SAT-based Decision Procedure for Analytic Sequent Calculi

Ori Lahav

Joint work in-progress with Yoni Zohar

Tel Aviv University

October 2013

- Sequent calculi are a prominent proof-theoretic framework.
- They provide an "algorithmic presentation" of a logic.
- Suitable for a variety of logics:
 - Classical logic, intuitionistic logic
 - Modal logics, intermediate logics, bi-intuitionistic logic
 - Many-valued logics, fuzzy logics
 - Paraconsistent logics
 - Substructural logics, relevance logics
- Our goal: effectively reduce the derivability problem in a given propositional sequent calculus to SAT.

- We take sequents to be objects of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite sets of formulas.
- Intuition:

$$A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m \quad \iff \quad A_1 \land \ldots \land A_n \supset B_1 \lor \ldots \lor B_m$$

The calculus LK [Gentzen 1934]

Structural Rules:

$$(id) \quad \frac{\Gamma, A \Rightarrow \Delta, \Delta}{\Gamma, A \Rightarrow \Delta} \quad (cut) \quad \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$$
$$(W \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad (\Rightarrow W) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow A, \Delta}$$

Logical Rules:

$$(\land \Rightarrow) \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta}$$
$$(\lor \Rightarrow) \quad \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta} \qquad (\Rightarrow \lor) \quad \frac{\Gamma \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta}$$
$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta}$$

Example: Sequent Calculus for Propositional Primal Logic

• All usual structural rules.

Logical Rules:

$$(\land \Rightarrow) \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta}$$
$$(\Rightarrow \lor) \quad \frac{\Gamma \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta}$$
$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

 This multiple-conclusion calculus can be easily shown to be equivalent to the sequent-style natural deduction system in [Beklemishev,Gurevich '12].

- *Pure sequent calculi* are propositional sequent calculi that include all usual structural rules, and a finite set of pure logical rules.
- Pure logical rules are logical rules that allow any context [Avron '91].

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta} \qquad \text{but not} \qquad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \supset B}$$

Example: da Costa's Paraconsistent Logic C₁ [Avron, Konikowska, Zamansky '12]

A pure calculus for C_1 is obtained by augmenting the "positive" fragment of **LK** with the following rules:

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta} \quad \frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \neg \neg A \Rightarrow \Delta}$$
$$\frac{\frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg (A \land \neg A) \Rightarrow \Delta} \quad \frac{\Gamma, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \land B) \Rightarrow \Delta}$$
$$\frac{\frac{\Gamma, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \land B) \Rightarrow \Delta} \quad \frac{\Gamma, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \land B) \Rightarrow \Delta}$$
$$\frac{\Gamma, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \land B) \Rightarrow \Delta} \quad \frac{\Gamma, A, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \land B) \Rightarrow \Delta}$$
$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \neg (A \lor B) \Rightarrow \Delta} \quad \frac{\Gamma, A, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \lor B) \Rightarrow \Delta}$$
$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \neg (A \lor B) \Rightarrow \Delta} \quad \frac{\Gamma, A, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \lor B) \Rightarrow \Delta}$$

Analyticity

Definition

A calculus is *analytic* if $\vdash \Gamma \Rightarrow \Delta$ implies that there is a derivation of $\Gamma \Rightarrow \Delta$ using only subformulas of $\Gamma \cup \Delta$.

- A weaker useful notion allows to use the negations of the subformulas of $\Gamma\cup\Delta$ as well.
- If a (propositional) pure calculus is analytic then it is decidable.
- Analytic pure calculi exist for important propositional logics:
 - Propositional classical logic, propositional primal logic
 - Three and four valued logics
 - Paraconsistent logics

There is a *simple* reduction of derivability in analytic pure calculi to SAT.

Semantics for Pure Calculi

- Pure calculi can be characterized by two-valued valuations [Béziau '01].
- Each pure rule is translated into a semantic condition.
- By joining the semantic conditions of all rules in a calculus **G**, we obtain the set of **G**-*legal* valuations.

