The NMatrix $\mathbf{M L K}_{\text {LK-(cut) }}$

$$
\mathcal{V}=\{\mathrm{F}, \mathrm{~T}, \top\} \quad \mathcal{D}_{\text {left }}=\{\mathrm{F}, \top\} \quad \mathcal{D}_{\text {right }}=\{\mathrm{T}, \top\}
$$

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{T}, \mathrm{T}\}$
F	T	$\{\mathrm{T}, \mathrm{T}\}$
T	F	$\{\mathrm{F}, \mathrm{T}\}$
T	T	$\{\mathrm{T}, \mathrm{T}\}$
F	T	$\{\mathrm{T}, \mathrm{T}\}$
T	T	$\{\mathrm{T}\}$
T	F	$\{\mathrm{T}\}$
T	T	$\{\mathrm{T}, \mathrm{T}\}$
T	T	$\{\mathrm{T}\}$

x	$\simeq(x)$
F	$\{\mathrm{T}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$
T	$\{\mathrm{T}\}$

Semantics for LK - (cut)

Soundness and Completeness - sequents

$\Omega \vdash_{\mathrm{LK}-(\text { cut })}^{\text {seq }}$ siff every $\mathbf{M}_{\mathrm{LK}-(\text { cut })}$-valuation which is a model of Ω is also a model of s.

Soundness and Completeness - formulas

$\Gamma \vdash_{\mathbf{L K}-(\text { cut })} A$ iff $\Gamma \vdash_{\mathbf{M}_{\mathbf{L K}-(\text { cut })}} A$ (i.e. every $\mathbf{M}_{\mathbf{L K} \text {-(cut) }}$-valuation which is a model of Γ is also a model of A). (where $\left.\mathcal{D}=\mathcal{D}_{\text {right }}\right)$

For example, verify that:

$$
\text { CarStarts } \supset \text { Trip }, \neg \text { Trip } \not \text { LK }_{-(c u t)} \neg \text { CarStarts }
$$

Semantics for LK - (cut)

Soundness and Completeness - sequents

$\Omega \vdash_{\mathrm{LK}-(\text { cut })}^{\text {seq }}$ siff every $\mathbf{M}_{\mathrm{LK}-(\text { cut })}$-valuation which is a model of Ω is also a model of s.

Soundness and Completeness - formulas

$\Gamma \vdash_{\mathbf{L K}-(\text { cut })} A$ iff $\Gamma \vdash_{\mathbf{M}_{\mathbf{L K}-(\text { cut })}} A$ (i.e. every $\mathbf{M}_{\mathbf{L K} \text {-(cut) }}$-valuation which is a model of Γ is also a model of A). (where $\left.\mathcal{D}=\mathcal{D}_{\text {right }}\right)$

For example, verify that:

$$
\text { CarStarts } \supset \text { Trip }, \neg \text { Trip } \Vdash_{\text {LK }}(\text { cut }) ~ \neg \text { CarStarts }
$$

\hookrightarrow New formulation of results of Schütte (1960) and Girard (1987).

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	T
F	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	T
F	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	T
F	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{t}, \mathrm{T}\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \mathrm{T}\right\}$
T	$\left\{\mathrm{F}, \mathrm{X}^{\prime}, \mathrm{T}\right\}$	\{F, T, T \}	\{ $\mathrm{F}, \mathrm{X}, \mathrm{T}\}$
T	\{ $\left.\mathrm{F}, \mathrm{T}^{\prime}, \mathrm{T}\right\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	\{ $\mathrm{F}, \boldsymbol{\chi}, \mathrm{T}\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	T
F	\{F, T', T $\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \mathrm{T}\right\}$	\{F, $\left.\chi^{\prime}, T\right\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \mathrm{T}\right\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \mathrm{T}\right\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \mathrm{T}\right\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	T
F	\{F, Th, T $\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \mathrm{T}\right\}$	$\left\{\mathrm{F}, \mathrm{t}^{\prime}, \mathrm{T}\right\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\left\{\mathcal{F}^{\prime}, \mathrm{T}, \mathrm{T}\right\}$	$\left\{F^{\prime}, \chi^{\prime}, T\right\}$
T	$\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$	$\left\{\neq \boldsymbol{T},{ }^{\prime}, \top\right\}$	$\left\{\mathcal{F}^{\prime}, \chi^{\prime}, \top\right\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$\tilde{\wedge}$	F	T	T
F	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{T}, \mathrm{T}\}$	$\{\mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{T}\}$	$\{\mathrm{T}\}$

- All usual connectives have non-deterministic semantics.
- Non-determinism is a result of the missing cut rule.

