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Background

Sequent calculi and their natural extensions (as many-sided sequents
and hypersequents) are a prominent proof-theoretic framework.

Suitable for a variety of logics:

Classical logic, intuitionistic logic
Modal logics, intermediate logics, bi-intuitionistic logic
Many-valued logics, fuzzy logics
Paraconsistent logics
Substructural logics, relevance logics

Provide an “algorithmic presentation” of a logic, useful for:

working with the logic
studying its properties (decidability, interpolation, Herbrand theorem)



Two-Sided Sequent Calculi

Proof systems that manipulate sequents rather than formulas

Sequents are objects of the form Γ⇒ ∆, where Γ and ∆ are finite
sequences/multisets/sets of formulas

Semantic intuition:

A1, . . . ,An ⇒ B1, . . . ,Bm ! A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨ Bm

Logics can be obtained by:

A follows from T iff { ⇒ B | B ∈ T } ` ⇒ A



The calculus LK [Gentzen 1934]

Identity Axiom and Cut:

(id)
Γ,A⇒ A,∆

(cut)
Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

Structural Rules:

(W ⇒)
Γ⇒ ∆

Γ,A⇒ ∆
(⇒W )

Γ⇒ ∆

Γ⇒ A,∆

Logical Rules:

(¬ ⇒)
Γ⇒ A,∆

Γ,¬A⇒ ∆
(⇒ ¬)

Γ,A⇒ ∆

Γ⇒ ¬A,∆

(∧ ⇒)
Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆
(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

(⊃ ⇒)
Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆
(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆



Maehara’s Multiple-Conclusion LJ

Identity Axiom and Cut:

(id)
Γ,A⇒ A,∆

(cut)
Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

Structural Rules:

(W ⇒)
Γ⇒ ∆

Γ,A⇒ ∆
(⇒W )

Γ⇒ ∆

Γ⇒ A,∆

Logical Rules:

(¬ ⇒)
Γ⇒ A,∆

Γ,¬A⇒ ∆
(⇒ ¬)

Γ,A⇒
Γ⇒ ¬A

(∧ ⇒)
Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆
(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

(⊃ ⇒)
Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆
(⇒⊃)

Γ,A⇒ B

Γ⇒ A ⊃ B



Some Useful Properties of Sequent Calculi

Cut-admissibility

If ` Γ⇒ ∆ then there is a cut-free proof of Γ⇒ ∆

Analyticity

If Ω ` Γ⇒ ∆ then there is a proof of Γ⇒ ∆ from Ω using only the
“syntactic material” inside Ω and Γ⇒ ∆

Semantics

A set of models for which the sequent calculus is sound and complete

Decidability

Given Ω, Γ⇒ ∆ it is decidable whether Ω ` Γ⇒ ∆ or not



Motivation For This Work

Gentzen calculi for non-classical logics arise very often.

A variety of works is devoted to study particular calculi for specific
logics, proving:

Soundness and completeness with respect to the intended semantics.
Cut-elimination and/or analyticity.

Traditional syntactic methods to prove cut-elimination are tedious and
error prone.

They sometimes fail, e.g. for second-order logics.

The intimate relations between proof-theory and semantics are still
mysterious.



Main Contributions of the Thesis

We study several general families of Gentzen-type calculi, and obtain:

General and modular methods to extract semantics from calculi
Criteria for the effectiveness of the semantics and general decidability
results

Semantic characterizations of proof-theoretic properties.

This is done on the propositional level.

In addition:

New semantic proof of cut-admissibility in the hypersequent calculus for
first-order Gödel logic.
Completeness and cut-admissibility in the hypersequent calculus for
second-order Gödel logic.



The Rest of this Talk

High-level overview of

the different families of calculi included in this investigation

the main contributions for each of them

Pure many-sided sequent calculi

Canonical many-sided sequent calculi

Quasi-canonical many-sided sequent calculi

Basic sequent calculi

Canonical hypersequent calculi



Pure Calculi

Pure logical rules are rules that allow any context.

