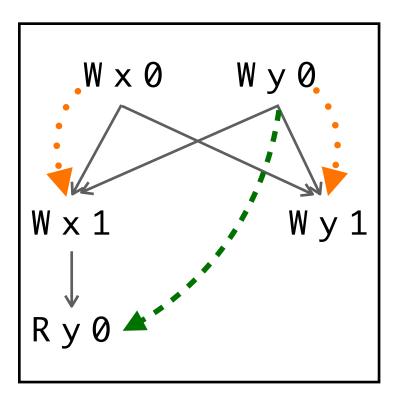
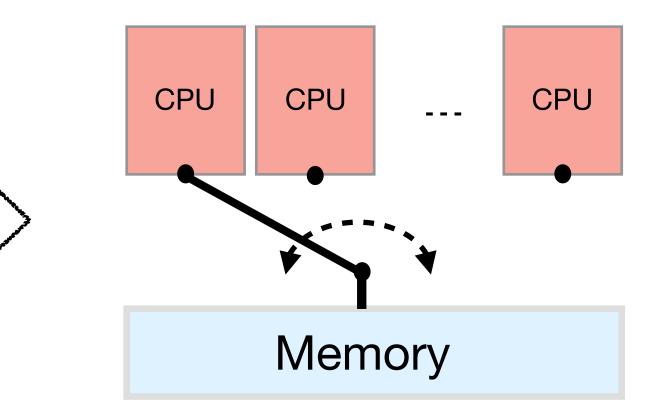
Robustness Against Release/Acquire Semantics

Ori Lahav



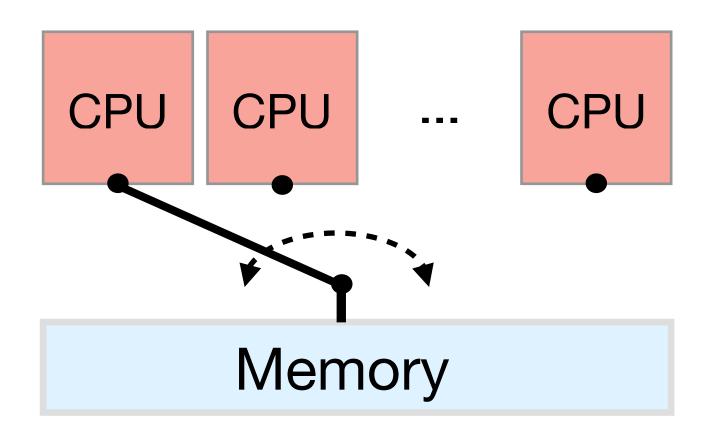
Roy Margalit

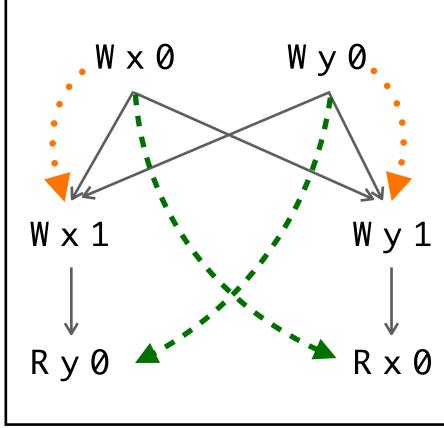


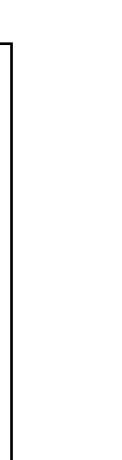
A short story: Peterson's algorithm in C++

- In 1981, Peterson proposed a simple algorithm for critical section in shared memory.
- It assumes sequential consistent shared memory (SC).

• Q: How to implement Peterson's algorithm in C/C++11?