Canonical Systems without (cut)

- The same construction works for every canonical system without (cut).
- T is included in every entry in every table.
- Thus, all canonical systems without (cut) have the subformula property. (This is obvious from a syntactic point of view.)
- The $\{\mathrm{F}, \mathrm{T}\}$-entries of the tables for the system without cut are equal to those of the system with cut, except for the addition of T.

$\tilde{\wedge}$	F	T	T
F	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{T}, \mathrm{T}\}$	$\{\mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$	$\{T\}$	$\{T\}$

- Why? since we do exactly the same deletions, but we begin with $\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$.

Canonical Systems without (cut)

- The same construction works for every canonical system without (cut).
- T is included in every entry in every table.
- Thus, all canonical systems without (cut) have the subformula property. (This is obvious from a syntactic point of view.)
- The $\{\mathrm{F}, \mathrm{T}\}$-entries of the tables for the system without cut are equal to those of the system with cut, except for the addition of T.

$\tilde{\wedge}$	F	T	T
F	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$	$\{\mathrm{T}, \mathrm{T}\}$	$\{\mathrm{T}\}$
T	$\{\mathrm{F}, \mathrm{T}\}$	$\{T\}$	$\{T\}$

- Why? since we do exactly the same deletions, but we begin with $\{\mathrm{F}, \mathrm{T}, \mathrm{T}\}$.

Observation

Every $\mathbf{M}_{\mathbf{G}-(\text { cut })}$-valuation over $\{\mathrm{F}, \mathrm{T}\}$ is an $\mathbf{M}_{\mathbf{G}}$-valuation.

Cut-Admissibility for LK

$$
\vdash_{L K} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \vdash_{\mathrm{LK}-(\text { cut })} \Gamma \Rightarrow \Delta
$$

Semantic Equivalent

If every $\mathbf{M}_{\mathbf{L K}}$-valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ then every $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation is a model of $\Gamma \Rightarrow \Delta$.

Cut-Admissibility for LK

$$
\vdash_{\mathrm{LK}} \Gamma \Rightarrow \Delta \quad \Longrightarrow \quad \vdash_{\mathrm{LK}-(\text { cut })} \Gamma \Rightarrow \Delta
$$

Semantic Equivalent

If every $\mathbf{M}_{\mathbf{L K} \text {-valuation }}$ is a model of a sequent $\Gamma \Rightarrow \Delta$ then every $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation is a model of $\Gamma \Rightarrow \Delta$.

- To prove cut-admissibility for LK, we have to prove: For every $\mathbf{M}_{\mathrm{LK}-(\text { cut })}$-valuation which is not a model of some sequent $\Gamma \Rightarrow \Delta$, there exists an $M_{\text {LK-valuation }}$ which is not a model of $\Gamma \Rightarrow \Delta$.
- Using the previous observation, it suffices to show: For every $\mathbf{M}_{\text {LK-(cut) }}$-valuation which is not a model of some sequent $\Gamma \Rightarrow \Delta$, there exists an $\mathbf{M}_{\mathbf{L K}-(\text { cut })}$-valuation over $\{\mathrm{F}, \mathrm{T}\}$ which is not a model of $\Gamma \Rightarrow \Delta$.
- It suffices to show:

For every $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation v there exists an $\mathbf{M}_{\text {LK-(cut) }}$-valuation v^{\prime} over $\{\mathrm{F}, \mathrm{T}\}$ such that $v^{\prime}(A)=v(A)$ whenever $v(A) \in\{\mathrm{F}, \mathrm{T}\}$.

Cut-Admissibility for LK

GOAL: For every $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation v there exists an $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation v^{\prime} over $\{\mathrm{F}, \mathrm{T}\}$ such that $v^{\prime}(A)=v(A)$ whenever $v(A) \in\{\mathrm{F}, \mathrm{T}\}$.

