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Non-volatile memory
• NVM provides the best of both worlds:


• fast + byte-addressable (like RAM) 


• persistent (like HDD)

• Technology is available (e.g., Intel Optane)



New programming challenges

• Explicit persist instructions have to be properly placed:

CLFLUSH, CLWB, CLFLUSHOPT, SFENCE

execution continues 
ahead of persistence

writes may persist 
out of order

Upon recovery, we may get:

X = 1 and Y = 0
X = 0 and Y = 1

X = 0 and Y = 0
X = 1 and Y = 1{ X = Y = 0 }


X := 1;

Y := 1;

↯ ↯ ↯



Persistent objects
• Concurrent objects able to recover from crashes


• Maps, queues, stacks…

• Persistent pair — simple persistent object supporting operations:


• set(a,b): atomically write a pair of values


• get: atomically read a pair of values


• recover: fix pair after crash


• sync: make sure previous writes to the pair persist
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Correctness with crash 1/2
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System crash



T1: set(1,1) T1: set(2,2)

T1: set(1,1) T1: set(2,2)

Correctness with crash 2/2

5

6

recover T2: get//(1,1) T2: get//(2,2)

recover T2: set//(3,3) T2: get//(2,2)



Which linearizability?



Which linearizability?

Strict linearizability
Durable linearizability

Buffered durable linearizability

based on sequential crash-free specifications



Gaps    1/2
• More than one way to interpret sequential crash-free specifications in a crashing environment


• The sync method does not mean anything in crash-free specifications

T1: set(1,1) T1: set(2,2)

2

T2: get//(1,1)recover

T1: syncT1: set(1,1) T1: set(2,2)

2’

T2: get//(1,1)recover

• We possibly want to mix-and-match correctness criteria in the same program



• Existing correctness notions were not related with contextual refinement


• What code describes strict/durable/buffered linearizable objects?


• Cannot be directly used in verification of client programs

Gaps    2/2



Our approach
• Instead of different linearizability-like conditions, we focus on refinement 

w.r.t. another implementation:

• Ensures that the implementation behaves like the specification under any 
context


• Include special constructs in the language for intuitive specifications

L

Implementation

L#

Specification

⊑ given as code




Goal: Library abstraction theorem 

Behaviors(C[L])  Behaviors(C[L#])⊆

library correctness criterion

* that uses disjoint memory & follows the calling policy

If    ???? , then for every* client program C



For volatile objects

• Abstraction theorem: “a formal confirmation of this folklore” [Filipovic et al. ESOP’09, TCS’10]


• Extended to x86-TSO [Burckhardt et al. ESOP’12]

Histories(MGC[L])  Histories(MGC[L#])⊆

A particular program that only invokes library methods

(repeatedly, concurrently, with arbitrary arguments)

Behaviors(C[L])  Behaviors(C[L#])⊆
If    ???? , then for every* client program C

T1: set(1,1)

T2: set(2,2)

T3: get//(2,2)



set(a,b):

  atomic{

     X := a;

     Y := b;

  }

  return;

get:

  atomic{

      a := X;

      b := Y;

  }

  return(a,b);

Application for a volatile pair
X Y

Specification (L#)



set(a,b):

  atomic{

     X := a;

     Y := b;

  }

  return;

get:

  atomic{

      a := X;

      b := Y;

  }

  return(a,b);

Application for a volatile pair
X Y

Specification (L#)

Specification 
construct



set(a,b):

lock();

C := C + 1;

X := a;

Y := b;

C := C + 1;

unlock();

return;

get:

BEGIN:  s1 := C;

if odd(s1) then goto BEGIN  

a := X; 

b := Y;

s2 := C;

if s1  s2 then goto BEGIN  

return(a,b);

≠

C X Y

version number

Implementation (L)



• We have Histories(MGC[L])  Histories(MGC[L#])


• shown using a simulation argument


• proof obligation for the library developer


• It follows that for every client program C: 

Behaviors(C[L])  Behaviors(C[L#])

⊆

⊆

Application for a volatile pair
set(a,b):

  atomic{

     X := a;

     Y := b;

  }

  return;

get:

  atomic{

      a := X;

      b := Y;

  }

  return(a,b);

set(a,b):

lock();

C := C + 1;

X := a;

Y := b;

C := C + 1;

unlock();

return;

get:

BEGIN:  s1 := C;

if odd(s1) then goto BEGIN  

a := X; 

b := Y;

s2 := C;

if s1  s2 then goto BEGIN  

return(a,b);

≠
⊑

 standard linearizability   
when L# wraps a sequential 

implementation in an atomic block

≡



Back to NVM

• We consider the simplest model: Persistent Sequential Consistency (PSC) 

• can be mapped to x86-TSO (by adding appropriate MFENCE and SFNECE)

OOPSLA’19

POPL’20

POPL’21

• Multiple formal models:



The PSC model { X = Y = 0 }

X := 1;

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;


FLUSH(X);

Y := 1;


↯↯↯

{ X = Y = 0 }

X := 1;


FLUSH-OPT(X);

SFENCE;

Y := 1;


↯↯↯

X

Y

X  __↦

NVM

..

.

FIFO buffers

..

.
Y  __↦

CPUs

Volatile (loses its contents upon a crash) Non-volatile 
(survives 
crashes)
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X

Y
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.
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(survives 
crashes)

X=1
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(survives 
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The PSC model { X = Y = 0 }

X := 1;

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;


FLUSH(X);

Y := 1;


↯↯↯

{ X = Y = 0 }

X := 1;


FLUSH-OPT(X);

SFENCE;

Y := 1;


↯↯↯

X

Y

X  __↦

NVM

..

