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“Logic”

1 A formal language L, based on which L-formulas are constructed.

2 A binary relation ` between sets of L-formulas and L-formulas,
satisfying:

Reflexivity: if A ∈ Γ then Γ ` A.
Monotonicity: if Γ ` A and Γ ⊆ Γ′, then Γ′ ` A.
Transitivity: if Γ ` B and Γ′,B ` A then Γ, Γ′ ` A.
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Languages

We will only consider propositional languages, consisting of:

Atomic formulas (we usually use p1, p2, . . .)

A finite set of logical connectives

Parentheses: ‘(’,‘)’

We denote by wff L the set of well-formed formulas of L.

Lcl (a language for classical logic) includes the unary connective ¬, and the
binary connectives ∧, ∨, and ⊃.

The set of well-formed formulas wff Lcl :

All atomic formulas are in wff Lcl .

If A,B ∈ wff Lcl , then (¬A), (A ∧ B), (A ∨ B), (A ⊃ B) ∈ wff Lcl .
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Syntactic Approach to Define Logics

` is defined using a notion of a derivation in a given proof system.

For example, we can use Hilbert-style systems:

A Hilbert-style system consists of: (i) a set of formulas called axioms,
and (ii) a set of inference rules.

A derivation of A from Γ in a Hilbert-style system H is a finite
sequence of formulas, where the last formula is A, and each formula is:
(i) an axiom of H, (ii) a member of Γ, or (iii) obtained from previous
formulas by applying some inference rule of H.

The consequence relation `H is defined by:

Γ `H A if A has a derivation from Γ in H
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The system HCL

Axiom schemata:

I1 A ⊃ (B ⊃ A) D1 A ⊃ A ∨ B
I2 (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ (A ⊃ C) D2 B ⊃ A ∨ B
I3 ((B ⊃ A) ⊃ B) ⊃ B D3 (A ⊃ C) ⊃ (B ⊃ C) ⊃ (A ∨ B ⊃ C)
C1 A ∧ B ⊃ A N1 (B ⊃ A) ⊃ (B ⊃ ¬A) ⊃ ¬B
C2 A ∧ B ⊃ B N2 ¬¬A ⊃ A
C3 A ⊃ (B ⊃ A ∧ B)

Inference Rule:

MP
A A ⊃ B

B

Definition

Classical logic = the language Lcl + the consequence relation `HCL
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Gentzen-style Systems

Hilbert-style systems operate on formulas.
Gentzen-style systems operate on sequents.

Sequents are objects of the form Γ⇒ ∆, where Γ and ∆ are finite sets
of formulas.

A Gentzen-style proof system consists of a set of sequent rules (usually
given by schemes).
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Semantic Intuition for Sequents

A1, . . . ,An ⇒ B1, . . . ,Bm A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨ Bm

⇒ B1, . . . ,Bm B1 ∨ . . . ∨ Bm

⇒ B B

A⇒ ¬A

A1, . . . ,An ⇒ ¬A1 ∨ . . . ∨ ¬An

⇒ False
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Gentzen-style Systems

A derivation of a sequent Γ⇒ ∆ from a set of sequents Ω in G is a
finite sequence of sequents, where the last sequent is Γ⇒ ∆, and each
sequent is: (i) a member of Ω, or (ii) obtained from previous sequents
in the sequence by applying some rule of G.

We write Ω `seqG Γ⇒ ∆ if there exists a derivation of Γ⇒ ∆ from Ω
in G.

A consequence relation (between formulas) is obtained by:

Γ `G A ⇐⇒ { ⇒ B | B ∈ Γ} `seqG ⇒ A
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LK
Gentzen 1934

Logical Rules:

(¬ ⇒)
Γ⇒ A,∆

Γ,¬A⇒ ∆
(⇒ ¬)

Γ,A⇒ ∆

Γ⇒ ¬A,∆

(⊃ ⇒)
Γ⇒ A1,∆ Γ,A2 ⇒ ∆

Γ,A1 ⊃ A2 ⇒ ∆
(⇒⊃)

Γ,A1 ⇒ A2,∆

Γ⇒ A1 ⊃ A2,∆

(∧ ⇒)
Γ,A1,A2 ⇒ ∆

Γ,A1 ∧ A2 ⇒ ∆
(⇒ ∧)

Γ⇒ A1,∆ Γ⇒ A2,∆

Γ⇒ A1 ∧ A2,∆

(∨ ⇒)
Γ,A1 ⇒ ∆ Γ,A2 ⇒ ∆

Γ,A1 ∨ A2 ⇒ ∆
(⇒ ∨)

Γ⇒ A1,A2,∆

Γ⇒ A1 ∨ A2,∆
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LK (cont.)

Structural Rules:

(W ⇒)
Γ⇒ ∆

Γ,A⇒ ∆
(⇒W )

Γ⇒ ∆

Γ⇒ A,∆

(id)
A⇒ A

(cut)
Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

(other structural rules are built-in when sequents are pairs of sets).
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Soundness and Completeness

LK is sound and complete for classical logic, i.e. Γ `LK A iff Γ `HCL A.