Refinement Procedure

By recursion on the build-up of formulas:

- If $v(A) \in\{\mathrm{F}, \mathrm{T}\}: v^{\prime}(A):=v(A)$.
- Otherwise:
- If A is atomic, choose $v^{\prime}(A)$ to be either F or T arbitrarily.
- If $A=\diamond\left(A_{1}, \ldots, A_{n}\right)$, choose $v^{\prime}(A)$ to be either F or T arbitrarily from $\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$.

Cut-Admissibility for LK

GOAL: For every $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation v there exists an $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation v^{\prime} over $\{\mathrm{F}, \mathrm{T}\}$ such that $v^{\prime}(A)=v(A)$ whenever $v(A) \in\{\mathrm{F}, \mathrm{T}\}$.

Refinement Procedure

By recursion on the build-up of formulas:

- If $v(A) \in\{\mathrm{F}, \mathrm{T}\}: v^{\prime}(A):=v(A)$.
- Otherwise:
- If A is atomic, choose $v^{\prime}(A)$ to be either F or T arbitrarily.
- If $A=\diamond\left(A_{1}, \ldots, A_{n}\right)$, choose $v^{\prime}(A)$ to be either F or T arbitrarily from $\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$.

Why does it work?

Cut-Admissibility for LK

GOAL: For every $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation v there exists an $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation v^{\prime} over $\{\mathrm{F}, \mathrm{T}\}$ such that $v^{\prime}(A)=v(A)$ whenever $v(A) \in\{\mathrm{F}, \mathrm{T}\}$.

Refinement Procedure

By recursion on the build-up of formulas:

- If $v(A) \in\{\mathrm{F}, \mathrm{T}\}: v^{\prime}(A):=v(A)$.
- Otherwise:
- If A is atomic, choose $v^{\prime}(A)$ to be either F or T arbitrarily.
- If $A=\diamond\left(A_{1}, \ldots, A_{n}\right)$, choose $v^{\prime}(A)$ to be either F or T arbitrarily from $\widetilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$.

Why does it work?
In the tables of $\mathrm{M}_{\mathrm{LK}-(c u t)},\{\mathrm{F}, \mathrm{T}\}$-entries always include F or T in addition to \top.

Cut-Admissibility for Canonical Systems

Theorem
LK enjoys cut-admissibility.

What about canonical systems in general?

Cut-Admissibility for Canonical Systems

Theorem

LK enjoys cut-admissibility.

What about canonical systems in general?

- To have cut-admissibility, we should not have $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\{T\}$ for $x_{1}, \ldots, x_{n} \in\{\mathrm{~F}, \mathrm{~T}\}$.
- Recall: The $\{\mathrm{F}, \mathrm{T}\}$-entries of the tables for the system without cut are equal to those of the system with cut, except for the addition of T.
- Thus $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\{T\}$ for $x_{1}, \ldots, x_{n} \in\{F, T\}$ only if $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\emptyset$ in the tables for the same system with cut.

Cut-Admissibility for Canonical Systems

Theorem

LK enjoys cut-admissibility.

What about canonical systems in general?

- To have cut-admissibility, we should not have $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\{T\}$ for $x_{1}, \ldots, x_{n} \in\{\mathrm{~F}, \mathrm{~T}\}$.
- Recall: The $\{\mathrm{F}, \mathrm{T}\}$-entries of the tables for the system without cut are equal to those of the system with cut, except for the addition of T.
- Thus $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\{T\}$ for $x_{1}, \ldots, x_{n} \in\{F, T\}$ only if $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\emptyset$ in the tables for the same system with cut.

Theorem

Every coherent canonical system enjoys cut-admissibility.

Triple Correspondence

Note that if a system is not coherent then it does not enjoy cut-admissibility (since $\Rightarrow p_{1}, p_{2} \Rightarrow \vdash_{\mathbf{G}}^{\text {seq }} \Rightarrow$).

Triple Correspondence

Note that if a system is not coherent then it does not enjoy cut-admissibility (since $\Rightarrow p_{1}, p_{2} \Rightarrow \vdash_{\mathbf{G}}^{\text {seq }} \Rightarrow$).

Corollary

For every canonical system \mathbf{G}, the following are equivalent:

- \mathbf{G} is coherent.
- G has the subformula property.
- G enjoys cut-admissibility.

