
Modular Data-Race-Freedom Guarantees

in the Promising Semantics

Minki Cho

Seoul National University

Korea

minki.cho@sf.snu.ac.kr

Sung-Hwan Lee

Seoul National University

Korea

sunghwan.lee@sf.snu.ac.kr

Chung-Kil Hur

Seoul National University

Korea

gil.hur@sf.snu.ac.kr

Ori Lahav

Tel Aviv University

Israel

orilahav@tau.ac.il

Abstract

Local data-race-freedom guarantees, ensuring strong seman-

tics for locations accessed by non-racy instructions, provide

a fruitful methodology for modular reasoning in relaxed

memory concurrency. We observe that standard compiler

optimizations are in inherent conflict with such guarantees

in general fully-relaxed memory models.

Nevertheless, for a certain strengthening of the promising

model by Lee et al. that only excludes relaxed RMW-store

reorderings, we establish multiple useful local data-race-

freedom guarantees that enhance the programmability as-

pect of the model. We also demonstrate that the performance

price of forbidding these reorderings is insignificant. To the

best of our knowledge, these results are the first to identify

a model that includes the standard concurrency constructs,

supports the efficient mapping of relaxed reads and writes

to plain hardware loads and stores, and yet validates several

local data-race-freedom guarantees. To gain confidence, our

results are fully mechanized in Coq.

CCS Concepts: • Theory of computation → Concur-

rency; Operational semantics; • Software and its en-

gineering → Semantics.

Keywords: Relaxed Memory Concurrency; Operational Se-

mantics; Compiler Optimizations; Data Race Freedom

ACM Reference Format:

Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021.

Modular Data-Race-Freedom Guarantees in the Promising Seman-

tics. In Proceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation (PLDI
’21), June 20–25, 2021, Virtual, Canada. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3453483.3454082

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454082

1 Introduction

Designing a programming language shared-memory concur-

rency semantics, a.k.a. a weak memory model, is a complex

task. On the one hand, one aims to allow mappings to com-

modity modern architectures (such as x86, Power, Arm, and

RISC-V) that will not subvert the hardware’s extensive op-

timization efforts, as well as to validate certain compiler

optimizations that are unsound under a strong semantics

such as sequential consistency (SC). On the other hand, since

the introduction of weakmemory semantics in programming

languages, it was clear that the majority of programmers will

need to program and reason about their code without under-

standing the full complexities of the underlying semantics.

Hence, to be useful and amenable to reasoning, a memory

model has to (i) ensure strong and intuitive semantics for

programs that follow certain programming disciplines; and

(ii) allow programmers to adhere to such disciplines even

without knowing the actual underlying weak semantics.

A fundamental programmability guarantee of this kind is

DRF-SC [3]. It ensures that data-race free programs (avoid-

ing races using locks or designated synchronization accesses)

only exhibit SC behaviors. Crucially, data-race freedom (DRF),

the premise of DRF-SC, is only required to hold under SC,
allowing programmers to use this guarantee knowing noth-

ing about the underlying complex model, but rather naively

imagining standard interleaving semantics that follows the

program order and employs a conventional memory.

Since SC is sometimes considered overly expensive to en-

sure efficient implementations (and as building blocks for

establishing DRF-SC), more refined DRF guarantees have

been studied in the last few years [12, 22]. Each of these guar-

antees is applicable on a different level of accesses—requiring

more restrictive race-freedom conditions and resulting in

stronger semantics guarantees. In particular, in models with

release/acquire (RA) accesses, one aims to ensure RA seman-

tics for programs that exhibit no races on accesses weaker

than RA accesses. This guarantee, called DRF-RA [22], al-

lows programmers to use (non-racy) weaker (and more ef-

ficient) accesses than RA accesses while knowing only the

RA semantics. The latter, although weaker than SC, is much

simpler than the full underlying model, and it admits several

verification methods and tools, including model checkers

and program logics [2, 21, 28, 29]. Similarly, on the level of

https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3453483.3454082


PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

“relaxed” accesses, which are weaker than RA ones and in-

tended to be compiled to plain machine loads and stores, a

DRF guarantee with respect to an “in-order” RC11-like [30]

semantics (with no load buffering behaviors) ensures in-

order semantics when, under the in-order semantics, races

on relaxed accesses are properly confined (see DRF-PF in

[22] and DRF-RLX in [12]). Again, the benefit is significant:

an in-order semantics like RC11 is significantly simpler than

an “out-of-order” model in which reads can read from later

writes, and like SC and RA, “in-order” models admit several

verification methods [13, 14, 24, 40].

Nevertheless, the global nature of all DRF guarantees men-

tioned above makes them only applicable when the whole

program admits the required race freedom premise. Software,

however, is modularly developed, often without access to

the full code. Moreover, benign races in carefully crafted

concurrency libraries make the DRF guarantees futile for

reasoning by clients that use these libraries, leaving them

with no formal assurances applicable without a complete

understanding of the underlying model (see Fig. 1 for an

illustrative example).

This drawback of the DRF guarantees is addressed bymore

refined “local” guarantees that can be applied also on parts
of a given program [15, 16]. In particular, a local DRF (LDRF,

for short) guarantee allows one to conclude that accesses to

certain shared locations have stronger semantics provided

that when assuming stronger semantics to these locations, the
program exhibits no races on them. The important practical

consequence is that it is safe to assume that the client portion

of the code is running under the stronger semantics when

races are completely confined in the library code. Moreover,

clients may rely on the synchronization guarantees provided

by libraries to establish race freedom of their code while still

understanding only the stronger semantics.

Unfortunately, the negative observation of this paper is

that LDRF guarantees of this kind are inconsistent with com-

piler optimizations that are normally expected to be sound in

weakmemorymodels. To demonstrate this, we present exam-

ples that, under very minimal assumptions on the underlying

model, are locally race free, but a sequence of program trans-

formations that are intended to be sound entails that they

must have a behavior that violates LDRF. Viewing these guar-

antees as essential for modular software development, we

believe that this reveals a severe limitation on the usefulness

of models that support the full range of optimizations.

On the positive side, we observe that by disabling a cer-

tain problematic compiler optimization, an LDRF guarantee

w.r.t. an “in-order” RC11-like semantics becomes achievable.

Concretely, we identify that RMW-store reordering1 is the

1
RMW (read-modify-write) operations, such as compare-and-swap (CAS),

fetch-and-add (FADD) and atomic exchange (XCHG), atomically perform a

read followed by a write to the same location. Certain models—e.g., C11 [42],
the promising semantics [22], and Weakestmo [12]—allow the reordering of

non-acquire RMWs with subsequent relaxed writes to a different location.

𝑟0 := pop_wait(𝑆)
lock()

process 𝑟0 accessing 𝑋 , 𝑌

unlock()

𝑟1 := pop_wait(𝑆)
lock()

process 𝑟1 accessing 𝑋 , 𝑌

unlock()
Two threads are popping “work items” from a wait-free (possibly,

relaxed) stack 𝑆 , and use a lock to perform the work for avoiding

races on shared locations 𝑋 and 𝑌 . The DRF-SC guarantee does

not allow the client to show that the accesses to 𝑋 and 𝑌 inside the

locked regions do not have weak behaviors. Indeed, the program

is not race free due to benign races in the implementation of the

pop operation (in fact, if lock/unlock are not primitives, then the

implementation of the lock itself is racy as well). In contrast, a local
DRF-SC guarantee allows clients to use the specification of the lock

to conclude that the accesses to 𝑋 and 𝑌 are not racy, and therefore,

they can safely assume SC semantics for 𝑋 and 𝑌 .

Figure 1. A simple example demonstrating the weakness of

the global DRF-SC guarantee

source of the problem and show that by disabling only these

reorderings one is able to validate a critical LDRF guarantee.

In turn, for (naive formulations of) LDRF-RA/SC, disabling

RMW-store reordering does not suffice, and we address the

problem by slightly strengthening the (naive) race-freedom

premise. The resulting guarantees are useful for modular

reasoning (as demonstrated in §5), and we are not aware of

any non-contrived example where this strengthened race-

freedom condition makes a difference.

To establish that forbidding RMW-store reordering and

slightly strengthening the race-freedom premise suffice for

establishing the LDRF guarantees, we demonstrate a particu-

lar model that satisfies the desiderata. Concretely, we prove

that three LDRF guarantees are validated by PS2.1, a variant

of the promising semantics, mentioned as a possible simpli-

fication of PS2 in [31, §4.4], that supports all standard (local

and global) optimizations excluding RMW-store reordering.

In addition to the theoretical results, we empirically in-

vestigate the cost of forbidding RMW-store reorderings, and

observe that it is negligible in practice. Current standard

compilers are very conservative with reorderings of atomic

accesses [35], and mainstream architectures, except Armv8,

do not allow RMW-store reordering. Even in Armv8, it is rel-

evant only for non-acquire unconditional RMWs (i.e., FADD
or XCHG, but not CAS), for which a “fake” branch instruc-

tion is needed to prevent the reordering. Since FADDs and

XCHGs are not executed frequently and fake branching is

relatively cheap [35], we expect the implementation cost to

be negligible in practice. We have performed a sequence of

experiments that validate this hypothesis (§6).

As for the LDRF guarantees, we formulate three guaran-

tees, and prove them for PS2.1, where each of which provides

the key lemma for establishing the next one: (1) LDRF-PF

w.r.t. the promise-free (RC11-like) semantics allowing one to

restrict “promises”—a special mechanism that accounts for



Modular Data-Race-Freedom Guarantees in the Promising Semantics PLDI ’21, June 20–25, 2021, Virtual, Canada

load-store reorderings in the promising semantics, which is

undoubtedly the most complicated and hard to reason about

component of the model; (2) LDRF-RA w.r.t. release/acquire

semantics; and (3) LDRF-SC w.r.t. SC semantics.
2

To conclude, our contributions are summarized as follows:

1. We show that the full set of compiler optimizations is

inconsistent with local DRF guarantees (§2).

2. We establish the consistency of three local DRF guaran-

tees (LDRF-PF, LDRF-RA, and LDRF-SC) and all standard

optimizations excluding RMW-store reordering by prov-

ing that PS2.1 validates them all (§4).

3. We outline the applicability of local DRF for reasoning

about client code, as well as library code (§5).

4. We empirically observe that the performance impact of

disabling RMW-store reorderings is negligible (§6).

Our LDRF proofs in §4 are fully mechanized in Coq. The

formalization is available in the accompanying artifact.

2 Local DRF in Weak Memory Models

In this section we demonstrate the inherent tension between

local DRF guarantees and standard compiler optimizations.

While our results in the next sections are specific to the

promising semantics, the discussion in this section is general,

making its implications applicable in other models as well.

2.1 Local DRF w.r.t. an “In-Order” Semantics

By far, themost complicated aspect of aweakmemory seman-

tics is related to allowing load-store reordering of possibly

racy independent relaxed accesses (a.k.a. load buffering be-

haviors). This is the source of the infamous “out-of-thin-air”

problem [7], the reason why per-execution declarative mod-

els cannot work andmore complicated event-structure-based

models are needed instead [12, 37], and the only rationale be-

hind “promises” in the promising semantics. To circumvent

this complexity, one can use less efficient stronger models,

such as RC11 [30], that conservatively forbid load-store re-

orderings altogether (by disallowing cycles in the union of

the program order and the reads-from relation), and thus

cannot map relaxed accesses to plain machine loads and

stores in architectures like Arm.

We generally refer to RC11-like models as “in-order” mod-

els, as they are captured by transition systems that execute

memory accesses according to their program order while

ensuring that every read reads from a previously executed

write. More formally, this property is defined as follows:

Definition 2.1. A memory model 𝑀 is in-order if every

behavior allowed by 𝑀 corresponds to a trace of memory

accesses that respects the program order such that every

2
Although allowing races on SC accesses is essentially needed for global
DRF-SC (otherwise there are nomeans of synchronization), it is unnecessary

for local DRF-SC because synchronization is typically provided by library

methods. Thus, LDRF-SC is still applicable for the promising semantics,

which currently lacks specialized SC accesses.

read 𝑟 of value 𝑣 from location 𝑋 is justified by some write

𝑤 that writes 𝑣 to 𝑋 and appears in the trace before 𝑟 .