Soundness and Completeness

 $\Gamma \Rightarrow \Delta \text{ is provable in } \textbf{G} \text{ iff every } \textbf{G}\text{-legal valuation is a model of } \Gamma \Rightarrow \Delta.$

A valuation is a model of $\Gamma \Rightarrow \Delta$ if at least one of the following hold:

•
$$v(A) = F$$
 for some $A \in \Gamma$.

• v(A) = T for some $A \in \Delta$.

Example (Sequent Calculus for C_1)

$\Gamma, A \Rightarrow \Delta$	$\Gamma, A \Rightarrow \Delta$
$\Gamma \Rightarrow \neg A, \Delta$	$\Gamma, \neg \neg A \Rightarrow \Delta$
$\Gamma \Rightarrow A, \Delta \Gamma \Rightarrow \neg A, \Delta$	$\Gamma, \neg A \Rightarrow \Delta \Gamma, \neg B \Rightarrow \Delta$
$\overline{ \Gamma, \neg (A \land \neg A) \Rightarrow \Delta }$	$\overline{\Gamma,\neg(A\wedge B)} \Rightarrow \Delta$

Corresponding semantic conditions:

This semantics is non-deterministic.

• The semantic conditions are expressible in propositional classical logic.

Reduction to SAT

- Associate a variable x_A with every subformula A of $\Gamma \Rightarrow \Delta$.
- Generate a set of clauses for each semantic condition of ${\bm G}$ applied on the subformulas of $\Gamma \Rightarrow \Delta.$
- Generate singleton clauses x_A for every $A \in \Gamma$ and $\overline{x_A}$ for every $A \in \Delta$.
- $\Gamma \Rightarrow \Delta$ is provable in \boldsymbol{G} iff UNSAT.

The Case of Propositional Primal Logic

Example (Semantics)

$$\begin{array}{l} (\wedge \Rightarrow) \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta} \\ (\Rightarrow \lor) \quad \frac{\Gamma, \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta} \\ (\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta} \end{array}$$

Semantic Reading:

The Case of Propositional Primal Logic

Example (Reduction to SAT)

1 If
$$v(A) = F$$
 or $v(B) = F$ then $v(A \land B) = F$

2 If
$$v(A) = T$$
 and $v(B) = T$ then $v(A \land B) = T$

If
$$v(A) = T$$
 and $v(B) = F$ then $v(A \supset B) = F$

④ If
$$v(B) = T$$
 then $v(A \supset B) = T$

 $\Gamma \Rightarrow \Delta$ is provable iff the following set of clauses is UNSAT:

- Three clauses for every formula $A \land B$ occurring in $\Gamma \Rightarrow \Delta$: $x_A \lor \overline{x_{A \land B}} \qquad x_B \lor \overline{x_{A \land B}} \qquad \overline{x_A} \lor \overline{x_B} \lor x_{A \land B}$
- Two clauses for every formula $A \supset B$ occurring in $\Gamma \Rightarrow \Delta$:

 $\overline{x_A} \lor x_B \lor \overline{x_{A \supset B}} \qquad \overline{x_B} \lor x_{A \supset B}$

- Singleton clauses x_A for every $A \in \Gamma$ and $\overline{x_A}$ for every $A \in \Delta$.
- In this particular case, we obtain essentially the same reduction that appears in [Beklemishev,Gurevich '12].

Semantic Analyticity

Theorem

If **G** is analytic then every **G**-legal partial valuation (whose domain is closed under subformulas) can be extended to a full **G**-legal valuation.

This property is essential for the correctness of the reduction.

- The other direction works as well.
- This provides a semantic method to prove analyticity.

Reminder:

A calculus is *analytic* if $\vdash \Gamma \Rightarrow \Delta$ implies that there is a derivation of $\Gamma \Rightarrow \Delta$ using only subformulas of $\Gamma \cup \Delta$.

- Suppose that the rules in an (analytic) calculus **G** have the following natural structure:
 - Every rule contains a main formula.
 - All other formulas are subformulas of the main formula.

- Then the reduction above (for **G**) requires only linear time.
 - Use the formula parse tree [Bjorner et al., 2012], [Cotrini, Gurevich, 2013].

For propositional primal logic the reduction produces only Horn clauses.