For example:
`LK ¬(Ob ∧ Ro) ⊃ ¬Ob ∨ ¬Ro

We show:
`seqLK ⇒ ¬(Ob ∧ Ro) ⊃ ¬Ob ∨ ¬Ro

Ro ⇒ Ro
(id)

Ro ⇒ ¬Ob,Ro
(⇒W )

⇒ ¬Ob,¬Ro,Ro
(⇒ ¬)

⇒ ¬Ob ∨ ¬Ro,Ob
(⇒ ∨)

Ob ⇒ Ob
(id)

Ob ⇒ ¬Ro,Ob
(⇒W )

⇒ ¬Ob,¬Ro,Ob
(⇒ ¬)

⇒ ¬Ob ∨ ¬Ro,Ro
(⇒ ∨)

⇒ ¬Ob ∨ ¬Ro,Ob ∧ Ro
(⇒ ∧)

¬(Ob ∧ Ro)⇒ ¬Ob ∨ ¬Ro
(¬ ⇒)

⇒ ¬(Ob ∧ Ro) ⊃ ¬Ob ∨ ¬Ro
(⇒⊃)
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LK has many good properties

The Subformula Property

If Ω `seqLK Γ⇒ ∆ then there exists a derivation of Γ⇒ ∆ from Ω in LK
consisting solely of subformulas of the formulas in Ω and Γ⇒ ∆.

Cut-Admissibility

If `seqLK Γ⇒ ∆ then there exists a derivation of Γ⇒ ∆ in LK with no
applications of (cut).

Axiom-Expansion

Atomic axioms (i.e. axioms of the form pi ⇒ pi ) always suffice.

Invertibility of Logical Rules

The premises of each logical rule can be derived from its conclusion.

LK has an effective semantics.
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Semantics of Classical Logic

Two truth values: f and t

Truth tables:

⊃
f f t

f t t

t f f

t t t

∧
f f f

f t f

t f f

t t t

. . .

A valuation function assigns values to the atomic formulas, and they
determine the values of the compound formulas according to the
tables.

Γ ` A iff
for every valuation v : if v(B) = t for every B ∈ Γ then v(A) = t.
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Semantic Approach to Define Logics

` is defined using the notion of a model:

Γ ` A if every “model” of Γ is a “model” of A

For example, we can use many-valued matrices:

A many-valued matrix for a language L consists of:

A set V of truth values.

A subset D ⊆ V of designated truth values.

A truth table for every connective of L, i.e. for every connective � we
have a function �̃ from Vn to V, where n is the arity of �.
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Many-valued Matrices

Let M be a many-valued matrix.

An M-valuation is a function v : wff L → V that respects all truth
tables, i.e. for every compound formula �(A1, . . . ,An):

v(�(A1, . . . ,An)) = �̃(v(A1), . . . , v(An))

An M-valuation is a model of a formula A if v(A) ∈ D.

A consequence relation is defined by:

Γ `M A if every model of (every formula in) Γ is a model of A.
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The Matrix Mcl

The Matrix Mcl

Values: V = {f,t}
Designated values: D = {t}

Tables:

x1 x2 ⊃̃(x1, x2)

f f t

f t t

t f f

t t t

x1 x2 ∧̃(x1, x2)

f f f

f t f

t f f

t t t

Soundness and Completeness

Γ `LK A iff Γ `Mcl
A

Example:
`LK ¬(Ob ∧ Ro) ⊃ ¬Ob ∨ ¬Ro

Indeed, every Mcl -valuation is a model of this formula.
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Example: Kleene Logic

The Matrix Mkl

Values: V = {f,t, i}
Designated values: D = {t}

Tables:

⊃̃ f t i

f t t t

t f t i

i i t i

∧̃ f t i

f f f f

t f t i

i f i i

Idea: If there is enough information to determine the value then we put the
classical value in the table. Otherwise, we put i.

6`Mkl
Ob ⊃ Ob Ob `Mkl

Ob

If we take D = {t, i}, we get Priest’s logic of paradox.

`Mpr Ob ⊃ Ob
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Matrices for Sequents Derivability

Recall:

Ω `seqLK Γ⇒ ∆ if there exists a derivation of Γ⇒ ∆ from Ω in LK.
Γ `LK A if { ⇒ B | B ∈ Γ} `seqLK ⇒ A.

We would like to have semantics for `seqLK as well, and not only for `LK.

Instead of one set of designated values D, we have two sets:

Dleft of left designated values.
Dright of right designated values.

An M-valuation v is a model of a sequent Γ⇒ ∆ iff v(A) ∈ Dleft for
some A ∈ Γ or v(A) ∈ Dright for some A ∈ ∆.
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Matrices for Sequents Derivability

For Mcl , we define:

Dleft = {f} Dright = {t}

Soundness and Completeness

Ω `seqLK Γ⇒ ∆ iff every Mcl -valuation which is a model of Ω is also a model
of Γ⇒ ∆.

Example:
p1 ⇒ `seqLK p3 ⇒ p1 ⊃ p2

Recall:
Γ `G A ⇐⇒ { ⇒ B | B ∈ Γ} `seqG ⇒ A

If M characterizes `seqG , take D = Dright to obtain a matrix for `G.
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One Step in the Soundness Proof

Soundness

If Ω `seqLK s then every Mcl -valuation which is a model of Ω is also a model
of s.

