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Context and Motivation

Fuzzy logics have semantic origins.

As logics they should have a proof theory.

The same applies for higher-order fuzzy logics.

This is essential for basing fuzzy mathematics on fuzzy logic.

G. Metcalfe, N. Olivetti, and D. Gabbay. Proof Theory for Fuzzy Logics.
Volume 36 of Applied Logic. Springer, 2008.



Simplified Second-Order Language

Augment a first-order language with the following:

Set variables and set constants.

Second-order quantifiers.

Inclusion predicate ε.

Example (Comprehension Scheme)

∃X .∀y .A(y)↔ (yεX ) where X is not free in A



Semantics

Structure

〈U,≤, 0, 1〉 Bounded complete linearly ordered set of truth values.

Di Domain of individuals.

Ds Domain of sets.

I Interpretation of relation symbols and sets:

for any D ∈ Ds , I(D) is a fuzzy subset of Di .
for any n-ary relation symbol R, I(R) is a fuzzy set of
n-tuples of elements of Di .



Semantics

JR(t1, ... , tn)Kσ = I(R)(Jt1Kσ, ... , JtnKσ)

JtεT Kσ = I(JT Kσ)(JtKσ)

J⊥Kσ = 0

JA ∧ BKσ = min{JAKσ, JBKσ}
JA ∨ BKσ = max{JAKσ, JBKσ}
JA ⊃ BKσ = JAKσ → JBKσ



Semantics

J∀x .AKσ = inf
d∈Di

JAKσx :=d

J∃x .AKσ = sup
d∈Di

JAKσx :=d

J∀X .AKσ = inf
D∈Ds

JAKσX :=D

J∃X .AKσ = sup
D∈Ds

JAKσX :=D

For every A, y , and σ, there exists some D ∈ Ds such that:

I(D) = λd ∈ Di . JAKσy :=d

∃X .∀y .A(y)↔ (yεX ) where X is not free in A
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The Proof Theory of Gödel Logic (Propositional Level)

(Linearity) (A ⊃ B) ∨ (B ⊃ A)

“Syntactically”, Gödel logic is obtained by adding (Linearity) to an
axiomatization of intuitionistic logic.

Various sequent systems have been introduced (e.g., [Sonobe ’75],
[Corsi ’86], [Avellone et al. ’99], [Dyckhoff ’99], [Avron and
Konikowska ’01], [Dyckhoff and Negri ’06]).

Each of them has some ad-hoc logical rules of a nonstandard form.

In contrast, standard logical rules are used in HG [Avron ’91], the
system obtained by “lifting” (propositional) LJ to the hypersequent
level, and adding the communication rule.
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Hypersequents

A hypersequent is a finite set of sequents denoted by:

Γ1 ⇒ E1 | Γ2 ⇒ E2 | ... | Γn ⇒ En

The Communication Rule

H | Γ,∆⇒ E1 H | Γ,∆⇒ E2

H | Γ⇒ E1 | ∆⇒ E2



Semantics of Hypersequents

JΓ⇒ EKσ =

{
1 minA∈Γ JAKσ ≤ maxA∈E JAKσ
0 otherwise

J s1 | ... | sn Kσ = max
1≤i≤n

JsiKσ

J s1 | ... | sn K = min
σ

Js1 | ... | snKσ



The System HG

Structural Rules:

(IW ⇒)
H | Γ⇒ E

H | Γ,A⇒ E
(⇒ IW )

H | Γ⇒
H | Γ⇒ A

(EW )
H

H | Γ⇒ E

(com)
H | Γ,∆⇒ E1 H | Γ,∆⇒ E2

H | Γ⇒ E1 | ∆⇒ E2

Identity Rules:

(id)
A⇒ A

(cut)
H | Γ⇒ A H | Γ,A⇒ E

H | Γ⇒ E

Logical Rules:

(⊃⇒)
H | Γ⇒ A H | Γ,B ⇒ E

H | Γ,A ⊃ B ⇒ E
(⇒⊃)

H | Γ,A⇒ B

H | Γ⇒ A ⊃ B

(∧ ⇒)
H | Γ,A,B ⇒ E

H | Γ,A ∧ B ⇒ E
(⇒ ∧)

H | Γ⇒ A H | Γ⇒ B

H | Γ⇒ A ∧ B



The System HIF

Augment HG with the usual rules for first-order quantifiers:

(∀ ⇒)
H | Γ,A{t/x} ⇒ E

H | Γ,∀x .A⇒ E
(⇒ ∀)

H | Γ⇒ A

H | Γ⇒ ∀x .A

(∃ ⇒)
H | Γ,A⇒ E

H | Γ, ∃x .A⇒ E
(⇒ ∃)

H | Γ⇒ A{t/x}
H | Γ⇒ ∃x .A

x is not free in the lower hypersequent in (⇒ ∀) and (∃ ⇒).

The resulting calculus is sound and complete for standard first-order
Gödel logic.

It enjoys cut-admissibility ([Baaz, Zach ‘00], [Avron, L. ‘13]).



The System HIF2

Augment HIF with the usual rules for second-order quantifiers.