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆
but not

Γ,A⇒ B

Γ⇒ A ⊃ B

Three-valued Lukasiewicz’s Implication

Γ⇒ ∆⇒ A,Θ B, Γ⇒ ∆⇒ Θ

A ⊃ B, Γ⇒ ∆⇒ Θ

Γ⇒ A,∆⇒ A,Θ Γ⇒ A,B,∆⇒ Θ B, Γ⇒ ∆⇒ A,Θ

Γ⇒ A ⊃ B,∆⇒ Θ

A, Γ⇒ A,∆⇒ B,Θ A, Γ⇒ B,∆⇒ B,Θ

Γ⇒ ∆⇒ A ⊃ B,Θ



Pure Calculi

Labelled presentation of many-sided sequents

A finite set of labels £ = {�,�,�,�, ...}
Labelled formula:= � : A

Sequent:= a finite set of labelled formulas

Two-sided sequents £ = {�,�}

p1, p1 ⊃ p2 ⇒ p2 ! {� : p1,� : p1 ⊃ p2,� : p2}

Γ,A⇒ ∆ Γ⇒ A,∆
Γ⇒ ∆

!
{� : A} ∪ s {� : A} ∪ s

s

Γ,A⇒ A,∆
! {� : A,� : A} ∪ s

Γ,A⇒ ∆
Γ⇒ ¬A,∆

!
{� : A} ∪ s
{� : ¬A} ∪ s



Pure Calculi

1 All standard structural rules
(exchange, contraction, weakening)

2 A finite set of primitive rules

3 A finite set of pure logical rules

Primitive Rules

All the premises and the conclusion have the form {�1 : A, . . . ,�n : A} ∪ s
for some �1, . . . ,�n ∈ £.

E.g.

{� : A} ∪ s {� : A} ∪ s

{� : A,� : A} ∪ s



Pure Calculi

Pure Logical Rules

c1 ∪ s ... cn ∪ s

c ∪ s

for some sequent schemes c1, . . . , cn, c involving at least one connective

Example (Sequent Calculus for C1 [Avron, Konikowska, Zamansky ’12])

Several rules involve negation:

{� : A} ∪ s

{� : ¬A} ∪ s

{� : A} ∪ s

{� : ¬¬A} ∪ s

{� : A} ∪ s {� : ¬A} ∪ s

{� : ¬(A ∧ ¬A)} ∪ s

{� : ¬A} ∪ s {� : ¬B} ∪ s

{� : ¬(A ∧ B)} ∪ s



Semantics for Pure Calculi

Many-Valued System

Set of truth values + semantic conditions on valuations

Example (A Two-valued System)

V = {0, 1}
1 If v(A) = 0 then v(¬¬A) = 0

2 If v(A) = 1 then v(¬¬A) = 1



Semantics for Pure Calculi

Truth values are sets of labels: V ⊆ P(£)

The set V is determined according to the primitive rules

A valuation v : FrmL → V is a model of � : A if � ∈ v(A)

v is a model of a sequent s if it is a model of some � : A in s

Example (The Case of Two-sided Calculi)

(id) {� : A,� : A} ∪ s
(cut)

{� : A} ∪ s {� : A} ∪ s

s

with (cut) without (cut)

with (id) V = {{�}, {�}} V = {{�}, {�}, {�,�}}
without (id) V = {∅, {�}, {�}} V = {∅, {�}, {�}, {�,�}}



Semantics for Pure Calculi

Example (Sequent Calculus for C1)

{� : A} ∪ s

{� : ¬A} ∪ s

{� : A} ∪ s

{� : ¬¬A} ∪ s

{� : A} ∪ s {� : ¬A} ∪ s

{� : ¬(A ∧ ¬A)} ∪ s

{� : ¬A} ∪ s {� : ¬B} ∪ s

{� : ¬(A ∧ B)} ∪ s

Corresponding semantic conditions:

1 If � ∈ v(A) then � ∈ v(¬A).

2 If � ∈ v(A) then � ∈ v(¬¬A).

3 If � ∈ v(A) and � ∈ v(¬A) then � ∈ v(¬(A ∧ ¬A)).

4 If � ∈ v(¬A) and � ∈ v(¬B) then � ∈ v(¬(A ∧ B))).

This semantics is non-deterministic.