This definition covers a wide variety of (not so weak)

memory models including RC11, TSO [36], causal consis-

tency [25, 26], the OCaml model in [15], and (of course)

SC. It ensures a conceptually simple semantics and enables

several verification approaches [13, 14, 24, 40].

A natural approach to allow “in-order” reasoning for a

given program in a model with (fully) relaxed accesses is to

use a DRF guarantee. When such guarantee is provided, one

is able to assume in-order semantics for programs that under

in-order semantics exhibit no races on accesses annotated as

relaxed (so that the guarantee can be applied knowing noth-

ing about the out-of-order part of the semantics). Moreover,

as demonstrated in §1, for being applicable in a modular

fashion (e.g., in the presence of unrelated races induced by

some library methods over which the client has no control),

this guarantee has to be local.

To give a more precise statement of such a local DRF

guarantee (but still keep the discussion general), consider

an arbitrary model 𝑀 with relaxed reads/writes, intended

to be compiled to plain machine accesses, and “strong re-

laxed” writes, intended to be compiled with barriers to forbid

the hardware from reordering a load followed by a strong

relaxed write.
3
Strong relaxed writes provide “in-order” se-

mantics in the following sense: Every behavior allowed by𝑀

corresponds to some trace of memory accesses that respects

the program order such that: (i) every read 𝑟 of value 𝑣 from

location 𝑋 is justified by some write 𝑤 that writes 𝑣 to 𝑋

and appears in the trace; and (ii) if 𝑟 is justified by𝑤 that is

strong relaxed, then 𝑤 should appear before 𝑟 in the trace.

(Note that𝑀 allows a read 𝑟 to be justified by a relaxed write

that is executed after 𝑟 .)

Then, a local DRF guarantee w.r.t. an in-order semantics

for𝑀 is stated as follows: For every set L of locations, every

behavior of a given program prog allowed by𝑀 is allowed by

𝑀 for prog when all writes to locations in L are considered

strong relaxed, provided that under this assumption prog
exhibits no races involving writes to locations in L that are

annotated as relaxed.

For example, this guarantee (for L = {𝐿}) allows one to
show that the annotated behavior in the following program

is disallowed in the model 𝑀 without knowing anything

besides an in-order semantics:
4

𝑎 := 𝐿

libfun1 ()
𝑋 srlx

:= 𝑎

𝑏 := 𝑋 //1 ?
libfun2 ()
if 𝑏 = 1 then 𝐿 := 1 else 𝐿srlx := 1

(LDRF-LB)

3
Strong relaxed accesses were introduced in [22] as a technical tool for

establishing the correctness of mapping to hardware. They are also use-

ful in the current discussion. Like release writes, they forbid reordering

with preceding reads; but unlike release writes, they are not intended to

synchronize with reads by other threads.

4
We assume that all locations are initially 0, and that the “default” access

mode is relaxed (so we omit rlx annotations).



PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

The compiler may optimize Thread 1 as shown below:

(0) (1) (2) (3) (4) (5)
𝑌 := 0

𝑎 := 𝑌

if 𝑎 ≠ 0 then

𝑏 := CAS (𝑋, 0, 42)
if 𝑏 = 0 then

𝑐 := 𝐿

if 𝑐 = 1 then

𝑋 srlx
:= 37

𝑌 := 0

𝑐 := 𝐿

𝑎 := 𝑌

if 𝑎 ≠ 0 then

𝑏 := CAS (𝑋, 0, 42)
if 𝑏 = 0 then

if 𝑐 = 1 then

𝑋 srlx
:= 37

𝑌 := 0

𝑐 := 𝐿

if 𝑐 = 1 then

𝑎 := 𝑌 else 𝑎 := 𝑌

if 𝑎 ≠ 0 then

𝑏 := CAS (𝑋, 0, 42)
if 𝑏 = 0 then

if 𝑐 = 1 then

𝑋 srlx
:= 37

𝑌 := 0

𝑐 := 𝐿

if 𝑐 = 1 then

𝑎 := 𝑌 else 𝑎 := 0

if 𝑎 ≠ 0 then

𝑏 := CAS (𝑋, 0, 42)
if 𝑏 = 0 then

if 𝑐 = 1 then

𝑋 srlx
:= 37

𝑌 := 0

𝑐 := 𝐿

if 𝑐 = 1 then

𝑎 := 𝑌

if 𝑎 ≠ 0 then

𝑏 := CAS (𝑋, 0, 42)
if 𝑏 = 0 then

(eliminated)
𝑋 srlx

:= 37

else 𝑎 := 0

(eliminated)

𝑌 := 0

𝑐 := 𝐿

if 𝑐 = 1 then

𝑎 := 𝑌

if 𝑎 ≠ 0 then

𝑏 := CAS
srlx (𝑋, 0, 37)

else 𝑎 := 0

(1) reorder the read 𝑐 := 𝐿 to be second, after introducing the same read 𝑐 := 𝐿 in the else-branches (when 𝑏 ≠ 0 or 𝑎 = 0);

(2) insert a dummy if-then-else on 𝑐 = 1 and distribute the rest of the code to both branches (“trace-preserving” transformation);

(3) forward the write 𝑌 := 0 to the read 𝑎 := 𝑌 in the else-branch, turning it into 𝑎 := 0;

(4) distribute the branch on 𝑎 ≠ 0 to both prior branches on 𝑐 = 1 and optimize them: eliminate repeated redundant testing of 𝑐 = 1 in

the then-branch, and remove dead code in the else-branch (“trace-preserving” transformation);

(5) merge 𝑏 := CAS (𝑋, 0, 42) and if 𝑏 = 0 then 𝑋 srlx
:= 37 into 𝑏 := CAS

srlx (𝑋, 0, 37).

Now, the compiler may optimize Thread 2 as shown on the right:

(1) noticing that 𝑋 ≠ 42 is a global invariant (42 is never written to 𝑋 ),

optimize away the redundant test “if (𝑑 ≠ 42) then”;
(2) reorder the independent CAS on 𝑋 and write to 𝐿.

(0) (1) (2)
𝑌 := 1

𝑑 := CAS (𝑋, 0, 1)
if 𝑑 ≠ 42 then

𝐿 := 1

𝑌 := 1

𝑑 := CAS (𝑋, 0, 1)
(eliminated)
𝐿 := 1

𝑌 := 1

𝐿 := 1

𝑑 := CAS (𝑋, 0, 1)

Figure 2. Program transformations on LDRF-PF-Fail (in the final transformed program, we may get 𝑑 = 37 even under SC!)

where libfun1 () and libfun2 () are calls to some library

methods that execute racy relaxed code accessing a set of

locations disjoint from𝑋 and 𝐿. Indeed, assuming that 𝐿 := 1

has strong relaxed semantics, all writes to𝑋 and 𝐿 are strong

relaxed, and the in-order property easily entails that 𝐿 := 1

(in the then-branch) is never executed and thus not involved

in a race. Then, the premise of the LDRF guarantee above

holds, and one concludes, again based on the in-order prop-

erty, that 𝑏 = 1 is disallowed by𝑀 . Crucially, this reasoning

does not require any knowledge of how exactly𝑀 behaves

for (fully) relaxed writes (which, in fact, we have not spec-

ified). We also note that a global DRF guarantee cannot be

used due to the presence of racy code in the library methods.

Unfortunately, we observe that this LDRF guarantee is

actually inconsistent with program optimizations that are

standardly intended to be sound in weak memory models.

Indeed, the following example shows that any such model

𝑀 cannot validate both the LDRF guarantee and all standard

optimizations:
5

𝑌 := 0

𝑎 := 𝑌

if 𝑎 ≠ 0 then

𝑏 := CAS (𝑋, 0, 42)
if 𝑏 = 0 then

𝑐 := 𝐿

if 𝑐 = 1 then

𝑋 srlx
:= 37

𝑌 := 1

𝑑 := CAS (𝑋, 0, 1) //37 ?
if 𝑑 ≠ 42 then

𝐿 := 1

(LDRF-PF-Fail)

5
We are not aware of a smaller example that can be used for this purpose.

where CAS(𝑋, 𝑣1, 𝑣2) reads a value from 𝑋 ; if it is equal to 𝑣1
(i.e., successful), writes 𝑣2 to 𝑋 ensuring atomicity between

the read and write, and otherwise (i.e., unsuccessful) does
nothing; and finally returns the read value.

Indeed, assuming that the write to 𝐿 has strong relaxed

semantics, it is easy to see that no execution of the program

executes both 𝑐 := 𝐿 and 𝐿 := 1, and hence there is no race on

𝐿. Specifically, if such execution is allowed by the model𝑀 ,

then the CAS of the second thread must read 37 due to the

standard RMW atomicity (which implies that two successful

CAS instructions cannot read from the same write), and so

𝑐 := 𝐿 must read 1. However, since 37 is written by a strong

relaxed write, it follows that 𝑋 srlx
:= 37 appears in the trace

before 𝑑 := CAS (𝑋, 0, 1). This implies that 𝑐 := 𝐿 appears in

the trace before 𝐿 := 1, which contradicts the assumption

that 𝐿 := 1 has strong relaxed semantics.

Now we can demonstrate the inconsistency between the

local DRF guarantee above and program optimizations. Since

the premise of the guarantee is satisfied (for L = {𝐿}), if the
guarantee holds, we may assume that 𝐿 := 1 has strong re-

laxed semantics, and conclude, by the exact same reasoning,

that the 𝑑 = 37 outcome is disallowed (no execution executes

both 𝑐 := 𝐿 and 𝐿 := 1). Nevertheless, Fig. 2 shows that start-

ing from this program, a sequence of transformations, each

of which is intended to be sound in standard weak memory

models, may actually lead to the 𝑑 = 37 outcome!



Modular Data-Race-Freedom Guarantees in the Promising Semantics PLDI ’21, June 20–25, 2021, Virtual, Canada

As a concrete example for a model 𝑀 , consider the PS2

model [31], which satisfies the above assumptions and val-

idates all transformations used in Fig. 2. (In PS2, strong re-

laxed writes correspond to relaxed writes that cannot be

promised ahead of their execution.) It follows that PS2 fails

to admit the above guarantee w.r.t. an in-order semantics.
6

To locate the source of the problem, we observe that RMW-

store reordering (applied in the second thread’s code in Fig. 2)

is the transformation that breaks a key property, which we

call promise monotonicity (formally stated in §4.1), needed

for our proof. Indeed, one of the main ideas in proving lo-

cal DRF is to show that relaxed store hoisting (moving a

relaxed write to be before other instructions) does not al-

low more behaviors unless the store was racy before the

code motion. However, this property fails if reordering of

a relaxed RMW followed by a relaxed write to a different

location is allowed. For instance, in the program above, exe-

cuting 𝑑 := CAS (𝑋, 0, 1) before 𝐿 := 1 prevents the behavior

executing both 𝐿 := 1 and 𝑐 := 𝐿, but executing them in the

opposite order allows that behavior.

Accordingly, to accomplish our proof, we switched to

PS2.1, a variant of the PS2 model outlined in [31, §4.4], which

gives up RMW-store reordering for simplicity and better

meta-theoretic properties such as the absence of deadlock-

ing executions.
7
For PS2.1 we are able to prove LDRF-PF—a

local DRF guarantee with respect to the promise-free frag-

ment of the promising semantics (an in-order model), thus

establishing the consistency of such a local DRF guarantee

with all optimizations except for RMW-store reordering.

