
Robustness Against
Release/Acquire Semantics

Roy MargalitOri Lahav

W x 0 W y 0

W x 1 W y 1

R y 0

…

Memory

CPU CPU CPU

A short story: Peterson’s algorithm in C++

• In 1981, Peterson proposed a simple algorithm for
critical section in shared memory.

• It assumes sequential consistent shared memory (SC).

W x 0 W y 0

W x 1 W y 1

R x 0R y 0

• Q: How to implement Peterson’s algorithm in C/C++11?

…

Memory

CPU CPU CPU

C++ atomics and memory ordering, blog post by Bartosz Milewski 
https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/

A short story: Peterson’s algorithm in C++

……

https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/

A subsequent post by Anthony Williams analyzed both algorithms:

• Bartosz’s implementation is indeed wrong.

• Dmitriy’s implementation is correct.

https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html

A short story: Peterson’s algorithm in C++

"Any time you deviate from SC, you increase the
complexity of the problem by orders of magnitude."

https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html

Goal
Automatically establish robustness of programs against a weak memory model

• Key ingredient in automatic fence insertion

• Our focus: C/C++11’s Release/Acquire fragment

• Previous work: hardware models (especially x86-TSO)

verification
under  

weak memory
= robustness+

verification under  
sequential

consistency

Our Contribution

• as verification under SC

Execution-graph robustness against Release/Acquire is decidable
and PSPACE-complete.

input program with  
Release/Acquire atomics  

and non-atomics

verification problem
in PromelaRocker

SPIN 
model

checker

not robust

robust
• Evaluation on several challenging synchronization algorithms

• A tool for verifying execution-graph robustness

• as robustness against x86-TSO

• allows cheaper implementation  
(w.r.t. SC):

• x86-TSO: use primitive accesses

• IBM Power: use “lightweight” fences

Release/Acquire in C/C++11

• ensures the DRF property

• often sufficiently strong:

• but not always…  
 (e.g., Perterson’s algorithm)

• supports “message passing” idiom

Implementability Programmability

atomic_store_explicit(&x, r, memory_order_release)

r = atomic_load_explicit(&x, memory_order_acquire)

atomic_fetch_add_explicit(&x, r, memory_order_acq_rel)  
 
b = atomic_compare_exchange_strong_explicit(&x, &r1, r2,  
 memory_order_acq_rel, memory_order_acquire)  
 
atomic_thread_fence(memory_order_seq_cst)

Syntax

Semantics (one-slide course)

• A form of causal consistency

• Defined declaratively using execution graphs

W x 1

W x 0 W y 0

R y 1

R x 0W y 1
rf

hb

inconsistent execution graph 
 

disallowed program outcome

happens-before =  
(program-order ⋃ reads-from)+

hb

modification-order - total order
on writes to the same location

W x W x
hb

mo

x = 1  
y = 1

a = y // 1  
b = x // 0

x = y = 0
Message passing litmus test

R x

W x

hb

mo

W x

rf

Operational version

W x 0 W y 0

W x 1 W y 1

 a = 0 b = 0

b = xa = y

(q, G)machine state

program
left to run

local store

current  
consistent 
execution

graph
(q, G) →𝖱𝖠 (q′�, G′�)machine step

finite state
space

infinite
state
space

Example: “store-buffer” litmus test

(q0, G0) (q1, G1) (q2, G2)

W x 0 W y 0

a = 0 b = 0

y = 1  
b = x

x = 1  
a = y

W x 0 W y 0

W x 1

a = 0 b = 0

y = 1  
b = x

 
a = y

W x 0 W y 0

W x 1

R y 0

a = 0 b = 0

y = 1  
b = x

W x 0 W y 0

W x 1 W y 1

R y 0

a = 0 b = 0

 
b = x

W x 0 W y 0

W x 1 W y 1

R x 0R y 0

a = 0 b = 0

(q3, G3) (q4, G4)
Wx1
T1

Ry0
T1

Wy1
T2

Rx0
T2𝖱𝖠 𝖱𝖠 𝖱𝖠 𝖱𝖠

Initial state final state

Robustness

∀q . (∃G . (q0, G0) →*𝖱𝖠 (q, G)) ⟹ (∃M . (q0, M0) →*𝖲𝖢 (q, M))
Sequential consistency

W x 0 W y 0

W x 1 W y 1

R y 0

Release/Acquire

…

Memory

CPU CPU CPU

• Reduction from state reachability [Bouajjani, Derevenetc, Meyer ESOP'13]