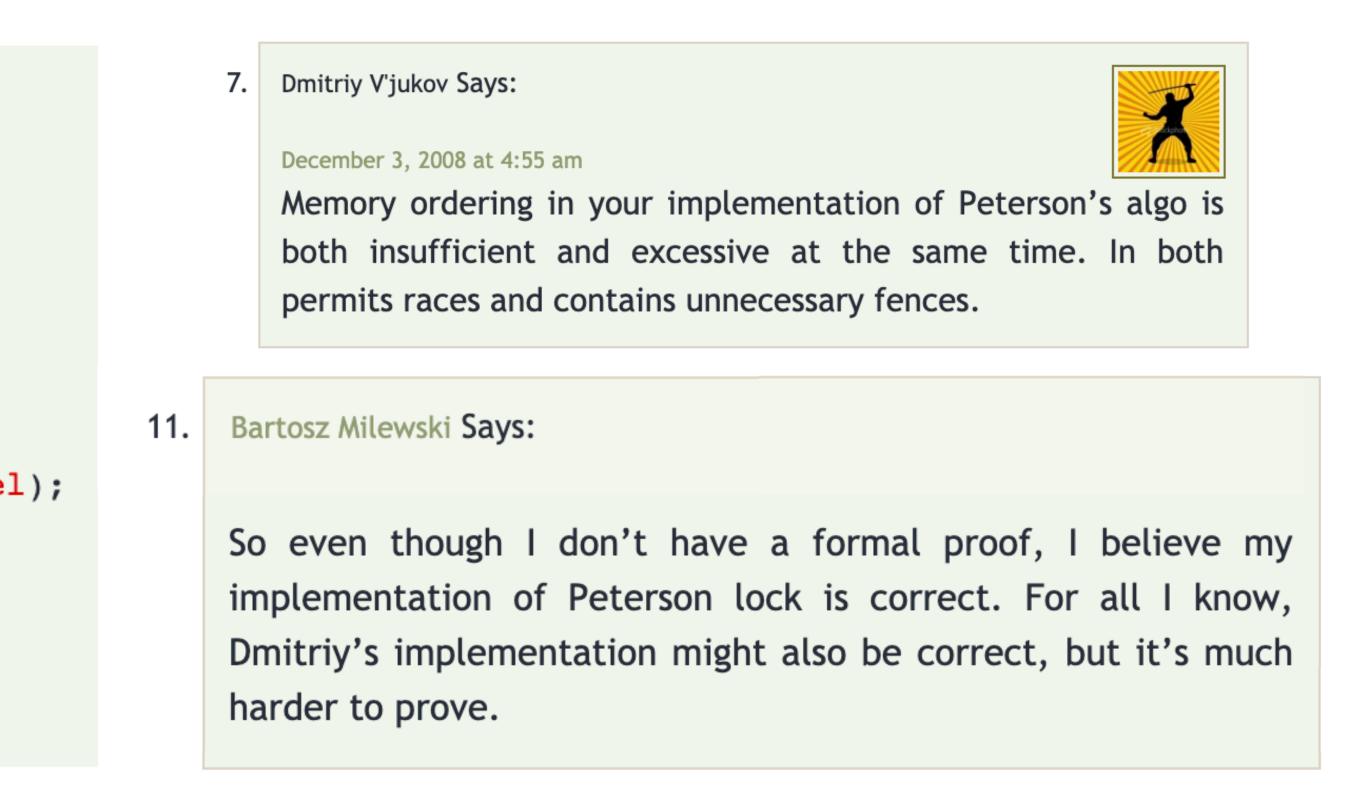




A short story: *Peterson's algorithm in C++*

```
Peterson::Peterson() {
    __victim.store(0, memory_order_release);
    __interested[0].store(false, memory_order_release);
    __interested[1].store(false, memory_order_release);
}
void Peterson::lock() {
    int me = threadID; // either 0 or 1
    int he = 1 - me; // the other thread
    __interested[me].exchange(true, memory_order_acq_rel);
    __victim.store(me, memory_order_release);
    while (__interested[he].load(memory_order_acquire)
        && _victim.load(memory_order_acquire) == me)
        continue; // spin
```

C++ atomics and memory ordering, blog post by **Bartosz Milewski** <u>https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/</u>



- A subsequent post by Anthony Williams analyzed both algorithms:
 - Bartosz's implementation is indeed wrong.
 - Dmitriy's implementation is *correct*.

https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html

"Any time you deviate from SC, you increase the complexity of the problem by orders of magnitude."

A short story: Peterson's algorithm in C++

verification under weak memory		verification under sequential consistency	+	robustness
--------------------------------------	--	---	---	------------

- Key ingredient in automatic fence insertion
- Our focus: C/C++11's **Release/Acquire** fragment
- Previous work: hardware models (especially **x86-TSO**)

Goal

Automatically establish robustness of programs against a weak memory model

Our Contribution

Theorem

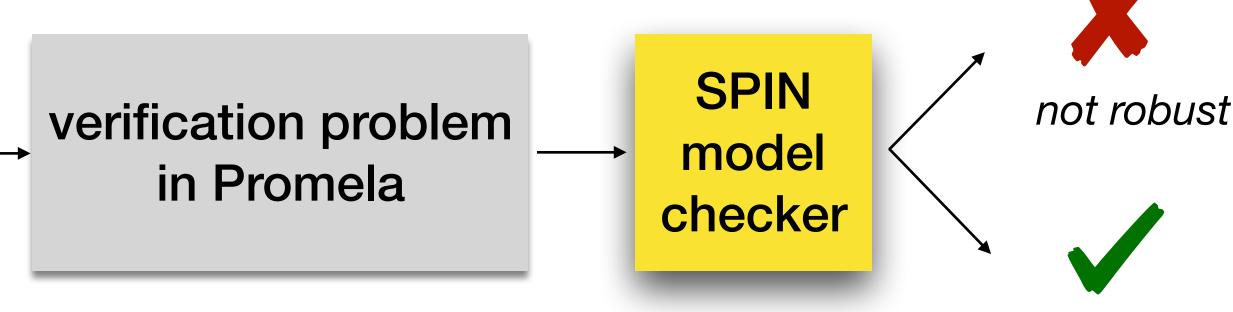
Execution-graph robustness against Release/Acquire is decidable and **PSPACE-complete**.

- as verification under SC
- A tool for verifying execution-graph robustness

input program with Rocker **Release/Acquire atomics** and *non-atomics*

Evaluation on several challenging synchronization algorithms

as robustness against x86-TSO



robust

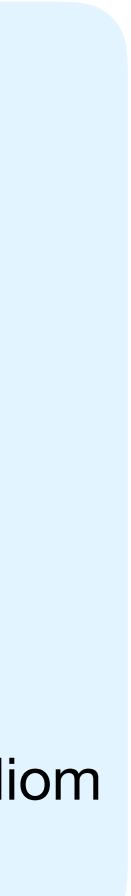
Release/Acquire in C/C++11

Implementability

- allows cheaper implementation (w.r.t. SC):
 - **x86-TSO**: use primitive accesses
 - IBM Power: use "lightweight" fences

Programmability

- ensures the DRF property
- often *sufficiently strong*:
 - but not always...
 (e.g., Perterson's algorithm)
 - supports "message passing" idiom



atomic store explicit(&x, r, memory_order_release)

- r = atomic **load** explicit(&x, **memory_order_acquire**)
- atomic fetch_add explicit(&x, r, memory_order_acq_rel)
- b = atomic compare exchange strong explicit(&x, &r1, r2, memory order acq rel, memory order acquire)
- atomic thread **fence**(memory_order_seq_cst)