2.2 Local DRF w.r.t. RA and SC

For less advanced users, an in-order RC11-like semantics may

still be hard to reason with. Then, one needs local DRF prop-

erties w.r.t. stronger fragments like release/acquire semantics

(LDRF-RA) or even sequential consistency (LDRF-SC). Next,

we discuss the subtlety in stating and achieving these local

guarantees in a general model that supports load-store re-

ordering of relaxed accesses. We focus on LDRF-RA, but the

discussion is the same for LDRF-SC.

A naive notion of LDRF-RA can be naturally derived from

the global DRF-RA guarantee. The latter ensures that a pro-

gram has only RA behaviors provided that under RA se-

mantics it exhibits no races involving accesses annotated

as (strong) relaxed [22]. To “localize” this guarantee with

respect to a given set L of locations, we need to consider

“L-RA behaviors”—behaviors in which accesses to locations

in L are treated as RA accesses (even when annotated with

weaker modes), but other accesses are interpreted as an-

notated in the program. Then, a naive LDRF-RA guarantee

6
The original promising model PS [22] does not admit global value-range

analysis, which is needed in the sequence of transformations in Fig. 2.

Nevertheless, in [1, Appendix A], we present a similar (yet more intricate)

counterexample for PS.

7
We have formally established the absence of deadlocks in Coq [1].

would say that a program has onlyL-RA behaviors provided

that its L-RA behaviors exhibit no races involving accesses

to locations in L annotated with access modes weaker than

release and acquire.

We show that in any sensible weak memory model this

guarantee is actually inconsistent with standard program

optimizations (here, RMWs are not involved at all).

Specifically, the {𝐿}-RA behav-

iors of the program on the right

exhibits no races on the location

𝐿, but a sequence of standard opti-

mizations may lead to a non {𝐿}-
RA behavior, which invalidates

the naive LDRF-RA guarantee.

𝑎 := 𝑌 //1 ?
if 𝑎 = 1 then

𝑏 := 𝐿

𝑋 := 𝑏

else

𝑋 := 1

𝑐 := 𝑋

𝐿 := 1

𝑌 := 𝑐

(Naive-LDRF-RA-Fail)

To see this, we first claim that in any sensible model, as-

suming that the accesses to 𝐿 are RA, the first thread cannot

read 1 from 𝑌 . Indeed, if 𝑎 := 𝑌 reads 1, it easily follows that

𝑏 := 𝐿 reads from 𝐿 := 1. However, with the assumption

that the accesses to 𝐿 are interpreted as RA accesses, the

latter implies a “happens-before” path from 𝑐 := 𝑋 to 𝑋 := 𝑏,

which implies that 𝑐 := 𝑋 cannot read from 𝑋 := 𝑏. In turn,

the value 1 is never written to 𝑌 .

Second, with the same assumption (that the accesses to

𝐿 are RA), the above reasoning also shows that there are

no races on 𝐿. In fact, the exact definition of a race does

not matter here: we actually know that the first thread will

not access 𝐿 at all. Then, the naive LDRF-RA for L = {𝐿}
implies that the program has only {𝐿}-RA behaviors, which,

as argued above, entails that the 𝑎 = 1 outcome is disallowed.

Nevertheless, in Fig. 3, we show that starting from the above

program, a sequence of program transformations, each of

which is intended to be sound in standard weak memory

models, may actually lead to this outcome!

What went wrong? In the analysis above, we used a racy

access (to 𝐿) to establish synchronization, and then used this

synchronization to invalidate the racy execution itself. How-

ever, when the racy read is performed as a relaxed read it

does not induce synchronization, and nothing actually for-

bids the candidate racy execution. To solve this problem, we

have to strengthen the premise of LDRF-RA, so that synchro-

nization induced by racy reads (from locations in L) cannot

be used to eliminate races.

A possible way to do so is to weaken the semantics of

“racy reads” from locations in L in the L-RA semantics,

and say that unlike standard acquire reads, these reads do

not induce synchronization. However, this solution would

require a precise definition of the semantics of racy reads,

which goes beyond standard RA semantics.

In this paper, we follow an alternative approach that in-

volves a certain over-approximation—we will say that a racy

read simply invokes undefined behavior (UB). Since UB in-

cludes any possible behavior, the race-freedom condition

based on racy reads invoking UB implies the one where racy



PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

The compiler may optimize Thread 1 as shown below:

(0) (1) (2) (3) (4)

𝑎 := 𝑌

if 𝑎 = 1 then

𝑏 := 𝐿

𝑋 := 𝑏

else

𝑋 := 1

𝑏 := 𝐿

𝑎 := 𝑌

if 𝑎 = 1 then

𝑋 := 𝑏

else

𝑋 := 1

𝑏 := 𝐿

if 𝑏 = 1 then

𝑎 := 𝑌

if 𝑎 = 1 then

𝑋 := 𝑏

else

𝑋 := 1

else ...

𝑏 := 𝐿

if 𝑏 = 1 then

𝑎 := 𝑌

𝑋 := 1

else ...

𝑏 := 𝐿

if 𝑏 = 1 then

𝑋 := 1

𝑎 := 𝑌

else ...

(1) reorder the read 𝑏 := 𝐿 to be first, after introducing the same

read 𝑏 := 𝐿 in the else-branch (when 𝑎 ≠ 1);

(2) insert a dummy if-then-else on 𝑏 = 1 and distribute the rest of

the code to both branches (“trace-preserving” transformation);

(3) in the then-branch on 𝑏 = 1, substitute 𝑏 with 1 and merge both

branches on 𝑎 = 1 (“trace-preserving” transformation);

(4) reorder the independent read from 𝑌 and write to 𝑋 .

In addition, the compiler may optimize

Thread 2 as shown on the right:

(1) reorder 𝑐 := 𝑋 and 𝐿 := 1.

(0) (1)
𝑐 := 𝑋

𝐿 := 1

𝑌 := 𝑐

𝐿 := 1

𝑐 := 𝑋

𝑌 := 𝑐

Figure 3. Program transformations on Naive-LDRF-RA-Fail

(after the transformations, we may get 𝑎 = 1 even under SC!)

reads do not induce synchronization. In other words, we will

say that a race occurs if some racy read is reachable ignoring

what happens after the racy read is executed.With this defini-

tion, relying on the previously mentioned LDRF-PF as a key

lemma, we proved LDRF-RA (and LDRF-SC) for PS2.1.
8
Im-

portantly, unlike C11’s “catch-fire” semantics, UB for races is

not a part of the concurrency semantics (indeed, the promis-

ing semantics provides means to avoid “catch-fire”), but is

only used for defining races when establishing the premise

of LDRF-RA/SC. We note that a similar strengthening of the

race-freedom premise in LDRF-PF does not solve the problem

outlined in §2.1 (LDRF-PF-Fail is still a counterexample).

3 Preliminaries: The Promising Semantics

In this section we provide an introduction to the promising

semantics. We include only the necessary parts for keeping

our presentation self-contained, and refer the reader to [22,

31] for detailed explanations. Our focus is on the version

described in [31, §4.4], which we refer to as PS2.1.
9

We present the fragment of the model containing: relaxed
reads and writes (rlx), strong relaxed writes (srlx), release
writes (rel), and acquire reads (acq). Read-modify-writes

(RMWs) carry two access modes—one for the read part and

one for the write part. To simplify the presentation, we omit

fences and release sequences. We also elide “system calls”,

8
PS2 does not satisfy our LDRF-RA/SC theorems (LDRF-PF-Fail is a coun-

terexample for them as well).

9
Most of the details, however, are identical for the original PS model and

for the PS2 model (the only difference has to do with the notion of “capped

memory” and reservations).

used in [22, 31] to specify the observations of a given pro-

gram. Instead, as we did when analyzing the examples above,

we identify behaviors with final outcomes assigning values

to certain registers. Nevertheless, our formal development

in the artifact handles all features previously included in

[22, 31] and uses system calls to define observable behaviors.

Figure 4 summarizes the different domains and (implicitly

typed) metavariables. To define themachine states, besides

a set Loc of locations and a set Val of values, we assume a

set Time of timestamps which are rational numbers (totally

and densely) ordered by < with 0 being the minimum value.

A view, 𝑉 ∈ Loc → Time, records a timestamp for each

location. We represent half-open ranges of timestamps using

timestamp intervals denoted by (𝑓 , 𝑡] with 𝑓 < 𝑡 or 𝑓 = 𝑡 = 0.

A machine state is a pair ⟨T , 𝑀⟩, where:

• 𝑀 , called memory, is a finite set of messages and reser-
vations. A message𝑚 takes the form ⟨𝑋@(𝑓 , 𝑡], 𝑣,𝑉 ⟩ where:
𝑋 ∈ Loc, (𝑓 , 𝑡] is a timestamp interval (𝑡 is called the times-
tamp of 𝑚), 𝑣 ∈ Val, and 𝑉 ∈ View (called message view).
In turn, a reservation 𝑟 = 𝑋@(𝑓 , 𝑡] is defined like a message

but without a value and a view. For a memory to be well-

formed (as we implicitly assume henceforth), we require that

messages/reservations with the same location have disjoint

timestamp intervals; and that the view of each message is

pointing to a timestamp of an existing message for every

location. The initial memory consists of an initialization mes-

sage ⟨𝑋@(0, 0], 0,⊥⟩ for every location 𝑋 , where ⊥ ≜ _𝑋 . 0
denotes the bottom view.

• T is a mapping assigning a thread state T = ⟨𝜎,𝑉 , 𝑃⟩ to
every thread 𝜋 ∈ Tid, where:
– 𝜎 records the (thread-local) program state. To keep the pre-
sentation abstract, rather than introducing a concrete syntax,

we assume that the programming language is represented

as a transition system, with local transitions labeled with

the action that is performed. Each program state 𝜎 consists

of the program code, the current program counter and local

register file. To run PS2.1 on a program prog, we initialize
the program state of each thread to include its part of prog
and the initial program counter and register file.

– 𝑉 , called the thread view, records the highest timestamp

that the thread has observed for each location.

– 𝑃 , called the thread promise set, is a set of messages and

reservations recording the thread’s outstanding promised

and reserved writes. Since every promise and reservation is

also added to the memory, we will always have 𝑃 ⊆ 𝑀 .

Importantly, we require thread states to be well-formed,
where for every location 𝑋 , the current view of 𝜋 for 𝑋 is

lower than the timestamp of all of 𝜋 ’s outstanding promised

writes for 𝑋 (i.e., ⟨𝑋@(_, 𝑡], _, _⟩ ∈ 𝑃 ⇒ 𝑉 (𝑋 ) < 𝑡 ). This

condition, called promise-consistency in [31], is equivalent

to saying that a thread should always be able to fulfill its

promises by executing some sequence of operations (but not
necessarily the sequence dictated by the program).