Proof by induction on the length of the derivation.

Consider an application of the rule (¬ ⇒). It has the form:

Γ⇒ A,∆

Γ,¬A⇒ ∆

Suppose that v is a model of Γ⇒ A,∆.
We prove that it is a model of Γ,¬A⇒ ∆.

Recall: v is a model of a sequent iff v(B) ∈ Dleft for some B on the left side
or v(B) ∈ Dright for some B on the right side.

If v(B) = f for some B ∈ Γ, we are done.
If v(B) = t for some B ∈ ∆, we are done.
Otherwise, v(A) = t.
Since v is an Mcl -valuation: v(¬A) = ¬̃(v(A)) = ¬̃(t) = f.
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Matrices for Sequents Derivability

A many-valued matrix for a language L consists of:

A set V of truth values.

Subsets Dleft ,Dright ⊆ V of designated truth values.

A truth table for every connective of L, i.e. for every connective � we
have a function �̃ from Vn to V, where n is the arity of �.

An M-valuation is a function v : wff L → V that respects all truth
tables, i.e. for every compound formula �(A1, . . . ,An):

v(�(A1, . . . ,An)) = �̃(v(A1), . . . , v(An))
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Classical Logic

The Matrix Mcl

Values: V = {f,t}
Designated values: Dleft = {f} and Dright = {t}.

Thus, a valuation v is a model of a sequent iff v(A) = f for some A on
the left side, or v(A) = t for some A on the right side.

Tables:

x1 x2 ⊃̃(x1, x2)

f f t

f t t

t f f

t t t

x ¬̃(x)

f t

t f

Soundness and Completeness

Ω `seqLK Γ⇒ ∆ iff iff every Mcl -valuation which is a model of Ω is also a
model of Γ⇒ ∆.
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Questions

What happens if we play with LK?
e.g. add new rules, omit some rules, change some rules.

Do we still have an effective semantics?

What about the subformula property? cut-admissibility?
axiom-expansion? invertibility of the logical rules?
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Motivations

Known examples:

If we omit (¬ ⇒) from LK, we obtain a system for the paraconsistent
logic CluN [Batens].

Primal implication is defined by
Γ⇒ A2,∆

Γ⇒ A1 ⊃ A2,∆
instead of (⇒⊃)

[Gurevich et al.]

Guiding principle

The meaning of each connective is given by its introduction rules:

“... The introductions represent, as it were, the ‘definition’ of the symbols
concerned...” [Gentzen, Investigations into logical deduction]

For example:

Γ,A1 ⇒ ∆ Γ,A2 ⇒ ∆

Γ,A1∧∨A2 ⇒ ∆

Γ⇒ A1,∆ Γ⇒ A2,∆

Γ⇒ A1∧∨A2,∆
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The system GCLuN

(¬ ⇒)
Γ⇒ A,∆

Γ,¬A⇒ ∆
(⇒ ¬)

Γ,A⇒ ∆

Γ⇒ ¬A,∆

GCLuN = LK− (¬ ⇒)

Theorem

GCLuN has no finite-valued characteristic matrix.

Hint for the proof:

p,¬p, . . . ,¬n−1p 6`GCLuN ¬np
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“Reading off” the Semantics from Sequent Rules

(¬ ⇒)
Γ⇒ A,∆

Γ,¬A⇒ ∆
(⇒ ¬)

Γ,A⇒ ∆

Γ⇒ ¬A,∆

x ¬̃(x)

f t

t f

Without (¬ ⇒):

x ¬̃(x)

f t

t ?
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Non-Deterministic Matrices - Main Idea

Truth tables assign sets of truth values, and we require:

v(�(A1, . . . ,An)) ∈ �̃(v(A1), . . . , v(An))

instead of

v(�(A1, . . . ,An)) = �̃(v(A1), . . . , v(An))

Valuations still assign one value to each formula!
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Non-Deterministic Matrices - Intuition

∧ f t

f f f
t f t

v(in1 ∧ in2) = ∧̃(v(in1), v(in2))

∧ f t

f {f} {f,t}
t {f,t} {t}

v(in1∧∨in2) ∈ ∧̃∨(v(in1), v(in2))

-

-

-

-

-

-
-

-

∧∧∨

∨

∧in3

in2

in1

out1

out2
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Truth-Functionality

Truth-Functionality

The value of a complex formula is uniquely determined by the values of its
subformulas.

In Nmatrices we do not have truth-functionality, but a weaker property.
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Non-Deterministic Matrices - Formal Definition

A non-deterministic matrix M (Nmatrix) for a language L consists of:

A set V of truth values.

Two subsets Dleft ,Dright ⊆ V of designated truth values.

A non-deterministic truth table for every connective of L, i.e. for every
connective � we have a function �̃ from Vn to P(V), where n is the
arity of �.

An M-valuation is a function v : wff → V that respects all truth
tables, i.e. v(�(A1, . . . ,An)) ∈ �̃(v(A1), . . . , v(An)).

