
Abstraction for  
Crash-Resilient Objects

Artem Khyzha Ori Lahav

ESOP 2022

Arm Ltd & Tel Aviv University

Non-volatile memory
• NVM provides the best of both worlds:

• fast + byte-addressable (like RAM)

• persistent (like HDD)

• Technology is available (e.g., Intel Optane)

New programming challenges

• Explicit persist instructions have to be properly placed:

CLFLUSH, CLWB, CLFLUSHOPT, SFENCE

execution continues
ahead of persistence

writes may persist
out of order

Upon recovery, we may get:

X = 1 and Y = 0
X = 0 and Y = 1

X = 0 and Y = 0
X = 1 and Y = 1{ X = Y = 0 }

X := 1;

Y := 1;

↯ ↯ ↯

Persistent objects
• Concurrent objects able to recover from crashes

• Maps, queues, stacks…

• Persistent pair — simple persistent object supporting operations:

• set(a,b): atomically write a pair of values

• get: atomically read a pair of values

• recover: fix pair after crash

• sync: make sure previous writes to the pair persist

20 22

57 82

set(57,82)

T1: set(1,1)

T2: set(2,2)

T3: get//(1,1)

Time

Correctness

T1: set(1,1)

T2: set(2,2)

T3: get//(2,2)

T1: set(1,1)

T2: set(2,2)

T3: get//(1,2)

T1: set(1,1)

T2: set(2,2)

T3: get//(1,1)

Time

Correctness

T1: set(1,1)

T2: set(2,2)

T3: get//(2,2)

T1: set(1,1)

T2: set(2,2)

T3: get//(1,2)

T1: set(1,1) T1: set(2,2)

Correctness with crash 1/2

T1: set(1,1) T1: set(2,2)

T1: set(1,1) T1: set(2,2)

1

3

4

T2: get//(2,2)recover

T1: set(1,1) T1: set(2,2)

2

T2: get//(1,1)recover

T2: get//(2,2)recover

T2: get//(1,1)recover

T1: set(1,1) T1: set(2,2)

Correctness with crash 1/2

T1: set(1,1) T1: set(2,2)

T1: set(1,1) T1: set(2,2)

1

3

4

T2: get//(2,2)recover

T1: set(1,1) T1: set(2,2)

2

T2: get//(1,1)recover

T2: get//(2,2)recover

T2: get//(1,1)recover

System crash

T1: set(1,1) T1: set(2,2)

T1: set(1,1) T1: set(2,2)

Correctness with crash 2/2

5

6

recover T2: get//(1,1) T2: get//(2,2)

recover T2: set//(3,3) T2: get//(2,2)

Which linearizability?

Which linearizability?

Strict linearizability
Durable linearizability

Buffered durable linearizability

based on sequential crash-free specifications

Gaps 1/2
• More than one way to interpret sequential crash-free specifications in a crashing environment

• The sync method does not mean anything in crash-free specifications

T1: set(1,1) T1: set(2,2)

2

T2: get//(1,1)recover

T1: syncT1: set(1,1) T1: set(2,2)

2’

T2: get//(1,1)recover

• We possibly want to mix-and-match correctness criteria in the same program

• Existing correctness notions were not related with contextual refinement

• What code describes strict/durable/buffered linearizable objects?

• Cannot be directly used in verification of client programs

Gaps 2/2

Our approach
• Instead of different linearizability-like conditions, we focus on refinement

w.r.t. another implementation:

• Ensures that the implementation behaves like the specification under any
context

• Include special constructs in the language for intuitive specifications

L

Implementation

L#

Specification

⊑ given as code

Goal: Library abstraction theorem

Behaviors(C[L]) Behaviors(C[L#])⊆

library correctness criterion

* that uses disjoint memory & follows the calling policy

If ???? , then for every* client program C

For volatile objects

• Abstraction theorem: “a formal confirmation of this folklore” [Filipovic et al. ESOP’09, TCS’10]

• Extended to x86-TSO [Burckhardt et al. ESOP’12]

Histories(MGC[L]) Histories(MGC[L#])⊆

A particular program that only invokes library methods

(repeatedly, concurrently, with arbitrary arguments)

Behaviors(C[L]) Behaviors(C[L#])⊆
If ???? , then for every* client program C

T1: set(1,1)

T2: set(2,2)

T3: get//(2,2)

set(a,b):

 atomic{

 X := a;