Modular Data-Race-Freedom Guarantees in the Promising Semantics PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑣 ∈ Val value

𝑋,𝑌, 𝑍, 𝐿 ∈ Loc location

𝑜R ∈ {rlx, acq} read access mode

𝑜W ∈ {rlx, srlx, rel} write access mode

𝜋 ∈ Tid ≜ {𝜋1, 𝜋2, ...} thread identifier

𝑓 , 𝑡 ∈ Time ≜ Q+ timestamp

(𝑓 , 𝑡] ∈ Time × Time timestamp interval

𝑉 ∈ View ≜ Loc → Time view

𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣,𝑉 ⟩ ∈ Msg message

𝑟 = 𝑋@(𝑓 , 𝑡] ∈ Rsv reservation

𝑀, 𝑃 ⊆ Msg ∪ Rsv memory/promise set

𝜎 thread-local program state

T = ⟨𝜎,𝑉 , 𝑃⟩ ∈ Lts thread state

⟨T , 𝑀⟩ thread configuration

T : Tid → Lts thread state mapping

⟨T , 𝑀⟩ machine state

Figure 4. Domains and metavariables in PS2.1

(read-helper)

𝑚 = ⟨𝑋@(_, 𝑡], _,𝑉m⟩ ∈ 𝑀 𝑉 (𝑋 ) ≤ 𝑡
𝑜R = rlx ⇒ 𝑉 ′ = 𝑉 ⊔ [𝑋 ↦→ 𝑡]
𝑜R = acq ⇒ 𝑉 ′ = 𝑉 ⊔ [𝑋 ↦→ 𝑡] ⊔𝑉m

⟨𝑉 ,𝑀⟩ 𝑜R,𝑚−−−−→R 𝑉
′

(write-helper)

𝑚 = ⟨𝑋@(_, 𝑡], _,𝑉m⟩ 𝑉 (𝑋 ) < 𝑡
𝑜W ≠ rel ⇒ 𝑉m = ⊥
𝑜W = rel ⇒ (𝑉m = 𝑉 ⊔ [𝑋 ↦→ 𝑡]) ∧ (𝑃 |Msg

𝑋
= ∅)

⟨𝑉 , 𝑃,𝑀⟩ 𝑜W,𝑚−−−−→W ⟨𝑉 ⊔ [𝑋 ↦→ 𝑡], 𝑃, 𝑀 ⊎ {𝑚}⟩

(fulfill-helper)

𝑚 = ⟨𝑋@(_, 𝑡], _,⊥⟩ ∈ 𝑃 𝑉 (𝑋 ) < 𝑡
𝑜W = rlx

⟨𝑉 , 𝑃,𝑀⟩ 𝑜W,𝑚−−−−→W ⟨𝑉 ⊔ [𝑋 ↦→ 𝑡], 𝑃 \ {𝑚}, 𝑀⟩
(read)

𝜎
R(𝑜R,𝑋,𝑣)
−−−−−−−−→ 𝜎 ′

𝑚 = ⟨𝑋@(_, _], 𝑣, _⟩
⟨𝑉 ,𝑀⟩ 𝑜R,𝑚−−−−→R 𝑉

′

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩
R(𝑜R,𝑚)
−−−−−−−→ ⟨⟨𝜎 ′,𝑉 ′, 𝑃⟩, 𝑀⟩

(write)

𝜎
W(𝑜W,𝑋,𝑣)
−−−−−−−−→ 𝜎 ′

𝑚 = ⟨𝑋@(_, _], 𝑣, _⟩
⟨𝑉 , 𝑃,𝑀⟩ 𝑜W,𝑚−−−−→W ⟨𝑉 ′, 𝑃 ′, 𝑀 ′⟩

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩
W(𝑜W,𝑚)
−−−−−−−→ ⟨⟨𝜎 ′,𝑉 ′, 𝑃 ′⟩, 𝑀 ′⟩

(rmw)

𝜎
RMW(𝑜R,𝑜W,𝑋,𝑣R,𝑣W)−−−−−−−−−−−−−−−→ 𝜎 ′

𝑚R = ⟨𝑋@(_, 𝑡], 𝑣R, _⟩ 𝑚W = ⟨𝑋@(𝑡, _], 𝑣W, _⟩
⟨𝑉 ,𝑀⟩ 𝑜R,𝑚R−−−−−→R 𝑉R ⟨𝑉R, 𝑃, 𝑀⟩ 𝑜W,𝑚W−−−−−→W ⟨𝑉 ′, 𝑃 ′, 𝑀 ′⟩

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩
RMW(𝑜R,𝑜W,𝑚R,𝑚W)−−−−−−−−−−−−−−−→ ⟨⟨𝜎 ′,𝑉 ′, 𝑃 ′⟩, 𝑀 ′⟩

(promise) / (reserve)

𝑥 ∈ Msg / 𝑥 ∈ Rsv

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩
prm / rsv
−−−−−−−−→ ⟨⟨𝜎,𝑉 , 𝑃 ⊎ {𝑥}⟩, 𝑀 ⊎ {𝑥}⟩

(cancel)

𝑟 ∈ 𝑃 ∩ Rsv

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ cncl−−−−→ ⟨⟨𝜎,𝑉 , 𝑃 \ {𝑟 }⟩, 𝑀 \ {𝑟 }⟩

(fail)

𝜎
fail−−−−→ ⊥

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ fail−−−−→ ⟨⟨⊥,𝑉 , ∅⟩, 𝑀⟩

Figure 5. Thread configuration steps in PS2.1

Figure 5 provides the thread configuration steps:

read. A thread with view 𝑉 reads by picking a message

⟨𝑋@(𝑓 , 𝑡], 𝑣,𝑉m⟩ ∈ 𝑀 provided that 𝑉 (𝑋 ) ≤ 𝑡 , and updating

its view for 𝑋 to 𝑡 . An acquire read operation incorporates

themessage view𝑉m in the thread view (the operator⊔ “joins”

views by taking the pointwise maximum).

write. A thread with view𝑉 writes by adding a message𝑚

to the memory whose timestamp is greater than the thread’s

view of 𝑋 (𝑉 (𝑋 ) < 𝑡 ). Non-release writes set the message

view to the bottom view, whereas release writes record the

thread view in themessage view. Instead of adding amessage,

relaxed writes may fulfill outstanding promises by removing

messages from the thread’s set of promises. In addition, a

release write to a location 𝑋 forbids the existence of out-

standing promises for 𝑋 (denoted as 𝑃 |Msg
𝑋

= ∅).
rmw. A thread performs an RMW by first reading a mes-

sage𝑚R = ⟨𝑋@(𝑓 , 𝑡], 𝑣R,𝑉R⟩, and then attaching a new mes-

sage to the read message, i.e., adding a message of the form

𝑚W = ⟨𝑋@(𝑡, 𝑡 ′], 𝑣W,𝑉W⟩. This results in consecutive messages

(𝑓 , 𝑡], (𝑡, 𝑡 ′], forbidding later writes from being placed be-

tween the two messages, which guarantees RMW atomicity.

promise. The main novelty of the promising model lies in

its way to enable the reordering of a relaxed read followed by

a relaxed write (to a different location). It does so by allow-

ing threads to non-deterministically promise future (relaxed)
writes, by simply adding messages to memory. Outstanding

promises are recorded in the thread state, and removed when

promises are fulfilled. As described below, to prevent “out-

of-thin-air” behaviors (and validate DRF) the outstanding

promises at every step are confined by the machine that re-

quires certification—a thread that takes a step should always

be able to fulfill all its promises when executed in isolation.

reserve. To support register promotion and amore efficient

mapping of RMWs to Arm (see Example 3.3 below), PS2.1 (as

well as PS2, but unlike PS) allows threads to reserve times-

tamp intervals for their own future writes. Unlike promises,

reservations do not commit on the value that will be used to

fill the reserved interval, and thus cannot be read by other

threads. They are only used to “block” timestamp intervals

in the memory. As in the promise step, a thread adds the

reservation to both the memory and its promise set.

cancel. A thread may cancel any of its reservations by

simply removing it from the memory and its promise set.

fail. A thread can fail (modeling, e.g., division by 0 or an

assertion failure) and invoke UB. Since UB can be replaced by

any sequence of actions, this step is considered as fulfilling

all of the thread’s outstanding promises (here we need the

well-formedness assumption on thread states).

The machine steps interleave thread configuration tran-

sitions as follows:

⟨T (𝜋), 𝑀⟩ cncl−−−−→
∗ 𝑙−→ rsv−−−→

∗
⟨T ′, 𝑀 ′⟩

⟨T ′, 𝑀 ′⟩ is consistent

⟨T , 𝑀⟩
𝜋,𝑙
===⇒ ⟨T [𝜋 ↦→ T ′], 𝑀 ′⟩



PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

At each machine step, one thread is performing one thread

step, possibly preceded by a sequence of reservation cancel-

lations and followed by a sequence of reservations. Crucially,

to ensure that promises do not make the semantics overly

weak, a thread cannot take a step unless it reaches a consistent
configuration, which is defined by:

Definition 3.1 (Consistency). A thread configuration ⟨T , 𝑀⟩
is consistent if ⟨T , 𝑀⟩ −→∗ ⟨⟨_, _, ∅⟩, _⟩where𝑀 , called capped
memory, is the memory obtained from𝑀 as follows:

(i) For every message/reservation on𝑋@(_, 𝑡1] and message/

reservation on 𝑋@(𝑓2, _] with 𝑡1 < 𝑓2, if there is no mes-

sage/reservation in 𝑀 with location 𝑋 and timestamp

𝑡1 < 𝑡 < 𝑓2, add a reservation 𝑋@(𝑡1, 𝑓2]; and
(ii) For every message/reservation on 𝑋@(_, 𝑡max] such that

there is nomessage/reservation on𝑋@(_, 𝑡] with 𝑡 > 𝑡max,

add a reservation 𝑋@(𝑡max, 𝑡max + 1].

Roughly speaking, consistency requires certification: the
thread that took the step should be able to fulfill all its

promises when executed in isolation. The certification starts

from a capped version𝑀 of the current memory𝑀 , where all

timestamp intervals between existing messages and reserva-

tions are blocked by reservations and a “cap reservation” is

attached to the message with the highest timestamp for each

location. As demonstrated in Example 3.4 below, a conse-

quence of this is that promises cannot be made across RMW

operations. (This is where the PS2.1 and PS2 differ; see [31].)

Below, we denote by JprogK
PS2.1

the set of all behaviors of

a program prog that are allowed in the PS2.1 semantics.

Remark 1. In [31] the machine step consists of any se-

quence of thread steps. We observe (and proved in Coq) that

by using reservations and cancellations, it is possible to ob-

tain a “normal form” for machine steps: a (possibly empty)

sequence of cancellations, followed by a single thread step,

followed by a (possibly empty) sequence of reservations. This

normal form simplifies modular reasoning, as we can assume

a consistent state when control is passed between the library

code and the client code.

Next, we present several instructive examples involving

RMWs. We refer the reader to [22, 31] for more examples

related to the basic views and promises mechanisms.

Example 3.2. Two competing RMWs can never read from

the same message in memory, as the following annotated

program demonstrates:

𝑎 := FADD(𝑋, 1) //0 𝑏 := FADD(𝑋, 1) //0 (Upd)

Like CAS, we assume that FADD returns the value read

before the update. Without loss of generality, suppose that

𝜋1 executes first. As it performs an RMW operation, it must

“attach” the message it adds to an existing message. Since

the only existing message in this stage is the initial one

⟨𝑋@(0, 0], 0,⊥⟩, 𝜋1 will add𝑚 = ⟨𝑋@(0, 𝑡], 1,⊥⟩ with some

𝑡 > 0 to the memory. Then, the RMW of 𝜋2 cannot also

read from the initial message because this would require 𝜋2’s

message to be attached to the initial message, which would

overlap with the (0, 𝑡] interval of𝑚.

Example 3.3. The following annotated program illustrates a

drawback of the original PS that prevents register promotion

and the intended mapping to Armv8 [18]:

𝑎 := 𝑋 //1
𝑏 := FADD

acqrel (𝑍, 1) //0
𝑌 := 1

𝑐 := 𝑌 //1
𝑋 := 𝑐

(Arm-weak)

The annotated behavior is allowed by Armv8 (for the com-

piled program), and can be also obtained if the thread-local

location 𝑍 is made a register. It is, however, disallowed by

PS. PS2 and PS2.1 solve this problem using reservations. To
observe 𝑎 = 1, 𝜋1 should be able to promise the write of 1

to 𝑌 at the beginning of the execution. This is not possible

without reservations because 𝜋1 cannot update 𝑍 during

the certification against the capped memory. However, 𝜋1
can reserve the interval (0, 1] for the FADD before making

the promise 𝑌 = 1. Then, it can certify the promise 𝑌 = 1

by using the reserved interval to perform the FADD. Intu-

itively speaking, while PS2.1 forbids the reordering of an

RMW followed by a store, using reservations, it enables the

reordering of the read part of the RMW before the read of 𝑋

and the write part of the RMW after the write of 𝑌 , which

more faithfully captures Arm’s load-linked/store-conditional

implementation.