The notion of a model is defined exactly as for (deterministic)
matrices, i.e.:

An M-valuation v is a model of a sequent Γ⇒ ∆ iff v(A) ∈ Dleft for
some A ∈ Γ or v(A) ∈ Dright for some A ∈ ∆.
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NMatrix for GCLuN

The Matrix MCluN

V = {f,t}, Dleft = {f}, Dright = {t}.

Same tables as in Mcl (with singletons) except for:

x ¬̃(x)

f {t}
t {f,t}

Soundness and Completeness

Ω `GCluN s iff every MCluN -valuation which is a model of Ω is also a model
of s.

For example:

⇒ p1 , ⇒ ¬p1 , ⇒ ¬¬p1 6`seqGCluN ⇒ ¬¬¬p1

(thus p1,¬p1,¬¬p1 6`GCluN ¬¬¬p1)
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Canonical Systems
Avron and Lev (’01)

A canonical system consists of:

Structural rules as in LK (weakenings, (id), (cut)).

Any finite set of canonical rules.

Canonical rules are logical rule of an “ideal” form:

Each rule introduces exactly one connective in one side.
Exactly one occurrence of the introduced connective, and no other
connectives are involved.
No restriction on context.
The active formulas are immediate subformulas of the principal formula.
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Examples of Canonical Rules

Canonical rules are logical rule of an “ideal” form:
Each rule introduces exactly one connective in one side.
Exactly one occurrence of the introduced connective, and no other
connectives are involved.
No restriction on context.
The active formulas are immediate subformulas of the principal formula.

All logical rules of LK are canonical. Other examples include:

Γ⇒ A2,∆

Γ⇒ A1 ⊃ A2,∆

Γ,A1 ⇒ ∆ Γ,A2 ⇒ ∆

Γ,A1∧∨A2 ⇒ ∆

Γ⇒ A1,∆ Γ⇒ A2,∆

Γ⇒ A1∧∨A2,∆

Γ⇒ A1,A2,∆ Γ,A3 ⇒ A4,∆

Γ⇒ �(A1,A2,A3,A4,A5),∆
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Some Non-canonical Rules

Γ,A1 ⇒ A2

Γ⇒ A1 ⊃ A2

Γ⇒ A1,∆ Γ,A2 ⇒ ∆

Γ⇒ ¬(A1 ⊃ A2),∆

Γ⇒ A,∆

Γ⇒ ¬¬A,∆
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Semantics of Canonical Systems

Given a canonical system G, we construct MG as follows:

V = {f,t}, Dleft = {f}, Dright = {t}.

For every n-ary connective �:
Initialize a totally non-deterministic table.

For every rule r for �:
For every x1, . . . , xn ∈ V:

If x1, . . . , xn satisfy the premises of r :

If r is a right rule, omit f from �̃(x1, . . . , xn).
If r is a left rule, omit t from �̃(x1, . . . , xn).
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Example: Table of Implication

Initialize a totally non-deterministic table.

For every rule r for �:
For every x1, . . . , xn ∈ V:

If x1, . . . , xn satisfy the premises of r :

If r is a right rule, omit f from �̃(x1, . . . , xn).
If r is a left rule, omit t from �̃(x1, . . . , xn).

Γ⇒ A1,∆ Γ,A2 ⇒ ∆

Γ,A1 ⊃ A2 ⇒ ∆

Γ,A1 ⇒ A2,∆

Γ⇒ A1 ⊃ A2,∆

x1 x2 ⊃̃(x1, x2)

f f {6f,t}
f t {6f,t}
t f {f, 6t}
t t {6f,t}
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Example: The System GPrim

GPrim is obtained from LK by replacing the rules for ⊃ with the following:

(⊃ ⇒)
Γ⇒ A1,∆ Γ,A2 ⇒ ∆

Γ,A1 ⊃ A2 ⇒ ∆
(⇒⊃)

Γ⇒ A2,∆

Γ⇒ A1 ⊃ A2,∆

Here, we obtain the following (non-deterministic) table for ⊃:

x1 x2 ⊃̃(x1, x2)

f f {f,t}
f t {t}
t f {f}
t t {t}
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Semantics of Canonical Systems

Soundness and Completeness

Ω `seqG s iff every MG-valuation which is a model of Ω is also a model of s.

Theorem

If MG is non-deterministic then there is no finite-valued (deterministic)
matrix for G.
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Semantics of Canonical Systems
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What can go wrong?

Consider the Tonk connective [Prior] defined by:

Γ,A2 ⇒ ∆

Γ,A1 t A2 ⇒ ∆

Γ⇒ A1,∆

Γ⇒ A1 t A2,∆

We obtain the table:

x1 x2 t̃ (x1, x2)

f f {f}
f t {f,t}
t f ∅
t t {t}

Soundness and completeness still hold.
There are no MLK+ t -valuations!
`LK+ t is trivial.
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Empty Sets in Truth Tables

Proposition

For every canonical system G:
if we have an empty set in a table of MG then

⇒ p1 , p2 ⇒ `seqG ⇒
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The Subformula property

Let G be an arbitrary canonical system.

Notation

Let E be a set of formulas.

An E-sequent is a sequent consisting solely of formulas from E .

