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We investigate the problem of developing an “in-order” shared-memory concurrency model for languages like

C and C++, which executes instructions following their program order, and is thus more amenable to reasoning

and veri�cation compared to recent complex proposals with out-of-order execution. We demonstrate that

it is possible to fully support non-atomic accesses in an in-order model in a way that validates all compiler

optimizations that are performed in single-threaded code (including irrelevant load introduction). The key to

doing so is to utilize the distinction between a source model (with catch-�re semantics) and an intermediate

representation (IR)model (with unde�ned value for racy reads) and formally establish the soundness ofmapping

from source to IR. As for relaxed atomic accesses, an in-order model must forbid load-store reordering. We

discuss the rather limited performance impact of this fact and present a pragmatic approach to this problem,

which, in the long term, requires a new kind of hardware store instructions for implementing relaxed stores.

The source and IR semantics proposed in this paper are based on recent versions of the promising semantics,

and the correctness proofs of the mappings from the source to the IR and from the IR to Armv8 are mechanized

in Coq. This work is the �rst to formally relate an in-order source model and an out-of-order IR model with

the goal of having an in-order source semantics without any performance overhead for non-atomics.
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1 INTRODUCTION

Despite decades of research, �nding the right semantics for concurrent shared-memory programs
in high-level languages is still considered to be a major open problem [Batty et al. 2015], which
prevailing languages like C, C++, and Java have yet to overcome. The technical challenge lies
in precisely identifying and balancing the con�icting desiderata of programmers, compilers, and
modern multicore architectures. Generally speaking, programmers need a simple semantics that
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allows them to reason about their code; compilers strive to apply program optimizations and to be
able to justify their correctness; and hardware aims at e�cient non-blocking implementations that
only provide rather weak consistency guarantees.

Recent years have shown multiple proposals of shared-memory concurrency models that aim to
address this challenge (see, e.g., [Chakraborty and Vafeiadis 2019; Jagadeesan et al. 2020; Je�rey
et al. 2022; Kang et al. 2017; Lee et al. 2020; Paviotti et al. 2020]). These models typically focus on
performance, aiming at a semantics that allows various compiler optimizations and e�cient mapping
to hardware. In particular, to support load-store reordering (of accesses to di�erent addresses), either
as a part of a compiler optimization or as a possible result of the hardware’s pipeline, all these
models employ some sort of out-of-order execution that allows reads to read from future writes.
For not sacri�cing programmability, which typically means that “out-of-thin-air” values should be
forbidden and the model should admit well-accepted data-race-freedom (DRF) guarantees [Adve
and Hill 1990; Batty et al. 2015; Cho et al. 2021], such models have to restrict their speculation
mechanisms in a way in which certain program behaviors have to be justi�ed by the existence
of other program behaviors. For instance, the promising semantics by Kang et al. [2017] requires
promises of future writes to be justi�ed by another thread-local run of the program, and event-
structure models, as the one by Chakraborty and Vafeiadis [2019], enforce consistency constraints
on a structure that captures several runs of the program. This makes these models rather complex
to reason about, and, indeed, besides several notable exceptions for particular models (see, e.g.,
[Abdulla et al. 2021; Svendsen et al. 2018]), existing veri�cation research cannot handle such models.

This paper is devoted to investigating an alternative approach that puts amenability to reasoning

and veri�cation in the center. For that, we are after an in-order semantics, where each allowed
behavior is accounted for by one execution of the program in which the actions of the di�erent
threads follow the order dictated in their code, and every read reads from a previously executed write.
An in-order semantics allows one to incrementally reason about the code line-by-line, considering
at each step only the e�ect of the execution so far and the current instruction. In contrast, reasoning
about out-of-order semantics is much harder as it requires considering future instructions (or
revisiting previous decisions) based on other possible program executions.
The most intuitive example for an in-order semantics is the well-known model of sequential

consistency (SC), where di�erent threads take turns communicating with a single global memory
in the form of address-to-value mapping, and every read obtains its value from the last previously
executed write to the same address. Nevertheless, various other models, weaker than SC, are still
in-order. In particular, RC11 [Lahav et al. 2017], a well-studied declarative model for C/C++ that
follows the proposal in [Boehm and Demsky 2014] to forbid cycles in the union of the program
order and the reads-from relation, is an in-order model. Veri�cation for RC11-style models has been
extensively studied, and multiple techniques have been developed, including program logics [Dang
et al. 2020, 2022; Doherty et al. 2019], model checkers and fuzzers [Kokologiannakis et al. 2017,
2019; Luo and Demsky 2021], automatic robustness analyses [Margalit and Lahav 2021], and library
abstraction theorems [Raad et al. 2019; Singh and Lahav 2023].

Accordingly, our goal is to study: How far can one go in an in-order semantics? More concretely,
we aim to understand how in-order models can be designed in a way that minimizes the overhead
they cause for compiler optimizations and mapping to modern hardware.

We target C/C++ as a source language [Batty et al. 2011; Boehm and Adve 2008]. Most importantly,
this means that programmers distinguish between synchronization accesses (“atomics”) and weak
accesses that should not be used for inter-thread synchronization (“non-atomics”), and can cause
any behavior when they are misused for this purpose nonetheless. The latter allows us to rely on
“unde�ned behavior” for racy non-atomics, which is a crucial ingredient of our proposed approach.
(Thus, we do not provide a solution for “safe” languages that cannot tolerate unde�ned behavior.)
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1 extern void foo(unsigned int* x);

2 unsigned int test(unsigned int n) {

3 unsigned int x[1], sum = 0;

4 foo(x);

5 for (unsigned int i = 0; i < n; i++)

6 sum += x[0];

7 return sum; }

(a) Before optimization

1 extern void foo(unsigned int* x);

2 unsigned int test(unsigned int n) {

3 unsigned int x[1], sum = 0;

4 foo(x);

5 sum = x[0] * n;

6

7 return sum; }

(b) A�er optimization

Fig. 1. An example of load introduction. The program on the le� adds the value in x[0] n times. GCC 12.2.0

with -Os flag and Clang 15.0.0 with -O2 flag compile this program into the one on the right (wri�en in C

instead of assembly for readability) by turning the loop into a multiplication. This optimization e�ectively

introduces a load from x[0] when n = 0.

For atomics, we support the main shared memory constructs of C/C++11, including relaxed and
release/acquire accesses, read-modify-writes, and release/acquire and sequentially consistent fences.

Non-atomic accesses account for the vast majority of memory accesses in concurrent programs,
while atomics, which are used for inter-thread communication and synchronization, are relatively
rare. In particular, among atomics, the only ones that are intended to allow the problematic load-store
reordering are relaxed accesses, which are meant to be used by “very careful” programmers [Boehm
and Adve 2008] and are often con�ned to libraries that are manually optimized by experts. Thus, we
believe that the trade-o� between performance and amenability to reasoning should be investigated
di�erently for atomics and non-atomics. Next, we separately discuss the performance overhead
that is imposed by an in-order semantics for supporting non-atomic accesses and atomic accesses.

Overhead in Non-atomic Accesses. Our �rst question is whether it is possible to have an in-
order semantics without imposing any performance overhead for non-atomic accesses. This stems
from a principled approach: being non-racy, non-atomics should allow all compiler optimizations
that are performed in single-threaded code.1 We observe that a signi�cant challenge exists for
validating this guiding principle in an in-order model, and we are not aware of any existing
model that solves this challenge (even for a simple fragment with only non-atomics and strong
synchronization accesses with, say, release/acquire semantics). In particular, RC11 invalidates
(irrelevant) load introduction, a transformation widely used in sequential code with signi�cant
possible performance gains. In fact, the LLVM manual requires that non-atomics should validate
all optimizations allowed on sequential accesses (the only exception is store introduction, which
compilers avoid also in sequential code), and explicitly mentions that load introduction may be
performed by the compiler, and the LLVM compiler indeed introduces non-atomic loads as a part
in several of its optimization passes.2 The assumptions of the GCC compiler are less clear, but some
examples show that it introduces loads as well. A concrete example is given in Fig. 1.
We provide a full solution to this challenge, and design an in-order semantics that does not

sacri�ce any optimization on non-atomics. Inspired by LLVM, the key to doing so is to utilize
the distinction between a source semantics and an intermediate representation (IR) semantics. This
allows the separation of concerns: compiler optimizations may be unsound in the source semantics,
whereas the IR semantics does not have to be in-order. Indeed, the IR is not meant to be amenable
to conventional veri�cation and reasoning, and programmers in the source language only need
to know the source semantics. This strategy, however, is not a magic potion: to have a sound

1Compiler optimizations on single-threaded code e�ectively cover modern hardware’s behaviors of plain loads and stores,

so it is su�cient to focus this discussion on validating compiler optimizations. Still, in our results, we prove the correctness

of mapping non-atomics to plain machine loads and stores.
2See https://llvm.org/docs/Atomics.html#optimization-outside-atomic [Accessed November 2022].
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compilation, these models have to be designed in a way that the IR semantics is stronger than the
source semantics (i.e., all behaviors allowed by the IR should be allowed by the source).3

Our main contribution is to show that this approach works with the right choice of source
and IR. Concretely, we develop an in-order source model, based on the promise-free fragment of
the promising semantics, and an IR model based on a recent version of the promising semantics
in [Cho et al. 2022], and prove the required relation between them. Our proposed source model is
(slightly) stronger than RC11, which allows the application of previous work on veri�cation under
RC11. (In particular, we observe that certain races on non-atomics can be safely ignored in RC11’s
catch-�re mechanism.) For the IR, we have ported the result of [Cho et al. 2022], which establishes
the correctness of all optimizations on non-atomics that are allowed in sequential code. This means
that most compiler optimizations can be formally validated based on sequential reasoning, so even
most compiler developers need not understand the out-of-order IR model.
We note that while we mostly employ existing models (with some modi�cations and simpli�-

cations), to the best of our knowledge, this work is the �rst to formally relate an in-order source
model and an out-of-order IR model with the goal of having an in-order source semantics without
any performance overhead for non-atomics.

