From Frame Properties to Hypersequent Rules in Modal Logics

Ori Lahav

Tel Aviv University

LICS 2013

- Ever since the introduction of relational semantics for modal logics, the assembling of a new modal logic for particular applications often begins by locating relevant frame properties.
- Examples:

• Our goal is to uniformly obtain proof-theoretic characterizations for modal logics defined by frame properties.

Sequent Calculi

- There is a well-studied strong correspondence between frame properties and Hilbert-style systems (correspondence theory).
- Hilbert-style systems are hardly useful for proof-search and proof-theoretic investigations.
- On the other hand, Gentzen-style calculi are particularly suitable for these purposes.

Sequent Calculi

- There is a well-studied strong correspondence between frame properties and Hilbert-style systems (correspondence theory).
- Hilbert-style systems are hardly useful for proof-search and proof-theoretic investigations.
- On the other hand, Gentzen-style calculi are particularly suitable for these purposes.

Definition

A sequent is an ordered pair of finite set of formulas, denoted by

$$\Gamma \Rightarrow \Delta.$$

Intuitively,

$$\Gamma \Rightarrow \Delta \quad \longleftrightarrow \quad \bigwedge \Gamma \supset \bigvee \Delta.$$

Gentzen Calculi for Modal Logics

$$(IW \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \quad (\Rightarrow IW) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A}$$
$$(id) \quad \frac{A \Rightarrow A}{\Gamma \Rightarrow A} \quad (cut) \quad \frac{\Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$$
$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta, A_1 \quad \Gamma, A_2 \Rightarrow \Delta}{\Gamma, A_1 \supset A_2 \Rightarrow \Delta} \quad (\Rightarrow \supset) \quad \frac{\Gamma, A_1 \Rightarrow A_2, \Delta}{\Gamma \Rightarrow A_1 \supset A_2, \Delta}$$
$$(\bot \Rightarrow) \quad \frac{\bot \Rightarrow}{\bot \Rightarrow} \quad (\Rightarrow \Box) \quad \frac{\Gamma \Rightarrow A}{\Box \Gamma \Rightarrow \Box A}$$

The calculus **G_K**

Facts

() A is a theorem of **K** iff \Rightarrow A is provable in **G**_K.

(cut) is admissible.

- For many important modal logics (e.g. **S5** = universal accessibility relation) there is no known (cut-free) sequent calculus.
- It is possible to characterize S5 by going "one step further" from sequents to hypersequents [Pottinger '83, Avron '87].

Definition

A hypersequent is a finite set of sequents, denoted by

$$\Gamma_1 \Rightarrow \Delta_1 \mid \Gamma_2 \Rightarrow \Delta_2 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n.$$

Intuitively, a hypersequent is a disjunction of sequents: $\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ is true in some Kripke model if some $\Gamma_i \Rightarrow \Delta_i$ is true in all worlds.

Hypersequent Calculus for S5

$$(IW \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma, A \Rightarrow \Delta} \quad (\Rightarrow IW) \quad \frac{H \mid \Gamma \Rightarrow \Delta}{H \mid \Gamma \Rightarrow \Delta, A} \quad (EW) \quad \frac{H}{H \mid \Gamma \Rightarrow \Delta}$$
$$(id) \quad \frac{H \mid A \Rightarrow A}{H \mid \Gamma \Rightarrow A} \quad (cut) \quad \frac{H \mid \Gamma \Rightarrow A, \Delta}{H \mid \Gamma \Rightarrow \Delta} \quad H \mid \Gamma, A \Rightarrow \Delta}{H \mid \Gamma \Rightarrow \Delta}$$
$$(\supset \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow \Delta, A_1 \quad H \mid \Gamma, A_2 \Rightarrow \Delta}{H \mid \Gamma, A_1 \supset A_2 \Rightarrow \Delta} \quad (\Rightarrow \supset) \quad \frac{H \mid \Gamma, A_1 \Rightarrow A_2, \Delta}{H \mid \Gamma \Rightarrow A_1 \supset A_2, \Delta}$$
$$(\bot \Rightarrow) \quad \frac{H \mid L \Rightarrow}{H \mid \bot \Rightarrow} \quad (\Rightarrow \Box) \quad \frac{H \mid \Gamma \Rightarrow A}{H \mid \Box \Gamma \Rightarrow \Box A} \quad (S5) \quad \frac{H \mid \Gamma, \Gamma' \Rightarrow \Delta}{H \mid \Box \Gamma' \Rightarrow \mid \Gamma \Rightarrow \Delta}$$
The calculus **HG**_{S5}

Facts

() A is a theorem of **S5** iff \Rightarrow A is provable in **HG**_{S5}.

