Abstraction for
Crash-Resilient Objects

Artem Khyzha Ori Lahav
Arm Ltd Tel Aviv University

arm 000

TEL AVIV UNIVERSITY

ESOP 2022

Non-volatile memory

é N (g
1
RAM L7

 NVM provides the best of both worlds:

1) | HDD fast + byte-addressable (like RAM)
v fast X slow _ |
X volatile v persistent persistent (like HDD)

* Technology is available (e.g., Intel Optane)

New programming challenges

X =

S
—

>
CA I | I
S ==
1

X
X
X

1 and Y
O and Y

1 and Y
O and Y

Upon recovery, we may get:

1

execution continues

0 A
1 <

___ writes may persist

out of order

» EXplicit persist instructions have to be properly placed:
CLFLUSH, CLWB, CLFLUSHOPT, SFENCE

Persistent objects

 Concurrent objects able to recover from crashes Q \”@

 Maps, queues, stacks...

* Persistent pair — simple persistent object supporting operations:

e set(a,b): atomically write a pair of values

o get: atomically read a pair of values

e recover: fix pair after crash

e sync: make sure previous writes to the pair persist

Correctness

SR s EESEsEscsEEEEEESEsSSsEE SRS ESSSsSSSE SRS EESESSSsEEEESEsEsEseE e

Time

Correctness

SR s EESEsEscsEEEEEESEsSSsEE SRS ESSSsSSSE SRS EESESSSsEEEESEsEsEseE e

Time

Correctness with crash 1/2

Tlisett) o o Tlisel22) ===~ o recover

recover

recover

recover

Correctness with cras

recover

recover

recover

recover

Correctness with crash 2/2

_Tl:seti22) 4 . recover

Which linearizability?

Linearizability: A Correctness Condition for
Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object chared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

Categories and Subject Descriptors: 1.1.3 [Programming Techniques): Concurrent Programming;
D.2.1 [Software Engineering]: Requirements/Specifications; D.3.3 [Programming Lan-
guages): Language Constructs—abstract data types, concurrent programming structures, data types
and structures; F.1.2 [Computation by Abstract Devices]: Modes of Computation—parallelism;
F.3.1 [Logics and Meanings of Programs): Specifying and Verifying and Reasoning about
Programs—pre- and post-conditions, specification technigques

General Terms: Theory, Verification

Additional Key Words and Phrases: Concurrrency, correctness, Larch, linearizability, multi-
processing, serializability, shared memory, specification

1. INTRODUCTION

1.1 QOverview

Informally, a concurrent system consists of a collection of sequential processes
that communicate through shared typed objects. This model encompasses both
message-passing architectures in which the shared objects are message queues,

A preliminary version of this paper appeared in the FProceedings of the 14th ACM Symposium on
Principles of Programming Languages, January 1987 [21].

This research was sponsored by IBM and the Defense Advanced Research Projects Agents (DOD),
ARPA order 4976 (Amendment 20), under contract F33615-87-C-1499, monitored by the Avionics
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB. Additional spport
for J. M. Wing was provided in part by the National Science Foundation under grant CCR-8620027.
The views and conclusions contained in this document are those of the anthors and shonld not he
interpreted as representing the official policies. either expressed or implied. of the Defense Advanced

Which linearizability?

Linearizability: A Correctness Condition for

Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WI
Carnegie Mellon University

A concurrent object is a data object chared by concurrent prog
condition for concurrent objects that exploits the semantics of
degree of concurrency, yet it permits programmers to specify

using known techniques from the sequential domain. Lineariz

operation applied by concurrent processes takes effect instan1
invocation and its response, implying that the meaning of a ¢
given by pre- and post-conditions. This paper defines linearizah
conditions, presents and demonstrates a method for proving th
shows how to reason about concurrent objects, given they are |

Categories and Subject Descriptaors: 1D.1.3 [Programming Ted
D.2.1 [Software Engineering]: Requirements/Specificaty
guages|: Language Constructs—abstract data types, concurren
and structures; F.1.2 [Computation by Abstract Devices]:
F.3.1 [Logics and Meanings of Programs]: Specifying 4
Programs—pre- and post-conditions, specification technigques

General Terms: Theory, Verification

Additional Key Words and Phrases: Concurrrency, correc
processing, serializability, shared memory, specification

1. INTRODUCTION

1.1 QOverview

Informally, a concurrent system consists of a coll

that communicate through shared typed objects. "
message-pagcina architontiiroe in whirh tha charad