Overhead in Atomic Accesses. Naturally, the next question is about the performance overhead
for atomic accesses. Here, the challenge concerns relaxed accesses, which are meant to allow
load-store reordering that is in sharp contrast with in-order semantics. Unfortunately, we show
that any in-order model that supports all optimizations on non-atomics has to forbid the reordering
of a non-atomic/relaxed read followed by a relaxed write. (In particular, this reordering is forbidden
in both the source and the IR models we propose.)
What is the practical impact of forbidding this reordering? First, we note that although compiler

optimizations that reorder and eliminate atomics were extensively studied before (see, e.g., [Dodds
et al. 2018; Vafeiadis et al. 2015]), to the best of our knowledge, existing compilers do not perform
any of these optimizations. Then, it remains to understand the implications on the mapping to
hardware. Indeed, load-to-store ordering between plain accesses is not guaranteed to be preserved
by existing models of modern architectures, like those of Arm [Alglave et al. 2021; Pulte et al. 2017]
and Power [Alglave et al. 2014; Sarkar et al. 2011],4 and so, forbidding this reordering seems to
require a stronger mapping of relaxed accesses for these architectures.
Interestingly, we observe a signi�cant gap between CPU models and observable behaviors in

practice regarding the preservation of load-store ordering. While the abstract models of Arm and
Power allow the reorder of loads followed by stores, such behaviors were observed in practice only
in very few implementations.5 In our discussion with CPU architects from Arm, we con�rmed
that the load-store reordering is explicitly prohibited in Cortex processors, starting from Cortex-
A76. From this discussion, we further understood the technical trade-o�s involved in their design,
and learned that, compared to other possible reorderings that the hardware performs, load-store
reordering is hard to apply and has rather limited performance bene�ts.

3It is su�cient to have a correct e�cient mapping from the source to the IR, where correctness is in the standard sense:

every behavior that is allowed by the IR semantics (of the mapped program) is also allowed by the source semantics (of the

source program). Since we do not want to sacri�ce any performance in this mapping, we actually consider this mapping

being the identity mapping, and, thus, we simply require that the IR semantics is stronger than the source.
4Intel’s architecture (assuming x86-TSO by Owens et al. [2009]), has rather strong semantics for plain loads and stores,

which never reorders loads with later stores.
5Load-store reordering (concretely, the weak behavior of the LB litmus test) was never observed on Power as well as on

various implementations of Armv8 that were tested in [Alglave et al. 2021, 2014]. An anonymous review of this paper

provided information showing that this reordering is observed on Cortex A73, and mentioned that even on Cortex post A76

load-store reordering can be observed when memory locations are mapped to device, or when vector instructions are used.
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Accordingly, we propose a practical approach to this challenge. In the long term, we believe the
right way to go is for vendors to introduce new kinds of store instructions, which we call “strong
stores”, and o�cially preserve the order from loads to strong stores. We expect a minimal (to no)
overhead for these instructions compared to plain stores. In particular, strong stores still admit
store-store reorderings, which are commonly observed in practice, and are thus weaker than release
stores that are more expensive to implement. Meanwhile, in the absence of such instructions, we
propose to compile relaxed writes di�erently depending on the target hardware: (1) for a target
that preserves load-store order, the compilation can use plain accesses; and (2) otherwise, relaxed
writes have to be compiled as release writes.

Outline. The rest of this paper is structured as follows. In §2, we present the challenges, key
ideas, and observations of this paper in more detail. In §3, we present (a simpli�ed fragment of) the
proposed source model and discuss its relation to RC11. In §4, we present (a simpli�ed fragment of)
the IR model and establish the soundness of mapping the source model to the IR model. In §5, we
discuss the mapping to modern hardware, its soundness, and the proposed additions to hardware
models. Finally, in §6, we discuss related work.

Supplementary Material. Our main results ((1) soundness of mapping from source to IR,
(2) soundness of mapping from IR to ARMv8, (3) DRF guarantees for the source, and (4) adequacy
of sequential reasoning for validating optimizations in the IR) are mechanized in Coq. The
supplementary material available online [Lee et al. 2023] includes the Coq development, the full
models, a (pen-and-paper) proof of the relation to RC11, and the results of our experiments.

2 CHALLENGES AND KEY IDEAS

In this section, we present more details on the main observations and contributions of this paper.
To a signi�cant extent, our central contributions are not in developing new concurrency models
and proving their meta-theoretic properties but rather in providing a holistic analysis and approach
to the problem of a shared-memory concurrency semantics in a high-level language like C, C++,
or Rust. Like in §1, we separately discuss non-atomics (§2.1) and atomics (§2.2) while focusing on
compiler optimizations for non-atomics and mapping to hardware for atomics. (Our results include
the mapping of non-atomics to plain accesses on hardware, as well as compiler optimizations
involving atomics, but these are not discussed in this section.)

2.1 Optimizing Non-Atomics in an In-Order Semantics

Supporting sequential optimizations for non-atomics in an in-order semantics is highly challenging,
and, to the best of our knowledge, it was not addressed by previous work. Next, we demonstrate
the challenge using the well-known load bu�ering example (§2.1.1); explain how the “catch-�re”
addresses this challenge (§2.1.2); describe why catch-�re semantics cannot support load introduction
by the compiler (§2.1.3); outline “unde�ned value” as an (informal) alternative to “catch-�re” and
why it fails in combination with an in-order model (§2.1.4); and conclude with our proposal of
having a two-layered model with catch-�re source semantics, and unde�ned-value-based semantics
for the intermediate representation (§2.1.5).

2.1.1 Read-Write Reordering vs. In-Order Semantics. To understand the crux of the challenge,

consider the classical example on the right, known as the load
bu�ering litmus test (LB, for short), where all accesses are marked
as non-atomics (na). Here and henceforth, we assume that all vari-
ables are implicitly initialized to 0. Our requirement on compiler

0 := - na

. na := 1

print 0

1 := . na

- na := 1

print 1

(LB)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.
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optimizations implies that the behavior in which both threads printing 1 must be allowed. Indeed,
the compiler may reorder the read from - and the write to . in the �rst thread (this is certainly
possible in sequential code, thus non-atomics should allow the reordering as well), and then
0 = 1 = 1 is possible even under SC. This behavior is in tension with the requirement to have an
in-order semantics for the source language, which will have to execute one of the reads �rst, and at
that point the only available write to read from is the implicit initialization write of the value 0.

2.1.2 Catch-Fire as a Solution? A well-known approach to address the above example is to
exploit the fact that non-atomics are not supposed to be used for inter-thread synchronization and
avoid providing any guarantees on the program behaviors when non-atomics participate in data
races. This idea, which we refer to as “catch-�re” semantics, is the cornerstone of the C/C++11 [Batty
et al. 2011], and its repaired version RC11 [Lahav et al. 2017], which explicitly states that a data
race on non-atomic accesses implies unde�ned behavior (UB, for short) for the given program.
Accordingly, RC11 allows the annotated behavior of the LB example above, while still being

an in-order semantics. A particular run, for instance, could perform both memory accesses of the
�rst thread (read 0 and write 1), observe a forbidden data-race when executing the �rst (or second)
access of the second thread, and then invoke UB. In turn, UB allows any possible continuation of
the execution, which in particular includes the ability to print 1 by both threads. This is still an
in-order semantics: threads execute their actions in the order speci�ed by the program, a data-race
is detected according to previously executed accesses, and UB only a�ects future decisions.

Remark 1. The original presentation of RC11 in [Lahav et al. 2017] identi�es program behaviors
with “�nal outcomes” (mapping each variable to the modi�cation-order-maximal value written
to it). The current discussion assumes that behaviors are captured by sequences of system calls
(e.g., results of print statements) generated by a given program. RC11 can be easily adapted to this
notion by assuming that consistent execution graphs are incrementally constructed during the
program run, system calls are observed in the order they were executed along the run, and any
su�x of system calls is allowed once a racy execution graph is reached.

2.1.3 Load Introduction. A catch-�re semantics validates various compiler optimizations on
non-atomics, including access reordering and redundant access elimination. Indeed, whenever such
transformations enable additional behaviors, it can be shown that the source program was already
racy, and justify the target behaviors by UB invoked by the source. Catch-�re, however, falls short
to fully admit our guiding principle: some transformations allowed on sequential code are still
disallowed on non-atomics.
Concretely, the problem is with (irrelevant) load introduction. If the e�ect of the compiler’s

optimization introduces a non-atomic load (which may happen, e.g., when transforming

while � do {0 := - na; ...} to 0 := - na; while � do {...}

in traces where � evaluates to false), then the target program may be racy (and invoke UB), while
the source is not. Thus, any model based on catch-�re cannot validate load introduction.
Load introduction is necessary for multiple optimizations based on speculation, which are

commonly performed by compilers (Clang, in particular) when hoisting loads, e.g., as a part of loop
invariant code motion, loop unswitching, load-widening or when loading a vector while only a
subset of elements is needed.6 In addition to Fig. 1 from §1, Fig. 2 demonstrates another case where
load introduction has the potential to signi�cantly improve performance.

6See https://llvm.org/docs/Passes.html [Accessed November 2022].
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1 extern void foo(char* x), bar(char* x);

2 int main() {

3 char x[8], y[8];

4 for (int i = 0; i < 10000000; i++) {

5 foo(x);

6 for (int j = 0; j < 8; j++)

7 y[j] = j%2 ? x[j] : 0;

8 bar(y); }

9 return 0; }

(a) Before optimization

1 extern void foo(char* x), bar(char* x);

2 int main() {

3 char x[8], y[8];

4 for (int i = 0; i < 10000000; i++) {

5 foo(x);

6 uint64_t r = *(uint64_t*)x;

7 *(uint64_t*)y = r & 0xFF00FF00FF00FF00ul;

8 bar(y); }

9 return 0; }

(b) A�er optimization

Fig. 2. An example of load introduction. The program on the le� stores x[j] into y[j] for each odd j (and 0

otherwise). The program on the right is a hand-optimized version: it introduces loads from x[0], x[2], x[4],

and x[6]; merges all loads into a single 8 bytes load; and stores the result with an appropriate mask into y by

a single 8 bytes store. External functions (foo and bar) are used to prevent the compiler from eliminating the

loads and stores. By compiling both programs with Clang 15.0.1 and running them on ThunderX2 Armv8

server, we observed more than x2 performance gain (average execution time of 0.069s vs. 0.033s).