Syntax

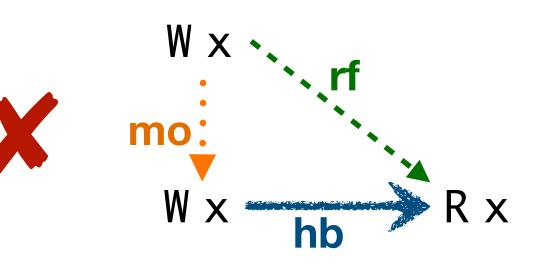
Semantics (one-slide course)

- A form of *causal consistency*
- Defined declaratively using execution graphs

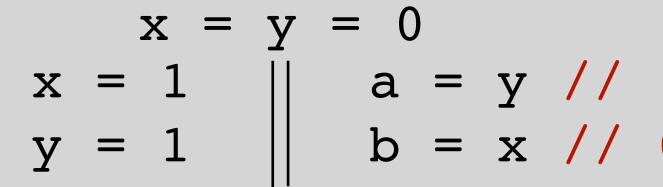
happens-before =

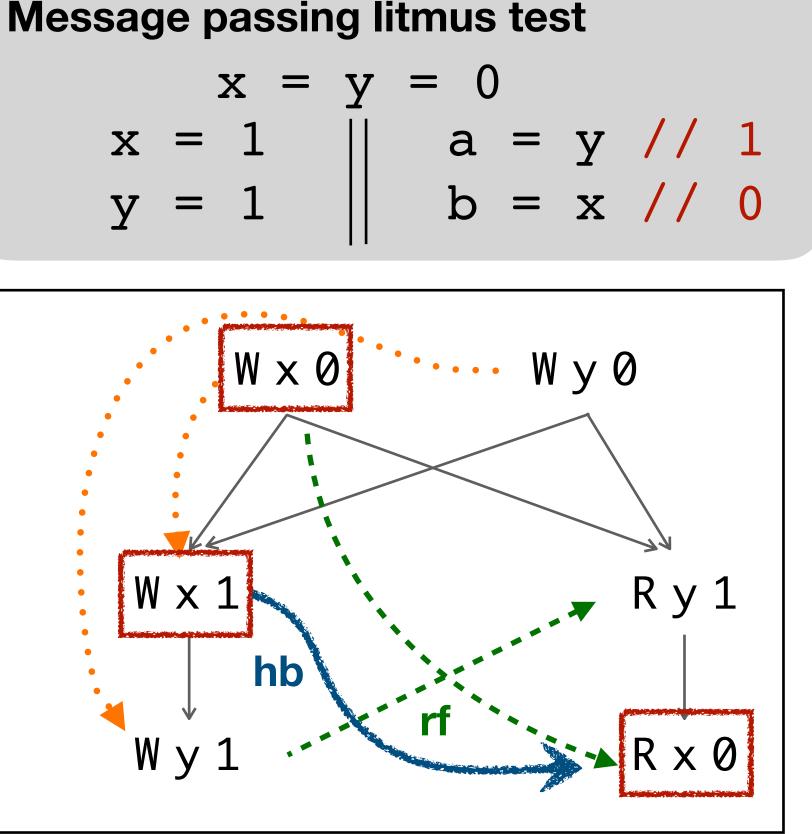
(program-order ∪ reads-from)⁺

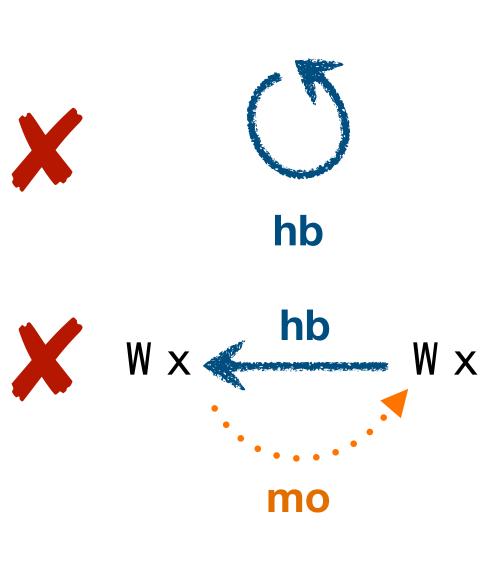
modification-order - total order on writes to the same location