- This logic can be decided in linear time using a HORN-SAT solver [Beklemishev,Gurevich '12].
- A different linear-time algorithm appeared in [Gurevich,Neeman '09].

Horn Pure Calculi

In general, Horn clauses suffice if the following holds in each logical rule r: $\#_L(r) + \#_R(r) \leq 1$

where

- $\#_L(r)$ is the number of premises of r whose left side is not empty.
- $\#_R(r)$ is the number of formulas on the right side of r's conclusion.

Corollary

Every analytic Horn pure calculus can be decided in linear time.

Quotations

• DKAL employs *quotations*, e.g.

 $p \text{ said } A = q \text{ said } p \text{ said } A \supset B$

• These are unary modalities: \Box_1, \Box_2, \ldots

New Logical Rules:

$$(\wedge \Rightarrow) \quad \frac{\Gamma, \ \Box A, \ \Box B \Rightarrow \Delta}{\Gamma, \ \Box (A \land B) \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow \ \Box A, \Delta \quad \Gamma \Rightarrow \ \Box B, \Delta}{\Gamma \Rightarrow \ \Box (A \land B), \Delta}$$
$$(\Rightarrow \lor) \quad \frac{\Gamma, \Rightarrow \ \Box A, \ \Box B, \Delta}{\Gamma \Rightarrow \ \Box (A \lor B), \Delta}$$
$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow \ \Box A, \Delta \quad \Gamma, \ \Box B \Rightarrow \Delta}{\Gamma, \ \Box (A \supset B) \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma \Rightarrow \ \Box B, \Delta}{\Gamma \Rightarrow \ \Box (A \supset B), \Delta}$$

 This calculus can be easily shown to be equivalent to the Hilbert system in [Cotrini,Gurevich '13]. Alternatively, it is possible to augment the propositional calculus with one additional rule:

$$(\mathsf{K}\mathsf{D}!) \qquad \frac{\mathsf{\Gamma} \Rightarrow \Delta}{\square\mathsf{\Gamma} \Rightarrow \square\Delta}$$

A similar rule can be used for:

- □ and ◊ in the modal logic of functional Kripke models.
- Next in LTL [Kaway '87].

Proposition

For every pure calculus, adding (**KD**!) is equivalent to prefixing the non-context formulas in each rule with $\vec{\Box}$.

Pure Calculi with Quotations

Definition

A *pure calculus with quotations* is a propositional pure calculus augmented with the rule (KD!).

Theorem

The addition of (**KD**!) preserves analyticity.

- In particular, the (KD!) calculus for primal logic with quotations is analytic.
- The first calculus is "locally analytic".

Definition (Local Formulas)

- A is local to itself.
- For every $1 \le i \le n$: $\square A_i$ is local to $\square(\diamond(A_1, \ldots, A_n))$.
- If A is local to B and B is local to C, then A is local to C.

Semantics for Pure Calculi with Quotations

• Pure calculi with quotations are characterized by two-valued functional Kripke models.

Definition (Functional Kripke Model)

A functional Kripke model is a triple $\langle W, \mathcal{R}, \mathcal{V} \rangle$:

- W is a set of possible worlds.
- \mathcal{R} assigns a function $R_{\Box}: W \to W$ to every quotation \Box .
- \mathcal{V} assigns a valuation $v_w : Frm_{\mathcal{L}} \to \{F, T\}$ to every world $w \in W$.
- For every $w \in W$, quotation \Box and formula A: $v_w(\Box A) = v_{R_{\Box}(w)}(A)$.
- In **G**-legal Kripke models the semantic conditions of **G** are imposed on each function v_w .

Soundness and Completeness

 $\Gamma \Rightarrow \Delta$ is provable in **G** iff every **G**-legal Kripke model is a model of $\Gamma \Rightarrow \Delta$.