2.1.4 Undefined Value as a Solution? A natural idea for supporting load introduction is to
limit the “unde�nedness” to the value being read in racy reads: instead of invoking UB, just leave
unspeci�ed the value loaded by a non-atomic racy read, so if this value is never used (and the load
is indeed irrelevant), we will not introduce additional behaviors. The LLVM semantics follows this
idea: it keeps read-write races to be always well-de�ned and declares that non-atomic racy reads
may return “undef” value. In turn, “undef” can be re�ned to any value.7

While being tempting at �rst sight, unde�ned value for racy reads will not solve our problem.
Referring back to the LB example above, it is easy to see that any execution of an in-order semantics
can observe a race only in one of the reads, so only one of them can return “undef”, which will not
allow both threads to print 1. To �x this, one has to either speculate a data race when performing
the �rst read, or revisit its previous decisions on the read value when performing the second write.
Both options lead us to models that are much more complicated than in-order models.

2.1.5 Our Proposal: An Intermediate Representation. The key idea in our approach is to split
the semantics into two models: a source model that accounts for the programmers’ needs, and an
intermediate representation (IR) model that accounts for the compilers’ (and hardware’s) needs.
Then, the compiler �rst maps the source program to the IR, and only then applies its optimizations.
Programmers should be only aware of the source model, which can be in-order (e.g., with catch-�re)
since it does not have to support compiler optimizations; and the IR semantics can support compiler
optimizations (e.g., with unde�ned value for racy reads and out-of-order race detection) since it does
not have to be in-order. Our manifestation of this approach consists of the following contributions:

(1) We propose a source model, which we denote by vRC11, obtained by adding non-atomic
accesses to the promise-free fragment of the promising semantics [Kang et al. 2017; Lee et al. 2020].
This model, which is stronger than RC11, is formulated as an operational model using timestamps
and thread-views to justify weak behaviors, and a simple race-detection mechanism that invokes
UB for races on non-atomics. Interestingly, we observe that not all such races should invoke UB, and
it is su�cient to consider races with previously executed writes (and ignore races with previously
executed reads). Thus, we are able to restrict the catch-�re mechanism in a way that deems fewer
programs racy but still achieves what catch-�re is needed for.

7Branching on “undef” is still considered UB. The “freeze” instruction recently introduced in LLVM is a tool to support

branching on a possibly unde�ned value, which is often a result of load introduction [Lee et al. 2017].
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(2) For the IR model, we develop a simpli�cation of the promising model by Cho et al. [2022],
which we denote by PSIR, where (simpli�ed) promises are only needed for race detection. Thus,
PSIR justi�es an out-of-order behavior by detecting a race with “promises” made by other threads.
More concretely, a thread in PSIR can promise to execute a non-atomic write to a location - in the
future, whenever the thread can certify the promise by checking that it can perform a non-atomic
write to - by executing alone. Once a promise is made, another thread reading from - races with
the promise and reads “undef” value. We have ported the result of [Cho et al. 2022] to PSIR, which
establishes the correctness of all optimizations on non-atomics that are allowed in sequential code.
(3) We prove that PSIR is stronger than vRC11. Roughly speaking, this is possible because catch-

�re is su�ciently weak to account for the IR’s out-of-order behaviors. In other words, once a
program exhibits any behavior that stems from an out-of-order execution under PSIR, the same
program has a race in a (possibly di�erent) execution under vRC11, where a race leads to UB. To
establish the proof, it is enough to show that the source can invoke UB for such an out-of-order
execution in PSIR. Here, the key idea is that the thread of vRC11 can follow the certi�cation run
(which is required to justify a promise under PSIR) and perform a non-atomic write to - instead of
making a promise to - . Then, the other thread reading from - races with that non-atomic write,
and the program invokes UB under vRC11.

Example 2.1. In the LB example, PSIR allows 0 = 1 = undef through an out-of-order execution
where the �rst thread promises to write to . , and the second thread reads “undef” from . since the
read races with the promise. The �rst thread could certify its promise before making it by reading
0 from - and executing . na := 1. In vRC11, instead of promising the write, the �rst thread can
execute and write to . following the certi�cation execution of PSIR. Then, the second thread’s read
from . becomes racy, and the program invokes UB, which accounts for all possible behaviors.

Remark 2. In fact, since UB by the source accounts for any behavior of PSIR, the proof of mapping
the source to the IR can essentially assume that there is no race in the promise-free fragment of PSIR,
which makes the mapping proof similar to the proof of the DRF-PF theorem (a data-race-freedom
guarantee w.r.t. the promise-free semantics) in [Cho et al. 2021].

We note that the fact that PSIR is stronger than vRC11 allows one to soundly reason about pro-
grams under PSIR semantics while assuming vRC11 (which may be needed when the intermediate
language itself acts as a source language for another step of compilation and thus is not completely
compiler-internal). Such reasoning would be incomplete, but we expect that only a small fraction
of programs will need a precise analysis using the exact IR model.

2.2 Mapping Relaxed Accesses to Modern Hardware

In this section, we turn to the question of supporting atomic accesses focusing speci�cally on
relaxed accesses. We demonstrate the challenge (§2.2.1); revisit the assumptions on hardware
(§2.2.2); and propose two practical solutions: a long-term solution that depends on hardware vendors
implementing our feature request (§2.2.3), and a short-term solution that requires strengthening
the existing compiler mapping of relaxed accesses (§2.2.4).

2.2.1 Reordering of Relaxed Accesses in an In-Order Semantics. Like non-atomic accesses,
relaxed accesses in C/C++11 were intended to be mapped to plain loads and stores in the hardware
even when the hardware model allows load-store reordering. Clearly, this is in contrast with
an in-order semantics (indeed, consider the LB example above with relaxed accesses). Moreover,
since relaxed accesses are meant to be used in races (for improving the performance of certain
concurrency idioms; see, e.g., [Sinclair et al. 2017]), catch-�re is not a possible solution here. In fact,
as the next example shows, even the reordering of a non-atomic load followed by a relaxed atomic
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(1) (2) (3) (4) (5) (6)

2 := - na

if ∗ then

1 := - na

if 1 = 1 then

. rlx := 1

print 1

else

. rlx := 1

2 := - na

if 2 = 1 then

1 := - na

if 1 = 1 then

. rlx := 1

print 1

else

. rlx := 1

2 := - na

if 2 = 1 then

1 := 1

if 1 = 1 then

. rlx := 1

print 1

else

. rlx := 1

2 := - na

if 2 = 1 then

1 := 1

. rlx := 1

print 1

else

. rlx := 1

2 := - na

. rlx := 1

if 2 = 1 then

print 1

. rlx := 1

2 := - na

if 2 = 1 then

print 1

(1) introduce a non-atomic read 2 := - na; (2) replace the non-deterministic choice with an expression; (3) forward the read

2 := - na to the read 1 := - na in the if-branch, turning it into 1 := 1; (4) forward 1 := 1 to the expression 1 = 1 and the print

statement; (5) hoist the common write . rlx := 1 out of the branch; and (6) reorder 2 := - na and . rlx := 1.

Fig. 3. A sequence of compiler transformations on non-atomics (1–5) and the problematic reordering of a

non-atomic load followed by a relaxed store (6) applied to the second thread of LB-CHOICE.

store cannot be allowed in an in-order semantics:

0 := . rlx

if 0 = 1 then

- rlx := 1

if ∗ then

1 := - na

if 1 = 1 then . rlx := 1

print 1 //prints 1

else

. rlx := 1

{

0 := . rlx

if 0 = 1 then

- rlx := 1

. rlx := 1

2 := - na

if 2 = 1 then

print 1

(LB-CHOICE)

Here, “∗” means a non-deterministic choice that non-deterministically returns arbitrary value.8

Assuming an in-order semantics, the source program on the left cannot print 1 since either one
of 0 := . rlx or 1 := - na executes �rst and can only read 0 (from the initial memory). However, as
shown in Fig. 3, by applying a sequence of compiler transformations on non-atomics and �nally
reordering (by the compiler or the target hardware) 2 := - na and . rlx := 1 in the second thread,
the program on the left can be transformed into the program on the right. Then, the second thread
printing 1 is easily observable (even under SC). Therefore, the reordering of a non-atomic load
followed by a relaxed store must be forbidden in any in-order source semantics that aims to allow
common compiler transformations on non-atomics.

2.2.2 Revisiting the Assumptions on Hardware. We observe that there is a signi�cant gap
between CPU models and observable behaviors in practice regarding the preservation of load-store
ordering. While the abstract models e�ectively allow the reordering of loads with subsequent stores,
such behaviors are rarely observed in practice. Indeed, previous experiments performed to validate
the hardware models rarely observed weak behaviors of the LB litmus test. First, such behaviors
were never observed on any Power hardware [Alglave et al. 2014; Sarkar et al. 2011]. Second, while
they were observed on several Armv7 implementations, to the best of our knowledge, for Armv8,
LB was only observed on Qualcomm’s Snapdragon 820 mobile processors [Alglave et al. 2021] and
on Cortex A73.9 To gain more con�dence, we experimentally tested a newer version, Qualcomm’s
Snapdragon 888 processor, and the weak behaviors of LB were not observed there.
After discussing with Arm engineers, we gained a better understanding of the architectural

reasons why the potential performance improvement by allowing load-store reordering is relatively

8A non-deterministic choice corresponds to “freezing” an unde�ned value in LLVM. See https://llvm.org/docs/LangRef.

html#unde�ned-values and https://llvm.org/docs/LangRef.html#freeze-instruction [Accessed November 2022].
9Snapdragon 820 exhibits various other weak behaviors that are forbidden by the o�cial model (950 such tests reported

in [Alglave et al. 2021]!). The information about Cortex A73 was obtained from the anonymous PLDI reviewer.
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small. Essentially, this stems from the fact that a store can be treated as completed in its own core
when it is added to the core-local store bu�er before being made visible to other cores. Thus, no
intra-core optimization is prevented by preserving load-store ordering. The only exception is that
such reordering may reduce the pressure on the store bu�er (so that fewer stores stall due to the
bu�er being full), as it allows to commit a store from the store bu�er to the shared storage possibly
before previous loads were completed. However, committing stores early complicates the cache
implementation regarding the ECC (error correction code) logic, and before committing a store,
the core must check that all incomplete preceding loads will never raise exceptions and are not
aliased with the store to be committed.