A Bigger Picture

- We demonstrated the "semantic approach" to prove cut-admissibility.
- We had three steps:
- Find semantics 1 for the system with cut.
- Find semantics 2 for the system without cut.
- Show that every non-model of some sequent $\Gamma \Rightarrow \Delta$ in 2 can be turned into a non-model of $\Gamma \Rightarrow \Delta$ in 1 .

A Bigger Picture

- We demonstrated the "semantic approach" to prove cut-admissibility.
- We had three steps:
- Find semantics 1 for the system with cut.
- Find semantics 2 for the system without cut.
- Show that every non-model of some sequent $\Gamma \Rightarrow \Delta$ in 2 can be turned into a non-model of $\Gamma \Rightarrow \Delta$ in 1 .
- In comparison to the syntactic approach:
- Safer and less tedious.
- Better understanding of the meaning of cut.
- Easier to generalize.
- The method can be adapted to higher-order logics.

A Bigger Picture

- We demonstrated the "semantic approach" to prove cut-admissibility.
- We had three steps:
- Find semantics 1 for the system with cut.
- Find semantics 2 for the system without cut.
- Show that every non-model of some sequent $\Gamma \Rightarrow \Delta$ in 2 can be turned into a non-model of $\Gamma \Rightarrow \Delta$ in 1 .
- In comparison to the syntactic approach:
- Safer and less tedious.
- Better understanding of the meaning of cut.
- Easier to generalize.
- The method can be adapted to higher-order logics.
- On the other hand:
- We only have cut-admissibility and not cut-elimination.
- If it does not work then it does not easily lead to counter example.

Axiom-Expansion

- (id) is the rule allowing to derive all sequents of the form $A \Rightarrow A$ (with no premises).
- Atomic applications of (id) derive sequents of the form $p \Rightarrow p$, where p is an atomic formula.

Axiom-Expansion

- (id) is the rule allowing to derive all sequents of the form $A \Rightarrow A$ (with no premises).
- Atomic applications of (id) derive sequents of the form $p \Rightarrow p$, where p is an atomic formula.

Axiom-Expansion

If $\Omega \vdash_{\mathbf{G}}^{\text {seq }} \Gamma \Rightarrow \Delta$ then there exists a derivation of $\Gamma \Rightarrow \Delta$ from Ω in \mathbf{G} in which all applications of (id) are atomic.

Axiom-Expansion

Equivalent Formulation

For every n-ary connective:

$$
\left\{p_{i} \Rightarrow p_{i} \mid i \geq 1\right\} \vdash_{\mathbf{G}-(i d)} \diamond\left(p_{1}, \ldots, p_{n}\right) \Rightarrow \diamond\left(p_{1}, \ldots, p_{n}\right)
$$

Axiom-Expansion

Equivalent Formulation

For every n-ary connective:
$\left\{p_{i} \Rightarrow p_{i} \mid i \geq 1\right\} \vdash_{\mathbf{G}-(i d)} \diamond\left(p_{1}, \ldots, p_{n}\right) \Rightarrow \diamond\left(p_{1}, \ldots, p_{n}\right)$

LK admits axiom-expansion. For example:

$$
\frac{p_{1} \Rightarrow p_{1} \quad p_{2} \Rightarrow p_{2}}{\frac{p_{1}, p_{1} \supset p_{2} \Rightarrow p_{2}}{p_{1} \supset p_{2} \Rightarrow p_{1} \supset p_{2}}}
$$

Again, we would like to obtain a semantic equivalent of this property. What is the semantics of canonical systems without (id) ? In particular, of LK - (id) ?

Semantics for LK - (id)

Theorem

$\vdash_{\text {LK-(id) }}$ does not have a finite characteristic matrix.

Semantics for LK - (id)

Theorem

$\vdash_{\text {LK-(id) }}$ does not have a finite characteristic matrix.

$$
\vdash_{\mathbf{L K}-(i d)} p \Rightarrow p
$$

Semantics for LK - (id)

Theorem

$\vdash_{\mathbf{L K}-(i d)}$ does not have a finite characteristic matrix.

$$
Y_{\text {LK-(id) }} p \Rightarrow p
$$

- Without id, there should be a valuation which is not a model of $p \Rightarrow p$.
- Thus, $v(p)$ should be neither in $\mathcal{D}_{\text {left }}$ nor in $\mathcal{D}_{\text {right }}$.