Example (Sequent Calculus for C_1 + Quotations)

$\Gamma, A \Rightarrow \Delta$	$\Gamma, A \Rightarrow \Delta$	$\Gamma \Rightarrow \Delta$
$\Gamma \Rightarrow \neg A, \Delta$	$\Gamma, \neg \neg A \Rightarrow \Delta$	$ec{\Box} \Gamma \Rightarrow ec{\Box} \Delta$

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow \neg A, \Delta}{\Gamma, \neg (A \land \neg A) \Rightarrow \Delta} \quad \frac{\Gamma, \neg A \Rightarrow \Delta \quad \Gamma, \neg B \Rightarrow \Delta}{\Gamma, \neg (A \land B) \Rightarrow \Delta}$$

For every $w \in W$, quotation \Box , and formulas A, B:

The reduction for pure calculi can be modified for calculi with quotations:

- Associate a variable $x_{\vec{\square}A}$ with every formula $\vec{\square}A$ that is local to $\Gamma \Rightarrow \Delta$.
- Generate a set of clauses for each semantic condition of ${\bm G}$ applied on the local formulas of $\Gamma \Rightarrow \Delta.$
- The reduction can still be done in linear time.
- Correctness is proved by showing that a Kripke counter-model can be constructed from a satisfying assignment (using the fact that the underlying propositional calculus is analytic).

Corollary

- Analytic pure calculi with quotations can be decided using a SAT solver.
- Analytic Horn pure calculi with quotations can be decided in linear time using a HORN-SAT solver.

Example (Reduction to SAT)

• Three clauses for every formula $\square(A \land B)$ local to $\Gamma \Rightarrow \Delta$:

$$x_{\vec{\Box}A} \vee \overline{x_{\vec{\Box}(A \wedge B)}} \qquad x_{\vec{\Box}B} \vee \overline{x_{\vec{\Box}(A \wedge B)}} \qquad \overline{x_{\vec{\Box}A}} \vee \overline{x_{\vec{\Box}B}} \vee x_{\vec{\Box}(A \wedge B)}$$

• Two clauses for every formula $\vec{\square}(A \supset B)$ local to $\Gamma \Rightarrow \Delta$:

$$\overline{x_{\square A}} \lor x_{\square B} \lor \overline{x_{\square (A \supset B)}} \qquad \overline{x_{\square B}} \lor x_{\square (A \supset B)}$$

- Singleton clauses x_A for every $A \in \Gamma$ and $\overline{x_A}$ for every $A \in \Delta$.
- In the particular case of propositional primal logic with quotations, this reduction to HORN-SAT is practically equivalent to the reduction to Datalog from [Blass, Gurevich, 2010] and [Bjorner et al., 2012].

Extensions of Primal Logic

- It is possible to extend the calculus for primal logic (with quotations) with additional axiom schemes, e.g.:
 - $\begin{array}{lll} \bullet & \Rightarrow A \supset A \\ \bullet & \Rightarrow B \supset (A \supset B) \\ \bullet & \Rightarrow (A \land B) \supset A \\ \bullet & \Rightarrow (A \land B) \supset B \end{array} \\ \begin{array}{lll} \bullet & A \lor A \Rightarrow A \\ \bullet & A \lor (A \land B) \Rightarrow A \\ \bullet & A \lor B \Rightarrow B \lor A \end{array}$
- This will bring us a bit closer to classical logic (still in linear time).
- Analyticity has to be verified for each extension.

Theorem

- If A ⇒ B is provable in primal logic then the addition of the axiom scheme ⇒ A ⊃ B to primal logic preserves analyticity.
- If A ⇒ C and B ⇒ C are both provable in primal logic (where C is a subformula of A or B) then the addition of the axiom scheme A ∨ B ⇒ C to primal logic preserves analyticity.

Extensions of Primal Logic with \perp

• It is possible to extend primal logic (with quotations) with a bottom connective:

• Simple interactions between \bot , \supset and \lor can be recovered, using the axiom schemes:

$$\Rightarrow \bot \supset A \qquad \boxed{ \bot \lor A \Rightarrow A } \qquad \boxed{A \lor \bot \Rightarrow A}$$

• These extensions still allow the above linear time decision procedure.

Further Work

- Allow weaker notions of analyticity, as needed in many calculi for paraconsistent logics.
- Are there other useful logics that can be reduced to polynomial SAT fragments?
- Allow variables as in "Primal infon logic with variables".
- Study generalized connectives as $\bigwedge_{A \in \mathcal{A}} A$ and $\bigvee_{A \in \mathcal{A}} A$.

Thank you!