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Background

@ Sequent calculi and their natural extensions (as many-sided sequents
and hypersequents) are a prominent proof-theoretic framework.

@ Suitable for a variety of logics:
o Classical logic, intuitionistic logic
Modal logics, intermediate logics, bi-intuitionistic logic
Many-valued logics, fuzzy logics
Paraconsistent logics
Substructural logics, relevance logics

@ Provide an “algorithmic presentation” of a logic, useful for:

e working with the logic
o studying its properties (decidability, interpolation, Herbrand theorem)



Two-Sided Sequent Calculi

@ Proof systems that manipulate sequents rather than formulas

@ Sequents are objects of the form I = A, where I and A are finite
sequences/multisets/sets of formulas

@ Semantic intuition:

AL, Ay =Bi,....Bm ~ ALA...ANADBIV...V Bn

@ Logics can be obtained by:

A follows from T iff {=B|BeT}F=A



The calculus LK [Gentzen 1934]

Identity Axiom and Cut:
NMA=A T=AA

() T 25an () r=A
Structural Rules:
= A M= A
W=) 5282 W 7z2a
Logical Rules:
M= AA NNA=A

C=) Fa=a &7 Ts-an
AB=A r=AA [=BA

=) T are=a &N = AAB,A
5 =) r=AA IB=A (=5) A=B,A
ASB=A F=A>B,A



Maehara's Multiple-Conclusion LJ

Identity Axiom and Cut:
NMA=A T=AA

() T 25an () r=A
Structural Rules:
= A M= A
W=) 5282 W 7z2a
Logical Rules:
M= AA MNA=

C=) Fa=a &) Tt

(A=) NnAB=A (= A) r=AA T=BA
MNMAAB= A r=AABA
(> =) rN=AA IILB=A (=5) NnNA=2_B
NMADB=A r=AD>B



Some Useful Properties of Sequent Calculi

Cut-admissibility
If =T = A then there is a cut-free proof of [ = A

Analyticity
If QT = A then there is a proof of ' = A from Q using only the
“syntactic material” inside Q and ' = A

Semantics
A set of models for which the sequent calculus is sound and complete

Decidability
Given Q,I = A it is decidable whether Q T = A or not




Motivation For This Work

Gentzen calculi for non-classical logics arise very often.

A variety of works is devoted to study particular calculi for specific
logics, proving:
e Soundness and completeness with respect to the intended semantics.
o Cut-elimination and/or analyticity.

Traditional syntactic methods to prove cut-elimination are tedious and
error prone.
e They sometimes fail, e.g. for second-order logics.

The intimate relations between proof-theory and semantics are still
mysterious.



Main Contributions of the Thesis

@ We study several general families of Gentzen-type calculi, and obtain:

e General and modular methods to extract semantics from calculi
o Criteria for the effectiveness of the semantics and general decidability
results

@ Semantic characterizations of proof-theoretic properties.

@ This is done on the propositional level.
o In addition:
e New semantic proof of cut-admissibility in the hypersequent calculus for
first-order Godel logic.
o Completeness and cut-admissibility in the hypersequent calculus for
second-order Godel logic.



The Rest of this Talk

High-level overview of

o the different families of calculi included in this investigation

@ the main contributions for each of them

Pure many-sided sequent calculi

Canonical many-sided sequent calculi

o
o
@ Quasi-canonical many-sided sequent calculi
@ Basic sequent calculi

°

Canonical hypersequent calculi



Pure Calculi

Pure logical rules are rules that allow any context.

A=BA  TA=B
r=A>BA """ T=A5B

Three-valued Lukasiewicz's Implication
rI=A=A0 BlI=A=0
ADB,IT=A=0

r=AA=A0 IT=ABA=0 BIlI=A=A0
r==A>B,A=0

A=A A=B60 Al=BA=B,0
r=A=A>B,0




Pure Calculi

Labelled presentation of many-sided sequents
@ A finite set of labels L={W,0 " N1 .}
o Labelled formula:=0J: A

@ Sequent:= a finite set of labelled formulas

Two-sided sequents £={m W}

p1,p1 D p2 = p2 v {B:p,W:p; DpM:py}
A=A T=AA _ {m:AjlUs {E:A}Us
M= A s
NLA=AA - (W AW A} Us
A=A {M:A}Us
PPVNNY

M= -AA {.:—\A}US



Pure Calculi

@ All standard structural rules
(exchange, contraction, weakening)

@ A finite set of primitive rules

© A finite set of pure logical rules

Primitive Rules
All the premises and the conclusion have the form {{J; : A,...,0,: A} Us

for some [y,...,0, € £.

Eg.