Example 3.4. The following annotated program shows a

behavior forbidden by PS2.1 because of its stronger certifica-

tion requirement w.r.t. PS and PS2.

𝑎 := FADD(𝑋, 1) //1
𝑌 := 1

𝑏 := 𝑌

𝑐 := FADD(𝑋,𝑏) (RMW-W)

For 𝜋1 to read 1 via its FADD, it has to promise 𝑌 = 1.

Unlike PS and PS2, this is not allowed in PS2.1 because 𝜋1
cannot perform FADD to 𝑋 during the certification against

the capped memory. Promising the FADD or reserving a

space for it by 𝜋1 is impossible as well. Once 𝜋1 promises its

FADD, it is committed to update𝑋 from 0 to 1. If 𝜋1 reserves

a timestamp interval (0, 𝑡] for its FADD, 𝜋2 cannot update
𝑋 from 0 to 1 since the 𝑋 = 0 message is blocked by 𝜋1’s

reservation, again forcing 𝜋1 to update 𝑋 from 0 to 1.

4 Local DRF Guarantees

In this section we present our local DRF results for PS2.1.

We note that, unlike the conventional DRF theorems, write-

write races are only considered as races for LDRF-SC. The

other results, LDRF-PF and LDRF-RA only require the ab-

sence of certain read-write races.

The supplementary material includes the statements of

“time-wise” local DRF guarantees ([1, Appendix B]), which

we do not discuss in the main text. Roughly speaking, these

guarantees apply when no race occurs between two states



Modular Data-Race-Freedom Guarantees in the Promising Semantics PLDI ’21, June 20–25, 2021, Virtual, Canada

in the machine trace and they ensure the stronger semantics

between these two states.

All results of this section (including time-wise LDRF) are

fully mechanized in Coq (∼35𝐾 LoC altogether) [1].

4.1 Local DRF-PF

The first step for formulating LDRF-PF is to formally define

an “in-order” restriction of PS2.1 w.r.t. a given set L of loca-

tions. This can be simply defined by forbidding promises to

the locations in L.

Definition 4.1. Given a set L ⊆ Loc, the L-PF-machine is
the strengthening of PS2.1 obtained by forbidding the appli-

cation of the (promise) rule for locations in L. We denote by

JprogKL
PF

the set of all behaviors of a program prog allowed

by the L-PF-machine.

Next, we definewhat a racy execution in theL-PF-machine

is. Roughly, an execution is L-racy if it includes some thread

𝜋1 taking a machine step writing a message𝑚 to a location

in L by a relaxed write, immediately followed by another

thread 𝜋2 taking a sequence of machine steps that ends with

reading the message𝑚.

Definition 4.2. An execution in the L-PF-machine is L-
racy if it includes a sequence of machine steps of the form:

𝜋1,𝑙1
====⇒

𝜋2,_
===⇒

∗ 𝜋2,𝑙2
====⇒

with 𝜋1 ≠ 𝜋2, 𝑙1 ∈ {W(rlx,𝑚), RMW(_, rlx, _,𝑚)} and 𝑙2 ∈
{R(_,𝑚), RMW(_, _,𝑚, _)} for𝑚 ∈ Msg with location 𝐿 ∈ L.

Then, LDRF-PF is formulated as follows.

Theorem 4.3 (LDRF-PF). If there is no L-racy execution of
prog in the L-PF-machine, then JprogKPS2.1 = JprogKLPF.

Remark 2. While the L-PF-machine forbids promises to

locations in L, it still allows making reservations to these

locations. Nevertheless, the L-PF-machine is an in-order se-

mantics w.r.t. L since threads cannot read from reservations.

Moreover, the only purpose of making reservations to L
is to allow certain promises to locations not in L. Hence,

reservations to L can be ignored in the typical use of LDRF

that over-approximates the behaviors of locations not in L
to be completely unconstrained.

Revisiting LDRF-PF-Fail, the argument outlined in §2 shows

that no execution of LDRF-PF-Fail in the {𝐿}-PF-machine

is 𝐿-racy. Then, from Thm. 4.3, it follows that the 𝑑 = 37

outcome is disallowed for that program under PS2.1.

Example 4.4. As an instructive example of an application

of LDRF-PF, we show that no execution of the following

program in the {𝑋,𝑌 }-PF-machine is {𝑋,𝑌 }-racy, and so

JprogK
PS2.1

= JprogK{𝑋,𝑌 }
PF

.

𝑋 := 1

𝑌 rel
:= 1

𝑎 := 𝑌

if 𝑎 = 1 then

𝑍 := 1

𝑏 := 𝑍

if 𝑏 = 1 then

𝑐 := 𝑋

(MP2)

Clearly, there is no race on 𝑌 since the program has no re-

laxed writes to 𝑌 (syntactically). Now, assuming no promises

on 𝑋 and 𝑌 , the write to 𝑍 in 𝜋2 can neither be promised nor

executed before 𝜋1 executes the write to𝑌 . Similarly, the read

from 𝑋 in 𝜋3 cannot be executed before 𝜋2 promises or exe-

cutes the write to𝑍 . Therefore, the write to𝑌 in 𝜋1 should be

first executed in order for 𝜋3 to execute the read from 𝑋 , and

thus there is no 𝑋 -racy execution in the {𝑋,𝑌 }-PF-machine.

Proof sketch of LDRF-PF. We highlight the main ideas in

the proof of Thm. 4.3, which is the most challenging among

our results. For its proof, we introduce an intermediate se-

mantics, calledL-PRF-machine, and define the notion of race
in this machine (PRF stands for promise-read-free).

Definition 4.5. Given a set L ⊆ Loc, the L-PRF-machine is
the strengthening of PS2.1 obtained by forbidding steps read-

ing from promises to locations in L. We denote by JprogKL
PRF

the set of all behaviors of a program prog allowed by the

L-PRF-machine. L-racy executions in the L-PRF-machine

are defined exactly as in Def. 4.2.

Then, we prove the following three lemmas for every

program prog, from which Thm. 4.3 directly follows:

(I) JprogKL
PRF

⊆ JprogKL
PF
.

(II) If there is no L-racy execution of prog in the L-PRF-

machine, then JprogK
PS2.1

⊆ JprogKL
PRF

.

(III) If there is an L-racy execution of prog in the L-PRF-

machine, then there is one in the L-PF-machine.

Next, we only discuss (II), and identify an essential prop-

erty of PS2.1, which we call promise monotonicity, that is
needed in our proof.

To prove (II), we use the following “reshuffling” mech-

anism: when thread 𝜋1 can take a sequence seq of thread

steps reading a promise𝑚 of another thread 𝜋2 to a location

𝐿 ∈ L, we first execute 𝜋2 following its certification until it

fulfills the promise𝑚 and then execute 𝜋1 following seq until
it reads 𝑚. What makes this possible is Lemma 4.6 below.

Using “reshuffling”, (II) is established as follows. Roughly

speaking, ignoring the consistency requirement, for the first

time a thread can read from a promise on a location in L,

we apply the above construction to get an L-racy execution

without reading any promise on L (i.e., a L-racy execution

in the L-PRF-machine), which contradicts the premise of

(II). (To meet the consistency requirement, the proof requires

repeated applications of the reshuffling.)

Lemma 4.6 (Promise Monotonicity). Let ⟨T , 𝑀⟩ be a (con-
sistent) machine state with a promise 𝑚 written by thread

𝜋1. Suppose that ⟨T (𝜋2), 𝑀⟩ −→∗ 𝑙−→ ⟨T2, _⟩ for some thread
𝜋2 ≠ 𝜋1, label 𝑙 , and thread state T2. Then, there exist 𝑙𝑚 ∈
{W(rlx,𝑚), RMW(_, rlx, _,𝑚)} and memory𝑀1 such that:

• ⟨T , 𝑀⟩
𝜋1,_
===⇒

∗ 𝜋1,𝑙𝑚
=====⇒ ⟨T [𝜋1 ↦→ _], 𝑀1⟩; and

• ⟨T (𝜋2), 𝑀1⟩ −→∗ 𝑙−→ ⟨T2, _⟩.



PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

Remark 3. Promise consistency does not hold for PS and

PS2 since RMW-store reordering breaks it. For global DRF-PF,
a weaker property, which does hold for PS and PS2, suffices.

Specifically, the above reshuffling may break during the exe-

cution of 𝜋1 following the sequence seq (before it reads𝑚)

only if 𝜋1 performs a racy RMW. Global DRF-PF follows from

the race on the RMW, but not LDRF-PF since the location of

the RMW may not be in L.

4.2 Local DRF-RA

To formulate LDRF-RA, we again start by defining a strength-

ening of PS2.1 w.r.t. a given set of locations.

Definition 4.7. Given a set L ⊆ Loc, the L-RA-machine
is the strengthening of the L-PF-machine obtained by in-

terpreting all accesses to L as if they have release/acquire

access modes (in (read-helper) and (write-helper)). We

denote by JprogKL
RA

the set of all behaviors of a program prog
that are allowed by the L-RA-machine.

Next, for stating the premise of LDRF-RA,we introduce the

“RA-race-detecting-machine”. For that we adopt a “happens-

before-based” notion of race, where a necessary condition

on the happens-before relation is expressed using the views

of the promising semantics. Roughly speaking, the RA-race-

detecting-machine invokes UBwhenever themachine reaches

a state where (𝑖) some thread 𝜋 is about to read from a loca-

tion 𝐿 ∈ L; (𝑖𝑖) there exists a message𝑚 in memory written

by some write to 𝐿 that does not “happen-before” the read

(which corresponds to the fact that the view of 𝜋 for 𝐿 is

strictly lower than the timestamp of𝑚); and (𝑖𝑖𝑖) at least one
of the write or the read is not annotated as a release/acquire

access in the program. This is formalized as follows.

Definition 4.8. TheL-RA-race-detecting-machine is the ma-

chine obtained from the L-RA-machine by adding following

thread configuration step:

𝐿 ∈ L _ ∈ {R(𝑜R, 𝐿, _), RMW(𝑜R, _, 𝐿, _, _)} 𝜎
_−→ _

𝑉 (𝐿) < 𝑡 𝑚 = ⟨𝐿@(_, 𝑡], _, _⟩ ∈ 𝑀
𝑜R = rlx ∨𝑚 was written by a non-release write

10

⟨⟨𝜎,𝑉 , _⟩, 𝑀⟩ race−−−−→ ⟨⟨⊥,𝑉 , ∅⟩, 𝑀⟩

Remark 4. A similar view-based definition of a race can

be also used in LDRF-PF. However, such definition would

unnecessarily deem toomany programs as racy, resulting in a

weaker guarantee. For example, with a view-based definition

of a race in LDRF-PF, we would not be able to show the

absence of {𝑋,𝑌 }-PF-racy executions for the program in

Example 4.4 (since there is no synchronization from the

write to 𝑋 in 𝜋1 to the read from 𝑋 in 𝜋3).

LDRF-RA is formulated as follows.

10
Formally, this requires to record the writing access mode in messages.

Theorem 4.9 (LDRF-RA). If the race transition is never
enabled in runs of the L-RA-race-detecting-machine on prog,
then JprogKPS2.1 = JprogKLRA.