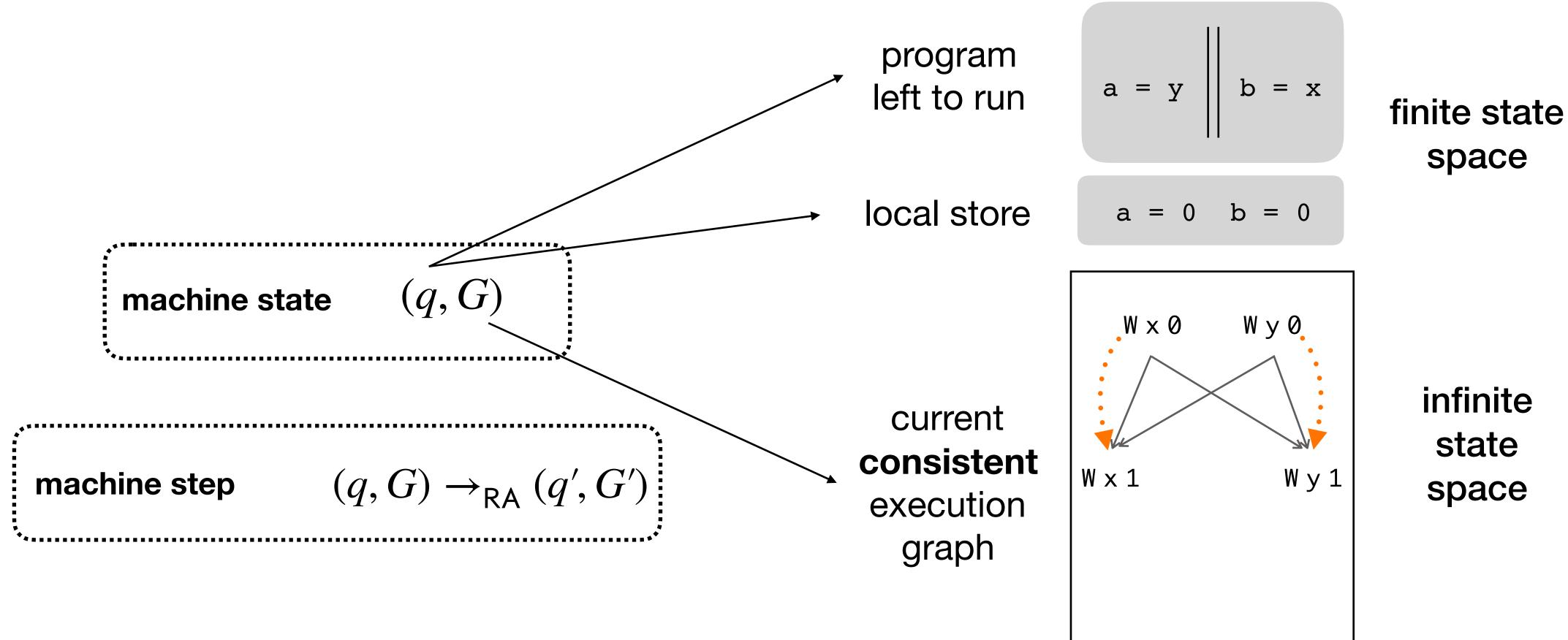
Message passing litmus test



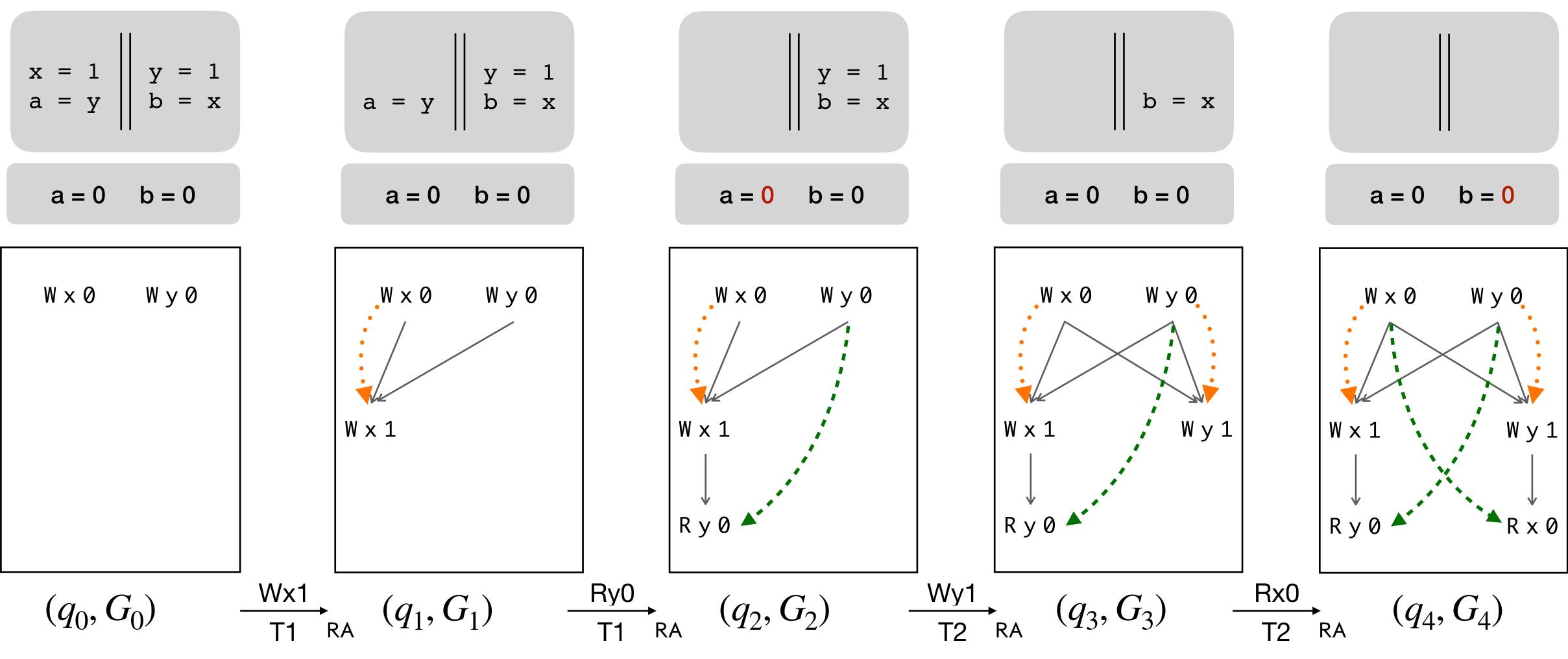




Operational version

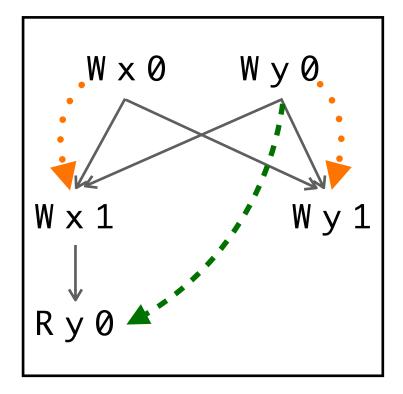


Example: "store-buffer" litmus test



Initial state

final state

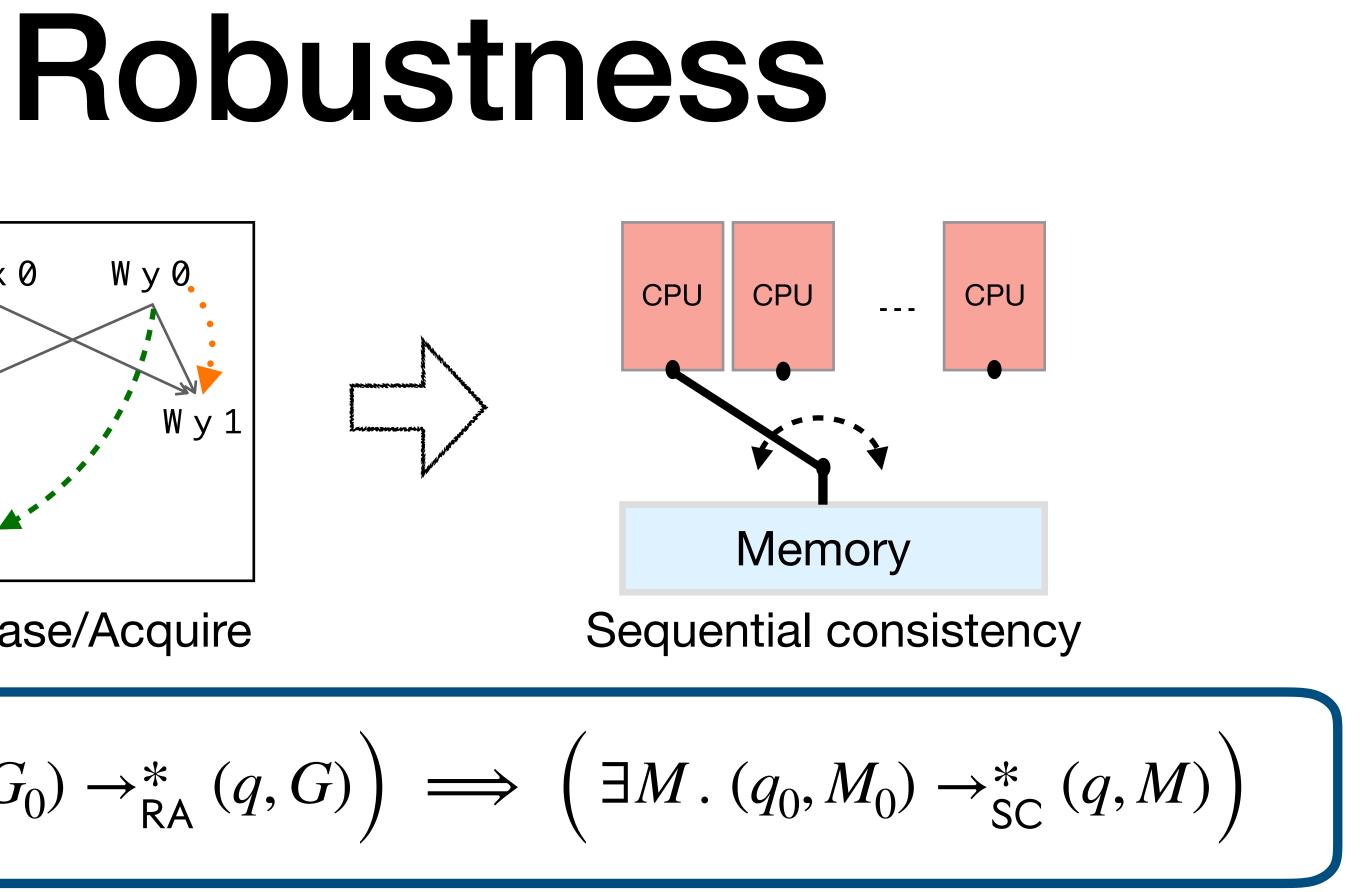


Release/Acquire