{M:AlUs {W:A}Us
{" AN A}Us




Pure Calculi

Pure Logical Rules

cagUs ... c¢c,Us
cUs

for some sequent schemes ¢y, ..., ¢y, € involving at least one connective

Example (Sequent Calculus for C; [Avron, Konikowska, Zamansky '12])

Several rules involve negation:

{M:A}Us {M:A}Us
{W:-A}Us {W:——A}Us

{Wm:AlUs {B:-A}Us {W:-A}Us {W:-B}Us
{W:-(AN-A)}Us {Wm:-(AANB)}Us




Semantics for Pure Calculi

Many-Valued System
Set of truth values + semantic conditions on valuations

Example (A Two-valued System)
Y ={0,1}
@ If v(A) =0 then v(——A) =0
@ If v(A) =1 then v(——A) =1




Semantics for Pure Calculi

@ Truth values are sets of labels: V C P(£)

@ The set V is determined according to the primitive rules

e A valuation v : Frmgz — Vis a model of O : Aif O € v(A)

@ v is a model of a sequent s if it is a model of some (J: Ains

Example (The Case of Two-sided Calculi)

. {WM:AlUs {E:A}Us
() {H:AMN:A}Us &) s

with (cut) without (cut)

with (id) | V={{m} {m}} | V= {{m} {m} {W W}}
without (id) | V = {0, {m},{m}} | V= {0, {m}, {m} {m W}}




Semantics for Pure Calculi

Example (Sequent Calculus for Cy)
{M:A}Us {W:A}Us

{W:-A}Us {W:-—A}Us
{Wm:A}Us {B:-A}Us {W:-A}Us {M:-B}Us
{W:-(AN-A)}Us {Mm:-(AAB)}Us
Corresponding semantic conditions:

O If M c v(A) then B € v(—A).

@ If M € v(A) then W € v(——A).

© If e v(A) and B € v(—A) then B € v(=(A A —-A)).
Q If M e v(—A) and B € v(—B) then B € v(—(A A B))).

This semantics is non-deterministic.



Semantics for Pure Calculi

Theorem

Every pure calculus can be characterized by a many-valued system (with at
most 214 truth values).



Analyticity

Notation: Q 7 s iff there exists an F-derivation of s from Q (i.e. a
derivation that consists only of formulas from F).

Analyticity:= QFs — Q |-sublQ;s] ¢

Observation

JF-derivations correspond to partial valuations whose domain is F.

Theorem

A calculus is analytic iff every legal partial valuation whose domain is closed
under subformulas can be extended to a full valuation.

This property is called semantic analyticity.



Cut-admissibility

o Cuts are special primitive rules.
@ They forbid some truth values.
Example (Semantic Effect of Cuts)

{Wm:AtUus {B:A}Us { :A}Us

{M M, } € X for every truth value X € V.

Semantic Equivalent of Cut-Admissibility

If there is a counter model then there is a counter model without the
“forbidden truth values”.



Effectiveness?

Drawback: the price to pay for the high generality is the fact that
semantics is not always effective.

Semantic Decision Procedure

To decide whether s is valid, check one-by-one all legal partial valuations
defined on the subformulas of s, and look for one which is not a model of s.

Hidden assumption: All legal partial valuations can be extended to full ones
(semantic analyticity).

Corollary

Semantic analyticity =—> Effective semantics



Example: Generalized Semantic and Syntactic Analyticity

Example (Sequent Calculus for Cy)

@ The many-valued system for C; does not enjoy semantic analyticity.
V= {{m}, {m}}

o If M € v(A) then B € v(—A).

o If M € v(A) then B € v(——A).

o If M € v(A) and B € v(—A) then B € v(=(A A —A)).

o If M € v(—A) and B € v(—B) then B € v(=(A A B))).

There is no way to assign a value to =—py when:

o v(p1) = v(p2) = v(=—p1) = {M}
o v(=p1) = v(=p2) = v(=p1 A =p2) = v(=(=p1 A —p2)) = {1}

@ However it enjoys nsub-analyticity:
nsub = (subU {{=A;,~(A1 0 A2)) | A1, A> € Frmz,0 € {A,V,D},i=1,2})"
o Every partial valuation whose domain is closed under nsub can be

extended to a full one.

o Effective semantics + Syntactic nsub-analyticity



Many-Sided Canonical Calculi

@ Pure calculi whose logical rules are canonical.

Example (Canonical Logical Rules [Avron, Lev '05] [Avron, Zamansky '09])

{W:A}Us {W:ANR:B}us { :C}Us

(M. -AlUs {W:O(AB,C),m:O(AB,C)JUs

{m:AtUs {W:-A}Us {W:-Alus {M:-B}Us
{W:—-(AN-A)}Us {W:-(AANB)}Us

but not:

@ This notion serves an old tradition in proof theory.