Semantics for Pure Calculi

Theorem

Every pure calculus can be characterized by a many-valued system (with at
most 2|£| truth values).



Analyticity

Notation: Ω `F s iff there exists an F-derivation of s from Ω (i.e. a
derivation that consists only of formulas from F).

Analyticity:= Ω ` s =⇒ Ω `sub[Ω,s] s

Observation

F-derivations correspond to partial valuations whose domain is F .

Theorem

A calculus is analytic iff every legal partial valuation whose domain is closed
under subformulas can be extended to a full valuation.

This property is called semantic analyticity.



Cut-admissibility

Cuts are special primitive rules.

They forbid some truth values.

Example (Semantic Effect of Cuts)

{� : A} ∪ s {� : A} ∪ s {� : A} ∪ s
s

{�,�,�} 6⊆ X for every truth value X ∈ V.

Semantic Equivalent of Cut-Admissibility

If there is a counter model then there is a counter model without the
“forbidden truth values”.



Effectiveness?

Drawback: the price to pay for the high generality is the fact that
semantics is not always effective.

Semantic Decision Procedure

To decide whether s is valid, check one-by-one all legal partial valuations
defined on the subformulas of s, and look for one which is not a model of s.

Hidden assumption: All legal partial valuations can be extended to full ones
(semantic analyticity).

Corollary

Semantic analyticity =⇒ Effective semantics



Example: Generalized Semantic and Syntactic Analyticity

Example (Sequent Calculus for C1)

The many-valued system for C1 does not enjoy semantic analyticity.

V = {{�}, {�}}
If � ∈ v(A) then � ∈ v(¬A).
If � ∈ v(A) then � ∈ v(¬¬A).
If � ∈ v(A) and � ∈ v(¬A) then � ∈ v(¬(A ∧ ¬A)).
If � ∈ v(¬A) and � ∈ v(¬B) then � ∈ v(¬(A ∧ B))).

There is no way to assign a value to ¬¬p2 when:

v(p1) = v(p2) = v(¬¬p1) = {�}
v(¬p1) = v(¬p2) = v(¬p1 ∧ ¬p2) = v(¬(¬p1 ∧ ¬p2)) = {�}

However it enjoys nsub-analyticity:

nsub = (sub ∪ {〈¬Ai ,¬(A1 � A2)〉 | A1,A2 ∈ FrmL, � ∈ {∧,∨,⊃}, i = 1, 2})∗

Every partial valuation whose domain is closed under nsub can be
extended to a full one.
Effective semantics + Syntactic nsub-analyticity



Many-Sided Canonical Calculi

Pure calculi whose logical rules are canonical.

Example (Canonical Logical Rules [Avron, Lev ’05] [Avron, Zamansky ’09])

{� : A} ∪ s

{� : ¬A} ∪ s

{� : A,� : B} ∪ s {� : C} ∪ s

{� : ♥(A,B,C ),� : ♥(A,B,C )} ∪ s

but not:
{� : A} ∪ s {� : ¬A} ∪ s

{� : ¬(A ∧ ¬A)} ∪ s

{� : ¬A} ∪ s {� : ¬B} ∪ s

{� : ¬(A ∧ B)} ∪ s

This notion serves an old tradition in proof theory.

Our Contribution [Baaz, L, Zamansky IJCAR’12]

Many-sided canonical calculi can be characterized by partial
non-deterministic truth tables.

This semantics is always effective.

Analyticity and cut-admissibility are easily decided using the semantics.