Ω `EseqG Γ⇒ ∆ iff there exists a derivation of Γ⇒ ∆ from Ω in a
system G consisting solely of E-sequents.

The Subformula Property

Ω `seqG Γ⇒ ∆ =⇒ Ω `sub[Ω∪{Γ⇒∆}]seq
G Γ⇒ ∆

Syntactic proofs are possible (as a consequence of cut-elimination).
We will take a “semantic approach”.

Can we find semantics for `EseqG ?

41/75



The Subformula property

Let G be an arbitrary canonical system.

Notation

Let E be a set of formulas.

An E-sequent is a sequent consisting solely of formulas from E .

Ω `EseqG Γ⇒ ∆ iff there exists a derivation of Γ⇒ ∆ from Ω in a
system G consisting solely of E-sequents.

The Subformula Property

Ω `seqG Γ⇒ ∆ =⇒ Ω `sub[Ω∪{Γ⇒∆}]seq
G Γ⇒ ∆

Syntactic proofs are possible (as a consequence of cut-elimination).
We will take a “semantic approach”.

Can we find semantics for `EseqG ?

41/75



The Subformula property

Let G be an arbitrary canonical system.

Notation

Let E be a set of formulas.

An E-sequent is a sequent consisting solely of formulas from E .

Ω `EseqG Γ⇒ ∆ iff there exists a derivation of Γ⇒ ∆ from Ω in a
system G consisting solely of E-sequents.

The Subformula Property

Ω `seqG Γ⇒ ∆ =⇒ Ω `sub[Ω∪{Γ⇒∆}]seq
G Γ⇒ ∆

Syntactic proofs are possible (as a consequence of cut-elimination).
We will take a “semantic approach”.

Can we find semantics for `EseqG ?

41/75



Semantics for `Eseq
G

(Stronger) Soundness and Completeness

For every closed set E of formulas, set Ω of E-sequents, and E-sequent
Γ⇒ ∆:
Ω `EseqG Γ⇒ ∆ iff every partial MG-valuation, defined on E , which is a
model of Ω is also a model of Γ⇒ ∆.

For example, verify that:

⇒ CarStarts ⊃ Trip , ⇒ ¬Trip `EseqLK ⇒ ¬CarStarts
for E = {CarStarts,Trip,¬Trip,¬CarStarts,CarStarts ⊃ Trip}

⇒ p1 , p2 ⇒ 6`EseqLK+ t
⇒

for E = {p1, p2}
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Semantic Proof of the Subformula Property

(Stronger) Soundness and Completeness

For every closed set E of formulas, set Ω of E-sequents, and E-sequent
Γ⇒ ∆:
Ω `EseqG Γ⇒ ∆ iff every partial MG-valuation, defined on E , which is a
model of Ω is also a model of Γ⇒ ∆.

Now, proving the subformula property for G reduces to proving that every
partial MG-valuation (defined on a closed set of formulas) can be extended
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The Subformula Property in Canonical Systems

Consider the following procedure:

Extension Procedure

By recursion on the build-up of formulas:

When v(p) is undefined choose it arbitrarily.

When v(�(A1, . . . ,An)) is undefined choose it arbitrarily from
�̃(v(A1), . . . , v(An)).

When does it works?

If we do not have any empty sets in the tables.

44/75



The Subformula Property in Canonical Systems

Consider the following procedure:

Extension Procedure

By recursion on the build-up of formulas:

When v(p) is undefined choose it arbitrarily.

When v(�(A1, . . . ,An)) is undefined choose it arbitrarily from
�̃(v(A1), . . . , v(An)).

When does it works?

If we do not have any empty sets in the tables.

44/75



The Subformula Property in Canonical Systems

Consider the following procedure:

Extension Procedure

By recursion on the build-up of formulas:

When v(p) is undefined choose it arbitrarily.

When v(�(A1, . . . ,An)) is undefined choose it arbitrarily from
�̃(v(A1), . . . , v(An)).

When does it works?

If we do not have any empty sets in the tables.

44/75



Coherence

Definition

A canonical system G is called coherent if there are no empty sets in the
tables of MG.

Theorem

A canonical system has the subformula property iff it is coherent.

In particular, GCluN and GPrim have the subformula property.
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Understanding Coherence

We obtain an empty set iff there exists a right rule and a left rule for
the same connective, whose premises are satisfied by the same n
values.

In other words, we need that the right rules and the left rules for each
connective to be contradictory.

This does not hold for the rules of Tonk:

Γ,A2 ⇒ ∆

Γ,A1 t A2 ⇒ ∆

Γ⇒ A1,∆

Γ⇒ A1 t A2,∆

46/75



A Bigger Picture

We demonstrated the semantic approach to establish the subformula
property.

In canonical systems, the subformula property is equivalent to semantic
analyticity — the fact that every partial valuation can be extended.

Similar approach works for many other Gentzen-type systems.

The subformula property was proved regardless of cut-elimination.
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So far

We defined the family of canonical systems.

We introduced the semantic framework of Nmatrices.

We provided a method to obtain a two-valued Nmatrix for every
canonical system.