Our Contribution [Baaz, L, Zamansky 1JCAR'12]

@ Many-sided canonical calculi can be characterized by partial
non-deterministic truth tables.

@ This semantics is always effective.
@ Analyticity and cut-admissibility are easily decided using the semantics.



Semantics Many-Sided Canonical Calculi

@ We represent the semantic conditions by non-deterministic truth tables.

@ The many-valued systems for canonical calculi correspond to the
Nmatrices of [Avron, Lev '05].

Example (Primal Implication)

{W:AtUs {M:B}Us

{W:A~ B}Us o If M e v(A) and B € v(B) then B € v(A~ B).
(m:BlUs o If M € v(B) then B € v(A~ B).
{W:A~ B}Us
~ {m} {m}
V= {{m},{m}} {m} | {{m},{m}} {{m}}
{my | {{m}} {{m}}




Semantics Many-Sided Canonical Calculi

@ Non-determinism is a result of syntactic under-specification, or of
non-standard primitive rules.

Example (Ordinary Implication without (cut))

V={{m},{m},{m N}}
> | {m} | {m} | {(mm} |

D
(W} | {{m},{m M} | {{m} {W0E} | {{N) {68
(m} || {{m},{mm}} {{m} (W} {{N86)}

(m.m} | {{mm}} | {{m},{mE}| {{EE}}

New formulation of Girard's three-valued logic and Schiitte valuations.




“The Empty Set Problem” —

From Nmatrices to PNmatrices

— {W:B}Us {W:A}Us
V=1, | (M:AoBlUs (M:AoBlUs
S {m} {m} {M} and {M} cannot be used
{m} | {{m}} {{m}, {m}} by the same valuation.

{mp|] 0 {{m}}

@ We lose semantic analyticity.

o Effectiveness is recovered using:

Given a PNmatrix, it is decidable whether a legal partial valuation can be
extended to a full one or not.



Analyticity and Cut-admissibility

The following are equivalent for every many-sided canonical calculus G:
@ There are no empty sets in the PNmatrix constructed for G.

o G js analytic.
o G enjoys a strong form of cut-admissibility.

o Extends the result of [Avron,Lev '05].



Quasi-Canonical Calculi

Example (BK - fundamental logic of formal inconsistency)

(hey DAB=A on [=AAT=AB
NMAAB= A Fr=AAAB
(5=) Fr=AA INB=A (=>) NA= B, A
LA>DB=A Fr=A>B,A
(=) A=A
Fr= A A
Fr=AA = -A,A MA -A = A
(0=) FoA= A (=°) F=oan
MNMA=A T=AA . = A
(cut) =4 @) ta5aa "N Froan



Quasi-Canonical Calculi

Example (BK - fundamental logic of formal inconsistency)

{W:AMN:B}Us {W:Alus {M:B}Us

@A) @ ArBIUs (|:1) {W:ANB}US

mo) RS o) A
i) S

it S

) {H:Alus {E:A}Us

(cut s (@) W Am AU

K =
(weak) Ue



Quasi-Canonical Calculus — Canonical Calculus
[Baaz, L, Zamansky JAR'13]

Example (BK - fundamental logic of formal inconsistency)

@ Add two labels: B_, and B_.

° {W:AlUs {B:-AlUs {H:AN:-A}Us
{M:0A}Us {W:0A}Us
I I
{W:AtUs {B.:AtUs {E:AMN_:A}Us
{M:0A}Us {W:0A}Us

@ Add cut and axiom for the new labels:

{W-:A}Us {E-:A}Us
s {H_ AN :A}Us

@ Add extra logical rules:

{W-:A}Us {E-:A}Us
{W:-AlUus {M:-A}Us




Quasi-Canonical Calculi

@ Now, we can use the previous method to obtain a PNmatrix for this
calculus, and use it in a decision procedure.

This translation is possible for calculi with logical rules of the form:

premy ... premp,
conc

where:
@ conc has one of the following forms:

o [Lo(AL,...,A) = A
o = o(Ar,..., A, A
o I xo(Ay,...,A,) = A for some unary connective x
o = xo(Ay,...,An), A for some unary connective *.

e Each prem; has the form: ;1 = ¥, A where I1 and ¥ consist of A;’s
and formulas of the form xA; for some unary connective *.



Non-pure Sequent Calculi

[L, Avron TOCL'13]

Various well-known calculi for important logics employ non-pure rules

A= B Fr=A M,or,=A
= ADB ol = oA ol,, 0, = 0A

@ We introduce and study basic sequent systems — a general family of
(two-sided) fully-structural propositional sequent calculi, that allow
rules of this kind.