 Y := b;

 }

 return;

get:

 atomic{

 a := X;

 b := Y;

 }

 return(a,b);

Application for a volatile pair
X Y

Specification (L#)

set(a,b):

 atomic{

 X := a;

 Y := b;

 }

 return;

get:

 atomic{

 a := X;

 b := Y;

 }

 return(a,b);

Application for a volatile pair
X Y

Specification (L#)

Specification
construct

set(a,b):

lock();

C := C + 1;

X := a;

Y := b;

C := C + 1;

unlock();

return;

get:

BEGIN: s1 := C;

if odd(s1) then goto BEGIN

a := X;

b := Y;

s2 := C;

if s1 s2 then goto BEGIN

return(a,b);

≠

C X Y

version number

Implementation (L)

• We have Histories(MGC[L]) Histories(MGC[L#])

• shown using a simulation argument

• proof obligation for the library developer

• It follows that for every client program C:

Behaviors(C[L]) Behaviors(C[L#])

⊆

⊆

Application for a volatile pair
set(a,b):

 atomic{

 X := a;

 Y := b;

 }

 return;

get:

 atomic{

 a := X;

 b := Y;

 }

 return(a,b);

set(a,b):

lock();

C := C + 1;

X := a;

Y := b;

C := C + 1;

unlock();

return;

get:

BEGIN: s1 := C;

if odd(s1) then goto BEGIN

a := X;

b := Y;

s2 := C;

if s1 s2 then goto BEGIN

return(a,b);

≠
⊑

 standard linearizability  
when L# wraps a sequential

implementation in an atomic block

≡

Back to NVM

• We consider the simplest model: Persistent Sequential Consistency (PSC)

• can be mapped to x86-TSO (by adding appropriate MFENCE and SFNECE)

OOPSLA’19

POPL’20

POPL’21

• Multiple formal models:

The PSC model { X = Y = 0 }

X := 1;

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH(X);

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH-OPT(X);

SFENCE;

Y := 1;

↯↯↯

X

Y

X __↦

NVM

..

.

FIFO buffers

..

.
Y __↦

CPUs

Volatile (loses its contents upon a crash) Non-volatile 
(survives
crashes)

The PSC model { X = Y = 0 }

X := 1;

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH(X);

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH-OPT(X);

SFENCE;

Y := 1;

↯↯↯

X

Y

X __↦

NVM

..

.

FIFO buffers

..

.
Y __↦

CPUs

Volatile (loses its contents upon a crash) Non-volatile 
(survives
crashes)

X=1

The PSC model { X = Y = 0 }

X := 1;

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH(X);

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH-OPT(X);

SFENCE;

Y := 1;

↯↯↯

X

Y

X __↦

NVM

..

.

FIFO buffers

..

.
Y __↦

CPUs

Volatile (loses its contents upon a crash) Non-volatile 
(survives
crashes)

X=1

Y=1

The PSC model { X = Y = 0 }

X := 1;

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH(X);

Y := 1;

↯↯↯

{ X = Y = 0 }

X := 1;

FLUSH-OPT(X);

SFENCE;

Y := 1;

↯↯↯

X

Y

X __↦

NVM

..

.

FIFO buffers

..

.
Y __↦

CPUs

Volatile (loses its contents upon a crash) Non-volatile 
(survives
crashes)

X=1

Y=1

FLUSH-OPT

Persistent blocks
• We introduce a construct to control persistency:

persist { … }

• All writes persist simultaneously

• No earlier than the block ends

• May be forced by a FLUSH instruction

X

Y

X=1

Y=1

 persist {

 X := 1;

 Y := 1;

 }

Persistent blocks
• We introduce a construct to control persistency:

persist { … }

• All writes persist simultaneously

• No earlier than the block ends

• May be forced by a FLUSH instruction

X

Y

X=1

Y=1

 persist {

 X := 1;

 Y := 1;

 }

Specification #1 of a persistent pair

set(a,b):

 atomic{

 persist{

 X = a;

 Y = b;

 }

 FLUSH(X);

 }

 return;

sync:

 return;

get:

 atomic{

 a = X;

 b = Y;

 }

 return(a,b);

recover:

 return;

T1: set(1,1) T1: set(2,2) T2: get//(1,1)recover

durable
pair

Specification #2 of a persistent pair

set(a,b):

 atomic{

 persist{

 X = a;