A pre’

Princ

This

ARPA

Laborato,_

for J. M. Wing was provided in part by the INational Science I

The views and conclnsions contained in this document are th]
interpreted as representing the official policies. either expresse

Strict Linearizability and the Power of Aborting

Marcos K. Aguilera® and Svend Frglund'
HP Labs, Palo Alto, CA 94304

21 November 2003

Abstract —Linearizability is a popular way to define
the concurrent behavior of shared objects. However,
linearizability allows operations that crash to take ef-
fect at any time in the future. This can be disruptive
to systems where crashes are externally visible. In

lying objects’ operations are instantaneous, then the
implementation remains linearizable when its under-
lying objects are replaced with linearizable imple-
mentations. This property allows to build complex
linearizable objects from simpler ones in a modular

Strict linearizability

wait-free implementation of objects as simple as
multi-reader registers from single-reader ones. To
address this problem, we augment our shared ob-
jects by allowing them to abort their operations in
the presence of concurrency. An aborted operation
behaves like an operation that crashes: it may or
may not take effect (but if it does, it does before the
abort). We show that with abortable operations, there
are strictly-linearizable wait-free implementations of
consensus and hence of any object.

invokes write(v) and does not crash, then weak lim-
ited effect guarantees that the write can take effect
only until the time p returns from the write’s invoca-
tion. This is in contrast to, for example, sequential
consistency [8], in which the write can take effect at
any arbitrary time in the future (as long as local order
1s respected).

Limited effect is an important property, because it
prevents old operation instances from suddenly ap-
pearing mysteriously. For example, suppose that a
client withdraws money from the bank in an auto-
mated teller machine. but the machine crashes dur-

Linearizability of Persistent Memory Objects
Under a Full-System-Crash Failure Model

Joseph Izraelevitz(®™® Hammurabi Mendes, and Michael L. Scott

University of Rochester, Rochester, NY 14627-0226, USA
{jhil,hmendes,scott}@cs.rochester.edu

Durable linearizability

ANT A ’ IIMLL'VDUIIUH UNS

Buffered durable linearizability

sistency, and subsumes both existing and proposed instruction set archi-
tectures. Using the persistency model, we present an automated trans-
form to convert any linearizable, nonblocking concurrent object into one
that is also durably linearizable. We also present a design pattern, analo-
gous to linearization points, for the construction of other, more optimized
objects. Finally, we discuss generic optimizations that may improve per-
formance while preserving both safety and liveness.

based on sequential crash-free specifications

response. This simple requirement has many attrac-
tive features, from both a conceptual and a pragmatic

11110011 1O auuuvul] AdAuviiiviaava J\/“.lu) Al ALl LW YYaua
1S Over.
Unfortunatelv. linearizabilitv does not alwavs en-

e S e "“’“‘Uly

(NVM) will become commonplace over the next few years. While the availability

f\r N‘f\.‘f a1 cvorncoto f‘\o Y\f\QQ;“\;];f\! f\r]!ODY\;'\{T vxoro;efonf fl')fﬁ ;7\ 'Y\Q;‘\ TY YOS Y Y YA Y'Yy {Y1f\+

Gaps 1/2

 More than one way to interpret sequential crash-free specifications in a crashing environment

* The sync method does not mean anything in crash-free specifications

recover . . lz:.get/(1,1) . Q

 We possibly want to mix-and-match correctness criteria in the same program

Gaps 2/2

e EXisting correctness notions were not related with contextual refinement
 \What code describes strict/durable/buffered linearizable objects”?

 Cannot be directly used in verification of client programs

Our approach

* |Instead of different linearizabillity-like conditions, we focus on refinement
w.r.t. another implementation:

L I [given as code

Implementation Specification

* Ensures that the implementation behaves like the specification under any
context

* Include special constructs in the language for intuitive specifications

Goal: Library abstraction theorem

library correctness criterion

If 7?7?77 ,then for every” client program C

Behaviors(C[L]) € Behaviors(C[L#)

* that uses disjoint memory & follows the calling policy

For volatile objects

Iif 77277 , then for every™ client program C

\ Behaviors(C[L]) C Behaviors(C[L#])

Histories(MGCIL]) C Histories(MGCIL#])

A particular program that on invokes library methods

(repeatedly, concurrently, with arbitrary arguments)