We introduced the coherence criterion – a necessary and sufficient
criterion for the subformula property in canonical systems.

What about cut-admissibility in canonical systems?
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Cut-Admissibility

(cut)
Γ⇒ ∆,A A, Γ⇒ ∆

Γ⇒ ∆

Cut-Admissibility

`seqG Γ⇒ ∆ =⇒ `seqG−(cut) Γ⇒ ∆

LK enjoys cut-admissibility (Gentzen, 1934).

What about other canonical systems?

We will take a “semantic approach”.

Can we find semantics for LK− (cut)?
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Semantics for LK− (cut)

Not the same semantics as for LK!

Cut-admissibility does not hold in the presence of assumptions, e.g.

⇒ p1 , p1 ⇒ `seqLK ⇒

⇒ p1 , p1 ⇒ 6`seqLK−(cut) ⇒

Theorem

`LK−(cut) does not have a finite characteristic matrix.
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Semantics for LK− (cut)

⇒ p1 , p1 ⇒ 6`seqLK−(cut) ⇒

Without cut, there should be a valuation which is both a model of
p1 ⇒ and of ⇒ p1.

Recall: An M-valuation v is a model of a sequent Γ⇒ ∆ iff
v(A) ∈ Dleft for some A ∈ Γ or v(A) ∈ Dright for some A ∈ ∆.

v(p1) should be both in Dleft and in Dright .

We will add a third value >: V = {f,t,>}.
> makes a sequent true on both sides:

Dleft = {f,>} Dright = {t,>}

The construction of the tables is done using the same method used for
canonical systems.
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The NMatrix MLK−(cut)

V = {f,t,>} Dleft = {f,>} Dright = {t,>}

x1 x2 ⊃̃(x1, x2)

f f {t,>}
f t {t,>}
t f {f,>}
t t {t,>}
f > {t,>}
t > {>}
> f {>}
> t {t,>}
> > {>}

x ¬̃(x)

f {t,>}
t {f,>}
> {>}

52/75



Semantics for LK− (cut)

Soundness and Completeness - sequents

Ω `seqLK−(cut) s iff every MLK−(cut)-valuation which is a model of Ω is also a
model of s.

Soundness and Completeness - formulas

Γ `LK−(cut) A iff Γ `MLK−(cut)
A (i.e. every MLK−(cut)-valuation which is a

model of Γ is also a model of A). (where D = Dright)

For example, verify that:

CarStarts ⊃ Trip,¬Trip 6`LK−(cut) ¬CarStarts

↪→ New formulation of results of Schütte (1960) and Girard (1987).
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Example: Construction of a table for ∧

Initialize a totally non-deterministic table.

For every rule r for �:
For every x1, . . . , xn ∈ V:

If x1, . . . , xn satisfy the premises of r :

If r is a right rule, omit f from �̃(x1, . . . , xn).
If r is a left rule, omit t from �̃(x1, . . . , xn).

(∧ ⇒)
Γ,A1,A2 ⇒ ∆

Γ,A1 ∧ A2 ⇒ ∆
(⇒ ∧)

Γ⇒ A1,∆ Γ⇒ A2,∆

Γ⇒ A1 ∧ A2,∆

∧̃ f t >
f {f, 6t,>} {f, 6t,>} {f, 6t,>}
t {f, 6t,>} {6f,t,>} {6f, 6t,>}
> {f, 6t,>} {6f, 6t,>} {6f, 6t,>}
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Example: Construction of a table for ∧
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For every x1, . . . , xn ∈ V:

If x1, . . . , xn satisfy the premises of r :

If r is a right rule, omit f from �̃(x1, . . . , xn).
If r is a left rule, omit t from �̃(x1, . . . , xn).

∧̃ f t >
f {f,>} {f,>} {f,>}
t {f,>} {t,>} {>}
> {f,>} {>} {>}

All usual connectives have non-deterministic semantics.

Non-determinism is a result of the missing cut rule.
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Canonical Systems without (cut)

The same construction works for every canonical system without (cut).
> is included in every entry in every table.

Thus, all canonical systems without (cut) have the subformula property.
(This is obvious from a syntactic point of view.)

The {f,t}-entries of the tables for the system without cut are equal to
those of the system with cut, except for the addition of >.

∧̃ f t >
f {f,>} {f,>} {f,>}
t {f,>} {t,>} {>}
> {f,>} {>} {>}

Why? since we do exactly the same deletions, but we begin with
{f,t,>}.

Observation

Every MG−(cut)-valuation over {f,t} is an MG-valuation.
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Cut-Admissibility for LK

`LK Γ⇒ ∆ =⇒ `LK−(cut) Γ⇒ ∆

Semantic Equivalent

If every MLK-valuation is a model of a sequent Γ⇒ ∆ then every
MLK−(cut)-valuation is a model of Γ⇒ ∆.

To prove cut-admissibility for LK, we have to prove:
For every MLK−(cut)-valuation which is not a model of some sequent
Γ⇒ ∆, there exists an MLK-valuation which is not a model of Γ⇒ ∆.

Using the previous observation, it suffices to show:
For every MLK−(cut)-valuation which is not a model of some sequent
Γ⇒ ∆, there exists an MLK−(cut)-valuation over {f,t} which is not a
model of Γ⇒ ∆.