Remark 5. When L = Loc, since the L-RA-machine can-

not make any promise, the race detecting step can be revised

as follows (where −→ is the thread step of theL-RA-machine):

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ 𝑙−→ ⟨⟨𝜎 ′,𝑉 ′, 𝑃 ′⟩, 𝑀 ′⟩
𝑙 ∈ {R(𝑜R, ⟨𝐿@(_, _], _, _⟩), RMW(𝑜R, _, ⟨𝐿@(_, _], _, _⟩, _)}

𝑉 (𝐿) < 𝑡 𝑚 = ⟨𝐿@(_, 𝑡], _, _⟩ ∈ 𝑀
𝑜R = rlx ∨𝑚 was written by a non-release write

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑀⟩ race−−−−→ ⟨⟨𝜎 ′,𝑉 ′, 𝑃 ′⟩, 𝑀 ′⟩

Then, the global DRF-RA guarantee follows from the local

one. The “naive” LDRF-RA discussed in §2.2 (which cannot

not hold together with all optimizations allowed in PS2.1)

formally means to use the above step for race detection in

the L-RA-race-detecting-machine.

Example 4.10. The following example is a variant of the

common “load-buffering” test. We show that, using LDRF-

RA, this program never exhibits the 𝑎 = 1 outcome.

𝑎 := 𝑋 //≠ 1
𝑌 rel

:= 1

𝑏 := 𝑌

if 𝑏 = 1 then

𝑋 := 1

(LB-COND)

Assuming RA semantics for 𝑋 , both the writes to 𝑋 and

to 𝑌 cannot be promised, and clearly 𝑎 = 1 is not allowed.

Now, we show that the race transition is never enabled in

executions of this program in the {𝑋 }-RA-race-detecting-
machine. Indeed, since the write to 𝑋 in 𝜋2 can only be

executed after the write to 𝑌 in 𝜋1 is executed (which cannot

be promised because it is a release write), there cannot be

any message to 𝑋 except for the initial message before the

read from 𝑋 in 𝜋1 is executed.

We note that our race condition is strictly stronger (iden-

tifying fewer programs as racy) than the standard “happens-

before”-based race notion. The latter would deem this pro-

gram as {𝑋 }-racy. as there is no “happens-before” relation

between the accesses to 𝑋 (since the read of 𝑌 is relaxed).

Example 4.11. We apply LDRF-RA on a location with a

write-write race. In the following program, the first two

threads access 𝑋 and 𝑌 and raise flags 𝑍 and𝑊 . The third

thread waits on both flags and then accesses 𝑋 and 𝑌 .

𝑎 := 𝑋

𝑌 := 𝑎 + 2

𝑍rel
:= 1

𝑏 := 𝑋

𝑌 := 𝑏 + 4

𝑊 rel
:= 1

while(𝑍acq +𝑊 acq < 2) do
skip

𝑋 := 1

𝑐 := 𝑌 //2 or 4

While there is a write-write race on 𝑌 , there is no write-
read race on 𝑋 and 𝑌 , and so the race transition is never

enabled in executions of this program in the {𝑋,𝑌 }-RA-race-
detecting-machine. LDRF-RA ensures that it is safe to assume

RA semantics for𝑋 and𝑌 . Then, knowing only RA semantics,

it follows that 𝑐 ∈ {2, 4} holds when this program terminates.



Modular Data-Race-Freedom Guarantees in the Promising Semantics PLDI ’21, June 20–25, 2021, Virtual, Canada

Remark 6. To simplify the presentation, we did not discuss

release/acquire fences. These allow fine-grained control on

the required synchronization, which can improve perfor-

mance, but results in more races involving relaxed accesses.

For the purpose of reasoning about fences using LDRF, we

observe that the following transformations do not affect the

possible behaviors in the promising semantics:

𝑟1 := 𝑋.
.
.

𝑟𝑛 := 𝑋

fence
acq

↭

𝑟1 := 𝑋
acq

.

.

.

𝑟𝑛 := 𝑋 acq

fence
acq

fence
rel

𝑋0 := 𝑟0
𝑋1 := 𝑟1.
.
.

𝑋𝑛 := 𝑟𝑛

↭

fence
rel

𝑋 rel
0

:= 𝑟0

𝑋 srlx
1

:= 𝑟1.
.
.

𝑋 srlx
𝑛 := 𝑟𝑛

Programmers may safely use the (better performant) left-

hand sides in programs, while assuming the (stronger) seman-

tics provided by the right-hand sides (also for establishing

the premise of the LDRF theorem).

4.3 Local DRF-SC

The final LDRF guarantee, LDRF-SC, provides the strongest

semantics for non-racy accesses, but also requires much

more for accesses to be considered non-racy. We note that,

unlike C/C++11 [6, 8, 30], the promising semantics does

not provide sequentially consistent accesses (it only has SC

fences). Thus, a global DRF-SC can only pointlessly ensure

SC semantics for programs that have no races whatsoever

(with no mechanism to actually avoid races). Nevertheless,

local DRF-SC is still meaningful as it only requires to avoid

races on certain locations.

As before, we first define the stronger semantics and the

notion of a race.

Definition 4.12. In the context of a machine state, we call

a message maximal if there does not exist a message with

the same location and higher timestamp. For L ⊆ Loc, the
L-SC-machine is the strengthening of the L-RA-machine
obtained by requiring that for every 𝐿 ∈ L:

• reads from 𝐿 read from maximal messages; and

• writes to 𝐿 write maximal messages.

We denote by JprogKL
SC

the set of all behaviors of a program

prog that are allowed by the L-SC-machine.

To state the premise of LDRF-SC, we introduce the “SC-

race-detecting-machine”. It is defined as the RA-race-detecting-

machine, except that races may also occur (𝑖) between two

RA accesses, and (𝑖𝑖) between two writes.

Definition 4.13. The L-SC-race-detecting-machine is the
machine obtained from the L-SC-machine by adding follow-

ing thread step:

𝐿 ∈ L _ ∈ {R(_, 𝐿, _), W(_, 𝐿, _), RMW(_, _, 𝐿, _, _)} 𝜎
_−→ _

𝑉 (𝐿) < 𝑡 𝑚 = ⟨𝐿@(_, 𝑡], _, _⟩ ∈ 𝑀

⟨⟨𝜎,𝑉 , _⟩, 𝑀⟩ race−−−−→ ⟨⟨⊥,𝑉 , ∅⟩, 𝑀⟩

Then, LDRF-SC is formulated as follows.

Theorem 4.14 (LDRF-SC). If the race transition is never
enabled in runs of the L-SC-race-detecting-machine on prog,
then JprogKPS2.1 = JprogKLSC.

Example 4.15. Consider the message passing program:

𝐷 := 42

𝐹rel := 1

𝑎 := 𝐹acq

if 𝑎 = 1 then

𝑎 := 𝐷 //42
(MP)

In all its executions in the {𝐷}-SC-race-detecting-machine,

the view of 𝜋2 for 𝐷 after reading 1 from 𝐹 points to the

message 𝐷 = 42 written by 𝜋1. Therefore, the race transi-

tion is never enabled for this program in the {𝐷}-SC-race-
detecting-machine. Then, LDRF-SC with L = {𝐷} ensures
SC semantics on the location 𝐷 .

5 Applying LDRF for Modular Reasoning

In this section, we outline several applications of the local

DRF guarantees (focusing on LDRF-RA) for client and library

developer reasoning. Roughly speaking, local DRF is essen-

tial for modular reasoning because it ensures the absence of

certain behaviors in which unrelated pieces of code affect

one another. Without a local DRF guarantee, it might be that

some completely orthogonal calls to library code (such as the

call to a logging function in the second example below) al-

low additional behaviors of the client’s code! We believe that

ignoring unrelated races in library calls (e.g., in the imple-

mentations of synchronization mechanisms or in debugging

code) is widely informally done in practice, and view the

local DRF guarantees as providing formal justifications for

this kind of intuitive reasoning.

We start by observing that the L-PF-machine and the

L-X-race-detecting-machines for 𝑋 ∈ {RA, SC} all enjoy a

useful locality property making it safe to completely ignore

code not accessing locations in L when reasoning about

code only accessing locations in L. Indeed, since promises

to L are banned in those machines, a step that executes code

not accessing locations in L can only increase the thread

view on locations in L, or add reservations for locations in

L. These two effects only decrease the possible behaviors

(including the ability to detect a race), so it is safe to ignore

them when reasoning about code only accessing L. (For

this reason, clients using the LDRF results do not need to

understand the notion of reservation.)

5.1 Reasoning About Client Code

We show typical cases of client RA-centric reasoning using

LDRF-RA.



PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

Synchronization with Lock. Consider the following pro-
gram that uses a lock and a collection libraries.

push(5)
push(7)

𝑟0 := pop_wait()
lock()
𝑠0 := 𝑆

𝑆 := 𝑠0 + 𝑟0
unlock()

𝑟1 := pop_wait()
lock()
𝑠1 := 𝑆

𝑆 := 𝑠1 + 𝑟1
unlock()

Suppose that lock() and unlock() are specified by the fol-

lowing RA specification (the implementation may be more

efficient, but the library guarantees that it behaves the same

as the following specification in PS2.1):

lock() ≜
do 𝑎 := CAS

acqrel (𝐿, 0, 1)
while (𝑎 ≠ 0)

unlock() ≜
𝐿rel := 0

Further, suppose that the collection library guarantees that

push and pop_wait (syntactically) never access 𝑆 and 𝐿, and

that when the same number of push and pop are invoked,

the values returned by pop_wait are in some one-to-one

correspondence with the values pushed by push.
11

To use LDRF-RA the client has to show that this pro-

gram has no racy execution in the {𝑆, 𝐿}-RA-race-detecting-
machine. The reasoning is straightforward, and can be done

only knowing the RA semantics:

(i) By the locality property, we can safely ignore the impact

on 𝑆 and 𝐿 by push and pop_wait;

(ii) Since 𝐿 is only accessed by RA accesses, we know that

there are not any races on 𝐿;

(iii) The lock specification (specifically the RA synchroniza-

tion from unlock() to lock()) ensures that a thread

accessing 𝑆 always has the maximal view on 𝑆 , so the

accesses to 𝑆 are not racy as well.

Then, by LDRF-RA, the client may safely assume the

{𝑆, 𝐿}-RA-machine. Hence, again by the locality property

and using the collection specification, it easily follows that

the final value of 𝑆 is 12 (= 5 + 7).
We note that the above standard reasoning is only justified

by LDRF-RA. Since the collection library may not have an

RA-based specification (unlike the lock library), global DRF-

RA cannot be applied to reach the above conclusion.

Synchronization with Queue. Next, we consider an ex-

ample that uses a queue and a log libraries. For an array

𝑈 of size 32 × 64, the first thread repeats the following for

0 ≤ 𝑖 ≤ 31: write some data to 𝑈 [𝑖 × 64, ... , 𝑖 × 64 + 63] via
write(𝑈 , 𝑖), put the index 𝑖 in the queue via enque(𝑖), and
log the result via log(𝑠). Each other thread takes an index

from the queue via try_deque(), logs the result via log(𝑖),
and if successful, uses the data in 𝑈 [𝑖 × 64, ... , 𝑖 × 64 + 63]
via use(𝑈 , 𝑖) that only reads from (and possibly writes to)

𝑈 [𝑖 × 64, ... , 𝑖 × 64 + 63]. Here log is an unspecified racy

11
The library may assume that the client code does not invoke UB, which

is the case in our example.

library function that accesses a disjoint set of locations.

for 𝑖 in (0 to 31)
write(𝑈 , 𝑖)
𝑠 := enque(𝑖)
log(𝑠)

𝑖 = try_deque()
log(𝑖)
if 𝑖 ≥ 0 then

use(𝑈 , 𝑖)

...