$$\forall q \, \left(\, \exists G \, \left(\, q_0, G_0 \right) \to_{\mathsf{RA}}^* \left(q, G \right) \right)$$

Bad news...

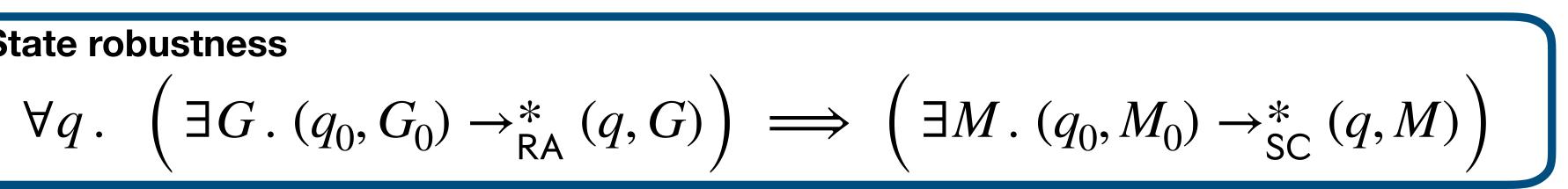
- Reduction from state reachability [Bouajjani, Derevenetc, Meyer ESOP'13]



• State-reachability for Release/Acquire is undecidable! [Abdulla, Arora, Atig, Krishna PLDI 19]