• State-reachability for Release/Acquire is undecidable! [Abdulla, Arora, Atig, Krishna PLDI'19]

Bad news…

Execution-graph robustness

∀q, G . (q0, G0) →*𝖱𝖠 (q, G) ⟹ G describes an SC-history

hb⋃mo can be linearized to an
execution order of an SC-run

⟹

∀q . (∃G . (q0, G0) →*𝖱𝖠 (q, G)) ⟹ (∃M . (q0, M0) →*𝖲𝖢 (q, M))
State robustness

Reduction to reachability under an instrumented SC semantics

(q0, M0) →𝖲𝖢 (q′�1, M1) →𝖲𝖢 (q′�2, M2) →𝖲𝖢 … →𝖲𝖢 (qn, Mn)

(q0, G0) →𝖱𝖠 (q1, G1) →𝖱𝖠 (q2, G2) →𝖱𝖠 … →𝖱𝖠 (qn, Gn) →𝖱𝖠 (qn+1, Gn+1)
a “minimal” robustness violation:

disallowed
by SC

can take an RA-step to a non-SC execution graph

allowed by SC

I0 I1 InI2
robustness

instrumentation

Execution-graph robustness against Release/Acquire is decidable
and PSPACE-complete.

(q0, G0) (q1, G1) (q2, G2)

W x 0 W y 0

a = 0 b = 0

y = 1  
b = x

x = 1  
a = y

W x 0 W y 0

W x 1

a = 0 b = 0

y = 1  
b = x

 
a = y

W x 0 W y 0

W x 1

R y 0

a = 0 b = 0

y = 1  
b = x

W x 0 W y 0

W x 1 W y 1

R y 0

a = 0 b = 0

 
b = x

W x 0 W y 0

W x 1 W y 1

R x 0R y 0

a = 0 b = 0

(q3, G3) (q4, G4)Wx1
T1 𝖱𝖠

Ry0
T1 𝖱𝖠

Wy1
T2 𝖱𝖠

Rx0
T2 𝖱𝖠

(q0, M0) (q′�1, M1) →𝖲𝖢(q′�2, M2) (q3, M3)→𝖲𝖢→𝖲𝖢

I0 I1 I2 I3

robustness  
viloation!

For w = the mo-maximal write to x (W x 1):

• w has no hb T2

• Every SC-run producing executes w before the current last event of T2G3

Instrumented SC Semantics

• Read-modify-write (RMW) instructions

require much more refined instrumentation  
(depends on values being read)

modelled as RMWs

masked using blocking instructions:

Complications
a = CAS(x,0,1)

R x v  
(v ≠ 0)

RMW x 0 1

X = Y = 0

X = 1  
do a = Y while (a ≠ 1)

Y = 1  
do b = X while (b ≠ 1)

not robust

X = 1  
wait (Y == 1)

Y = 1  
wait (X == 1)

robust

• Sequentially consistent fences

• Masking benign violations

X = Y = 0

Evaluation

#T LoC Result Time (sec) SC
(sec)

Trencher (TSO)

Result Time (sec)

spin-lock 2 34 1.6 1.2 5.4

seq-lock 4 49 20.7 3.4 8.9

Peterson 2 28 2.5 1.2 5.6

Peterson for x86-TSO 2 30 3.3 1.3 5.6

Peterson - Dmitriy 2 36 4.3 1.2 5.5

Peterson - Bartosz 2 28 3.4 1.1 5.6

RCU 4 74 67.6 2.2 * -

RCU (offline) 3 215 137.9 18.3 * -

number of
threads

number
of lines

w/o robustness
instrumentation

requires
blocking

instructions

robustness
against x86-TSO

robust?

Summary

verification
under  

weak memory
= robustness+

verification under  
sequential

consistency

• We developed a sound and precise reduction from execution-graph robustness
against Release/Acquire semantics to a reachability problem under SC.

• Execution-graph robustness against Release/Acquire is PSPACE-complete.

• We implemented the reduction and verified several challenging algorithms,
demonstrating in particular that execution-graph robustness is not overly strong.

Thank you!

input program with  
Release/Acquire atomics  

and non-atomics

verification problem
in PromelaRocker

SPIN 
model

checker

not robust

robust

X = Y = 0

X = 1  
a = Y // 0

Y = 1  
b = X // 0

state
robustness

X = Y = 0

X = 0  
a = Y // 0

Y = 0  
b = X // 0

execution
graph

robustness

