
Owicki-Gries for Weak Memory Models

Ori Lahav

Max Planck Institute for Software Systems (MPI-SWS)

Joint work in progress with Viktor Vafeiadis



Weak Memory Models

Sequential consistency (a.k.a. “interleaving semantics”) is the
standard memory model for reasoning about concurrency.

However, in the presence of races, SC is invalidated by hardware
implementations and compiler optimizations.

Example (Store Buffering)

Initially x = y = 0.
x := 1
a := y

y := 1
b := x

This can return a = b = 0 (observed on x86/Power/ARM).

Weak memory models provide formal sound semantics for realistic
high-performance concurrency.



Our Work

Goals:

Verify concurrent programs under WM.

Investigate what program logics are sound under WM.

Contributions:

We show that the most basic technique, Owicki-Gries, is unsound for
WM (even without ghost variables and atomic blocks).

We identify a simple weakening of OG that is sound for the
Release/Acquire memory model.

We demonstrate the usefulness of this simple program logic.



C11 Memory Model

Introduced in the recent standard for C and C++ (ISO/IEC
14882:2011, ISO/IEC 9899:2011).

Formalized in [Batty et al., POPL’11].

Memory accesses are labeled with memory orders (e.g., SC,
Release/Acquire, Relaxed, Non-Atomic).

In this work we study the “Release/Acquire” fragment of C11.
(exhibits good balance between efficiency and sanity)



Release/Acquire Memory Model

Each program is associated with a set of graphs (called: executions).

An execution is consistent if it can be augmented with relations:
I reads-from: associates each read with a corresponding write
I memory-order: total order on all writes to the same location

such that happens-before = (program-order ∪ reads-from)∗ is acyclic

and none of the following occurs:

Wx , v

Wx , v ′

Wx , v Wx , v ′

Rx , v

Example (Store Buffering)

x = y = 0
x := 1
a := y

y := 1
b := x

[x = y = 0]

Wx , 1

Ry , vy

Wy , 1

Rx , vx

Wa, vy Wb, vx

[x = y = 0]

Wx , 1

Ry , 1

Wy , 1

Rx , 1

Wa, 1 Wb, 1

[x = y = 0]

Wx , 1

Ry , 0

Wy , 1

Rx , 0

Wa, 0 Wb, 0



Owicki-Gries Method (1976)

OG = Hoare logic + rule for parallel composition

{P1} c1 {Q1} {P2} c2 {Q2}
{P1} c1 {Q1} and {P2} c2 {Q2} are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Non-interference

R ∧ P ` R{u/x} for every:

assertion R in the proof outline of one thread

assignment x := u with precondition P in the proof outline of the
other thread

non-interference of executions proofs



Owicki-Gries Method (1976)

OG = Hoare logic + rule for parallel composition

{P1} c1 {Q1} {P2} c2 {Q2}
{P1} c1 {Q1} and {P2} c2 {Q2} are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Non-interference

R ∧ P ` R{u/x} for every:

assertion R in the proof outline of one thread

assignment x := u with precondition P in the proof outline of the
other thread

non-interference of executions proofs



Store Buffering Example

{
x = 0 ∧ b = 2

}

{
>
}

x := 1

{
x = 1

}

a := y

{
x = 1 ∧ (y = 1 → a = 1 ∨ b = 1 ∨ b = 2)

}

{
b = 2, x 6= 2

}

y := 1

b := x

{
y = 1, b 6= 2

}

{
a = 1 ∨ b = 1

}

=⇒ Unsoundness for weak memory!



Store Buffering Example

{
x = 0 ∧ b = 2

}
{
>
}

x := 1{
x = 1

}
a := y{
x = 1 ∧ (y = 1 → a = 1 ∨ b = 1 ∨ b = 2)

}

{
b = 2, x 6= 2

}
y := 1{
y = 1, x 6= 2

}
b := x{
y = 1, b 6= 2

}
{
a = 1 ∨ b = 1

}

=⇒ Unsoundness for weak memory!



Store Buffering Example

{
x = 0 ∧ b = 2

}
{
>
}

x := 1{
x = 1

}
a := y{
x = 1 ∧ (y = 1 → a = 1 ∨ b = 1 ∨ b = 2)

}

{
b = 2, x 6= 2

}
y := 1{
y = 1, x 6= 2

}
b := x{
y = 1, b 6= 2

}
{
a = 1 ∨ b = 1

}

=⇒ Unsoundness for weak memory!



Store Buffering Example

{
x = 0 ∧ b = 2

}
{
>
}

x := 1{
x = 1

}
a := y{
x = 1 ∧ (y = 1 → a = 1 ∨ b = 1 ∨ b = 2)

}

{
b = 2, x 6= 2

}
y := 1{
y = 1, x 6= 2

}
b := x{
y = 1, b 6= 2

}
{
a = 1 ∨ b = 1

}
=⇒ Unsoundness for weak memory!