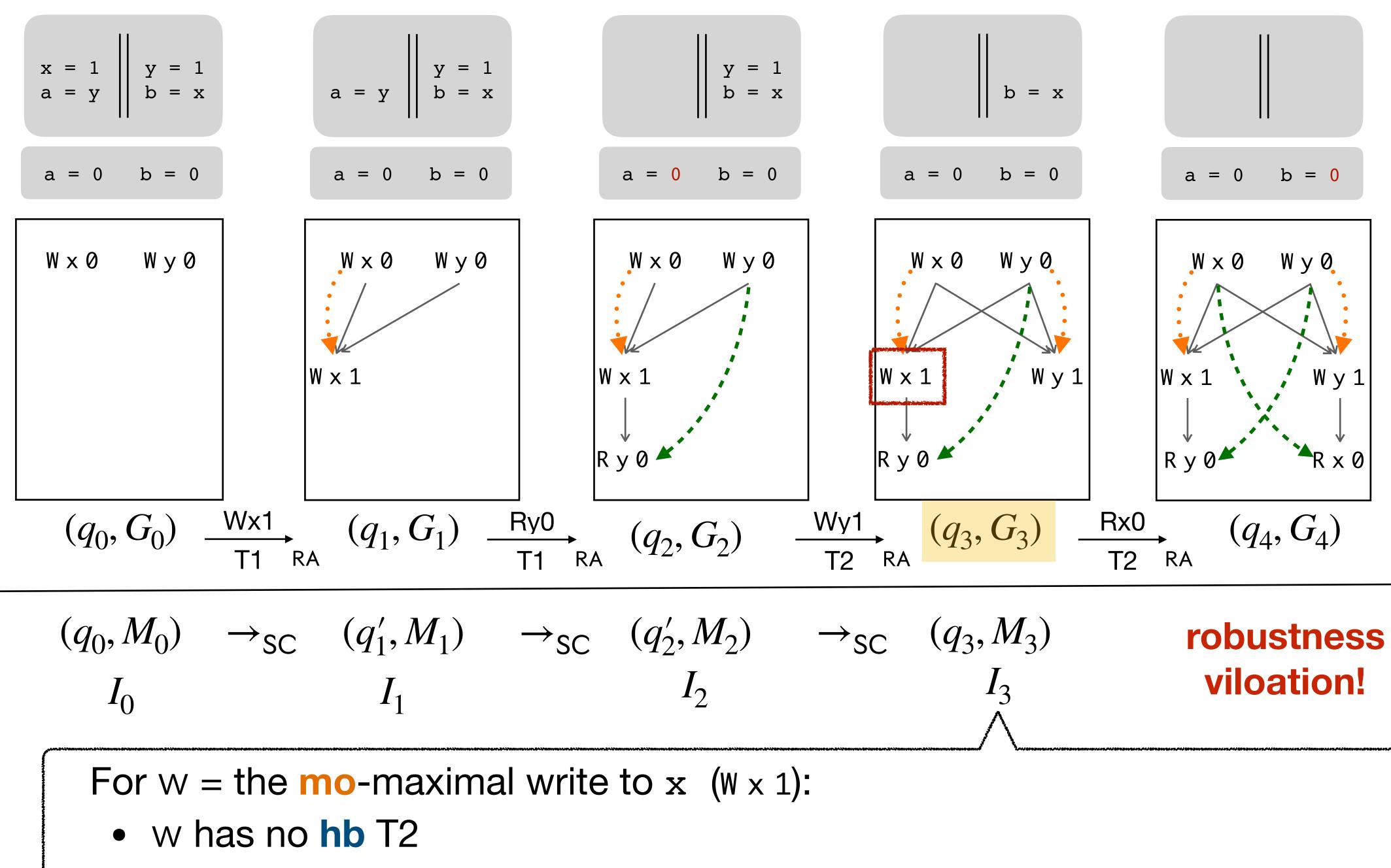
Execution-graph robustness hb \cup **mo** can be linearized to an execution order of an SC-run $\forall q, G \colon (q_0, G_0) \rightarrow_{\mathsf{RA}}^* (q, G) \implies G$ describes an SC-history

State robustness



Reduction to *reachability* under *an instrumented* SC semantics allowed by SC disallowed by SC can take an RA-step to a non-SC execution graph robustness I_2 I_n instrumentation

Execution-graph robustness against Release/Acquire is decidable and **PSPACE-complete**. a "minimal" robustness violation: $(q_0, G_0) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_{n+1}, G_{n+1}) \ll (q_0, G_0) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_{n+1}, G_{n+1}) \ll (q_0, G_0) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_{n+1}, G_{n+1}) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_{n+1}, G_{n+1}) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_n, G_n) \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_1, G_1) \rightarrow_{\mathsf{RA}} (q_1, G_2) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} \dots \rightarrow_{\mathsf{RA}} (q_1, G_2) \rightarrow_{\mathsf{RA}} (q_1, G_2) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} (q_1, G_2) \rightarrow_{\mathsf{RA}} (q_2, G_2) \rightarrow_{\mathsf{RA}} (q_2,$ $(q_0, M_0) \rightarrow_{\mathsf{SC}} (q'_1, M_1) \rightarrow_{\mathsf{SC}} (q'_2, M_2) \rightarrow_{\mathsf{SC}} \dots \rightarrow_{\mathsf{SC}} (q_n, M_n)$ I_0