Semantics Many-Sided Canonical Calculi

We represent the semantic conditions by non-deterministic truth tables.

The many-valued systems for canonical calculi correspond to the
Nmatrices of [Avron, Lev ’05].

Example (Primal Implication)

{� : A} ∪ s {� : B} ∪ s

{� : A ; B} ∪ s

{� : B} ∪ s

{� : A ; B} ∪ s

If � ∈ v(A) and � ∈ v(B) then � ∈ v(A ; B).

If � ∈ v(B) then � ∈ v(A ; B).

V = {{�}, {�}}
;̃ {�} {�}
{�} {{�}, {�}} {{�}}
{�} {{�}} {{�}}



Semantics Many-Sided Canonical Calculi

Non-determinism is a result of syntactic under-specification, or of
non-standard primitive rules.

Example (Ordinary Implication without (cut))

V = {{�}, {�}, {�,�}}

⊃̃ {�} {�} {�,�}
{�} {{�}, {�,�}} {{�}, {�,�}} {{�}, {�,�}}
{�} {{�}, {�,�}} {{�}, {�,�}} {{�,�}}
{�,�} {{�,�}} {{�}, {�,�}} {{�,�}}

New formulation of Girard’s three-valued logic and Schütte valuations.



“The Empty Set Problem” –
From Nmatrices to PNmatrices

V = {{�}, {�}} {� : B} ∪ s

{� : A � B} ∪ s

{� : A} ∪ s

{� : A � B} ∪ s

�̃ {�} {�}
{�} {{�}} {{�}, {�}}
{�} ∅ {{�}}

{�} and {�} cannot be used
by the same valuation.

We lose semantic analyticity.

Effectiveness is recovered using:

Theorem

Given a PNmatrix, it is decidable whether a legal partial valuation can be
extended to a full one or not.



Analyticity and Cut-admissibility

Theorem

The following are equivalent for every many-sided canonical calculus G:

There are no empty sets in the PNmatrix constructed for G.

G is analytic.

G enjoys a strong form of cut-admissibility.

Extends the result of [Avron,Lev ’05].



Quasi-Canonical Calculi

Example (BK - fundamental logic of formal inconsistency)

(∧⇒)
Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆
(⇒∧)

Γ⇒ ∆,A Γ⇒ ∆,B

Γ⇒ ∆,A ∧ B

(⊃⇒)
Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆
(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

(⇒ ¬)
Γ,A⇒ ∆

Γ⇒ ∆,¬A

(◦ ⇒)
Γ⇒ A,∆ Γ⇒ ¬A ,∆

Γ, ◦A⇒ ∆
(⇒ ◦)

Γ,A, ¬A ⇒ ∆

Γ⇒ ◦A,∆

(cut)
Γ,A⇒ ∆ Γ⇒ ∆,A

Γ⇒ ∆
(id)

Γ,A⇒ ∆,A
(weak)

Γ⇒ ∆

Γ, Γ′ ⇒ ∆,∆′



Quasi-Canonical Calculi

Example (BK - fundamental logic of formal inconsistency)

(� : ∧)
{� : A,� : B} ∪ s

{� : A ∧ B} ∪ s
(� : ∧)

{� : A} ∪ s {� : B} ∪ s

{� : A ∧ B} ∪ s

(� :⊃)
{� : A} ∪ s {� : B} ∪ s

{� : A ⊃ B} ∪ s
(� :⊃)

{� : A,� : B} ∪ s

{� : A ⊃ B} ∪ s

(� : ¬)
{� : A} ∪ s

{� : ¬A} ∪ s

(� : ◦) {� : A} ∪ s {� : ¬A} ∪ s

{� : ◦A} ∪ s
(� : ◦) {� : A,� : ¬A} ∪ s

{� : ◦A} ∪ s

(cut)
{� : A} ∪ s {� : A} ∪ s

s
(id)

{� : A,� : A} ∪ s
(weak)

s

s ∪ s ′



Quasi-Canonical Calculus → Canonical Calculus
[Baaz, L, Zamansky JAR’13]

Example (BK - fundamental logic of formal inconsistency)

Add two labels: �¬ and �¬.

