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Abstract

We define a general family of canonical labelled calculi, of which many previously studied sequent
and labelled calculi are particular instances. We then provide a uniform and modular method to
obtain finite-valued semantics for every canonical labelled calculus by introducing the notion of partial
non-deterministic matrices. The semantics is applied to provide simple decidable semantic criteria for
two crucial syntactic properties of these calculi: (strong) analyticity and cut-admissibility. Finally, we
demonstrate an application of this framework for a large family of paraconsistent logics.

1 Introduction

A useful semantics is an important property of formal calculi. In addition to providing real insights into
their underlying logic, such semantics should also be effective in the sense of naturally inducing a decision
procedure for its calculus. Another desirable property of such semantics is the possibility to apply it for
characterizing important syntactic properties of the calculi, which are hard to establish by other means.
Analyticity and cut-admissibility are two crucial cases in point.

Recently some systematic methods for constructing such semantics for various calculi have been formu-
lated. In [1] and [2] two families of labelled sequent calculi have been studied in this context.1 [1] considers
labelled calculi with generalized forms of cuts and identity axioms and a restricted form of logical rules,
and provides some necessary and sufficient conditions for such calculi to have a characteristic finite-valued
matrix. In [2] labelled calculi with a less restrictive form of logical rules (but a more restrictive form of cuts
and axioms) are considered. The calculi of [2], satisfying a certain coherence condition, have a semantic
characterization using a natural generalization of the usual finite-valued matrix called non-deterministic
matrices ([4]). The semantics provided in [1, 2] for these families of labelled calculi is effective in the
above sense, that is the question of whether a sequent s follows in some (non-deterministic) matrix from
a set of sequents S, can be reduced to considering legal partial valuations, defined on the subformulas of
S ∪ {s}. This naturally induces a decision procedure for such logics.

In this paper we show that the class of labelled calculi that have a finite-valued effective semantics is
substantially larger than all the families of calculi considered in the literature in this context. We start
by defining a general class of fully-structural and propositional labelled calculi, called canonical labelled
calculi, of which the labelled calculi of [1, 2] are particular examples. In addition to the weakening rule,
canonical labelled calculi have rules of two forms: primitive rules and introduction rules. The former
operate on labels and do not mention any connectives, where the generalized cuts and axioms of [1] are
specific instances of such rules. As for the latter, each such rule introduces one logical connective of the
language. To provide semantics for all of these calculi in a systematic and modular way, we generalize the
notion of non-deterministic matrices to partial non-deterministic matrices (PNmatrices), in which empty
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1A remark is in order here on the relationship between the labelled calculi studied here and the general framework of

labelled deductive systems (LDS) from [3]. Both frameworks consider consequence relations between labelled formulas.
Methodologically, however, they have different aims: [3] constructs a system for a given logic defined in semantic terms,
while we define a semantics for a given labelled system. Moreover, in LDS anything is allowed to serve as labels, while we
assume a finite set of labels. In this sense, our labelled calculi are a particular instance of LDS.
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sets of options are allowed in the truth tables of logical connectives. Although applicable to a much wider
range of calculi, the semantic framework of finite PNmatrices shares the following attractive property with
both usual and non-deterministic matrices: any calculus that has a characteristic PNmatrix is decidable.
Moreover, as opposed to the results in [1, 2], no conditions are required for a canonical labelled calculus
to have a characteristic PNmatrix: all such calculi have one, and so all of them are decidable. We
then apply PNmatrices to provide simple decidable characterizations of the crucial syntactic properties
of strong analyticity and strong cut-admissibility in canonical labelled calculi. Finally, we demonstrate
how the theory of labelled canonical calculi developed here can be exploited to provide effective semantics
also for a variety of logics induced by calculi which are not canonical. One such example is calculi for
paraconsistent logics known as C-systems.

We note that this paper is an extension of [5] in two main aspects: it includes a new section on the
applications of the theory of labelled canonical calculi (Section 7), and contains full proofs, examples and
explanations that were not included in the previous version.