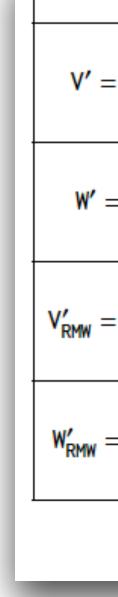


• Every SC-run producing G_3 executes w before the current last event of T2

Instrumented SC Semantics

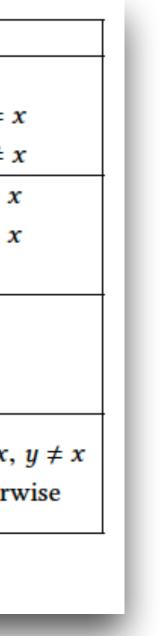
	$\langle \tau, W(x, v) \rangle$ or $\langle \tau, RMW(x, v_{R}, v_{W}) \rangle$	$\langle \tau, R(x, v) \rangle$
$V'_{SC} = \lambda \pi$.	$\begin{cases} V_{SC}(\tau) \cup M_{SC}(x) & \pi = \tau \\ V_{SC}(\pi) \setminus \{x\} & \pi \neq \tau \end{cases}$	$\begin{cases} V_{\mathrm{SC}}(\tau) \cup W_{\mathrm{SC}}(x) & \pi = \tau \\ V_{\mathrm{SC}}(\pi) & \pi \neq \tau \end{cases}$
$M'_{SC} = \lambda y.$	$\begin{cases} M_{\mathrm{SC}}(x) \cup V_{\mathrm{SC}}(\tau) & y = x \\ M_{\mathrm{SC}}(y) \setminus \{x\} & y \neq x \end{cases}$	$\begin{cases} M_{\mathrm{SC}}(x) \cup V_{\mathrm{SC}}(\tau) & y = x \\ M_{\mathrm{SC}}(y) & y \neq x \end{cases}$
$W'_{SC} = \lambda y.$	$\begin{cases} M_{\mathrm{SC}}(x) \cup V_{\mathrm{SC}}(\tau) & y = x \\ W_{\mathrm{SC}}(y) \setminus \{x\} & y \neq x \end{cases}$	$W_{SC}(y)$

Figure 5. Maintaining V_{SC}, M_{SC} and W_{SC} in SCM transitions.



	$\langle \tau, W(x, v) \rangle$ where $v_{R} = M(x)$	$\langle \tau, R(x, v) \rangle$	$\langle \tau, RMW(x, v_{R}, v_{W}) \rangle$
$= \lambda \pi, y.$	$\begin{cases} \emptyset & \pi = \tau, \ y = x \\ \forall(\pi)(x) \cup \{v_{R}\} & \pi \neq \tau, \ y = x \\ \forall(\pi)(y) & y \neq x \end{cases}$	$\begin{cases} V(\tau)(y) \cap W(x)(y) & \pi = \tau \\ V(\pi)(y) & \pi \neq \tau \end{cases}$	$\begin{cases} V(\tau)(y) \cap W(x)(y) & \pi = \tau \\ V(\pi)(x) \cup \{\upsilon_{R}\} & \pi \neq \tau, \ y = z \\ V(\pi)(y) & \pi \neq \tau, \ y \neq z \end{cases}$
$= \lambda z, y.$	$\begin{cases} V(\tau)(y) & z = x, \ y \neq x \\ W(z)(x) \cup \{\upsilon_{R}\} & z \neq x, \ y = x \\ W(z)(y) & \text{otherwise} \end{cases}$	W(z)(y)	$\begin{cases} W(x)(y) \cap V(\tau)(y) & z = x, \ y \neq x \\ W(z)(x) \cup \{\upsilon_{R}\} & z \neq x, \ y = x \\ W(z)(y) & \text{otherwise} \end{cases}$
$= \lambda \pi, y.$	$\begin{cases} \emptyset & \pi = \tau, \ y = x \\ V_{RMW}(\pi)(x) \cup \{\upsilon_{R}\} & \pi \neq \tau, \ y = x \\ V_{RMW}(\pi)(y) & y \neq x \end{cases}$	$\begin{cases} V_{\rm RMW}(\tau)(y) \\ V_{\rm RMW}(\pi)(y) \end{cases}$	$y) \cap W_{RMW}(x)(y) \pi = \tau$ $y) \qquad \pi \neq \tau$
$= \lambda z, y.$	$\begin{cases} V_{RMW}(\tau)(y) & z = x, \ y \neq x \\ W_{RMW}(z)(x) \cup \{\upsilon_{R}\} & z \neq x, \ y = x \\ W_{RMW}(z)(y) & \text{otherwise} \end{cases}$	$W_{RMW}(z)(y)$	$\begin{cases} W_{RMW}(x)(y) \cap V_{RMW}(\tau)(y) & z = x, \\ W_{RMW}(z)(y) & \text{otherw} \end{cases}$

Figure 6. Maintaining V, W, V_{RMW}, and W_{RMW} in SCM transitions.