Remark 3. Unlike load-store ordering, preserving store-store ordering is rather expensive. For
instance, in Cortex A76 and later versions, a store from the store bu�er is committed to a merge

bu�er when it is the oldest store (i.e., all preceding loads are completed, and all preceding stores
are already committed to the merge bu�er). Then, stores in the merge bu�er may be reordered
to group together those writes that �t in the same cache line, which are merged and committed
at once. Such reordering between stores greatly reduces cache accesses and is thus considered
performance-critical, which is why store-store reordering visible to other cores is needed.

2.2.3 A Long Term Practical Solution. Based on the above discussion, we raise a clear “feature
request” from hardware vendors. Concretely, we propose hardware vendors to introduce a new kind
of store instructions, which we call “strong stores”, that will preserve load-store ordering. Then,
the IR’s relaxed stores will be mapped to strong hardware stores. For most hardware architectures,
where architects agree that load-store ordering is preserved, strong stores could be implemented
as plain stores. Otherwise, the overhead is not expected to be signi�cant, and, in any case, strong
stores should be cheaper than release stores (since they do not need to preserve store-store order).
We believe that this is a case where the input from multiple years of research in concurrent

programming language semantics may guide hardware developers. In fact, other features of Arm,
such as sequentially consistent accesses and release sequences, were developed hand in hand with
C/C++11 constructs. Our proposal is of a similar nature, identifying an opportunity for hardware
vendors to signi�cantly assist programming language design with a rather minimal cost.

In §5, we provide the proposed formal additions to the declarative models of Armv8 and Power
for supporting strong stores. We have performed extensive validation of these revised models using
the Herd model checker [Alglave et al. 2021, 2014], to see that, indeed, when strengthening all
stores to be strong, the behaviors that become disallowed are, like LB, behaviors that were not
observed on hardware (except for Snapdragon 820 and Cortex A73 as discussed above).

2.2.4 A Short Term Practical Solution. Without the availability of “strong stores” in hardware,
we propose to change the compiler mappings to take into account the target CPU. For CPUs that
preserve load-store ordering, it is still safe to map relaxed accesses to plain accesses. Otherwise, the
compiler should map relaxed store as it maps release stores (e.g., to an stlr instruction on Armv8).
Following Ou and Demsky [2018], mapping relaxed stores as release entails a performance

overhead of 3.6% on Arm (although it is rather hard to estimate performance for real-world
programs). We note that the mapping scheme that enforces the preservation of load-store ordering
by inserting a (fake) branch from every relaxed read, which is more e�cient according to Ou
and Demsky [2018] (with -0.3% overhead), is unsound for our needs. Indeed, as the LB-CHOICE
example shows, we also need to forbid reordering of non-atomic reads followed by relaxed writes.
This would require adding a branch from every non-atomic read, which, given the prevalence of
non-atomic reads in concurrent programs, is expected to signi�cantly harm performance.
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E ∈ Val value
-,., / ∈ Loc location
>R ∈ {na, rlx, acq} read access mode
>W ∈ {na, rlx, rel} write access mode
g ∈ Tid ≜ {g1, g2, ...} thread identi�er

C ∈ Time ≜ {0} ∪ Q+ timestamp
+ ∈ View ≜ Loc → Time view
< = ⟨-@C, E, >W,+ ⟩ ∈ Msg message
" ⊆ Msg memory

f thread-local program state
T = ⟨f,+ ⟩ ∈ Lts thread state
⟨T , "⟩ thread con�guration
T ∈ Tid → Lts thread state mapping
M = ⟨T , "⟩ machine state

(silent)

f −→ f ′

⟨⟨f,+ ⟩, "⟩ −→ ⟨⟨f ′,+ ⟩, "⟩

(system call)

f
Sys(4 )
−−−−−→ f ′

⟨⟨f,+ ⟩, "⟩
Sys(4 )
−−−−−→ ⟨⟨f ′,+ ⟩, "⟩

(read)

f
R(-,>R,E)
−−−−−−−→ f ′

⟨-@C, E, _,+m⟩ ∈ " + (- ) ≤ C

+ ′
= + [- ↦→ C] ⊔

{

0 >R ≠ acq

+m >R = acq

⟨⟨f,+ ⟩, "⟩ −→ ⟨⟨f ′,+ ′⟩, "⟩

(write)

f
W(-,>W,E)
−−−−−−−→ f ′

< = ⟨-@C, E, >W,+m⟩ + (- ) < C "#<

+ ′
= + [- ↦→ C] +m =

{

_- . 0 >W ≠ rel

+ ′ >W = rel

⟨⟨f,+ ⟩, "⟩ −→ ⟨⟨f ′,+ ′⟩, " ∪ {<}⟩

(race)

⟨-@C, _, >W, _⟩ ∈ "

+ (- ) < C >W = na ∨ > = na

race(+ ,",-, >)

(racy-read/write)

; ∈ { W(-, >, _), R(-, >, _) }

f
;
−→ _ race(+ ,",-, >)

⟨⟨f,+ ⟩, "⟩ −→ ⟨⟨⊥,+ ⟩, "⟩

(machine: normal)

⟨T (g), "⟩
;
−→ ⟨T ′, " ′⟩

⟨T , "⟩
;
−→ ⟨T [g ↦→ T ′], " ′⟩

(machine: ub)

⟨T (g), "⟩ −→ ⟨⟨⊥, _⟩, " ′⟩

⟨T , "⟩ −→ ⟨⊥, " ′⟩

Fig. 4. Domains and transitions of vRC11 (RMWs, fences, and release sequences are omi�ed). Di�erences

w.r.t. the promise-free fragment of PS are highlighted.

3 THE SOURCE MODEL

In this section, we present the in-order source semantics vRC11 (standing for “view-based RC11”),
which we obtain by adding transitions for non-atomic accesses to the promise-free fragment of the
promising semantics (PS, for short). In §3.1, we discuss the relation between vRC11 and RC11 and
show that vRC11 is stronger than RC11. Therefore, veri�cation theory and tools developed for RC11
(or any weaker model), such as model checkers [Kokologiannakis et al. 2017, 2019; Luo and Demsky
2021], program logics [Dang et al. 2020; Doko and Vafeiadis 2017], and robustness analysis [Lahav
and Margalit 2019], all apply to vRC11. In §3.2, we provide a declarative presentation of the model.
vRC11 is obtained from PS by (i) removing the notion of promises that models early execution of

writes and all transitions and components of states related to promises; and (ii) adding transitions for
non-atomic and racy accesses. Next, we introduce the fragment of vRC11 consisting of non-atomic,
relaxed and release/acquire writes and reads. In turn, read-modify-writes (RMWs), fences, and
release sequences are omitted by brevity. They are included in the full model in Coq and presented
in [Lee et al. 2023, Appendix A]. Figure 4 summarizes the domains and the transitions of vRC11,
highlighting the di�erences w.r.t. the promise-free fragment of the model in [Kang et al. 2017].

Program Semantics.We assume that the program of each thread is represented as a labeled
transition system, whose states, denoted by f , record the local register �le and the continuation

code, and transitions f
;
−→ f ′ are labeled with the action ; that is performed. For silent transitions

that do not communicate with the memory (e.g., conditionals and local assignments), we write
f −→ f ′. Read and write transitions have labels ; = R(-, >R, E) and ; = W(-, >W, E), respectively. We
also assume transitions executing system calls, which are externally observable (e.g., resulting from
print statements), with a label ; = Sys(4) where 4 is the output of the call.

Memory. A memory " is a �nite set of messages of the form< = ⟨-@C, E, >W,+m⟩ representing a
previously executed write of a value E ∈ Val to a location - ∈ Loc. Each message has a timestamp

C ∈ Time, where Time is the set of non-negative rational numbers,10 a write access mode >W of the

10As in previous work [Kang et al. 2017; Lee et al. 2020], timestamps are densely ordered, so one can always add a message

between existing messages. This property is particularly useful when proving the soundness of compiler transformations

such as “store merge” that merges two successive stores - := 1 ;- := 2 into a single store - := 2. In the proof, the source

has to mimic the target program by �nding a free timestamp for - := 1 before - := 2.
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operation by which the message was added, and a view +m ∈ View ≜ Loc → Time for enabling
release/acquire synchronization, which we explain below. The initial memory consists of an initial
message ⟨-@0, 0, na, _- . 0⟩ for every location - .

States. A machine state M = ⟨T , "⟩ consists of a function T assigning a thread state to each
thread identi�er, and a memory " shared among the threads. A thread state is a pair T = ⟨f,+ ⟩

where f is a local program state and + ∈ View is a thread view, recording the latest timestamp
that has been observed the thread for each location. The initial thread state consists of the initial
program state and the 0-view assigning 0 to each location.

Read Step. A thread can read a message ⟨-@C, E, >W,+m⟩ ∈ " with a timestamp greater than or
equal to the thread’s view of - (i.e., + (- ) ≤ C ), updating its view of - to include the timestamp C
of the message. If the read is an acquire (acq) read, the thread also acquires the message view +m
and joins it to its own view by taking pointwise maximum (denoted by ⊔).

Write Step. A thread writes by adding a message< = ⟨-@C, E, >W,+m⟩ to the memory" provided
that C is greater than the thread’s view (+ (- ) < C ) and that there is no existing message in "

with location - and timestamp C (denoted by"#<). The access mode >W of the write operation is
recorded in<. The thread updates its view to + ′

= + [- ↦→ C]. A release write records the thread’s
view (+m = + ′) in the message, while non-release writes have the 0-view in +m.