Semantics for LK - (id)

Theorem

$\vdash_{\text {LK-(id) }}$ does not have a finite characteristic matrix.

$$
\vdash_{\mathbf{L K}-(i d)} p \Rightarrow p
$$

- Without id, there should be a valuation which is not a model of $p \Rightarrow p$.
- Thus, $v(p)$ should be neither in $\mathcal{D}_{\text {left }}$ nor in $\mathcal{D}_{\text {right }}$.
- We will add a third value $\perp: \mathcal{V}=\{\mathrm{F}, \mathrm{T}, \perp\}$.
- \perp never makes a sequent true:

$$
\mathcal{D}_{\text {left }}=\{\mathrm{F}\} \quad \mathcal{D}_{\text {right }}=\{\mathrm{T}\}
$$

- The construction of the tables is almost the same.

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	\perp
F	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
T	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	\perp
F	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
T	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	\perp
F	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \not \perp\right\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \not \perp\right\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \not \perp\right\}$
T	$\left\{\mathrm{F}, \mathrm{H}^{\prime}, \not \perp\right\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	$\left\{\mathrm{F}, \not \mathrm{T}^{\prime}, \not \perp\right\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\tilde{\wedge}$	F	T	\perp
F	$\{\mathrm{F}, \not \mathrm{T}, \not \perp\}$	$\{\mathrm{F}, \not \mathrm{X}, \not \perp\}$	$\{\mathrm{F}, \not \mathrm{X}, \not \perp\}$
T	$\{\mathrm{F}, \not{\mathrm{X}}, \not \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	$\{\mathrm{F}, \not{\mathrm{T}}, \not \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$$
(\wedge \Rightarrow) \frac{\Gamma, A_{1}, A_{2} \Rightarrow \Delta}{\Gamma, A_{1} \wedge A_{2} \Rightarrow \Delta} \quad(\Rightarrow \wedge) \quad \frac{\Gamma \Rightarrow A_{1}, \Delta \Gamma \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \wedge A_{2}, \Delta}
$$

$\widetilde{\wedge}$	F	T	\perp
F	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \underline{\chi}\right\}$	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \notin \underline{\chi}\right.$	$\left\{\mathrm{F}, \mathrm{t}^{\prime}, \notin \underline{\chi}\right.$
T	$\left\{\mathrm{F}, \mathrm{T}^{\prime}, \underline{X}\right\}$	$\{\underline{\prime}, \mathrm{T}, \not, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	$\{\mathrm{F}, \mathrm{T}, \underline{X}\}$	$\{\mathrm{F}, \mathrm{T}, \perp$ \}	$\{\mathrm{F}, \mathrm{T}, \perp$ \}

Example: Construction of a table for \wedge

- Initialize a totally non-deterministic table.
- For every rule r for \diamond :

For every $x_{1}, \ldots, x_{n} \in \mathcal{V}$:

- If x_{1}, \ldots, x_{n} satisfy the premises of r :
- If r is a right rule, omit F and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.
- If r is a left rule, omit T and \perp from $\widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$.

$\tilde{\wedge}$	F	T	\perp
F	$\{\mathrm{F}\}$	$\{\mathrm{F}\}$	$\{\mathrm{F}\}$
T	$\{\mathrm{F}\}$	$\{\mathrm{T}\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	$\{\mathrm{F}\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$	$\{\mathrm{F}, \mathrm{T}, \perp\}$

- All usual connectives have non-deterministic semantics.
- Non-determinism is a result of the missing identity axiom.

The NMatrix $\mathrm{M}_{\text {LK-(id) }}$

$$
\mathcal{V}=\{\mathrm{F}, \mathrm{~T}, \perp\} \quad \mathcal{D}_{\text {left }}=\{\mathrm{F}\} \quad \mathcal{D}=\mathcal{D}_{\text {right }}=\{\mathrm{T}\}
$$

x_{1}	x_{2}	$\tilde{\partial}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{T}\}$
F	T	$\{\mathrm{T}\}$
T	F	$\{\mathrm{F}\}$
T	T	$\{\mathrm{T}\}$
F	\perp	$\{\mathrm{T}\}$
T	\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	F	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	T	$\{\mathrm{T}\}$
\perp	\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$

x	$\simeq(x)$
F	$\{\mathrm{T}\}$
T	$\{\mathrm{F}\}$
\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$

Semantics for LK - (id)

Soundness and Completeness - sequents

$\Omega \vdash_{\text {LK-(id) }}^{\text {seq }}$ siff every $\mathbf{M}_{\mathbf{L K} \text {-(id) }}$-valuation which is a model of Ω is also a model of s.