* Abstraction theorem: “a formal confirmation of this folklore” [Filipovic et al. ESOP’09, TCS’10]j
 Extended to x86-TSO [Burckhardt et al. ESOP’12]

Application for a volatile pair

XY |

get:
atomic{

a

b :

X;
Y;

h

return(a,b):

Specification (L#)

Application for a volatile pair

Specification

construct X | Y

set(a,b): get:
at6m1c{ atomic{
X 1= a; a = X;
Y := Db; b :(=Y;

r }

return(a,b);

Specification (L#)

version number

|
Cl XY |

set(a,b): get:
lock(); BEGIN: s1 := C;
C :=C + 1; if odd(S1) then goto BEGIN
X 1= a; a = X;
Y := Db: b :(=Y;
C :=C + 1; Sz:=C'
unlock(); 1f s1 # s> then goto BEGIN
return; return(a,b);

Implementation (L)

Application for a volatile pair

set(a,b): get: set(a,b): get:
BEGIN: si1 := C; : 1
if odd(si) then goto BEGIN atomlc{ atomlc{
a := X; X 1= a, d = X;
b :=Y; — . "= .
b= Y [Y b; b :=Y;
if s1 # s2 then goto BEGIN - ¥ I
return(a,b); return; return(a,b);

 \We have Histories(MGCIL]) C Histories(MGCJ[L#]) = standard linearizability

when L# wraps a sequential
implementation in an atomic block

* shown using a simulation argument

* proof obligation for the library developer

|t follows that for every client program C:

Behaviors(C[L]) € Behaviors(C[L#])

Back to NVM

Persistency Semantics of the Intel-x86 Architecture

 Multiple formal models:

AZALEA RAAD, MPI-SWS, Germany

JOHN WICKERSON, Imperial College London, UK
GIL NEIGER, Intel Labs, US

VIKTOR VAFEIADIS, MPI-SWS, Germany

Weak Persistency Semantics from the Ground Up POPL’20

Formalising the Persistency Semantics of ARMv8 and Transactional Models

AZALEA RAAD, MPI-SWS, Germany
JOHN WICKERSON, Imperial College London, UK
VIKTOR VAFEIADIS, MPI-SWS, Germany

Taming x86-TSO Persistency

S ARTEM KHYZHA, Tel Aviv University, Israel
OOPSLA’19 ORI LAHAV, Tel Aviv University, Israel
POPL’21

 \We consider the simplest model: Persistent Sequential Consistency (PSC)

* can be mapped to x86-TSO (by adding appropriate MFENCE and SFNECE)

CPUs

L°
L

L°
L

L
-

The PSC model

FIFO buffers

NVM

Volatile (loses its contents upon a crash)

Non-volatile
(survives
crashes)

I = Il <<
—
= Xl
- NGy NWn
- m ®
-

X 1= 1;
FLUSH-OPT (X) ;
SFENCE:;

Y 1= 1;

ks

CPUs

L°
L

L°
L

L
-

The PSC model

FIFO buffers

X=1

NVM

Volatile (loses its contents upon a crash)

Non-volatile
(survives
crashes)

I = Il <<
—
= Xl
- NGy NWn
- m ®
-

X 1= 1;
FLUSH-OPT (X) ;
SFENCE:;

Y 1= 1;

ks

CPUs

L°
L

L°
L

L
-

The PSC model

FIFO buffers

X=1

NVM

=1

Volatile (loses its contents upon a crash)

Non-volatile
(survives
crashes)

I = Il <<
—
= Xl
- NGy NWn
- m ®
-

X 1= 1;
FLUSH-OPT (X) ;
SFENCE:;

Y 1= 1;

ks

CPUs

L°
L

L°
L

L
-

The PSC model

FIFO buffers

FLUSH-OPT X=1

NVM

=1

Volatile (loses its contents upon a crash)

Non-volatile
(survives
crashes)

I = Il <<
—
= Xl
- NGy NWn
- m ®
-

X 1= 1;
FLUSH-OPT (X) ;
SFENCE:;

Y 1= 1;

ks

Persistent blocks

* We introduce a construct to control persistency: X

Y=1

persist{... }

* All writes persist simultaneously —|

persist {
X
Y

e No earlier than the block ends

1;
1;

 May be forced by a FLUSH instruction

Persistent blocks

 We introduce a construct to control persistency: X—I
persist{ ... })

* All writes persist simultaneously —|

persist {
X
Y

e No earlier than the block ends

1;
« May be forced by a FLUSH instruction 1;