𝑖 = try_deque()
log(𝑖)
if 𝑖 ≥ 0 then

use(𝑈 , 𝑖)

Suppose that enque and try_deque are specified by the

following RA specification (ignore the parentheses around

some acq and rel for now).

enque(𝑑) ≜
lock()
𝑡 := 𝑇 (acq)

if not 𝑡 < 32 then

unlock(); return full
𝐷 [𝑡] (rel) := 𝑑
𝑇 rel

:= 𝑡 + 1

unlock(); return 0

try_deque() ≜
𝑡 := 𝑇 acq

𝑏 := 𝐵acq

if not 𝑏 < 𝑡 then

return empty
𝑑 := 𝐷 [𝑏] (acq)
𝑏 ′ := CAS

acqrel (𝐵,𝑏, 𝑏 + 1)
return (𝑏 = 𝑏 ′ ? 𝑑 : fail)

The queue library uses a static (non-circular) buffer 𝐷 of size

32 and two locations 𝑇 and 𝐵 (initialized to 0) that point to

the top and bottom indices of the queue, where enque(𝑑)
puts the data 𝑑 to the top and try_deque() takes a data from
the bottom. While try_deque is non-blocking, enque uses

the lock specified above to avoid race between enque’s.

To use LDRF-RA the client has to show that this pro-

gram has no racy execution in the {𝑈 , 𝐷,𝑇 , 𝐵, 𝐿}-RA-race-
detecting-machine. The reasoning is as follows only knowing

the RA semantics:

(i) By the locality property, we can safely ignore the impact

on𝑈 , 𝐷,𝑇 , 𝐵, 𝐿 by log;

(ii) Since 𝐷,𝑇 , 𝐵, 𝐿 are only accessed by RA accesses, there

are not any races on them;

(iii) The queue specification ensures a synchronization from

an enquewriting to𝐷 [𝑘] to a try_deque reading from
𝐷 [𝑘] for any 𝑘 via the accesses to 𝑇 , since the enque

writes 𝑘+1 to𝑇 , the try_deque reads some 𝑘 ′ > 𝑘 from
𝑇 , and all the writes to 𝑇 are synchronized via lock()
and unlock();

(iv) It also ensures that each successful try_deque returns a

unique index due to the atomicity ofCAS in try_deque;

(v) From these, it follows that each use(𝑈 , 𝑖) accesses dis-
joint locations, and since the synchronization on 𝑇

ensures no races on 𝑈 between write write(𝑈 , 𝑖) and
use(𝑈 , 𝑖), we avoid races on𝑈 as well.

Then, by LDRF-RA, the client may safely assume the

semantics provided by the {𝑈 , 𝐷,𝑇 , 𝐵, 𝐿}-RA-machine. We

again note that due to the presence of log, global DRF-RA

cannot be applied here.

5.2 Reasoning About Library Code

Next, we describe how LDRF-RA can be used to reason about

the implementation of the queue library above. We consider

an implementation of the above specification that simply

lowers the accesses in parentheses, (acq) and (rel), to be



Modular Data-Race-Freedom Guarantees in the Promising Semantics PLDI ’21, June 20–25, 2021, Virtual, Canada

rlx accesses. (This optimization may be significant if the

size of each cell in 𝐷 is large.)

By applying LDRF-RA for {𝐷,𝑇 , 𝐵, 𝐿}, one shows that the
implementation meets the specification under an arbitrary
context that does not access 𝐷,𝑇 , 𝐵, 𝐿 (again knowing noth-

ing beyond RA):

(i) By the locality property, we can safely ignore the impact

on 𝐷,𝑇 , 𝐵, 𝐿 by the context;

(ii) Since 𝐵, 𝐿 are only accessed by RA accesses, there are

not any races on them;

(iii) For 𝑇 , the only possible race is between the rlx read

and the rel write in enque, which, however, reside in

the same locked region thereby avoiding race;

(iv) For 𝐷 , the reasoning in §5.1(iii) for the client program

applies, thereby avoiding races on 𝐷 [𝑘] for any 𝑘 .
Then, by LDRF-RA, the library developer may safely as-

sume the {𝐷,𝑇 , 𝐵, 𝐿}-RA-machine, whose behaviors are in-

cluded in those of the queue specification, and thus we can

complete the verification. Note that since the context can be

racy, global DRF-RA cannot be applied here.

We note that by using LDRF-PF, it is possible to slightly im-

prove the above implementation, in the price of reasoning in

the PF-machine instead of the RA-machine. Indeed, the read

from 𝐵 in try_deque() can be made relaxed, and the CAS

on 𝐵 can be made rel (or srlx) because LDRF-PF does not
require any condition on reads. Then, for any program prog
that uses this implementation, a similar argument shows that

there are no {𝐷,𝑇 , 𝐵, 𝐿}-racy executions in the {𝐷,𝑇 , 𝐵, 𝐿}-
PF-machine, and it follows that JprogK

PS2.1
= JprogK{𝐷,𝑇 ,𝐵,𝐿}

PF
.

6 Mapping PS2.1 to Hardware

In this section we discuss the mapping from PS2.1 to main-

stream architectures, and evaluate the performance impact

of forbidding RMW-store reordering.

PS2.1 supports the intended compilation schemes to main-

stream architectures [11], but for Armv8, it requires an addi-

tional (fake) control dependency from the read part (“load-

linked”) of each fetch-and-add and exchange instruction with

relaxed read mode. The compilation schemes for these in-

structions along with the more optimal schemes are given in

[1, Appendix C].
12
Lee et al. [31, Section 6.5] established (in

Coq) the correctness of these schemes from PS2 to hardware

models using the Intermediate Memory Model, IMM [39].

We observe here that their proof works as is for PS2.1.
13

We note that compared to PS, PS2.1 still supports more ef-

ficient mapping of RMW operations, which for PS require

an “ld fence” barrier that is more expensive than a control

dependency (see Example 3.3).

12
Our compilation schemes employ standard LL/SC-style RMW implemen-

tations. We leave to future work the evaluation of an implementation that

uses Armv8.1’s LSE (Large System Extension) for RMWs [4].

13
The proof does not handle atomic exchange instructions, which are not

supported in IMM.

Benchmark Scheme Average (%)

libcds, 32 threads

(A) -0.15 (± 5.44)

(B) 0.10 (± 5.53)

libcds, 128 threads

(A) 0.03 (± 4.48)

(B) 0.10 (± 4.51)

FADD litmus test

(A) 0.32 (± 2.81)

(B) 1.05 (± 2.87)

FADD-RW litmus test

(A) -0.09 (± 3.56)

(B) 0.22 (± 3.51)

XCHG litmus test

(A) -0.71 (± 2.73)

(B) -0.00 (± 2.74)

XCHG-RW litmus test

(A) 1.09 (± 3.97)

(B) 0.22 (± 3.79)

Figure 6. Performance overhead for each benchmark (The

“Average” column denotes the arithmetic mean and the 95%

confidence interval.)

We believe that forbidding RMW-store reorderings only

mildly affects performance since: (𝑖) standard compilers do

not aggressively reorder RMWs with atomic writes [35];

(𝑖𝑖) with the exception of Armv8, mainstream hardware

(x86-TSO, POWER, Armv7, and RISC-V) do not reorder such

accesses; and (𝑖𝑖𝑖) the performance overhead in Armv8 for

forbidding this optimization is negligible.

We demonstrate (𝑖𝑖𝑖) by evaluating 19 highly concurrent

data structures with extensive use of fetch-and-add and ex-

change operations selected from the CDS C++ library [23], as

well as four artificial “worst case litmus tests” that repeatedly

perform fetch-and-add and exchange operations. Specifically,

the four tests consist of following: FADD/XCHG tests where

each thread repeatedly performs FADD/XCHG to a single

location; and FADD-RW/XCHG-RW tests where each thread

repeatedly performs FADD/XCHG to a single location fol-

lowed by load/store to another location (𝑛/2 threads load

and 𝑛/2 threads store).
The benchmarks are compiled with LLVM 10.0.0 withman-

ual insertion of fake conditional branches to fetch-and-add

and exchange instructions using two different schemes: (𝐴)
direct branch on the loaded value; or (𝐵) compare the loaded

value with itself and branch on the comparison result. The

latter requires an extra cmp instruction, but more likely to

be optimized by branch speculations as it jumps determinis-

tically. For the evaluation, we used 2 socket, 64-core 2.5GHz

ThunderX2 64-bit Armv8 server with 128GB memory. We

ran each benchmark 360 times and discarded the 30 fastest

and 30 slowest results among them.

Figure 6 summarizes the performance overhead for each

benchmark (see [1, Appendix C] for more detailed results).

We conclude that there is no statistical evidence for a no-

ticeable performance cost induced by the suboptimal RMW

compilation of PS2.1.

Remark 7. During the evaluation, we identified a bug in

LLVM’s compilation of exchange instructions to Armv8.

When the value read by the exchange instruction is never



PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

used, LLVM 10.0.0 compiles C++11 relaxed exchange instruc-

tions into Arm’s plain store instructions. However, since an
acquire fence may induce synchronization when it follows

an exchange instruction, but not when it follows a store, this

optimization is unsound: it may introduce behaviors in the

compiled Armv8 assembly that are not allowed for the C++

source program. A concrete example of the miscompilation

is provided in [1, Appendix D].

7 Conclusion and Related Work

Studying local DRF guarantees in a fully relaxed semantics,

we have achieved a negative and a positive outcomes. The

negative one is an unfortunate impossibility result: standard

compiler optimizations are inconsistent with local DRF guar-

antees. On the positive side, local DRF can be achieved by

giving up certain RMW-store reorderings, which carries no

meaningful performance penalty. The positive result is estab-

lished constructively by showing a variant of the promising

semantics that satisfies the standard optimizations intended

to be sound in weak memory models except for RMW-store

reorderings, and validates several local DRF guarantees.

We believe that it may be useful to study existing and

novel models through the lens of our results also beyond the

context of the promising semantics. A “just right” program-

ming language shared-memory concurrency model that is

not too strong to allow efficient implementation and not

too weak to program with has been the subject of extensive

research in recent years (e.g., [7–9, 12, 15, 19, 20, 27, 30, 32–
34, 37, 38, 41–44]). While implementability is nowadays rel-

atively well-defined, the criteria for the programmability

aspect are much less evident. Since, as we argue in this pa-

per, local DRF guarantees facilitate modular software devel-

opment, these guarantees provide better programmability

desideratum than the standard global DRF properties. Our

impossibility result shows an inherent trade-off that has to

be considered when designing a memory model, while the

positive result assigns the blame on RMW-store reorderings.

Several papers have previously studied local DRF guaran-

tees. Dolan et al. [15] introduced local DRF-SC, and estab-

lished such guarantees for a model with two types of access.

Their guarantees account for two aspects of “locality”: (𝑖) in
terms of “space”, which is similar to our location-wise LDRF

above and (𝑖𝑖) in terms of “time”, which we cover in [1, Ap-

pendix B]. However, their memory model is much stronger

than the one studied here. In particular, it is an “in-order”

model (see Def. 2.1), as even their weak accesses completely

forbid load-store reorderings (including RMW-store reorder-

ings), and cannot be compiled to plain machine accesses on

architectures like Arm. In addition, their strong accesses are

stronger than C11’s SC accesses, so that strong stores have

to be mapped to atomic exchanges even on x86.

Dongol et al. [16] established local DRF-SC guarantees

for a model more general than the one of [15] with multiple

access modes. In their model, threads synchronize via soft-

ware transactions with RA semantics. While release/acquire

RMWs can be implemented as transactions, the problematic

relaxed RMWs are not expressible in the model of [16], so

that our impossibility result does not apply.

Recently, Jagadeesan et al. [19] presented a denotational

concurrency model and sketched (without full proofs) a time-

wise local DRF-SC guarantee for a fragment of this model

that does not include fences and RMWs. (They presented sev-

eral variants, and their reported LDRF result is for a version

that does not support irrelevant load introduction.) Their

model is multi-copy-atomic, and thus, unlike PS2.1, it cannot

be efficiently compiled to POWER or Armv7.

We note that the strengthening of accesses in the “SC

machines” (used for detecting races for the LDRF-SC premise)

in prior work [15, 16, 19] does not make them synchronizing

(inducing “happens-before” w.r.t. other locations). Thus, like

ours, previous local DRF-SC theorems are weaker than the

naive formulation discussed in §2.2.