{� : A} ∪ s {� : ¬A} ∪ s

{� : ◦A} ∪ s

{� : A,� : ¬A} ∪ s

{� : ◦A} ∪ s

⇓ ⇓
{� : A} ∪ s {�¬ : A} ∪ s

{� : ◦A} ∪ s

{� : A,�¬ : A} ∪ s

{� : ◦A} ∪ s

Add cut and axiom for the new labels:

{�¬ : A} ∪ s {�¬ : A} ∪ s

s {�¬ : A,�¬ : A} ∪ s

Add extra logical rules:

{�¬ : A} ∪ s

{� : ¬A} ∪ s

{�¬ : A} ∪ s

{� : ¬A} ∪ s



Quasi-Canonical Calculi

Now, we can use the previous method to obtain a PNmatrix for this
calculus, and use it in a decision procedure.

This translation is possible for calculi with logical rules of the form:

prem1 ... premm
conc

where:

conc has one of the following forms:

Γ, �(A1, . . . ,An)⇒ ∆
Γ⇒ �(A1, . . . ,An),∆
Γ, ? � (A1, . . . ,An)⇒ ∆ for some unary connective ?
Γ⇒ ? � (A1, . . . ,An),∆ for some unary connective ?.

Each premi has the form: Γ,Π⇒ Σ,∆ where Π and Σ consist of Ai ’s
and formulas of the form ?Ai for some unary connective ?.



Non-pure Sequent Calculi
[L, Avron TOCL’13]

Various well-known calculi for important logics employ non-pure rules

Γ,A⇒ B

Γ⇒ A ⊃ B

Γ⇒ A

2Γ⇒ 2A

Γ1,2Γ2 ⇒ A

2Γ1,2Γ2 ⇒ 2A

We introduce and study basic sequent systems – a general family of
(two-sided) fully-structural propositional sequent calculi, that allow
rules of this kind.

This family includes analytic calculi for:

Intuitionistic logic, its dual, and bi-intuitionistic logic
Many important modal logic
Primal logic with quotations [Gurevich, Neeman ’11]



Main Results

A correspondence between basic calculi and Kripke semantics.

General soundness and completeness
In many cases, we can easily derive the usual semantics
Modularity: each ingredient of the calculus corresponds to a semantic
restriction
We may obtain non-deterministic semantics

Semantic characterizations of analyticity and cut-admissibility

Analyticity corresponds to extensions of partial Kripke models to full
ones
Cut-admissibility is characterized using three-valued non-deterministic
Kripke models



Example: Bi-intuitionistic Logic

Γ⇒ A,∆ Γ,B ⇒,∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B

Γ⇒ A ⊃ B

A⇒ B,∆

A−< B ⇒ ∆

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ⇒ A−< B,∆

Accessibility relations R,T ⊆W ×W such that R = T−1 and:

If v(w1,A) = t then v(w2,A) = t for every w2 such that w1Rw2.

If v(w1,A) = f then v(w2,A) = f for every w2 such that w1Tw2.

A Kripke valuation v : W × FrmL → {f,t} satisfying:

v(w1,A ⊃ B) = t if v(w2,A) = f or v(w2,B) = t for every w2 such that w1Rw2.

v(w ,A ⊃ B) = f if v(w ,A) = t and v(w ,B) = f.

v(w1,A−< B) = f if v(w2,A) = f or v(w2,B) = t for every w2 such that w1Tw2.

v(w ,A−< B) = t if v(w ,A) = t and v(w ,B) = f.



Example: Bi-intuitionistic Logic

Corollary

The above calculus for bi-intuitionistic logic is analytic.

Proof.