.

FIFO buffers

..

.
Y  __↦

CPUs

Volatile (loses its contents upon a crash) Non-volatile 
(survives 
crashes)

X=1

Y=1

FLUSH-OPT



Persistent blocks
• We introduce a construct to control persistency:


persist { … } 

• All writes persist simultaneously


• No earlier than the block ends


• May be forced by a FLUSH instruction

X

Y

X=1

Y=1

 persist {

     X := 1;

     Y := 1;

  }



Persistent blocks
• We introduce a construct to control persistency:


persist { … } 

• All writes persist simultaneously


• No earlier than the block ends


• May be forced by a FLUSH instruction

X

Y

X=1

Y=1

 persist {

     X := 1;

     Y := 1;

  }



Specification #1 of a persistent pair

set(a,b):

  atomic{

    persist{

      X = a;

      Y = b;

    }

    FLUSH(X); 

  }

 return;

sync:

  return;

get:

  atomic{

      a = X;

      b = Y;

  }

  return(a,b);

recover:

  return;

T1: set(1,1) T1: set(2,2) T2: get//(1,1)recover

durable 
pair



Specification #2 of a persistent pair

set(a,b):

  atomic{

    persist{

      X = a;

      Y = b;

    }

    FLUSH(X); 

  }

 return;

sync:

FLUSH(X);

return;

get:

  atomic{

      a = X;

      b = Y;

  }

  return(a,b);

recover:

  return;

T1: set(1,1) T1: set(2,2) T2: get//(1,1)recover

buffered 
durable 

pair



Library abstraction theorem 

behaviors(C[L])  behaviors(C[L#])⊆
If    ???? , then for every* client program C

Candidate library correctness criterion:

            Histories(MGC[L])  Histories(MGC[L#])⊆



Challenge in NVM
? foo:


  SFENCE;

  return;

SpecificationImplementation

foo:

  return;

BROKEN! 

• SFENCE has a global effect


• Client-library interaction is not fully 
captured in passed and returned values

Histories(MGC[L])  Histories(MGC[L#])⊆
{ A = 0 }

A := 1;


FLUSH-OPT(A); 
foo();

↯↯↯


{ A = ?? }

⊑



Solution #1
• Introduce a “local SFENCE instruction”

foo:

  LSFENCE(X);

  return;

foo:

  return;

{ A = 0 }

A := 1;


FLUSH-OPT(A); 
foo();

↯↯↯


{ A = ?? }

• LSFENCE effect by library is confined 
to library code

⊑

can be either 0 or 1 for both L and L#



Solution #2

Histories(MGC[L])  Histories(MGC[L#])⊈

SFENCE

• Make histories more expressive

foo:

  SFENCE;

  return;

foo:

  return;

… …

SFENCE

⊑



Library abstraction theorem

Behaviors(C[L])  Behaviors(C[L#])⊆

If Histories(MGC[L])  Histories(MGC[L#]),  
then for every* client program C:

⊆

include CALL, RETURN, 
and SFENCE transitions

in the extension of the PSC model with persistence blocks 
and local sfences



• The key of the proof is a “composition lemma”:


• Allows us to compose traces of client and library provided that they induce the 
same history


• Formally shows that client-library interaction is fully captured in histories


• Compositionality (a.k.a. locality) is a corollary:


Library abstraction theorem

        Histories(MGC[L1])  Histories(MGC[L1#])  
        Histories(MGC[L2])  Histories(MGC[L2#]) 
Histories(MGC[L1  L2])  Histories(MGC[L1#  L2#])

⊆
⊆

⊎ ⊆ ⊎



Application for pairs
• We studied two toy implementations of persistent pairs:


• a durable pair - using a redo log  

• log values before writing


• recovery finishes the job if the write crashes after logging


• a buffered durable pair - using a checkpoint mechanism


• Persist the pair at every sync  
(without sync- only volatile memory is used!)


• recovery resets to the latest checkpoint


• We demonstrated the library correctness condition w.r.t. the corresponding specification


   ⇒ Client programs using pairs may assume the simple specification

durable 
pair

buffered 
durable 

pair



Calling policies
• Many libraries require a “calling policy”, e.g.


• recovery after crash  


• single producer   


• consume non-empty collections

Behaviors(C[L])  Behaviors(C[L#])⊆

If Histories(MGCpolicy[L])  Histories(MGCpolicy[L#]),  
then for every client program C that adheres to policy:

⊆



Calling policies
• Many libraries require a “calling policy”, e.g.


• recovery after crash  


• single producer   


• consume non-empty collections

Behaviors(C[L])  Behaviors(C[L#])⊆

If Histories(MGCpolicy[L])  Histories(MGCpolicy[L#]),  
then for every client program C that adheres to policy:

⊆

To show that C adheres to policy, should we use L or L#?



• We prove that using L# works


• Abstraction theorem can be applied without any knowledge of L! 

• Seemingly circular reasoning is resolved by looking at minimal violations

Behaviors(C[L])  Behaviors(C[L#])⊆

If Histories(MGCpolicy[L])  Histories(MGCpolicy[L#]),  
then for every client program C that adheres to policy:

⊆

To show that C adheres to policy, should we use L or L#?



Conclusion
• A correctness condition for libraries under NVM


• Formally related to contextual refinement 


• Assume PSC semantics (x86-TSO is future work)


• Novel specification constructs: persist { … }, LSFENCE(…) 

• Support calling policies


• Can encode (strict) (buffered) durable linearizability

Thank you!I am hiring! 
http://www.cs.tau.ac.il/~orilahav/
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