It suffices to show:
For every MLK−(cut)-valuation v there exists an MLK−(cut)-valuation v ′

over {f,t} such that v ′(A) = v(A) whenever v(A) ∈ {f,t}.
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Cut-Admissibility for LK

GOAL: For every MLK−(cut)-valuation v there exists an MLK−(cut)-valuation
v ′ over {f,t} such that v ′(A) = v(A) whenever v(A) ∈ {f,t}.

Refinement Procedure

By recursion on the build-up of formulas:

If v(A) ∈ {f,t}: v ′(A) := v(A).

Otherwise:

If A is atomic, choose v ′(A) to be either f or t arbitrarily.
If A = �(A1, . . . ,An), choose v ′(A) to be either f or t arbitrarily from
�̃(v(A1), . . . , v(An)).

Why does it work?
In the tables of MLK−(cut), {f,t}-entries always include f or t in addition
to >.
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Cut-Admissibility for Canonical Systems

Theorem

LK enjoys cut-admissibility.

What about canonical systems in general?

To have cut-admissibility, we should not have �̃(x1, . . . , xn) = {>} for
x1, . . . , xn ∈ {f,t}.
Recall: The {f,t}-entries of the tables for the system without cut are
equal to those of the system with cut, except for the addition of >.

Thus �̃(x1, . . . , xn) = {>} for x1, . . . , xn ∈ {f,t} only if
�̃(x1, . . . , xn) = ∅ in the tables for the same system with cut.

Theorem

Every coherent canonical system enjoys cut-admissibility.
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Triple Correspondence

Note that if a system is not coherent then it does not enjoy
cut-admissibility (since ⇒ p1 , p2 ⇒ `seqG ⇒ ).

Corollary

For every canonical system G, the following are equivalent:

G is coherent.

G has the subformula property.

G enjoys cut-admissibility.
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A Bigger Picture

We demonstrated the “semantic approach” to prove cut-admissibility.

We had three steps:

Find semantics 1 for the system with cut.
Find semantics 2 for the system without cut.
Show that every non-model of some sequent Γ⇒ ∆ in 2 can be turned
into a non-model of Γ⇒ ∆ in 1.

In comparison to the syntactic approach:

Safer and less tedious.
Better understanding of the meaning of cut.
Easier to generalize.
The method can be adapted to higher-order logics.

On the other hand:

We only have cut-admissibility and not cut-elimination.
If it does not work then it does not easily lead to counter example.
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Axiom-Expansion

(id) is the rule allowing to derive all sequents of the form A⇒ A (with
no premises).

Atomic applications of (id) derive sequents of the form p ⇒ p, where
p is an atomic formula.

Axiom-Expansion

If Ω `seqG Γ⇒ ∆ then there exists a derivation of Γ⇒ ∆ from Ω in G in
which all applications of (id) are atomic.
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Axiom-Expansion

Equivalent Formulation

For every n-ary connective:
{pi ⇒ pi | i ≥ 1} `G−(id) �(p1, . . . , pn)⇒ �(p1, . . . , pn)

LK admits axiom-expansion. For example:

p1 ⇒ p1 p2 ⇒ p2

p1, p1 ⊃ p2 ⇒ p2

p1 ⊃ p2 ⇒ p1 ⊃ p2

Again, we would like to obtain a semantic equivalent of this property.
What is the semantics of canonical systems without (id) ? In particular, of
LK− (id) ?
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Semantics for LK− (id)

Theorem

`LK−(id) does not have a finite characteristic matrix.

6`LK−(id) p ⇒ p

Without id, there should be a valuation which is not a model of p ⇒ p.

Thus, v(p) should be neither in Dleft nor in Dright .

We will add a third value ⊥: V = {f,t,⊥}.
⊥ never makes a sequent true:

Dleft = {f} Dright = {t}

The construction of the tables is almost the same.
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Example: Construction of a table for ∧

Initialize a totally non-deterministic table.

For every rule r for �:
For every x1, . . . , xn ∈ V:

If x1, . . . , xn satisfy the premises of r :

If r is a right rule, omit f and ⊥ from �̃(x1, . . . , xn).
If r is a left rule, omit t and ⊥ from �̃(x1, . . . , xn).

(∧ ⇒)
Γ,A1,A2 ⇒ ∆

Γ,A1 ∧ A2 ⇒ ∆
(⇒ ∧)

Γ⇒ A1,∆ Γ⇒ A2,∆

Γ⇒ A1 ∧ A2,∆

∧̃ f t ⊥
f {f, 6t, 6⊥} {f, 6t, 6⊥} {f, 6t, 6⊥}
t {f, 6t, 6⊥} {6f,t, 6⊥} {f,t,⊥}
⊥ {f, 6t, 6⊥} {f,t,⊥} {f,t,⊥}
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If r is a right rule, omit f and ⊥ from �̃(x1, . . . , xn).
If r is a left rule, omit t and ⊥ from �̃(x1, . . . , xn).