Specification #1 of a persistent pair

set(a,b):

atomic{
persist{
X = a;
Y = b;

+
FLUSH (X) ;

h

return;

get:

atomic{

a
b

1.
<

¥

return(a,b);

SyNnc:

return;

r€COVETr.

return;

durable
pair

é recover

Specification #2 of a persistent pair

set(a,b):

atomic{
persist{

d,

b;

get.
atomic{
a = X;
b =Y;
s

return(a,b);

SyNnc:

FLUSH(X):
return;

r€COVETr.

return;

buffered
durable
pair

é recover

Library abstraction theorem

If 7?7?77 ,then for every” client program C

pehaviors(GL) € behaviors(CIL')

Candidate library correctness criterion:
Histories(MGCIL]) C Histories(MGC[L*])

Challenge in NVM

Implementation Specification
£00 > ? foo:
) _ L SFENCE;
return; Feturn:
v Histories(MGCIL]) C Histories(MGC[L#))
1 A=0; BROKEN!
A = 1;
FLUSH-OPT(A) ;| -« SFENCE has a global effect
foo();
Uy * Client-library interaction is not fully
{ A — 29 } captured in passed and returned values

Solution #1

e Introduce a “local SFENCE instruction”

£00: foo:
r(.eturn' L LSFENCE (X) ;
' return;

{A=0}

A = 1; * LSFENCE effect by library is confined
FLUSH-OPT (A) ; to library code
foo();
A ie

{ A =77 } —— » can be either O or 1 for both L and L*

Solution #2

 Make histories more expressive

foo:
SFENCE:
return;

foo:
return;

Histories(MGCIL]) € Histories(MGCI[L#])

SFENCE SFENCE

— 8 l s

Library abstraction theorem

include CALL, RETURN,

and SFENCE transitions
|

|
If Histories(MGCIL]) C Histories(MGC][L#]),

then for every” client program C:
Behaviors(C[L]) C Behaviors(C[L#])

INn the extension of the PSC model with persistence blocks
and local sfences

Library abstraction theorem

* The key of the proof is a “composition lemma”:

* Allows us to compose traces of client and library provided that they induce the
same history

 Formally shows that client-library interaction is fully captured in histories

 Compositionality (a.k.a. locality) is a corollary:

Histories(MGC[L1]) € Histories(MGC[L1#])
Histories(MGC[L2]) € Histories(MGC[L2#])
Histories(MGC[L1 W Lo]) € Histories(MGCIL1# W Lo#|)

Application for pairs

* \We studied two toy implementations of persistent pairs:
durable

* a durable pair - using a redo log oair

* |log values before writing

* recovery finishes the job if the write crashes after logging

* a buffered durable pair - using a checkpoint mechanism

* Persist the pair at every sync
(without sync- only volatile memory is used!)

* recovery resets to the latest checkpoint
 \We demonstrated the library correctness condition w.r.t. the corresponding specification

= Client programs using pairs may assume the simple specification

Calling policies

 Many libraries require a “calling policy”, e.qg.

* recovery after crash

* single producer

 consume non-empty collections

If Histories(MGCyoliicy[L]) € Histories(MGCpolicy[L#]),
then for every client program C that adheres to policy:

Behaviors(C[L]) € Behaviors(C[L#])

Calling policies

 Many libraries require a “calling policy”, e.qg.

* recovery after crash

* single producer

 consume non-empty collections

If Histories(MGCyolicy[L]) € Histories(MGCopolicy[L*]),
then for every client program C that adheres to policy:

Behaviors(C[L]) € Behaviors(C[L#])

To show that C adheres to policy, should we use L or L#?

If Histories(MGCpoiicy[L]) € Histories(MGCpoiicy[L7]),
then for every client program C that adheres to policy:

Behaviors(C[L]) € Behaviors(C[L#])

To show that C adheres to policy, should we use L or L#?

 We prove that using L# works

 Abstraction theorem can be applied without any knowledge of L!

 Seemingly circular reasoning is resolved by looking at minimal violations

Conclusion

* A correctness condition for libraries under NVM
 Formally related to contextual refinement

e Assume PSC semantics (x86-TSO is future work)

 Novel specification constructs: persist { ... }, LSFENCE(...)
e Support calling policies

 Can encode (strict) (buffered) durable linearizability

| am hiring!
http://www.cs.tau.ac.il/~orilahav/

Thank you!

https://www.cs.tau.ac.il/~orilahav/