Finally, while modular reasoning about libraries in weak

memory semantics has been studied in multiple papers, e.g.,
[5, 10, 17, 40], to the best of our knowledge, the observation

that location-wise local DRF guarantees are essential for such

reasoning is lacking in prior work. We leave to future work

the development of LDRF-based formal tools, which will

allow one to formalize (and possibly mechanize) reasoning as

we did in §5. In particular, our LDRF-PF paves the way for the

application of program logics for an "in-order" semantics (e.g.,
the logic in [13] that essentially targets the PF model), which

is significantly simpler than any semantics allowing load-

buffering behaviors. We also note that while the applications

in §5 are for RA-centric specifications, our local DRF results

are generally applicable for weaker library specifications as

well. Nevertheless, it is currently unclear how to formally

specify and verify libraries in memory models that allow

load buffering behaviors (as was studied in [40] for ‘in-order’

models). We leave this question as well for future work.

Acknowledgments

We thank Anton Podkopaev for his help with the Coq proofs

of mapping from PS2.1 to IMM. We thank our shepherds,

Nathan Chong and James Riely, and the anonymous PLDI re-

viewers for their helpful feedback. Chung-Kil Hur is the cor-

responding author. Minki Cho, Sung-Hwan Lee, and Chung-

Kil Hur were supported by Samsung Research Funding Cen-

ter of Samsung Electronics under Project Number SRFC-

IT1502-53. Ori Lahav was supported by the Israel Science

Foundation (grant number 1566/18) and by the Alon Young

Faculty Fellowship. This research was supported in part by

the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme

(grant agreement no. 851811).



Modular Data-Race-Freedom Guarantees in the Promising Semantics PLDI ’21, June 20–25, 2021, Virtual, Canada

References

[1] 2021. Coq development and supplementary material for this paper.

https://sf.snu.ac.kr/promising-ldrf
[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and

Tuan Phong Ngo. 2018. Optimal Stateless Model Checking Under

the Release-acquire Semantics. Proc. ACM Program. Lang. 2, OOPSLA,
Article 135 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276505

[3] Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering–a New Defi-

nition. In ISCA. ACM, New York, NY, USA, 2–14. https://doi.org/10.
1145/325164.325100

[4] Arm. 2020. Arm A64 Instruction Set Architecture Armv8 (DDI0596

2020-12). https://developer.arm.com/documentation/ddi0596/2020-12
[5] Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library Ab-

straction for C/C++ Concurrency. In POPL. ACM, New York, NY, USA,

235–248. https://doi.org/10.1145/2429069.2429099
[6] Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Over-

hauling SC Atomics in C11 and OpenCL. In POPL. ACM, New York,

NY, USA, 634–648. https://doi.org/10.1145/2837614.2837637
[7] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-

Pharabod, and Peter Sewell. 2015. The Problem of Programming

Language Concurrency Semantics. In ESOP. Springer, Berlin, Heidel-
berg, 283–307. http://dx.doi.org/10.1007/978-3-662-46669-8_12

[8] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ Concurrency. In POPL. ACM, New York,

NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394
[9] John Bender and Jens Palsberg. 2019. A Formalization of Java’s Con-

current Access Modes. Proc. ACM Program. Lang. 3, OOPSLA (2019),

142:1–142:28. https://doi.org/10.1145/3360568
[10] Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and

Hongseok Yang. 2012. Concurrent Library Correctness on the TSO

Memory Model. In ESOP. Springer, Berlin, Heidelberg, 87–107.
[11] C/C++11 Mappings to Processors 2021. Retrieved March 18, 2021

from http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
[12] Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air

Reads with Event Structures. Proc. ACM Program. Lang. 3, POPL,
Article 70 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290383

[13] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek

Dreyer. 2019. RustBelt Meets Relaxed Memory. Proc. ACM Program.
Lang. 4, POPL, Article 34 (Dec. 2019), 29 pages. https://doi.org/10.
1145/3371102

[14] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick.

2019. Verifying C11 Programs Operationally. In PPoPP. ACM, New

York, 355–365. https://doi.org/10.1145/3293883.3295702
[15] Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018.

Bounding Data Races in Space and Time. In PLDI. ACM, New York,

NY, USA, 242–255. https://doi.org/10.1145/3192366.3192421
[16] Brijesh Dongol, Radha Jagadeesan, and James Riely. 2019. Modular

Transactions: Bounding Mixed Races in Space and Time. In PPoPP.
ACM, New York, NY, USA, 82–93. https://doi.org/10.1145/3293883.
3295708

[17] Brijesh Dongol, Radha Jagadeesan, James Riely, and Alasdair Arm-

strong. 2018. On Abstraction and Compositionality for Weak-Memory

Linearisability. In VMCAI. Springer International Publishing, Cham,

183–204.

[18] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali

Sezgin, Luc Maranget, Will Deacon, and Peter Sewell. 2016. Modelling

the ARMv8 Architecture, Operationally: Concurrency and ISA. In

POPL. ACM, New York, NY, USA, 608–621. https://doi.org/10.1145/
2837614.2837615

[19] Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with

Preconditions: A Simple Model of Relaxed Memory. Proc. ACM Pro-
gram. Lang. 4, OOPSLA, Article 194 (Nov. 2020), 30 pages. https:
//doi.org/10.1145/3428262

[20] Alan Jeffrey and James Riely. 2019. On Thin Air Reads: Towards

an Event Structures Model of Relaxed Memory. Logical Methods in

Computer Science 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:
33)2019

[21] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and

Viktor Vafeiadis. 2017. Strong Logic for Weak Memory: Reason-

ing About Release-Acquire Consistency in Iris. In ECOOP. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 17:1–

17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
[22] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A Promising Semantics for Relaxed-Memory Con-

currency. In POPL. ACM, New York, NY, USA, 175–189. https:
//doi.org/10.1145/3009837.3009850

[23] Max Khiszinsky. 2020. CDS C++ Library. https://github.com/khizmax/
libcds

[24] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-

tor Vafeiadis. 2017. Effective Stateless Model Checking for C/C++

Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec.

2017), 32 pages. https://doi.org/10.1145/3158105
[25] Ori Lahav. 2019. Verification under Causally Consistent Shared Mem-

ory. ACM SIGLOG News 6, 2 (April 2019), 43–56. https://doi.org/10.
1145/3326938.3326942

[26] Ori Lahav and Udi Boker. 2020. Decidable Verification under a Causally

Consistent Shared Memory. In PLDI. ACM, New York, NY, USA, 211–

226. https://doi.org/10.1145/3385412.3385966
[27] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming

Release-acquire Consistency. In POPL. ACM, New York, NY, USA, 649–

662. https://doi.org/10.1145/2837614.2837643
[28] Ori Lahav and RoyMargalit. 2019. Robustness Against Release/Acquire

Semantics. In PLDI. ACM, New York, NY, USA, 126–141. https://doi.
org/10.1145/3314221.3314604

[29] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for

WeakMemoryModels. In ICALP. Springer, Berlin, Heidelberg, 311–323.
https://doi.org/10.1007/978-3-662-47666-6_25

[30] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In PLDI.
ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.
3062352

[31] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty,

Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising 2.0:

Global Optimizations in Relaxed Memory Concurrency. In PLDI. ACM,

New York, NY, USA, 362–376. https://doi.org/10.1145/3385412.3386010
[32] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java

Memory Model. In POPL. ACM, New York, NY, USA, 378–391. https:
//doi.org/10.1145/1040305.1040336

[33] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musu-

vathi, and Satish Narayanasamy. 2016. DRFx: An Understandable, High

Performance, and Flexible Memory Model for Concurrent Languages.

ACM Trans. Program. Lang. Syst. 38, 4, Article 16 (Sept. 2016), 40 pages.
https://doi.org/10.1145/2925988

[34] Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian,

and Viktor Vafeiadis. 2020. Reconciling Event Structures with Modern

Multiprocessors. In ECOOP. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 5:1–5:26. https://doi.org/10.4230/
LIPIcs.ECOOP.2020.5

[35] Peizhao Ou and Brian Demsky. 2018. Towards Understanding the

Costs of Avoiding Out-of-Thin-Air Results. Proc. ACM Program. Lang.
2, OOPSLA, Article 136 (Oct. 2018), 29 pages. https://doi.org/10.1145/
3276506

[36] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86

Memory Model: x86-TSO. In TPHOLs. Springer, Berlin, Heidelberg,
391–407. https://doi.org/10.1007/978-3-642-03359-9_27

[37] Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott

Owens, and Mark Batty. 2020. Modular Relaxed Dependencies in

Weak Memory Concurrency. In ESOP. Springer, Cham, 599–625. https:
//doi.org/10.1007/978-3-030-44914-8_22

https://sf.snu.ac.kr/promising-ldrf
https://doi.org/10.1145/3276505
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/325164.325100
https://developer.arm.com/documentation/ddi0596/2020-12
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/2837614.2837637
http://dx.doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3293883.3295708
https://doi.org/10.1145/3293883.3295708
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3428262
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://github.com/khizmax/libcds
https://github.com/khizmax/libcds
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/2925988
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://doi.org/10.1145/3276506
https://doi.org/10.1145/3276506
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22


PLDI ’21, June 20–25, 2021, Virtual, Canada Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav

[38] Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Se-

mantics for Relaxed Atomics That Permits Optimisation and Avoids

Thin-air Executions. In POPL. ACM, New York, NY, USA, 622–633.

https://doi.org/10.1145/2837614.2837616
[39] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the

Gap Between Programming Languages and Hardware Weak Memory

Models. Proc. ACM Program. Lang. 3, POPL, Article 69 (Jan. 2019),

31 pages. https://doi.org/10.1145/3290382
[40] Azalea Raad,MarkoDoko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis.

2019. On Library Correctness under Weak Memory Consistency: Spec-

ifying and Verifying Concurrent Libraries under Declarative Consis-

tency Models. Proc. ACM Program. Lang. 3, POPL, Article 68 (Jan. 2019),
31 pages. https://doi.org/10.1145/3290381

[41] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Chas-

ing Away RAts: Semantics and Evaluation for Relaxed Atomics on

Heterogeneous Systems. In ISCA. ACM, New York, NY, USA, 161–174.

https://doi.org/10.1145/3079856.3080206
[42] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin

Morisset, and Francesco Zappa Nardelli. 2015. Common Compiler

Optimisations Are Invalid in the C11 Memory Model and What We

Can Do About It. In POPL. ACM, New York, NY, USA, 209–220.

https://doi.org/10.1145/2676726.2676995
[43] Jaroslav Ševčík and David Aspinall. 2008. On Validity of Program

Transformations in the Java Memory Model. In ECOOP. Springer-
Verlag, Berlin, Heidelberg, 27–51. https://doi.org/10.1007/978-3-540-
70592-5_3

[44] Yang Zhang and Xinyu Feng. 2016. An Operational Happens-before

Memory Model. Front. Comput. Sci. 10, 1 (Feb. 2016), 54–81. https:
//doi.org/10.1007/s11704-015-4492-4

https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3079856.3080206
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1007/s11704-015-4492-4
https://doi.org/10.1007/s11704-015-4492-4

	Abstract
	1 Introduction
	2 Local DRF in Weak Memory Models
	2.1 Local DRF w.r.t. an ``In-Order'' Semantics
	2.2 Local DRF w.r.t. RA and SC

	3 Preliminaries: The Promising Semantics
	4 Local DRF Guarantees
	4.1 Local DRF-PF
	4.2 Local DRF-RA
	4.3 Local DRF-SC

	5 Applying LDRF for Modular Reasoning
	5.1 Reasoning About Client Code
	5.2 Reasoning About Library Code

	6 Mapping PS2.1 to Hardware
	7 Conclusion and Related Work
	Acknowledgments
	References

