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The Big Picture

Goals:

Characterization of important proof-theoretic properties of calculi:
cut-admissibility, the subformula property, invertibility of rules,...
Understanding the dependencies between them
Tighten the relations between proof-theory and semantics

Tool: Non-deterministic semantics

Goes back to [Schütte 1960], [Tait 1966]
Formalized and studied in [Avron,Lev 2001]

Framework: Canonical labelled sequent calculi

Labelled = many-sided



Labelled Sequent Calculi

A propositional language L
A finite set of labels C C ⊆ {�,�,�,�, ...}
Labelled formula:= � : A where A ∈ FrmL and � ∈ C
Sequent:= a finite set of labelled formulas

C = {�,�,�,�} {� : p1,� : ¬p1}

{� : p1}
{� : ¬p1,� : ¬p1}

{� : p1}
{� : ¬p1,� : ¬p1}

{� : ¬p1}

p1, p1 ⊃ p2 ⇒ p2 ! {� : p1,� : p1 ⊃ p2,� : p2}
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Canonical Labelled Calculi

1 All standard structural rules
(exchange, contraction, weakening)

2 A finite set of primitive rules

3 A finite set of canonical logical rules



Primitive Rules

Manipulate labels. Have the form (�’s are replaced by labels)

{� : A, . . . ,� : A} ∪ s . . . {� : A, . . . ,� : A} ∪ s

{� : A, . . . ,� : A} ∪ s

Examples:

{� : A} ∪ s {� : A} ∪ s

{� : A,� : A} ∪ s

{� : A} ∪ s {� : A} ∪ s
s

{� : A,� : A} ∪ s
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Canonical Rules

“Ideal” logical introduction rules [Avron, Lev 2001]:

Introduce exactly one connective.
The active formulas are immediate subformulas of the principal formula.
The application is context-independent.

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

In Labelled Calculi [Avron, Zamansky 2009]:

{� : A} ∪ s {� : B} ∪ s

{� : A ⊃ B} ∪ s

May introduce a connective with more than one label.

{� : A,� : B} ∪ s {� : B,� : C ,� : C} ∪ s

{� : ♥(A,B,C ),� : ♥(A,B,C )} ∪ s
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Semantics

Intuition

The value of A determines which of the labelled formulas
� : A,� : A,� : A, . . . is true.

In general, there are 2|C| possible options.

Primitive rules forbid some of them.

Logical rules are used to determine the values of compound formulas.

Formalization

The set of truth-values TG ⊆ P(C) is determined according to the
primitive rules of G.

A valuation v : FrmL → TG is a model of � : A if � ∈ v(A).

A valuation is a model of a sequent s if it is a model of some labelled
formula in s.
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Example: Semantic Effect of Primitive Rules
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s r2

TG = {{ }, {�}, {�}, {�}, {�,�}, {�,�}, {�,�}, {�,�,�}}

TG = {{ }, {�}, {�}, {�,�}, {�,�}}
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The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.

For example:

TG = {{�}, {�}}

{� : A} ∪ s {� : B} ∪ s

{� : A ⊃ B} ∪ s

{� : A,� : B} ∪ s

{� : A ⊃ B} ∪ s

⊃̃ {�} {�}
{�}

{�} {�}

{�}

{�} {�}

A legal valuation should respect the table:
v(�(A1, . . . ,An)) = �̃(v(A1), . . . , v(An))
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Non-determinism

Non truth-functional connectives,
e.g. primal implication [Gurevich, Neeman 2009]:

TG = {{�}, {�}}

{� : A} ∪ s {� : B} ∪ s

{� : A ⊃ B} ∪ s

{� : B} ∪ s

{� : A ⊃ B} ∪ s

How to determine ⊃̃({�}, {�})?
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More than one option satisfies the conclusion, e.g.
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What Can Go Wrong?

Contradictions between rules, e.g.

TG = {{�}, {�}} {� : B} ∪ s

{� : A � B} ∪ s

{� : A} ∪ s

{� : A � B} ∪ s

How to determine �̃({�}, {�})?

�̃ {�} {�}
{�} {{�}} {{�}, {�}}
{�} ∅ {{�}}

{�} and {�} cannot be used
by the same valuation.

Partial Non-deterministic Truth-Tables

Allow empty entries: �̃ : T n → P(T ).
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The Semantic Framework

Partial Non-deterministic Matrices

A PNmatrix M for L and C consists of:

A set T of truth-values.

A function D : C → P(T ) assigning a set of designated truth-values for
every label.

A partial non-deterministic truth-table �̃ : T n → P(T ) for every n-ary
connective of L.

A valuation v : FrmL → T is:

a model (in M) of a sequent s if v(A) ∈ D(�) for some � : A in s.

M-legal if v(�(A1, . . . ,An)) ∈ �̃(v(A1), . . . , v(An)) for every
�(A1, . . . ,An) ∈ FrmL.



Main Result

Theorem

For every canonical labelled calculus G, there exists a strongly characteristic
PNmatrix MG (i.e. Ω `G s iff every MG-legal valuation which is a model of
every sequent in Ω is also a model of s).

Moreover, we provide a uniform algorithm to obtain MG from G.

In many cases, the obtained semantics coincides with a known one:

Propositional fragment of LK

LK without cut [Girard 1987]

LK without identity axiom [Hösli,Jäger 1994]

Two-sided canonical systems [Avron,Lev 2001]

Labelled calculi studied in [Baaz et al. 1998] and [Avron,Zamansky 2009]
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Effectiveness

Theorem

Semantic consequence relations induced by PNmatrices are decidable.

Corollary

All canonical labelled calculi are decidable.



Effectiveness

Theorem

Semantic consequence relations induced by PNmatrices are decidable.