Racy Access. A memory access to location - by a thread with view + is racy if there is some
message ⟨-@C, E, >W,+m⟩ ∈ " with + (- ) < C and either the message is written by a non-atomic
write (>W = na) or the access itself is non-atomic (as de�ned in (race) in Fig. 4). Executing a racy
read or a racy write leads the thread to the ⊥ program state.

Machine Step.Machine steps are obtained as standard interleaving of thread steps ⟨T (g), "⟩ −→

⟨T ′, " ′⟩. If the thread detects a race and steps to ⊥, the machine may take a (pf-machine: ub) step
that leads to the ⊥ machine state, that is later interpreted as UB.

Behavior. An (observable) behavior is a sequence B = ⟨41, 42, ... , 4=⟩ of system calls. A machine
stateM generates a behavior B , denoted byM ⇓ B , if B is obtained by restricting a trace of vRC11
starting from M to system call labels and replacing UB by an arbitrary su�x of system calls. With
standard notations for sequences, M ⇓ B is de�ned by:

terminal(M)

M ⇓ n

M1 −→ M2 M2 ⇓ B

M1 ⇓ B

M1

Sys(4 )
−−−−→ M2 M2 ⇓ B

M1 ⇓ 4 · B

M −→ ⟨⊥, _⟩

M ⇓ B

Here, terminal(M) means that the machine state M is terminal (i.e., every thread has empty
continuation code). As captured by the last rule, once a UB is invoked during the execution, the
machine exhibits any behavior that is pre�xed with the sequence of system calls occurred before
the invocation of the UB. We let J?A>6KvRC11 = { B | init(prog) ⇓ B }, which denotes the set of all
behaviors that an initial machine state init(prog) of a program prog exhibits.

Example 3.1. The “store bu�ering” test on the right demonstrates
how the memory and the thread views of vRC11 captures weak
behaviors exhibited by the reordering of a store followed by a
load. The behavior of both threads printing 0 is allowed by vRC11.

- rlx := 1

0 := . rlx

print 0

. rlx := 1

1 := - rlx

print 1

(SB)

Speci�cally, the �rst thread writes 1 to - by adding a message ⟨-@C, 1, rlx, _- . 0⟩ with some
timestamp C > 0 and increasing its thread view of - to C . After the write, the thread reads from
the initial message ⟨.@0, 0, na, _- . 0⟩. By executing the second thread in the same way, it can read
either from the initial message ⟨-@0, 0, na, _- . 0⟩ (since its view of - is still 0) or from the message
of the �rst thread. Therefore, both threads can read 0 at the same execution.

Example 3.2. We show how vRC11 allows both threads printing 1 in the LB example in §2.
Suppose that the �rst thread reads 0 from the initial message for - , and writes 1 to . by adding
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a message<. = ⟨.@C, 1, na, _- . 0⟩ with some C > 0. Then, the read from . by the second thread
races with the message<. since it has a timestamp C greater than the timestamp of . in the second
thread’s view (i.e.,+ (. ) = 0 < C ). Then, due to the racy read from . , the second thread invokes UB,
which generates arbitrary behavior, including the behavior in which both threads print 1.

Example 3.3. Consider themessage passing program on the right.
The two non-atomic accesses to the data � are well-synchronized
by a release-acquire synchronization through the �ag � , and thus,
they are not racy. Indeed, the �rst thread records its view in the

�na := 42

�rel := 1

0 := �acq

if 0 = 1 then

1 := �na
(MP)

message � = 1 and the view is transferred to the second thread when it reads � = 1. The read from
� by the second thread is not racy since the timestamp of � it has in its view is already increased
to include the timestamp of the message � = 42. Moreover, the second thread is only allowed to
read 42 from � . In contrast, the program becomes racy if any (or both) of the accesses to � is made
relaxed. Then, there would not be a release-acquire synchronization between the two threads, and
the timestamp of � in the second thread’s view would remain 0 (pointing to the initial message of
�) even after reading 1 from � . In turn, the read from � would be racy and invoke a UB, as the
message � = 42 would have a higher timestamp than the second thread’s view of � .

We have ported the Coq proof by Cho et al. [2022] to establish the local DRF guarantees, LDRF-
RA and LDRF-SC, for vRC11. Generally speaking, data-race-freedom (DRF) guarantees ensure
“strong” semantics for programs that are race-free under the “strong” semantics, and thus provide
an essential formal justi�cation for defensive programming. Local DRF (LDRF) guarantees further
extend this idea to be applicable also in the presence of races on some unrelated locations (e.g.,
con�ned in optimized libraries). LDRF-RA means that we consider release/acquire semantics as the
strong semantics, and LDRF-SC means that under the strong semantics, threads can only access
messages with globally maximal timestamps.

3.1 Relating vRC11 to RC11

The RC11 [Lahav et al. 2017] memory model addresses two problems of the C/C++11 model: its
�awed semantics for sequentially consistent accesses and fences (which is unrelated to the current
paper) and the more crucial problem of “out-of-thin-air” reads [Batty et al. 2015] that breaks the
fundamental DRF guarantee. To solve the latter problem, following [Boehm and Demsky 2014],
RC11 takes a conservative approach and forbids cycles in the union of the program order and the
reads-from relation. As discussed before, veri�cation of concurrent programs under RC11 has been
extensively studied and multiple veri�cation methods and tools have been developed. The next
theorem states that vRC11, the source model of the present paper, is stronger than RC11. Hence,
the soundness of all veri�cation approaches for RC11 applies to vRC11 as well.

Theorem 3.4. For every program prog, JprogKvRC11 ⊆ JprogKRC11.

We provide a (pen-and-paper) proof in [Lee et al. 2023, Appendix C], based on a declarative
presentation of vRC11 (see §3.2), which can be more easily compared to RC11. Next, we demonstrate
behaviors allowed by RC11 but disallowed by vRC11 using examples.
Putting presentation aside, the main di�erence between vRC11 and RC11 is related to the fact

that an access in vRC11 can only race with previously executed writes, but not with previously
executed reads. To illustrate this point, consider the following example:

0 := - na

. rlx := 1

1 := . rlx

if 1 = 1 then - na := 42
(RW-RACE)

In both vRC11 and RC11, the read of - has to return 0, but this program is considered racy in RC11
but not in vRC11. Speci�cally, both vRC11 and RC11 allow the execution where the second thread
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reads 1 from . (from the write of the �rst thread) and writes 42 to - . In RC11 this execution is
deemed racy, since it has two accesses to the same location, such that (i) one of them is a write;
(ii) one of them is non-atomic; and (iii) they are not properly synchronized by release/acquire
accesses. In contrast, vRC11 does not view this execution as racy. In vRC11, an access can only race
with a message to the same location that already exists in the memory. Thus, the write to - by the
second thread is never racy since there has not been any other write to - . In other words, a write
can never race with a read executed before the write. Note that the execution - na := 42 requires a
message . = 1 in the memory, so it cannot precede the read 0 := - na by the �rst thread.

Remark 4. Deeming programs like RW-RACE as non-racy may allow performance improvements
in certain programming idioms that are forbidden in RC11. For example, consider the following
multiple-readers-single-writer (MRSW) lock pattern:

...

0 := - na

reader-unlock()

...

1 := - na

reader-unlock()

writer-lock()

- na := 42

...

An MRSW lock protecting a location - allows multiple readers to read from - concurrently, while
the writer should be exclusive, blocking any other reader or writer. A typical implementation of
an MRSW lock maintains a counter counting how many readers currently hold the reader-lock.
For such an implementation, reader-unlock() decreases the counter using a fetch-and-decrement
operation and, writer-lock() checks if the counter reaches 0 and atomically swaps the value of the
counter to some special value using a compare-and-swap. Under RC11, to prevent the race between
the reads and the later write, reader-unlock() and writer-lock() should form release-acquire
synchronization. In contrast, as in RW-RACE, such synchronization is unnecessary under vRC11
since a write never races with a read executed before the write. Therefore, vRC11 allows one to
relax the write access mode of the fetch-and-add in reader-unlock() from rel to rlx. Moreover,
when there is only one writer thread, writer-lock() can be further optimized to use a relaxed
RMW instead of an acquire RMW.

In addition to the above, even for races with previously executed writes, the operational race
condition of vRC11 is more restrictive than the race de�nition in RC11, where two accesses to the
same location are considered racy if they are not “well-synchronized” (which is formally de�ned
using the “happens-before” relation). This can be observed in programs when certain locations are
accessed by both atomic and non-atomic accesses, as in the following example:

- rlx := 1
0 := - rlx

if 0 = 1 then 1 := - na (COH-RACE)

In both vRC11 and RC11, the read of - has to return 1, but, again, this program is racy in RC11
but not in vRC11. To see this, consider an execution where the relaxed read 0 := - rlx by the
second thread reads 1 written by the �rst thread. The write - rlx := 1 by the �rst thread and the
non-atomic read 1 := - na by the second are racy in RC11 since they are not well-synchronized via
a release-acquire synchronization. In vRC11, the two accesses are not racy: once the second thread
reads 1 by the relaxed read 0 := - rlx, its view to - increases to include the message - = 1. Then,
when the thread performs a non-atomic read from - , no message to - has a timestamp higher than
the thread’s view (i.e., only the message - = 1 can be read by the second thread). Therefore, the
non-atomic read by the second thread does not race with the write of the �rst thread.

Both of the above examples demonstrate cases that RC11 assigns UB to a program, whereas
vRC11 gives it a de�ned semantics. We believe that races in vRC11 have a clear and simple meaning:
a read access is racy i� it can read from more than one message, and a write access is racy i� it
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can “overwrite” more than one message. The examples above show cases where RC11 forces a
non-atomic read to read from a particular write, but the read is still considered racy in RC11.
Finally, there also is a di�erence between the two models related to SC-fences (which are not

presented above but included in the full model). In vRC11 the semantics of SC-fences is similar to
the one in the RC20 model in [Margalit and Lahav 2021], which is stronger than their semantics in
RC11. In particular, SC-fences in vRC11 model can be expressed in terms of a release and acquire
fences and an RMW to an otherwise unused location (see [Margalit and Lahav 2021, Remark 1]).
We do not discuss further this di�erence since it is orthogonal to our main topic.