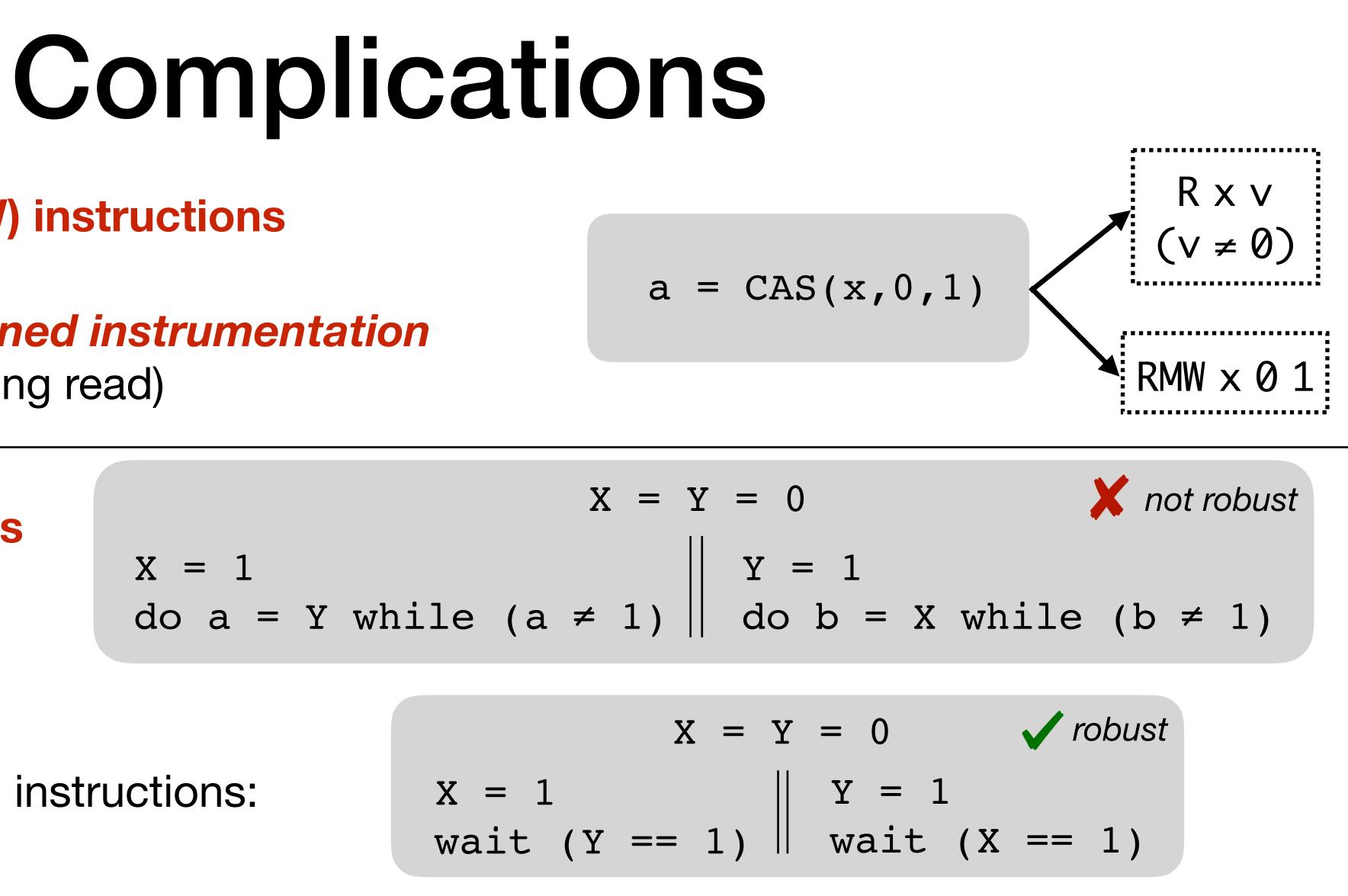
Read-modify-write (RMW) instructions

require much more *refined instrumentation* (depends on values being read)

Masking benign violations

masked using blocking instructions:

• Sequentially consistent fences



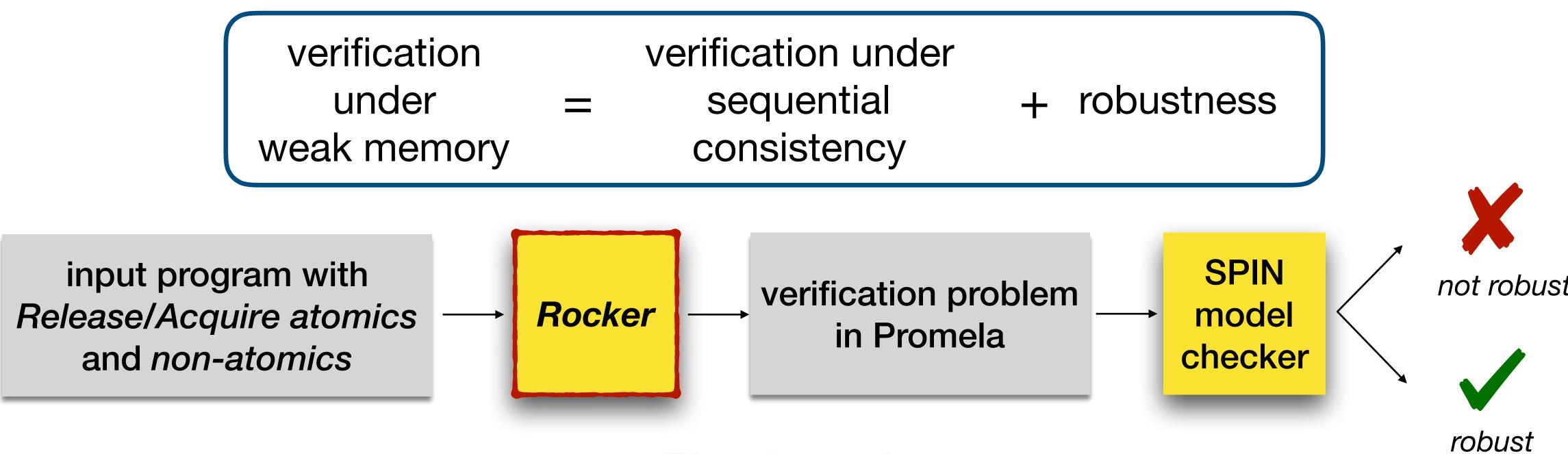
modelled as RMWs

Evaluation								
number of threads		number of lines	robust?		1	obustness mentation		robustness against x86-TSO
				T :	SC	Trenche	er (TSO)	
	# T	LoC	Result	Time (sec)	(sec)	Result	Time (sec))
spin-lock	2	34	 	1.6	1.2	 	5.4	
seq-lock	4	49	 	20.7	3.4	✓	8.9	
Peterson	2	28	X	2.5	1.2	×	5.6	
Peterson for x86-TSO	2	30	X	3.3	1.3	\checkmark	5.6	
Peterson - Dmitriy	2	36		4.3	1.2	\checkmark	5.5	
Peterson - Bartosz	2	28	X	3.4	1.1	X	5.6	_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RCU	4	74		67.6	2.2	X *	-	requires
RCU (offline)	3	215		137.9	18.3	× *	-	instructions

Summary

- We developed a sound and precise reduction from execution-graph robustness against Release/Acquire semantics to a reachability problem under SC.
- Execution-graph robustness against Release/Acquire is PSPACE-complete.
- We **implemented** the reduction and verified several challenging algorithms, demonstrating in particular that execution-graph robustness is not overly strong.

verification		verifi
under	=	S
weak memory		CC



Thank you!

state robustness	execution graph robustness