(cut) is admissible.

Derivation of $\Rightarrow \Diamond \overline{A} \supset \Box \Diamond A$ in **HG**_{S5}



Main Contribution

Questions

- What is the full power of hypersequent calculi for modal logics?
- What frame properties can be characterized?

(Partial) Answers:

- We recognize a class of frame properties, called *simple frame* properties, for which it is possible to construct a hypersequent calculus.
- We provide the method to construct these calculi, and uniformly prove soundness and completeness, and cut-admissibility.

There are other proof-theoretical frameworks for modal logics. E.g.:

- Semantic tableaus
- Display calculi
- Tree-hypersequent calculi and nested sequent calculi
- Labelled calculi

We are interested in (fully-structural) hypersequent calculi:

- Very close to Gentzen's approach.
- Kripke semantics is not explicitly involved in derivations.
- Useful for many other logics of different natures.
- Decidability follows from cut-admissibility (in the propositional level).

• We use classical first-order language to formulate the frame properties.

• For example, $\forall w.wRw$ captures reflexivity.

Simple frame properties are formulated by formulas of the form

 $\forall w_1 \dots \forall w_n \exists u \varphi$

where φ consists of:

- Atomic formulas of the form $w_i R u$ or $w_i = u$.
- Conjunctions and disjunctions.

• Reflexivity is simple:

 $\forall w_1 \exists u (w_1 R u \land w_1 = u)$

Examples

Seriality	$\forall w_1 \exists u (w_1 R u)$
Directedness	$\forall w_1 \forall w_2 \exists u(w_1 R u) \land (w_2 R u)$
Degenerateness	$\forall w_1 \forall w_2 \exists u (w_1 = u \land w_2 = u)$
Universality	$\forall w_1 \forall w_2 \exists u (w_1 R u \land w_2 = u)$
Linearity	$\forall w_1 \forall w_2 \exists u (w_1 R u \land w_2 = u) \lor (w_2 R u \land w_1 = u)$
Bounded Cardinality	$\forall w_1 \dots \forall w_n \exists u \bigvee_{1 < i < j < n} (w_i = u \land w_j = u)$
Bounded Top Width	$\forall w_1 \dots \forall w_n \exists u \bigvee_{1 \leq i < j \leq n}^{-\infty} (w_i R u \land w_j R u)$
Bounded Width	$\forall w_1 \dots \forall w_n \exists u \bigvee_{1 \le i, j \le n; i \ne j}^{-1} (w_i R u \land w_j = u)$

(1) Extract the *normal form* of $\forall w_1 \dots \forall w_n \exists u \varphi$

A set $\{\langle R_1, E_1 \rangle, \dots, \langle R_m, E_m \rangle\}$ such that $\varphi \equiv \bigvee_{1 \le i \le m} (\bigwedge_{j \in R_i} w_j R u \land \bigwedge_{j \in E_i} w_j = u)$

 $\begin{aligned} \forall w_1 \forall w_2 \exists u(w_1 R u) \land (w_2 R u) & \{ \langle \{1, 2\}, \emptyset \rangle \} \\ \forall w_1 \forall w_2 \exists u(w_1 R u \land w_2 = u) & \{ \langle \{1\}, \{2\} \rangle \} \\ \forall w_1 \forall w_2 \exists u(w_1 R u \land w_2 = u) \lor (w_2 R u \land w_1 = u) & \{ \langle \{1\}, \{2\} \rangle, \langle \{2\}, \{1\} \rangle \} \\ \forall w_1 \dots \forall w_n \exists u \bigvee_{1 \le i < j \le n} (w_i = u \land w_j = u) & \{ \langle \emptyset, \{i, j\} \rangle \mid 1 \le i < j \le n \} \end{aligned}$