3.2 A Declarative Presentation

For informed readers, we provide a declarative (a.k.a. axiomatic) presentation of vRC11. Such
presentation is more concise than the operational one, and it is especially useful for comparing
vRC11 to other models that are presented in a similar declarative fashion such as C/C++11. In
the following, we consider the full model with RMWs and fences. Due to lack of space, we refer
to [Lahav et al. 2017], which we build on, for more background and examples of this de�nition
style. (In any case, this technical section can be skipped when reading the paper.) The equivalence
between the operational and declarative models is proved in [Lee et al. 2023, Appendix B].
In declarative models, program executions are represented by execution graphs, whose nodes,

called events, keep track of accesses to the shared memory, and edges provide several (partial)
orders on these accesses. We assume that events are divided into three sets: writes (W), reads (R), and
fences (F). We use standard notations to retrieve events properties (such as loc(4) for the location
accessed in 4 and mod(4) for the access mode) and to restrict sets accordingly (such as Wrel for the
set of release writes). Our execution graphs employ the standard basic relations: a program order
(po) that totally orders the events of each thread; an RMW relation (rmw) that distinguishes the
read-write pairs that together form an RMW; a reads-from relation (rf) that links each write event
F to the read events that read their value fromF ; and a modi�cation order (mo), a.k.a. coherence
order, that totally orders all writes to the same location. Based on these relations, several other
relations are derived (all as in RC11) using standard relational notations:

po |loc ≜ {⟨41, 42 ⟩ ∈ po | loc(41 ) = loc(42 ) } (po-same-location)

rb ≜ rf−1 ; mo (reads-before, a.k.a. from-read)

eco ≜ (rf ∪ mo ∪ rb)+ (extended-coherence-order)

rs ≜ [W] ; po |?
loc

; [W⊒rlx ] ; (rf ; rmw)∗ (release-sequence)

sw ≜ ( [Wrel ] ∪ [F⊒rel ] ; po) ; rs ; rf ; ( [Racq ] ∪ [R⊒rlx ] ; po ; [F⊒acq ] ) (syncronized-with)

hb ≜ (po ∪ sw)+ (happens-before)

Now, to handle SC-fences we include another primitive relation in execution graphs that deter-
mines the order of SC-fences. We call this relation the SC-order, denoted by sc, and require it to be
a total strict order on all the SC-fences (i.e., on Fsc) in the execution graph. (Like rf and mo, sc is
existentially quanti�ed—a behavior of a program is justi�ed by some sc order of a corresponding
graph.) Using sc we derive the execution order, which is a partial order on events that operational
runs follow (note that hb ⊆ exec):

exec ≜ (po ∪ rf ∪ sc)+ (execution-order)

Then, consistent graphs are de�ned as follows.

De�nition 3.5. An execution graph � is vRC11-consistent if the following hold for its relations:

• hb ; eco is irre�exive. (coherence)

• hb ; sc ; hb ; eco is irre�exive. (sc-fence)

• rmw ∩ (rb ; mo) = ∅. (atomicity)

• exec is irre�exive. (no-LB)
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The coherence constraint is standard, and it ensures “SC-per-location”. The sc-fence constraint
gives the semantics to SC-fences, so they forbid, e.g., store bu�ering behaviors when inserted
between writes and reads. The atomicity constraint ensures the atomicity of RMWs. Finally, no-LB
demonstrates that vRC11 is “in-order” as it entails the acyclicity of the union of the program order
and the reads-from relation.

Example 3.6. As we saw in Example 3.3, in the MP program the second thread can only read
42 from � . To see how this follows from the declarative model, we depict the execution graph
obtained when trying to read 0 (the initial value), and explain why it is inconsistent. The nodes,
labels, and program order (po) arise from the program behavior we analyze. Then, the reads-from
relation (rf) is forced since every read has to read its value from some write writing that value. The

modi�cation order (mo) between 8=8C and 41 is also forced: it has
to order these two nodes (as both write to the same location),
and going in the opposite order would violate coherence as we
have hb from 8=8C to 41. Then, according to the de�nition above,
a “reads-before” edge (rb) is induced from 44 to 41, which implies
⟨44, 41⟩ ∈ eco. Now, since 42 and 43 are rel and acq, we have an
sw edge between them, inducing hb from 41 to 44. Together, this
violates coherence since we have ⟨41, 41⟩ ∈ hb ; eco.

8=8C : W (�, na, 0)

41 : W (�, na, 42)

42 : W (�, rel, 1)

43 : R (�, acq, 1)

44 : R (�, na, 0)

po rfrb

mo

To complete the presentation of the model, we de�ne what execution graphs are considered racy,
with the help of additional derived relations:

conflict ≜

{

⟨41, 42 ⟩

�

�

�

�

41 ≠ 42 ∧ (typ(41 ) = W ∨ typ(42 ) = W) ∧

loc(41 ) = loc(42 ) ∧ (mod(41 ) = na ∨ mod(42 ) = na)

}

(concliting events)

pb ≜ [W] ; rf? ; hb ; sc? ; hb? (propagated-before)

raceWW ≜ [W] ; conflict ; [W] \ (pb ∪ exec−1 ) (write-write-race)

raceWR ≜ [W] ; conflict ; [R] \ (pb ∪ exec−1 ) (write-read-race)

Roughly, ⟨F, 4⟩ ∈ pb means that the write F has been observed by the thread executing 4

before it executes 4 , where observations are propagated through release/acquire synchronization
and SC-fences. In the operational model, this means that (the message associated with) F has a
timestamp lower than the timestamp of the location ofF in the current view of the thread executing
4 . Then, raceWW relates two con�icting writes, F1 to F2, when F1 has not propagated before F2

(⟨F1,F2⟩ ∉ pb) and F1 can be executed before F2 (⟨F2,F1⟩ ∉ exec). Similarly, raceWR relates
con�icting write and read,F to A , whenF has not propagated before A (⟨F, A ⟩ ∉ pb) andF can be
executed before A (⟨A,F⟩ ∉ exec).
Finally, we say that execution graph � is vRC11-racy if raceWW ∪ raceWR ≠ ∅, and as in RC11,

a program outcome is allowed if it is induced by some vRC11-consistent execution graph that is
generated by the program, or if some racy vRC11-consistent execution graph is generated by the
program. The latter disjunct corresponds to the program invoking UB.

Remark 5. An equivalent model is obtained if we include sc inside hb (together with po and sw).
In this presentation, sc-fence is not needed, and the de�nition of pb can be simpli�ed to rf? ; hb.

Example 3.7. The RW-RACE program above does not generate a racy vRC11-consistent execu-
tion graph. Indeed, the only vRC11-consistent execution graph of it executing both non-atomic

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.



Pu�ing Weak Memory in Order via a Promising Intermediate Representation 183:17

%, %� ⊆ Loc promise set

T = ⟨f,+ , %⟩ ∈ Lts thread state

⟨T , %� , "⟩ thread con�guration

⟨T , %� , "⟩ machine state

(promise)

- ∉ %�

⟨⟨f,+ , %⟩, %� , "⟩ −→

⟨⟨f,+ , % ∪ {- }⟩, %� ∪ {- }, "⟩

(silent)

f −→ f′

⟨⟨f,+ , %⟩, %� , "⟩ −→ ⟨⟨f′,+ , %⟩, %� , "⟩

(read)

f
R(-,>R,E)
−−−−−−−−→ f′

⟨-@C, E, _,+m⟩ ∈ " + (- ) ≤ C

+ ′
= + [- ↦→ C] ⊔

{

0 >R ≠ acq

+m >R = acq

⟨⟨f,+ , %⟩, %� , "⟩ −→ ⟨⟨f′,+ ′, %⟩, %� , "⟩

(write)

f
W(-,>W,E)
−−−−−−−−→ f′ < = ⟨-@C, E, >W,+m⟩ "#<

+ (- ) < C + ′
= + [- ↦→ C] +m =

{

_- . 0 >W ≠ rel

+ ′ >W = rel

⟨% ′, %�
′⟩ =

{

⟨% \ {- }, %� \ {- }⟩ >W = na ∧ - ∈ %

⟨%, %� ⟩ otherwise

⟨⟨f,+ , %⟩, %� , "⟩ −→ ⟨⟨f′,+ ′, % ′⟩, %�
′, " ∪ {<}⟩

(promised race)

- ∈ %� \ %

raceprm (%, %� , - )

(race)

⟨-@C, _, >W, _⟩ ∈ "

+ (- ) < C >W = na ∨ > = na

race(+ ,",-, >)

(racy-read)

f
R(-,>R,undef)
−−−−−−−−−−−−→ f′

race(+ ,",-, >R) ∨ raceprm (%, %� , - )

⟨⟨f,+ , %⟩, %� , "⟩ −→ ⟨⟨f′,+ , %⟩, %� , "⟩

(racy-write)

f
W(-,>W,_)
−−−−−−−−→ _

race(+ ,",-, >W)

⟨⟨f,+ , %⟩, %� , "⟩ −→ ⟨⟨⊥,+ , ∅⟩, %� , "⟩

(system call)

f
Sys(4 )
−−−−−−→ f′ % = ∅

⟨⟨f,+ , %⟩, %� , "⟩
Sys(4 )
−−−−−−→ ⟨⟨f′,+ , %⟩, %� , "⟩

(machine: normal)

⟨T (g), %� , "⟩ −→+ ⟨T ′, %�
′, "′⟩

⟨T ′, %�
′, "′⟩ −→∗ ⟨⟨_, _, ∅⟩, _, _⟩

⟨T , %� , "⟩ −→ ⟨T [g ↦→ T ′], %�
′, "′⟩

(machine: ub)

⟨T (g), %� , "⟩ −→+ ⟨⟨⊥, _, _⟩, %�
′, "′⟩

⟨T , %� , "⟩ −→ ⟨⊥, %�
′, "′⟩

Fig. 5. Domains and transitions of PSIR (RMWs, fences, release sequences, and reservations are omi�ed).

accesses is depicted on the right. Here, we have ⟨44, 41⟩ ∈ [W] ;

conflict; [R]\pb, but this is not considered a write-read race since
⟨41, 44⟩ ∈ exec. In turn, if we had- na := 1 in the �rst thread (rather
than 0 := - na), we would obtain that ⟨41, 44⟩ ∈ raceWW (with 41
labeled by W (-, na, 1)) which would mean that the program has a
racy vRC11-consistent execution graph, so it allows any outcome.