Soundness and Completeness - formulas

$\Gamma \vdash_{\mathbf{L K}-(i d)} A$ iff $\Gamma \vdash_{\mathbf{M L K}_{\mathbf{L K}}(i d)} A$ (i.e. every $\mathbf{M}_{\mathbf{L K}-(i d)}$-valuation which is a model of Γ is also a model of A). (where $\mathcal{D}=\mathcal{D}_{\text {right }}$)

For example, verify that:

$$
\text { CarStarts } \supset \text { Trip, } \neg \text { Trip } \nvdash \text { Lk-(id) } \neg \text { CarStarts }
$$

\hookrightarrow New formulation of results of Hösli and Jäger (1994).

Semantics for Canonical Systems without (id)

- The same construction works for every canonical system G.

Axiom-Expansion

For every n-ary connective:

$$
\left\{p_{i} \Rightarrow p_{i} \mid i \geq 1\right\} \vdash_{\mathbf{G}-(i d)} \diamond\left(p_{1}, \ldots, p_{n}\right) \Rightarrow \diamond\left(p_{1}, \ldots, p_{n}\right)
$$

- In other words: Whenever $v\left(p_{i}\right) \in\{\mathrm{F}, \mathrm{T}\}$ for every $i \geq 1$, we also have $v\left(\diamond\left(p_{1}, \ldots, p_{n}\right)\right) \in\{\mathrm{F}, \mathrm{T}\}$ for every connective \diamond.
- Thus, we have axiom expansion iff for every connective \diamond : $\perp \notin \widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$ for every $x_{1}, \ldots, x_{n} \in\{F, T\}$.

Axiom-Expansion for LK

LK admits axiom-expansion.

x_{1}	x_{2}	$\tilde{\partial}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{T}\}$
F	T	$\{\mathrm{T}\}$
T	F	$\{\mathrm{F}\}$
T	T	$\{\mathrm{T}\}$
F	\perp	$\{\mathrm{T}\}$
T	\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	F	$\{\mathrm{F}, \mathrm{T}, \perp\}$
\perp	T	$\{\mathrm{T}\}$
\perp	\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$

x	$\simeq(x)$
F	$\{\mathrm{T}\}$
T	$\{\mathrm{F}\}$
\perp	$\{\mathrm{F}, \mathrm{T}, \perp\}$

Axiom-Expansion for Canonical Systems

- We have axiom expansion iff for every connective $\diamond: \perp \notin \widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$ for every $x_{1}, \ldots, x_{n} \in\{F, T\}$.
- This means that we did at least one deletion in every $\{\mathrm{F}, \mathrm{T}\}$-entry.
- Equivalently, the tables for the system with (id) are deterministic.

Axiom-Expansion for Canonical Systems

- We have axiom expansion iff for every connective $\diamond: \perp \notin \widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$ for every $x_{1}, \ldots, x_{n} \in\{F, T\}$.
- This means that we did at least one deletion in every $\{\mathrm{F}, \mathrm{T}\}$-entry.
- Equivalently, the tables for the system with (id) are deterministic.

Theorem

A canonical system \mathbf{G} admits axiom-expansion iff $\mathbf{M}_{\mathbf{G}}$ is deterministic.

In particular, GCluN and GPrim do not admit axiom-expansion.