Stronger Non-interference Condition

{P1} c1 {Q1} {P2} c2 {Q2}
{P1} c1 {Q1} and {P2} c2 {Q2} are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Non-interference

R ∧ P ` R{v/x} for every:

assertion R in the proof outline of one thread

assignment x := u with precondition P in the proof outline of the
other thread

value v such that P ∧ R ′ 6` u 6= v for some assertion R ′ above R



Example: Message Passing

{
y = 0

}

{
>
}

x := 42

{
x = 42

}

y := 1

{
>
}

{
y 6= 0 → x = 42

}

while y = 0

{
y 6= 0 → x = 42

}

skip

{
y 6= 0 → x = 42

}{
x = 42

}

a := x

{
a = 42

}

{
a = 42

}



Example: Message Passing

{
y = 0

}
{
>
}

x := 42{
x = 42

}
y := 1{
>
}

{
y 6= 0 → x = 42

}
while y = 0{

y 6= 0 → x = 42
}

skip{
y 6= 0 → x = 42

}{
x = 42

}
a := x{
a = 42

}
{
a = 42

}



Example: Coherence

{
x = a = c = 0

}

{
x 6= 1 ∧ a 6= 1

}

x := 1

{
>
}

{
x 6= 2 ∧ c 6= 2

}

x := 2

{
>
}

{
>
}

a := x

{
>
}

b := x

{
a = 1 ∧ b = 2→ x = 2

}

{
>
}

c := x

{
>
}

d := x

{
c = 2 ∧ d = 1→ x = 1

}

{
a = 1 ∧ b = 2 ∧ c = 2→ d 6= 1

}



Example: Coherence

{
x = a = c = 0

}
{
x 6= 1 ∧ a 6= 1

}
x := 1{
>
}

{
x 6= 2 ∧ c 6= 2

}
x := 2{
>
}

{
>
}

a := x{
>
}

b := x{
a = 1 ∧ b = 2→ x = 2

}

{
>
}

c := x{
>
}

d := x{
c = 2 ∧ d = 1→ x = 1

}
{
a = 1 ∧ b = 2 ∧ c = 2→ d 6= 1

}



Soundness Proof

Challenges in a weak memory setting:

No intuitive operational semantics

No notion of global state

Main proof steps:

Introduce a notion of a local state that is visible at a given edge of
the execution.

Study properties of visibility under the release/acquire model.

Show that edges of consistent executions can be annotated with the
assertions from the Hoare proof, such that every state that is visible
at some edge satisfies its annotation.



Related Works

C11 formalizations: Sewell et al. (POPL‘11,POPL‘12, PLDI‘12).

Separation logic based approaches: Relaxed Separation Logic,
Vafeiadis,Narayan (OOPSLA‘13); GPS, Turon,Vafeiadis,Dreyer
(OOPSLA‘14).

Other program logics: Rely/guarantee for TSO, Ridge (VSTTE‘10);
Verifying TSO programs, Jacobs (2014); Coherent Causal Memory,
Cohen (coRR 2014).

Further work:

Study other realistic examples (e.g., RCU)

Support fences

Support ghost variables

Completeness?

Investigate rely/guarantee

Thank you!



Related Works

C11 formalizations: Sewell et al. (POPL‘11,POPL‘12, PLDI‘12).

Separation logic based approaches: Relaxed Separation Logic,
Vafeiadis,Narayan (OOPSLA‘13); GPS, Turon,Vafeiadis,Dreyer
(OOPSLA‘14).

Other program logics: Rely/guarantee for TSO, Ridge (VSTTE‘10);
Verifying TSO programs, Jacobs (2014); Coherent Causal Memory,
Cohen (coRR 2014).

Further work:

Study other realistic examples (e.g., RCU)

Support fences

Support ghost variables

Completeness?

Investigate rely/guarantee

Thank you!



Backup Slide: Rely/Guarantee Presentation of OG

P ` Q

〈P, skip,Q, {P,Q}, ∅〉
P ` Q{u/x}

〈P, x := u,Q, {P,Q}, {〈P, x := u〉}〉

〈P, c1,R,A1,B1〉 〈R, c2,Q,A2,B2〉
〈P, c1; c2,Q,A1 ∪ A2,B1 ∪ B2〉

〈P1, c1,Q1,A1,B1〉 〈P2, c2,Q2,A2,B2〉
P ` P1 ∧ P2 Q1 ∧ Q2 ` Q

〈P1, c1,Q1,A1,B1〉 and 〈P2, c2,Q2,A2,B2〉 are non-interfering

〈P, c1 ‖ c2,Q,A1 ∪ A2 ∪ {P,Q},B1 ∪ B2〉

Non-interference
〈P1, c1,Q1,A1,B1〉 and 〈P2, c2,Q2,A2,B2〉 are non-interfering if R ∧ P ` R{u/x} for
every (R ∈ A1 and 〈P, x := u〉 ∈ B2) or (R ∈ A2 and 〈P, x := u〉 ∈ B1).