8=8C : W (-, na, 0)

41 : R (-, na, 0)

42 : W (., rlx, 1)

43 : R (., rlx, 1)

44 : W (-, na, 42)

po rf

rf

mo

4 THE IR MODEL

In this section, we present our model of the intermediate representation, called PSIR, establish the
soundness of mapping from vRC11 to PSIR, and show that every sound transformation under the
sequential semantics SEQ in [Cho et al. 2022] is also sound under PSIR.
There are two major di�erences between PSIR and vRC11. First, to allow load introduction, a

racy read in PSIR returns an unde�ned value instead of invoking UB. As demonstrated above, this
change alone forbids the weak behavior of LB. PSIR addresses this issue by allowing promises, so it
is not an in-order semantics. Intuitively, a thread may promise that it will perform a non-atomic
write to a location - in the future, making any accesses to - by other threads to be racy.

In the following, we explain the PSIR model focusing on how it extends and modi�es vRC11.
Figure 5 summarizes the steps of PSIR. We note that the (silent) and (read) steps are adapted in
an obvious way that does not alter the new components of the state, and the (race) de�nition is
also exactly as in vRC11. The full PSIR model in our Coq development includes RMWs, fences, and
release sequences, and is presented in [Lee et al. 2023, Appendix D].

Promises. Both each thread state and the global machine state are equipped with a set of
locations, called local promises (% ) and global promises (%� ), respectively. The (promise) step allows
a thread to promise to write to a certain location - in the future by adding - both to its local
promises and to the global promises, provided that - has not been already promised by some
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thread (- ∉ %� ). Once - being promised, the thread can later ful�ll its promise by writing to -
via a non-atomic write. Accordingly, the (write) step is extended to update the local and global
promises set by removing - from them if the write is non-atomic and - was previously promised.
Certi�cation. At each machine step (see (machine: normal)), the thread taking a sequence

of steps should certify its promises by demonstrating it is able to ful�ll all its promises by taking
multiple steps in isolation. The certi�cation requirement is crucial in proving the soundness of
mapping from vRC11 to PSIR (see Example 4.4 below).

Racy Reads. A racy read retrieves an unde�ned value (denoted by undef in (racy-read))
(unlike invoking UB in vRC11), thereby allowing the compiler transformation that introduces
unused loads. In addition, a race occurs with promised writes (see (promised race) de�nition): a
memory access to - is considered racy also if there is a promise to - made by another thread.

RacyWrites.A racy write invokes UB (like in vRC11), and there is no need to consider promised
writes for these races. A thread transition invoking UB directly ful�lls the remaining promises (see
(racy-write)), so the local promises set is made empty after the transition, which allows for a
successful certi�cation process.

System Calls. A system call requires the local promises to be empty (% = ∅). In other words, a
write cannot be promised over a system call. Intuitively, this means that a system call followed by
a (non-atomic) write cannot be reordered.

Behavior. Program behaviors under PSIR are de�ned as for vRC11, with one modi�cation: when
undef is a part of a system call output in an execution trace, then it can be re�ned to any concrete
value in the program behavior (e.g., print(undef) in a trace can be mapped to print(1) in the
behavior). We denote by JprogKPSIR the set of behaviors a program prog exhibits under PSIR.

Example 4.1. In contrast to vRC11, in which a racy read invokes UB, in PSIR a racy read returns
undef. Thus, PSIR justi�es LB example using a promise. Speci�cally, the �rst thread promises to . ,
certi�ed by reading 0 from - and writing 1 to . . Then, the read from . by the second thread is racy
with that promise and it returns undef. After the racy read, the second thread writes 1 to - and
prints 1. (Since undef represents an arbitrary value, it can be re�ned to 1.) Now, the �rst thread
reads 1 from - , ful�lls its promise to . by performing a non-atomic write, and prints 1 as well.

Example 4.2. The following example demonstrates that a promise can be certi�ed and ful�lled
by di�erent write instructions even with di�erent written values.

0 := - na

. rlx := 0

1 := . rlx

if 1 ≠ 0 then

- na := 1

print 42

else

- na := 2

{

0 := - na

. rlx := 0

- na := 2

1 := . rlx

if 1 ≠ 0 then

- na := 1

print 42

(LB-CASE)

The program on the left can be transformed into the program on the right by applying a sequence
of compiler transformations in the second thread: (8) split the non-atomic write - na := 1 into two
writes - na := 2 followed by - na := 1; (88) hoist the common write - na := 2 out of the branch; and
(888) reorder the read 1 := . rlx and the write - na := 2. Since the program on the right is allowed to
print 42 (even under SC), PSIR should allow the same behavior for the program on the left. Indeed,
the program on the left can print 42 through the following PSIR execution: (1) the second thread
promises to - , certifying it by reading 0 from . and writing 2 to - ; (2) the �rst thread reads undef
from - by performing a racy read and writes undef to . ; and (3) the second thread reads undef
from . , enters the then-branch as 1 ≠ 0 evaluates to undef,11 ful�lls its promise to - by writing 1

11Here, we assume that branching on undef non-deterministically takes either one of the then-branch or the else-branch.

In LLVM, branching on undef is UB, and a “freeze” instruction should be used before the branching [Lee et al. 2017].
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to - , and prints 42. Notably, in this execution, the promise to - of the second thread is certi�ed
using the write - na := 2 and ful�lled by the other write - na := 1.

Our main result is the following theorem (a Coq proof is available in the supplementary material):

Theorem 4.3. For any program prog, JprogKPSIR ⊆ JprogKvRC11.

The proof of this theorem is established using a simulation argument: for each transition in PSIR,
we identify a corresponding sequence of transitions in vRC11. While most thread transitions are
identical in vRC11 and PSIR, there are no corresponding transitions in vRC11 for the following
two transitions of PSIR: (1) (promise) transition; and (2) (racy-read) transition that races with
a promise (i.e., when raceprm (%, %� , - ) holds). For the former, the vRC11 machine simply takes

no transition and the machine states of vRC11 and PSIR remains identical except for the sets of
promises (% and %� ) in PS

IR. For the latter, we show that the vRC11 machine can take multiple steps
and invoke UB by performing a racy read. Concretely, suppose that a thread g1 of PS

IR performs a
racy read from a location - that races with a promise made by another thread g2. Since there is
no promise in vRC11, we need to prove that g2 of vRC11 can actually perform a non-atomic write
to - before g1 takes a racy read transition. The key property in this is to turn a certi�cation of
the promise by g2 in PSIR into a real execution of vRC11. To do so, we proved that once a thread
certi�es its promise to a location - , under any possible future memory, the thread can take multiple
steps and perform a non-atomic write to - .

Example 4.4. Theorem 4.3 does not hold without the certi-
�cation of promises. Under vRC11, the only possible execu-
tion for this program is that both threads read the initial mes-
sages (i.e., 0 = 1 = 0). For Thm. 4.3 to hold, PSIR cannot allow

0 := - na

if 0 = 1 then

. na := 1

1 := . na

if 1 = 1 then

- na := 1

(LB-DRF)

any other behavior. Indeed, under PSIR, the �rst thread cannot promise to . since the only value
that can be read from - is 0, and thus, the thread cannot certify the promise. However, if PSIR

allowed a thread to promise without certifying it, then 0 = 1 = undefwould be allowed. Speci�cally,
the �rst thread could unconditionally promise to . ; the second thread could read undef and write
1 to - ; and then the �rst thread could read undef and write 1 to . while ful�lling its promise to . .

In addition to Thm. 4.3, we also proved that program transformations sound in sequential
semantics are also sound to apply on non-atomics in PSIR. To do so, we adapted the sequential
machine SEQ from [Cho et al. 2022, Def. 3.3] to include non-promisable relaxed writes, as we have
in PSIR (see [Lee et al. 2023, Appendix E]), and ported the proof in [Cho et al. 2022] to PSIR to
show that all sound optimizations on non-atomics under (the adapted) SEQ are also sound under
PSIR. Thanks to this result, not only the programmers but also compiler writers who develop
optimizations on non-atomic code (including reorderings and eliminations of non-atomic accesses
across atomics) do not have to understand the out-of-order IR model.

The sequential machine SEQ, however, is not helpful for validating reorderings and eliminations
of atomics. These optimizations are not important for our current purpose (to the best of our
knowledge, they are not performed by current compilers). In fact, we found out that reordering
of relaxed writes (to di�erent locations) is unsound in PSIR. (Still, PSIR can be soundly mapped
to Armv8, which e�ectively allows reordering in the target code; see §5.) The reason is related to
the reservation mechanism, an addition that was introduced to PS in [Lee et al. 2020] and used in
our full PSIR model, in order to support an e�cient mapping of RMWs to Armv8. Future work is
required to understand whether PSIR can be changed to allow this reordering. We expect all other
transformations on atomics that are sound in RC11 to be sound in PSIR.

freeze(E) returns E when E is a de�ned value (i.e., not undef) and non-deterministically returns any de�ned value (e.g., 42)

when E is undef. In the example, the same argument holds when 1 ≠ 0 is replaced with freeze(1 ) ≠ 0.
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5 MAPPING TO HARDWARE

In this section, we consider the compiler mapping of PSIR to hardware: we present the proposed
addition of “strong stores” to hardware models (§5.1); discuss the implementation of strong stores
in existing hardware (§5.2); and establish soundness of mapping PSIR to the extended models (§5.3).