∧̃ f t ⊥
f {f} {f} {f}
t {f} {t} {f,t,⊥}
⊥ {f} {f,t,⊥} {f,t,⊥}

All usual connectives have non-deterministic semantics.

Non-determinism is a result of the missing identity axiom.
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The NMatrix MLK−(id)

V = {f,t,⊥} Dleft = {f} D = Dright = {t}

x1 x2 ⊃̃(x1, x2)

f f {t}
f t {t}
t f {f}
t t {t}
f ⊥ {t}
t ⊥ {f,t,⊥}
⊥ f {f,t,⊥}
⊥ t {t}
⊥ ⊥ {f,t,⊥}

x ¬̃(x)

f {t}
t {f}
⊥ {f,t,⊥}

67/75



Semantics for LK− (id)

Soundness and Completeness - sequents

Ω `seqLK−(id) s iff every MLK−(id)-valuation which is a model of Ω is also a
model of s.

Soundness and Completeness - formulas

Γ `LK−(id) A iff Γ `MLK−(id)
A (i.e. every MLK−(id)-valuation which is a

model of Γ is also a model of A). (where D = Dright)

For example, verify that:

CarStarts ⊃ Trip,¬Trip 6`LK−(id) ¬CarStarts

↪→ New formulation of results of Hösli and Jäger (1994).
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Semantics for Canonical Systems without (id)

The same construction works for every canonical system G.

Axiom-Expansion

For every n-ary connective:

{pi ⇒ pi | i ≥ 1} `G−(id) �(p1, . . . , pn)⇒ �(p1, . . . , pn)

In other words: Whenever v(pi ) ∈ {f,t} for every i ≥ 1, we also have
v(�(p1, . . . , pn)) ∈ {f,t} for every connective �.
Thus, we have axiom expansion iff for every connective �:
⊥ 6∈ �̃(x1, . . . , xn) for every x1, . . . , xn ∈ {f,t}.
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Axiom-Expansion for LK

LK admits axiom-expansion.

x1 x2 ⊃̃(x1, x2)

f f {t}
f t {t}
t f {f}
t t {t}
f ⊥ {t}
t ⊥ {f,t,⊥}
⊥ f {f,t,⊥}
⊥ t {t}
⊥ ⊥ {f,t,⊥}

x ¬̃(x)

f {t}
t {f}
⊥ {f,t,⊥}
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Axiom-Expansion for Canonical Systems

We have axiom expansion iff for every connective �: ⊥ 6∈ �̃(x1, . . . , xn)
for every x1, . . . , xn ∈ {f,t}.
This means that we did at least one deletion in every {f,t}-entry.

Equivalently, the tables for the system with (id) are deterministic.

Theorem

A canonical system G admits axiom-expansion iff MG is deterministic.

In particular, GCluN and GPrim do not admit axiom-expansion.
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Invertibility of Logical Rules

A canonical rule is called invertible in a system G if each of its
premises can be derived from its conclusion in G.

(Formally, this should hold for every instantiation of Γ,∆ and
A1,A2, . . ..)

Γ,A1 ⇒ A2,∆

Γ⇒ A1 ⊃ A2,∆
is invertible in LK:

Γ⇒ A1 ⊃ A2,∆

Γ,A1 ⇒ A1 ⊃ A2,A2,∆
(w)

A1 ⇒ A1
(id)

Γ,A1 ⇒ A1,A2,∆
(w)

A2 ⇒ A2
(id)

Γ,A1,A2 ⇒ A2,∆
(w)

Γ,A1,A1 ⊃ A2 ⇒ A2,∆
(⊃⇒)

Γ,A1 ⇒ A2,∆
(cut)
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Semantic View of Invertibility of Logical Rules
Informal discussion

A canonical right rule for � is invertible in G: if for every MG-valuation
v , if v(�(A1, . . . ,An)) = t then the premises of the rule are satisfied
by v .

Equivalently, when t ∈ �̃(x1, . . . , xn) then x1, . . . , xn satisfy the
premises of the rule.

Γ⇒ A1,∆ Γ,A2 ⇒ ∆

Γ,A1 ⊃ A2 ⇒ ∆

Γ,A1 ⇒ A2,∆

Γ⇒ A1 ⊃ A2,∆

x1 x2 ⊃̃(x1, x2)

f f {t}
f t {t}
t f {f}
t t {t}

In case we have only one right rule r for �:
In the construction of �̃, when r ’s premises are satisfied, we delete f.

r is invertible in G iff there are no {f,t}’s in �̃.
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Triple Correspondence

Corollary

For every canonical system G, the following are equivalent:

MG is deterministic.

G admits axiom-expansion.

If every connective has exactly one left rule and one right rule, then all
logical rules are invertible.
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Final Remarks

Non-deterministic semantics is a useful tool for understanding and
investigating proof-theoretic properties of formal calculi.

The semantic tools complement the usual proof-theoretic ones.

Interesting cases arise when the “semantic approach” is applied for

Single-conclusion sequent systems
Sequent systems for modal logics
Many-sided sequent systems
Hypersequent systems
Sub-structural systems ??

Thank you for your attention!
You are welcome to ask, suggest and discuss.

www.cs.tau.ac.il/∼orilahav
orilahav@gmail.com
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