From Simple Frame Properties to Hypersequent Rules

(2) For a normal form $\{\langle R_1, E_1 \rangle, \dots, \langle R_m, E_m \rangle\}$ construct the following rule and add it to **HG**_K:

$$\frac{H \mid \Gamma_{E_1}, \Gamma'_{R_1} \Rightarrow \Delta_{E_1} \quad \dots \quad H \mid \Gamma_{E_m}, \Gamma'_{R_m} \Rightarrow \Delta_{E_m}}{H \mid \Gamma_1, \Box \Gamma'_1 \Rightarrow \Delta_1 \mid \dots \mid \Gamma_n, \Box \Gamma'_n \Rightarrow \Delta_n}$$

Notation: $\Pi_{\{i_1,\ldots,i_k\}} := \Pi_{i_1},\ldots,\Pi_{i_k}$

From Simple Frame Properties to Hypersequent Rules

(2) For a normal form $\{\langle R_1, E_1 \rangle, \ldots, \langle R_m, E_m \rangle\}$ construct the following rule and add it to **HG_K**:

$$\frac{H \mid \Gamma_{E_1}, \Gamma'_{R_1} \Rightarrow \Delta_{E_1} \quad \dots \quad H \mid \Gamma_{E_m}, \Gamma'_{R_m} \Rightarrow \Delta_{E_m}}{H \mid \Gamma_1, \Box \Gamma'_1 \Rightarrow \Delta_1 \mid \dots \mid \Gamma_n, \Box \Gamma'_n \Rightarrow \Delta_n}$$

Notation:
$$\Pi_{\{i_1,\ldots,i_k\}} := \Pi_{i_1},\ldots,\Pi_{i_k}$$

In the presence of the weakening rules, $\Gamma_i, \Gamma'_i, \Delta_i$'s that appear only in the conclusion can be discarded.

$$\begin{array}{c|c} H \mid \Gamma'_{1}, \Gamma'_{2} \Rightarrow & H \mid \Gamma_{2}, \Gamma'_{1} \Rightarrow \Delta_{2} \\ \hline H \mid \Box \Gamma'_{1} \Rightarrow \mid \Box \Gamma'_{2} \Rightarrow & \\ Directedness & Universality \\ \hline H \mid \Gamma_{2}, \Gamma'_{1} \Rightarrow \Delta_{2} & H \mid \Gamma_{1}, \Gamma'_{2} \Rightarrow \Delta_{1} \\ \hline H \mid \Gamma_{1}, \Box \Gamma'_{1} \Rightarrow \Delta_{1} \mid \Gamma_{2}, \Box \Gamma'_{2} \Rightarrow \Delta_{2} \\ \hline Linearity & Bounded Cardinality \\ \end{array}$$

Main Result

Theorem

The constructed hypersequent calculus is sound and complete for the modal logic, and it enjoys cut-admissibility.

• Uniform semantic proof for all calculi of this form.

Main Result

Theorem

The constructed hypersequent calculus is sound and complete for the modal logic, and it enjoys cut-admissibility.

• Uniform semantic proof for all calculi of this form.

Strong Soundness and Completeness		
Γ⊢ _{Local} Α	A holds in every world in which Γ holds	$\vdash \Gamma \Rightarrow A$
Γ⊢ _{Global} Α	A holds in every world if Γ holds in every world	$\{ \Rightarrow B \mid B \in \Gamma\} \vdash \Rightarrow A$

Strong Cut-Admissibility

(cut) can be confined to apply only on formulas that appear in the assumptions.

Decidability

Corollary

All modal logics characterized by finite sets of simple frame properties are decidable.

Proof.

 $\label{eq:cut-admissibility} \longrightarrow Subformula \mbox{ property} \longrightarrow \\ We \mbox{ can check one by one all possible proofs candidates}.$

Transitivity and Symmetry

Simple frame properties are formulated by formulas of the form

 $\forall w_1 \ldots \forall w_n \exists u \varphi$

where φ consists of:

- Atomic formulas of the form $w_i R u$ or $w_i = u$.
- Conjunctions and disjunctions.
- Simple properties are *monotone increasing* (preserved under enrichment of *R*).
- Transitivity and symmetry are not simple.