5.1 Strong Stores in Hardware Models

We propose a new store instruction called a “strong store” that preserves load-store ordering in
modern architectures. Strong stores are stronger than a plain hardware stores but weaker than
release stores (or than “lightweight fence”, lwsync, followed by a plain store, as release stores are
implemented on Power). Next, we describe the proposed extension of the Armv8 and Power models.

Armv8. We de�ne Armv8S as the extension of the Armv8 memory model [Alglave et al. 2021;
Pulte et al. 2017] with strong stores. The Armv8 memory model de�nes a relation called barrier-

ordered-before (bob), modeling thread-local order of memory accesses that is induced by barriers
and release/acquire accesses. For example, bob includes po ; [L] that corresponds to the fact that a
release store (denoted by L) is never reordered with an earlier instruction in the program order
(denoted by po). In Armv8S, we extend bob to include also [R] ; po ; [S], where S represents the
set of strong stores. This simple modi�cation enforces the preservation of the order of any load
followed by a strong store in the program order.

Power. Similarly to Armv8S, we de�ne PowerS by extending the Power memory model of [Al-
glave et al. 2014]. Speci�cally, we propose a modest extension of the “no-thin-air” rule of the Power
consistency predicate that requires acyclicity of ppo ∪ fence ∪ rfe to include [R] ; po ; [S] as well.
Roughly, this constraint forbids load bu�ering behaviors when the order of the load followed by
the store is preserved by certain dependencies (ppo) or fences (fence). The PowerS model extends
this rule to prevent the load-store reordering also when the order is preserved by a strong store.

5.2 Implementing Strong Stores on Existing Hardware

As discussed in §2.2, the weak behavior of LB has been rarely observed in practice, despite massive
testing on CPU implementations of multiple Arm and Power architectures. In particular, among
the Armv8 and Power implementations that have been tested in [Alglave et al. 2021, 2014], only
Qualcomm’s Snapdragon 820 processor exhibited this behavior.

To gain more knowledge about the Snapdragon anomaly (and extend the dataset of [Alglave et al.
2021]), we experimented with a new Snapdragon version. We acquired a Snapdragon 888 (SM8350)
processor, and using the Litmus7 (part of DIY7) testing framework, we ran the 23 basic behavior
tests.12 Like other processors and unlike Snapdragon 820, Snapdragon 888 did not exhibit the weak
behavior of LB in 6000M runs. For comparison, weak behaviors of the well-known store bu�ering
(SB) and message passing (MP) tests were observed in 93% and 0.676% (respectively) of the 6000M
runs. The supplementary material [Lee et al. 2023] includes the full results for Snapdragon 888.

On all those implementations that do not exhibit load bu�ering, we believe that strong stores
could be implemented just like plain stores, without any additional overhead. To validate this claim,
we used the Herd7 model checker. We started from the available tests in the suite of [Alglave et al.
2021, 2014], which includes 3,773 tests for Armv813 and 3,116 tests for Power,14 and con�rmed
that all behaviors that are forbidden by the strengthened hardware models where every store is
strong (i.e., the models obtained by including [R] ; po ; [W] in the bob relation of Armv8 or the

12http://gallium.inria.fr/~maranget/cats7/model-aarch64/tests.html [Accessed November 2022].
13https://gallium.inria.fr/~maranget/cats7/model-aarch64/index.html [Accessed November 2022].
14https://gallium.inria.fr/~maranget/cats7/ppc9/ [Accessed November 2022].
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“no-thin-air” constraint of Power), but allowed by the existing models, were never observed on an
implementation (except for Snapdragon 820). The supplementary material [Lee et al. 2023] includes
the cat �les de�ning the models, the tests we ran, and the logs of the results.

5.3 Mapping PSIR to Hardware

Given strong stores in hardware, the mapping of PSIR to hardware follows the standard schemes of
C/C++ concurrency primitives,15 except that relaxed writes in PSIR are mapped to strong stores
(while non-atomic writes are compiled to plain stores). We do not assume here that the hardware
generally preserves load-store ordering, in which case, strong stores are not needed at all. In
addition, the soundness of the “short-term” solution (see §2.2), which, in the absence of strong
stores, suggests mapping relaxed writes as if they were release, follows from the discussion below
since release writes are mapped to constructs that provide stronger guarantees than strong stores.

Remark 6. As was observed in [Cho et al. 2021], to be able to match every out-of-order execution
to an in-order racy execution (which we need for Thm. 4.3, and Cho et al. [2021] need for LDRF-PF),
PSIR has to forbid the reordering of RMWs with subsequent writes. Then, the mapping of certain
RMW instructions to ARMv8 requires an extra “fake” control dependency from the read part of
the RMW, so the hardware will not reorder RMWs with following plain writes (which arise from
non-atomic writes in the source). We refer the reader to [Cho et al. 2021] for the exact mapping
scheme and the (unnoticeable) performance impact of it. We note that for hardware that preserves
load-store ordering for all stores, this additional fake dependency is not needed.

To formally state the correctness of this mapping, since there are no system calls in the hardware
models, we de�ne the set of outcomes of a program for representing the �nal memories obtained
after program executions are completed. This notion is de�ned for PSIR and Armv8S as follows.

De�nition 5.1. A function > : Loc → Val is an outcome of a program prog under PSIR if some exe-
cution of prog terminates with a memory" (i.e., init(prog) −→∗ ⟨T , %� , "⟩ ∧ terminal(⟨T , %� , "⟩)),
and > (- ) = E where ⟨-@C, E, _, _⟩ ∈ " is the message to - with the greatest timestamp C .

De�nition 5.2. A function > : Loc → Val is an outcome of a program prog under Armv8S (PowerS)
if > assigns to every location - the value of the co-maximal write to - in some execution graph of
prog that is Armv8S-consistent (PowerS-consistent).16

Using these de�nitions, the soundness of mapping from PSIR to Armv8S is stated as follows.

Theorem 5.3. For a PSIR program prog, we denote by (|?A>6|)A the Armv8S program obtained by

mapping prog as described above. Then, given a program prog and an outcome > of (|prog |)A under

Armv8S, we have that either > is an outcome of prog under PSIR or prog has unde�ned behavior under

PSIR (i.e., it has an execution reaching a machine state of the form ⟨⊥, _, _⟩).

To prove this theorem, we utilized the operational model for Armv8 by Pulte et al. [2019], who
also showed (in Coq) its equivalence to the declarative formulation of Armv8. We extended their
operational model with strong relaxed accesses, reestablished the equivalence of the extended
models, and proved (in Coq), using a simulation argument, that runs of this extended operational
model reaching a certain outcome corresponds to runs of PSIR that yield the same outcome.
We believe the standard mapping from PSIR to PowerS (with relaxed stores compiled as strong

stores) is sound as well. Formally establishing the soundness of this mapping, possibly using the
IMM memory model [Podkopaev et al. 2019], is left as future work.

15http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html [Accessed November 2022].
16Intuitively, the coherence order (co), which totally orders the writes to each location, corresponds to the timestamp order

in PSIR.
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6 RELATED WORK

Our proposal for a concurrency semantics re�nes, simpli�es, and combines existing ideas: catch-�re
and preserving load-store ordering as in RC11 [Boehm and Adve 2008; Boehm and Demsky 2014;
Lahav et al. 2017], an operational presentation of RC11 using the promising semantics without
promises and certi�ed promises as a speculation mechanism to allow load-store reordering [Kang
et al. 2017], justifying compiler optimizations on non-atomics based on sequential reasoning [Cho
et al. 2022] (see also [Zha et al. 2022]), and the operational Arm model as a bridge between the
high-level semantics and the hardware model [Pulte et al. 2019]. We also rely on [Alglave et al. 2021,
2014] for the models of Power and Arm, the experimental data on observed behaviors, the Herd
model checker, and the testing framework; and on [Ou and Demsky 2018] for the performance
evaluation of di�erent compilation schemes.
In particular, our PSIR model is inspired by the PSna model in [Cho et al. 2022]. The most

signi�cant di�erence between PSIR and PSna is that PSna allows also promises of relaxed writes,
which makes PSna signi�cantly more complex than PSIR. First, in PSna a thread promises messages
with speci�c timestamp, value, and view, while PSIR only maintains sets of locations that threads
will write to in the future. (This is possible because promises of PSIR are needed only for race
detection.) Second, unlike PSIR, PSna allows a thread to lower or split their promises, which leads to
substantial complications in proofs. Lastly, a non-atomic write in PSIR adds a single message to the
memory, while in PSna multiple messages may be added by a single non-atomic write.
The idea to use an unde�ned value rather than catch-�re in order to validate load introduction

comes from the LLVM (informal) model. To the best of our knowledge, the �rst attempt to apply
this approach in a formal model was in [Chakraborty and Vafeiadis 2017], where previous read
values can be revisited whenever relevant writes are executed. This requires a rather complicated
event-structure-based model, which does not admit the DRF guarantee. Later improvements of this
model [Chakraborty and Vafeiadis 2019; Moiseenko et al. 2020] admit DRF but fail to support load
introduction. In turn, our PSIR model (following PSna) applies this approach together with promises.
We are not aware of any previous proof relating an in-order source model based on catch-�re to an
IR model that is based on unde�ned values.
Other weak memory models were recently proposed (see, e.g., [Jagadeesan et al. 2020; Je�rey

et al. 2022; Paviotti et al. 2020]), but they are all focused on generally allowing load-store reordering,
while our models (both source and IR) allow it only for non-atomic accesses. Notably, supporting
load introduction in these models is rather hard, and besides the promising models (e.g., the recent
version in [Cho et al. 2022]), we are not aware of any model that fully supports load-store reordering
as well as load introduction. In particular, Je�rey et al. [2022] observe a tension between the kind
of temporal reasoning supported by their model and load-introduction.
In contrast, other work, e.g., [Liu et al. 2021; Marino et al. 2011], propose SC as a concurrency

semantics for programmers, and study its expected cost (which can be rather high). In turn, we
believe that an in-order model enjoys the advantages of SC, while allowing for rather minimal
performance overhead, provided that catch-�re for races on non-atomics is acceptable.
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