 Y = b;

 }

 FLUSH(X);

 }

 return;

sync:

FLUSH(X);

return;

get:

 atomic{

 a = X;

 b = Y;

 }

 return(a,b);

recover:

 return;

T1: set(1,1) T1: set(2,2) T2: get//(1,1)recover

buffered
durable

pair

Library abstraction theorem

behaviors(C[L]) behaviors(C[L#])⊆
If ???? , then for every* client program C

Candidate library correctness criterion:

 Histories(MGC[L]) Histories(MGC[L#])⊆

Challenge in NVM
? foo:

 SFENCE;

 return;

SpecificationImplementation

foo:

 return;

BROKEN!

• SFENCE has a global effect

• Client-library interaction is not fully
captured in passed and returned values

Histories(MGC[L]) Histories(MGC[L#])⊆
{ A = 0 }

A := 1;

FLUSH-OPT(A);
foo();

↯↯↯

{ A = ?? }

⊑

Solution #1
• Introduce a “local SFENCE instruction”

foo:

 LSFENCE(X);

 return;

foo:

 return;

{ A = 0 }

A := 1;

FLUSH-OPT(A);
foo();

↯↯↯

{ A = ?? }

• LSFENCE effect by library is confined
to library code

⊑

can be either 0 or 1 for both L and L#

Solution #2

Histories(MGC[L]) Histories(MGC[L#])⊈

SFENCE

• Make histories more expressive

foo:

 SFENCE;

 return;

foo:

 return;

… …

SFENCE

⊑

Library abstraction theorem

Behaviors(C[L]) Behaviors(C[L#])⊆

If Histories(MGC[L]) Histories(MGC[L#]),  
then for every* client program C:

⊆

include CALL, RETURN, 
and SFENCE transitions

in the extension of the PSC model with persistence blocks
and local sfences

• The key of the proof is a “composition lemma”:

• Allows us to compose traces of client and library provided that they induce the
same history

• Formally shows that client-library interaction is fully captured in histories

• Compositionality (a.k.a. locality) is a corollary:

Library abstraction theorem

 Histories(MGC[L1]) Histories(MGC[L1#])  
 Histories(MGC[L2]) Histories(MGC[L2#])
Histories(MGC[L1 L2]) Histories(MGC[L1# L2#])

⊆
⊆

⊎ ⊆ ⊎

Application for pairs
• We studied two toy implementations of persistent pairs:

• a durable pair - using a redo log

• log values before writing

• recovery finishes the job if the write crashes after logging

• a buffered durable pair - using a checkpoint mechanism

• Persist the pair at every sync  
(without sync- only volatile memory is used!)

• recovery resets to the latest checkpoint

• We demonstrated the library correctness condition w.r.t. the corresponding specification

 ⇒ Client programs using pairs may assume the simple specification

durable
pair

buffered
durable

pair

Calling policies
• Many libraries require a “calling policy”, e.g.

• recovery after crash

• single producer

• consume non-empty collections

Behaviors(C[L]) Behaviors(C[L#])⊆

If Histories(MGCpolicy[L]) Histories(MGCpolicy[L#]),  
then for every client program C that adheres to policy:

⊆

Calling policies
• Many libraries require a “calling policy”, e.g.

• recovery after crash

• single producer

• consume non-empty collections

Behaviors(C[L]) Behaviors(C[L#])⊆

If Histories(MGCpolicy[L]) Histories(MGCpolicy[L#]),  
then for every client program C that adheres to policy:

⊆

To show that C adheres to policy, should we use L or L#?

• We prove that using L# works

• Abstraction theorem can be applied without any knowledge of L!

• Seemingly circular reasoning is resolved by looking at minimal violations

Behaviors(C[L]) Behaviors(C[L#])⊆

If Histories(MGCpolicy[L]) Histories(MGCpolicy[L#]),  
then for every client program C that adheres to policy:

⊆

To show that C adheres to policy, should we use L or L#?

Conclusion
• A correctness condition for libraries under NVM

• Formally related to contextual refinement

• Assume PSC semantics (x86-TSO is future work)

• Novel specification constructs: persist { … }, LSFENCE(…)

• Support calling policies

• Can encode (strict) (buffered) durable linearizability

Thank you!I am hiring! 
http://www.cs.tau.ac.il/~orilahav/

https://www.cs.tau.ac.il/~orilahav/