Proving that this calculus is analytic reduces to proving that any partial
Kripke model can be extended to a full one.
This can be easily done by structural induction.

Note that this calculus does not enjoy cut-admissibility.



Hypersequent Calculi

Gödel Logic

The truth values are [0, 1], where 1 is the only designated value.

⊥̃ = 1, >̃ = 1.

∧̃ = min, ∨̃ = max.

⊃̃ is Gödel implication: v(A ⊃ B) =

{
1 v(A) ≤ v(B)

v(B) otherwise

“Syntactically” Gödel logic is obtained by adding (Linearity) to an
axiomatization of intuitionistic logic.

(Linearity) (A ⊃ B) ∨ (B ⊃ A)



The Proof-Theory of Gödel Logic

Various sequent systems with ad-hoc logical rules of a nonstandard
form (e.g., [Sonobe ’75], [Corsi ’86], [Avellone et al. ’99], [Dyckhoff
’99], [Avron, Konikowska ’01], [Dyckhoff, Negri ’06]).

HG [Avron ’91] employs standard logical rules, obtained by lifting LJ
to the hypersequent level and adding the communication rule.

A hypersequent is a finite set of sequents denoted by:

Γ1 ⇒ Σ1 | Γ2 ⇒ Σ2 | . . . | Γn ⇒ Σn



The Calculus HG

Structural Rules:

(IW ⇒)
H | Γ⇒ Σ

H | Γ,A⇒ Σ
(⇒ IW )

H | Γ⇒
H | Γ⇒ A

(EW )
H

H | Γ⇒ Σ

(com)
H | Γ,∆⇒ Σ1 H | Γ,∆⇒ Σ2

H | Γ⇒ Σ1 | ∆⇒ Σ2

Identity Rules:

(id)
A⇒ A

(cut)
H | Γ⇒ A H | Γ,A⇒ Σ

H | Γ⇒ Σ

Logical Rules:

(⇒⊃)
H | Γ,A⇒ B

H | Γ⇒ A ⊃ B
(⊃⇒)

H | Γ⇒ A H | Γ,B ⇒ Σ

H | Γ,A ⊃ B ⇒ Σ

(⇒ ∧)
H | Γ⇒ A H | Γ⇒ B

H | Γ⇒ A ∧ B
(∧ ⇒)

H | Γ,A,B ⇒ Σ

H | Γ,A ∧ B ⇒ Σ



Semantic Investigation of Hypersequent Gödel calculi

We studied hypersequent calculi with (com) and arbitrary canonical rules.

Example (And/Or)

H | Γ⇒ A H | Γ⇒ B

H | Γ⇒ A∧∨B
H | Γ,A⇒ E H | Γ,B ⇒ E

H | Γ,A∧∨B ⇒ E

v(A∧∨B) ∈ [min(v(A), v(B)),max(v(A), v(B))]

Main idea for Characterizing Cut-Admissibility

When (cut) is not available, two truth values are assigned for each formula:
one for its “left occurrences” and one for its “right occurrences”.

(id) v left(A) ≤ v right(A)

(cut) v left(A) ≥ v right(A)



First-Order and Second-Order Gödel Logic

∀ and ∃ are interpreted as inf and sup.

The rules for the quantifiers are the usual hypersequential versions of
the classical rules.

Our contribution

A semantic proof of cut-admissibility in HIF, the extension of HG with
rules for first-order quantifiers

Proved syntactically in [Baaz,Zach ’00]

Cut-admissibility for HIF2, the extension of HIF with rules for
second-order quantifiers

Usual syntactic arguments fail



Conclusions

We obtained new insights into the relations between semantics and
proof-theory, in particular:

Semantic understanding of crucial proof-theoretic properties
Many-valued non-deterministic semantics is essential for characterizing
abstract calculi

We developed semantic toolbox for Gentzen-type calculi

Useful for studying particular calculi
Intended to complement the usual proof-theoretic methods

Thank you!