Invertibility of Logical Rules

- A canonical rule is called invertible in a system \mathbf{G} if each of its premises can be derived from its conclusion in \mathbf{G}.
- (Formally, this should hold for every instantiation of Γ, Δ and A_{1}, A_{2}, \ldots.)

$$
\begin{aligned}
& \frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta} \text { is invertible in LK: } \\
& \frac{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}{\Gamma, A_{1} \Rightarrow A_{1} \supset A_{2}, A_{2}, \Delta}(w) \frac{\overline{A_{1} \Rightarrow A_{1}}(\text { id })}{\Gamma, A_{1} \Rightarrow A_{1}, A_{2}, \Delta}(w) \frac{\overline{A_{2} \Rightarrow A_{2}}(\text { id })}{\Gamma, A_{1}, A_{1} \supset A_{2} \Rightarrow A_{2}, \Delta}(\text { (w }) \\
& \Gamma, A_{1} \Rightarrow A_{2}, \Delta
\end{aligned}(\supset \Rightarrow)
$$

Semantic View of Invertibility of Logical Rules Informal discussion

- A canonical right rule for \diamond is invertible in \mathbf{G} : if for every $\mathbf{M}_{\mathbf{G}}$-valuation v, if $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\mathrm{T}$ then the premises of the rule are satisfied by v.
- Equivalently, when $\mathrm{T} \in \widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$ then x_{1}, \ldots, x_{n} satisfy the premises of the rule.

Semantic View of Invertibility of Logical Rules Informal discussion

- A canonical right rule for \diamond is invertible in \mathbf{G} : if for every $\mathbf{M}_{\mathbf{G}}$-valuation v, if $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\mathrm{T}$ then the premises of the rule are satisfied by v.
- Equivalently, when $\mathrm{T} \in \widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$ then x_{1}, \ldots, x_{n} satisfy the premises of the rule.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\rho}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{T}\}$
F	T	$\{\mathrm{T}\}$
T	F	$\{\mathrm{F}\}$
T	T	$\{\mathrm{T}\}$

Semantic View of Invertibility of Logical Rules Informal discussion

- A canonical right rule for \diamond is invertible in \mathbf{G} : if for every $\mathbf{M}_{\mathbf{G}}$-valuation v, if $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\mathrm{T}$ then the premises of the rule are satisfied by v.
- Equivalently, when $\mathrm{T} \in \widetilde{\diamond}\left(x_{1}, \ldots, x_{n}\right)$ then x_{1}, \ldots, x_{n} satisfy the premises of the rule.

$$
\begin{gathered}
\Gamma \Rightarrow A_{1}, \Delta \quad \Gamma, A_{2} \Rightarrow \Delta \\
\Gamma, A_{1} \supset A_{2} \Rightarrow \Delta \\
\frac{\Gamma, A_{1} \Rightarrow A_{2}, \Delta}{\Gamma \Rightarrow A_{1} \supset A_{2}, \Delta}
\end{gathered}
$$

x_{1}	x_{2}	$\tilde{\supset}\left(x_{1}, x_{2}\right)$
F	F	$\{\mathrm{T}\}$
F	T	$\{\mathrm{T}\}$
T	F	$\{\mathrm{F}\}$
T	T	$\{\mathrm{T}\}$

In case we have only one right rule r for \diamond :

- In the construction of $\widetilde{\diamond}$, when r 's premises are satisfied, we delete F .
- r is invertible in G iff there are no $\{F, T\}$'s in $\widetilde{\diamond}$.

Triple Correspondence

Corollary

For every canonical system \mathbf{G}, the following are equivalent:

- $\mathbf{M}_{\mathbf{G}}$ is deterministic.
- G admits axiom-expansion.
- If every connective has exactly one left rule and one right rule, then all logical rules are invertible.

Final Remarks

- Non-deterministic semantics is a useful tool for understanding and investigating proof-theoretic properties of formal calculi.
- The semantic tools complement the usual proof-theoretic ones.
- Interesting cases arise when the "semantic approach" is applied for
- Single-conclusion sequent systems
- Sequent systems for modal logics
- Many-sided sequent systems
- Hypersequent systems
- Sub-structural systems ??

Final Remarks

- Non-deterministic semantics is a useful tool for understanding and investigating proof-theoretic properties of formal calculi.
- The semantic tools complement the usual proof-theoretic ones.
- Interesting cases arise when the "semantic approach" is applied for
- Single-conclusion sequent systems
- Sequent systems for modal logics
- Many-sided sequent systems
- Hypersequent systems
- Sub-structural systems ??

Thank you for your attention!
You are welcome to ask, suggest and discuss.
www.cs.tau.ac.il/~orilahav orilahav@gmail.com