Transitivity and Symmetry

Simple frame properties are formulated by formulas of the form

 $\forall w_1 \ldots \forall w_n \exists u \varphi$

where φ consists of:

- Atomic formulas of the form $w_i R u$ or $w_i = u$.
- Conjunctions and disjunctions.
- Simple properties are *monotone increasing* (preserved under enrichment of *R*).
- Transitivity and symmetry are not simple.
- We have to change the basic calculus:

$$\frac{H \mid \Gamma \Rightarrow A}{H \mid \Box \Gamma \Rightarrow \Box A} \qquad \frac{H \mid \Gamma, \Box \Gamma \Rightarrow A}{H \mid \Box \Gamma \Rightarrow \Box A} \qquad \frac{H \mid \Gamma \Rightarrow A, \Box \Delta}{H \mid \Box \Gamma \Rightarrow \Box A} \\
\mathbf{K} \qquad \mathbf{K4} \qquad \mathbf{KB}$$

Transitivity

For a normal form $\{\langle R_1, E_1 \rangle, \dots, \langle R_m, E_m \rangle\}$ construct the rule:

$$\frac{H \mid \Gamma_{E_1}, \Gamma'_{R_1}, \Box \Gamma'_{R_1} \Rightarrow \Delta_{E_1} \dots H \mid \Gamma_{E_m}, \Gamma'_{R_m}, \Box \Gamma'_{R_m} \Rightarrow \Delta_{E_m}}{H \mid \Gamma_1, \Box \Gamma'_1 \Rightarrow \Delta_1 \mid \dots \mid \Gamma_n, \Box \Gamma'_n \Rightarrow \Delta_n}$$

For example:

$$\begin{array}{c|c} H \mid \Gamma_{2}, \Gamma_{1}', \Box \Gamma_{1}' \Rightarrow \Delta_{2} & H \mid \Gamma_{1}, \Gamma_{2}', \Box \Gamma_{2}' \Rightarrow \Delta_{1} \\ \hline H \mid \Gamma_{1}, \Box \Gamma_{1}' \Rightarrow \Delta_{1} \mid \Gamma_{2}, \Box \Gamma_{2}' \Rightarrow \Delta_{2} \\ \hline Linearity \end{array}$$

Again, we show:

- Strong soundness and completeness.
- Strong cut-admissibility.
- Decidability.

Symmetry

For a normal form $\{\langle R_1, E_1 \rangle, \dots, \langle R_m, E_m \rangle\}$ construct the rule:

$$\frac{H \mid \Gamma_{E_1}, \Gamma'_{R_1} \Rightarrow \Delta_{E_1}, \Box \Delta'_{R_1} \dots H \mid \Gamma_{E_m}, \Gamma'_{R_m} \Rightarrow \Delta_{E_m}, \Box \Delta'_{R_m}}{H \mid \Gamma_1, \Box \Gamma'_1 \Rightarrow \Delta_1, \Delta'_1 \mid \dots \mid \Gamma_n, \Box \Gamma'_n \Rightarrow \Delta_n, \Delta'_n}$$

For example:

$$\begin{array}{c|c} H \mid \Gamma'_1 \Rightarrow \Box \Delta'_1 \\ \hline H \mid \Box \Gamma'_1 \Rightarrow \Delta'_1 \\ \hline \text{Seriality} \end{array} & \begin{array}{c|c} H \mid \Gamma_1, \Gamma'_1 \Rightarrow \Delta_1, \Box \Delta'_1 \\ \hline H \mid \Gamma_1, \Box \Gamma'_1 \Rightarrow \Delta_1, \Delta'_1 \\ \hline \text{Reflexivity} \end{array}$$

- Cut-admissibility does not hold (even for the basic calculus).
- All constructed calculi still enjoy the subformula property.
- Decidability still follows.

Conclusions and Further Research

- Correspondence between Kripke semantics and Gentzen-type calculi: simple frame property ⇔ simple hypersequent rule
- Well-behaved Gentzen-type calculi can be constructed for all (transitive) (symmetric) modal logics characterized by simple frame properties.

E.g. KT, KD, S4, S5, K4D, K4.2, K4.3, S4.3, KBD, KBT, KBC_n, KBW_n, KBTW_n.

• These calculi may be helpful for investigating and using the logics (e.g. decidability).

Further work and open questions:

- Proof-search.
- Multi-modal logics.
- Non-simple properties. E.g. **K5** (euclidean), BD_n (bounded depth).
- Negative results?

Thank you!