(∀ ⇒)
H | Γ,A{τ/X} ⇒ E

H | Γ,∀X .A⇒ E
(⇒ ∀)

H | Γ⇒ A

H | Γ⇒ ∀X .A

(∃ ⇒)
H | Γ,A⇒ E

H | Γ, ∃X .A⇒ E
(⇒ ∃)

H | Γ⇒ A{τ/X}
H | Γ⇒ ∃X .A

X is not free in the lower hypersequent in (⇒ ∀) and (∃ ⇒).

τ is a set abstraction of the form {◦y | ψ(y)◦}
A{τ/X} is the formula obtained from A by substituting each atomic
formula of the form tεX by ψ(t), e.g.

(f (c)εX ∨ g(c)εX ){{◦y | R(y , y)◦}/X} = R(f (c), f (c)) ∨ R(g(c), g(c))



Main Results

Theorem (Soundness and Completeness)

` H iff JHK = 1 for every structure

Theorem

Cut is admissible.

Major Obstacle

As in LK2, the usual syntactic approach dramatically fails.
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Semantic Approach to Cut-Elimination

History of LK2

1954 Takeuti’s conjecture (aimed to prove consistency of analysis)

1960 Schütte presented three-valued semantics for the cut-free fragment

1965 Tait proved the conjecture using Schütte’s semantics

Basically, we take the same approach.

Develop complete semantics for HIF2 without (cut).

“More” truth values. Non-deterministic.

Show that from every countermodel in this semantics, it is possible to
extract an ordinary countermodel.
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The Semantic Role of the Identity Rules

(id)
A⇒ A

(cut)
H | Γ⇒ A H | Γ,A⇒ E

H | Γ⇒ E

These rules bind together the two sides of the sequent.

Without them each formula can have different values on the left side
and on the right side.

(id) left side ≤ right side (cut) right side ≤ left side

JAKσ = JL|RK L ≤ R

JA|σ = L |AKσ = R
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(cut)-Free Semantics

Quasi-Structure

〈U,≤, 0, 1〉 Bounded complete linearly ordered set of truth values.

Di Domain of individuals.

Ds Domain of sets.

IL Left interpretation of relation symbols and sets.

IR Right interpretation of relation symbols and sets.



Non-determinism

The rules do not uniquely determine truth values of compound formulas.

(∧ ⇒)
H | Γ,A,B ⇒ E

H | Γ,A ∧ B ⇒ E
(⇒ ∧)

H | Γ⇒ A H | Γ⇒ B

H | Γ⇒ A ∧ B

JA ∧ B|σ ≤ min{JA|σ, JB|σ} |A ∧ BKσ ≥ min{|AKσ, |BKσ}

The semantics is non-deterministic.

J·| and |·K are also included in each quasi-structure.
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(cut)-Free Semantics
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(cut)-Free Semantics

JΓ⇒ EKcfσ =

{
1 minA∈Γ JA|σ ≤ maxA∈E |AKσ
0 otherwise

J s1 | ... | sn Kcfσ = max
1≤i≤n

JsiKcfσ

J s1 | ... | sn Kcf = min
σ

Js1 | ... | snKcfσ

Theorem (Completeness)

If H is not provable without (cut) then JHKcf = 0 for some
non-deterministic structure.



(cut)-Free Completeness

Given Quasi-structure 〈U ,Di ,Ds , IL, IR, J·|, |·K〉 and assignment σ, s.t. JHKcfσ = 0.

Goal Structure 〈U ′,D′
i ,D′

s , I〉 and assignment ρ, s.t. JHKρ = 0.

U ′ := U , D′
i := Di , ρ(x) := σ(x) for individual variables.

I(R) := IL(R) for relation symbols.

D′
s includes a member 〈D, S〉 for any D ∈ Ds and fuzzy set S s.t.
IL(D) ⊆ S ⊆ IR(D).

I(〈D, S〉) := S for any 〈D, S〉 ∈ D′
s .

For any set variable X , ρ(X ) := 〈σ(X ), S〉 for some fuzzy set S as above
(we refer to all these assignments as σ-suitable assignments).

It remains to prove: JHKρ = 0; comprehensiveness.

We show: JA|σ ≤ JAKρ ≤ |AKσ for any formula A and σ-suitable assignment ρ.



(cut)-Free Completeness

One step in the (inductive) proof:

IH1 JA|σ ≤ JAKρ ≤ |AKσ
IH2 JB|σ ≤ JBKρ ≤ |BKσ
H1 JA ⊃ BKρ = JAKρ → JBKρ
H2 JA ⊃ B|σ ≤ |AKσ → JB|σ
H3 |A ⊃ BKσ ≥ JA|σ → |BKσ

===================================

JA ⊃ B|σ ≤ JA ⊃ BKρ ≤ |A ⊃ BKσ

(using the fact that if u1 ≤ u′ ≤ u2 and u3 ≤ u′′ ≤ u4, then
u2 → u3 ≤ u′ → u′′ ≤ u1 → u4).



Conclusions and Further Work

HIF2 is sound and complete with respect to the Henkin-style
semantics for second-order Gödel logic.

HIF2 enjoys cut-admissibility.

Further work:

* Globalization (“Baaz Delta”)
* Equality
* Richer signatures
* Full type theory

*** Other fuzzy logics

Thank you!
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