@ This family includes analytic calculi for:

o Intuitionistic logic, its dual, and bi-intuitionistic logic
e Many important modal logic
o Primal logic with quotations [Gurevich, Neeman '11]



Main Results

@ A correspondence between basic calculi and Kripke semantics.
o General soundness and completeness
e In many cases, we can easily derive the usual semantics

e Modularity: each ingredient of the calculus corresponds to a semantic
restriction

We may obtain non-deterministic semantics

@ Semantic characterizations of analyticity and cut-admissibility

o Analyticity corresponds to extensions of partial Kripke models to full
ones

o Cut-admissibility is characterized using three-valued non-deterministic
Kripke models



Example: Bi-intuitionistic Logic

r=AA [,B=A NA=B
MNADB=A = ADB

A= B,A = AA [LB=A
A< B=A = A<B,A

Accessibility relations R, T € W x W such that R = T~ and:

@ If v(wi, A) =T then v(w,, A) = T for every w, such that wi Rw,.

@ If v(wi, A) = F then v(ws, A) = F for every ws such that wy Tws.

A Kripke valuation v : W x Frm; — {F, T} satisfying:
@ v(wi,AD B)=Tif v(we,A) =F or v(wo, B) = T for every w, such that wiRws.

@ v(w,ADB)=Fif v(w,A) =T and v(w, B) =F.

@ v(wi,A—< B) =F if v(wr, A) = F or v(ws, B) = T for every w> such that wy Two.

@ v(w,A< B)=rTif v(w,A) =T and v(w, B) =F.



Example: Bi-intuitionistic Logic

Corollary

The above calculus for bi-intuitionistic logic is analytic.

Proof.

Proving that this calculus is analytic reduces to proving that any partial
Kripke model can be extended to a full one.

This can be easily done by structural induction. O

Note that this calculus does not enjoy cut-admissibility.



Hypersequent Calculi

Godel Logic
@ The truth values are [0, 1], where 1 is the only designated value.
o l=1T=1
@ A =min, V= max.

1 v(A) < v(B)

e D is Godel implication: v(A D B) = )
v(B) otherwise

“Syntactically” Godel logic is obtained by adding (Linearity) to an
axiomatization of intuitionistic logic.

(Linearity) (ADB)V(BDA)



The Proof-Theory of Godel Logic

@ Various sequent systems with ad-hoc logical rules of a nonstandard
form (e.g., [Sonobe '75], [Corsi '86], [Avellone et al. '99], [Dyckhoff
'99], [Avron, Konikowska '01], [Dyckhoff, Negri '06]).

@ HG [Avron '91] employs standard logical rules, obtained by lifting LJ
to the hypersequent level and adding the communication rule.

A hypersequent is a finite set of sequents denoted by:

I'1:>21|F2:>22|...|F,,:>Z,,



The Calculus HG

Structural Rules:

HIT=¥ H|T = H
W=) rra=s W Frr=a &) Frss
(com) MILA=® HILA=Y,
H|F$21|A:>ZZ
Identity Rules:
. HIT=A H|IA=X
() Z=7 () HIT=%
Logical Rules:
ooy _HINA=B (om) HMIT=A HITB=Y
HIT=A>B HIT,ASDB=x
HIT=A H|T=B H|T,AB=T%
(=) HIFT=AAB A=) HIrArBE=T



Semantic Investigation of Hypersequent Godel calculi

We studied hypersequent calculi with (com) and arbitrary canonical rules.

Example (And/Or)

HIT'=A H|IT=B H|TLA=E H|ILB=E

H|T = AXB H|T,AWB = E
v(AXB) € [min(v(A), v(B)), max(v(A), v(B))]

Main idea for Characterizing Cut-Admissibility

When (cut) is not available, two truth values are assigned for each formula:
one for its “left occurrences” and one for its “right occurrences”.

(Id) V/eft(A) < Vright(A)

(cut) Vleft(A) > Vright(A)



First-Order and Second-Order Godel Logic

@ V and d are interpreted as inf and sup.

@ The rules for the quantifiers are the usual hypersequential versions of
the classical rules.

Our contribution
@ A semantic proof of cut-admissibility in HIF, the extension of HG with
rules for first-order quantifiers
e Proved syntactically in [Baaz,Zach '00]
o Cut-admissibility for HIF?, the extension of HIF with rules for
second-order quantifiers
e Usual syntactic arguments fail



Conclusions

@ We obtained new insights into the relations between semantics and
proof-theory, in particular:
e Semantic understanding of crucial proof-theoretic properties

e Many-valued non-deterministic semantics is essential for characterizing
abstract calculi

@ We developed semantic toolbox for Gentzen-type calculi

o Useful for studying particular calculi
e Intended to complement the usual proof-theoretic methods

Thank you!