Proof Outline.

Usual method: To decide whether s is valid in M, check one-by-one all
M-legal partial valuations defined on the subformulas of s, and look for
one which is not a model of s.

Hidden assumption: All M-legal partial valuations can be extended to
full ones (semantic analyticity).
But, it does not hold for PNmatrices (recall �̃({�}, {�}) = ∅ !).

Lemma: It is decidable whether an M-legal partial valuation can be
extended to a full one.

Solution: Check one-by-one all M-legal partial valuations defined on
the subformulas of s, and look for one which is both extendable and
not a model of s.



Application - “Almost”-Canonical Calculi

Consider the following non-canonical calculus for the basic LFI called BK:

(∧⇒)
Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆
(⇒∧)

Γ⇒ ∆,A Γ⇒ ∆,B

Γ⇒ ∆,A ∧ B

(∨⇒)
Γ,A⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨ B ⇒ ∆
(⇒∨)

Γ⇒ ∆,A,B

Γ⇒ ∆,A ∨ B

(⊃⇒)
Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆
(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

(⇒ ¬)
Γ,A⇒ ∆

Γ⇒ ∆,¬A

(◦ ⇒)
Γ⇒ A,∆ Γ⇒ ¬A ,∆

Γ, ◦A⇒ ∆
(⇒ ◦)

Γ,A, ¬A ⇒ ∆

Γ⇒ ◦A,∆

(cut)
Γ,A⇒ ∆ Γ⇒ ∆,A

Γ⇒ ∆
(id)

Γ,A⇒ ∆,A
(weak)

Γ⇒ ∆

Γ, Γ′ ⇒ ∆,∆′



Application - “Almost”-Canonical Calculi

(� : ∧)
{� : A,� : B} ∪ s

{� : A ∧ B} ∪ s
(� : ∧)

{� : A} ∪ s {� : B} ∪ s

{� : A ∧ B} ∪ s

(� : ∨)
{� : A} ∪ s {� : B} ∪ s

{� : A ∨ B} ∪ s
(� : ∨)

{� : A,B} ∪ s

{� : A ∨ B} ∪ s

(� :⊃)
{� : A} ∪ s {� : B} ∪ s

{� : A ⊃ B} ∪ s
(� :⊃)

{� : A,� : B} ∪ s

{� : A ⊃ B} ∪ s

(� : ¬)
{� : A} ∪ s

{� : ¬A} ∪ s

(� : ◦) {� : A} ∪ s {� : ¬A} ∪ s

{� : ◦A} ∪ s
(� : ◦) {� : A,� : ¬A} ∪ s

{� : ◦A} ∪ s

(cut)
{� : A} ∪ s {� : A} ∪ s

s
(id)

{� : A,� : A} ∪ s
(weak)

s

s ∪ s ′



Translation into a Canonical Labelled Calculus

Add two labels: �¬ and �¬.

Replace the logical rules:

{� : A} ∪ s

{� : ¬A} ∪ s

{� : A} ∪ s {� : ¬A} ∪ s

{� : ◦A} ∪ s

{� : A,� : ¬A} ∪ s

{� : ◦A} ∪ s

by the rules:

{� : A} ∪ s

{�¬ : A} ∪ s

{� : A} ∪ s {�¬ : A} ∪ s

{� : ◦A} ∪ s

{� : A,�¬ : A} ∪ s

{� : ◦A} ∪ s

Add cut and axiom:

{�¬ : A} ∪ s {�¬ : A} ∪ s

s {�¬ : A,�¬ : A} ∪ s

Add extra logical rules:

{�¬ : A} ∪ s

{� : ¬A} ∪ s

{�¬ : A} ∪ s

{� : ¬A} ∪ s



Translation into Canonical Labelled Calculi

Now, we can use the previous method to obtain a PNmatrix for this
calculus, and use it in a decision procedure.

This translation is possible for every canonical calculus with additional
logical rules of the form:

Γ,Π1 ⇒ Σ1,∆ ... Γ,Πm ⇒ Σm,∆
conc �

where:
conc has one of the following forms (for some n-ary connective �):

Γ, �(A1, . . . ,An)⇒ ∆
Γ⇒ �(A1, . . . ,An),∆
Γ, ? � (A1, . . . ,An)⇒ ∆ for some unary connective ?
Γ⇒ ? � (A1, . . . ,An),∆ for some unary connective ?.

Π’s and Σ’s consist of Ai ’s and formulas of the form ?Ai for some unary
connective ?.



Cut-Admissibility in Canonical Labelled Calculi

A cut is a primitive rule of the form:

{� : A, . . . ,� : A} ∪ s . . . {� : A, . . . ,� : A} ∪ s
s

{� : A} ∪ s {� : A} ∪ s
s

{� : A,� : A} ∪ s {� : A} ∪ s {� : A} ∪ s
s

A is called the cut-formula.

s is called the cut-context.
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Cut-Admissibility in Canonical Labelled Calculi

A cut is a primitive rule of the form:

{� : A, . . . ,� : A} ∪ s . . . {� : A, . . . ,� : A} ∪ s
s

Many-Sided Strong Cut-Admissibility

Ω `G s =⇒ there is a derivation of s from Ω in G in which: the cut-formula
of each cut occurs either in Ω or in the cut-context.

Theorem

A canonical labelled calculus G enjoys many-sided strong cut-admissibility
iff

MG does not include empty entries
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Summary

We provided effective and modular semantic characterization for
canonical labelled sequent calculi using partial non-deterministic
matrices.

Application: effective semantics for “almost”-canonical calculi via
translation to canonical labelled calculi.

Application: semantic characterization of proof-theoretic properties.

Thank you!