2 Preliminaries

In what follows L denotes an arbitrary propositional language, and £ denotes a finite non-empty set of
labels. We assume that p1, p2, . . . are the atomic formulas of any propositional language. We denote by
FrmL the set of all wffs of L. We usually use ϕ,ψ as metavariables for formulas, Γ,∆ for finite sets of
formulas, l for labels, and L for sets of labels.

Definition 2.1. A labelled formula (over L and £) is an expression of the form l : ψ, where l ∈ £ and
ψ ∈ FrmL. A sequent (over L and £) is a finite set of labelled formulas (over L and £). An n-clause
(over £) is a sequent (over £) consisting only of atomic formulas from {p1, . . . , pn}.

Given a set L ⊆ £, we write (L : ψ) instead of (the sequent) {l : ψ | l ∈ L}. Given a labelled formula
γ, we denote by frm[γ] the (ordinary) formula appearing in γ, and by sub[γ] the set of subformulas of
the formula frm[γ]. frm and sub are extended to sets of labelled formulas and to sets of sets of labelled
formulas in the obvious way.

Remark 2.2. The usual (two-sided) sequent notation ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm can be interpreted as
{f : ψ1, . . . , f : ψn, t : ϕ1, . . . , t : ϕm}, i.e. a sequent in the sense of Definition 2.1 over £ = {t, f}. Below
we shall sometimes refer to sequents over {t, f} as two-sided sequents. Similarly, we shall refer to sequent
systems employing sequents over {t, f} as two-sided sequent systems.

Definition 2.3. A substitution (for L) is a function σ : FrmL → FrmL, which satisfies σ(�(ψ1, . . . , ψn)) =
�(σ(ψ1), . . . , σ(ψn)) for every n-ary connective � of L. A substitution is extended to labelled formulas,
sequents, etc. in the obvious way.

3 Canonical Labelled Systems

In this section we define the family of canonical labelled systems. This is a general family of labelled
systems, which includes many natural subclasses of previously studied calculi. These include the system
LK for classical logic, the canonical sequent calculi of [4], the signed calculi of [2], the labelled calculi of
[1] and the semi-canonical systems of [6].

All canonical labelled systems have in common the weakening rule. In addition, they include rules
of two types: primitive rules and introduction rules. Each rule of the latter type introduces exactly
one logical connective, while rules of the former type operate on labels and do not mention any logical
connectives.

Definition 3.1 (Weakening). The weakening rule allows to infer s ∪ s′ from s for every two sequents s
and s′.
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Definition 3.2 (Primitive Rules). A primitive rule for £ is an expression of the form {L1, . . . , Ln}/L
where n ≥ 0 and L1, . . . , Ln, L ⊆ £. An application of a primitive rule {L1, . . . , Ln}/L is any inference
step of the following form:

(L1 : ψ) ∪ s1 . . . (Ln : ψ) ∪ sn
(L : ψ) ∪ s1 ∪ . . . ∪ sn

where ψ is a formula, and si is a sequent for every 1 ≤ i ≤ n.

Example 3.3. Suppose £ = {a, b, c}. Consider the primitive rule {{a}, {b}}/{b, c}. This rule allows to
infer ({b, c} : ψ) ∪ s1 ∪ s2 from {a : ψ} ∪ s1 and {b : ψ} ∪ s2 for every two sequents s1, s2 and formula ψ.

Definition 3.4. A primitive rule for £ of the form ∅/L is called a canonical axiom. Its applications
provide all axioms of the form (L : ψ).

Example 3.5. Axiom schemas of two-sided sequent calculi usually have the form ψ ⇒ ψ. Using the
notation from Remark 2.2, it can be presented as the canonical axiom ∅/{t, f}.

Note that applications of canonical axioms do not include context formulas. However, using the
weakening rule (which is available in every system we consider), it is possible to derive (L : ψ) ∪ s from
(L : ψ) for every sequent s.

Definition 3.6. A primitive rule for £ of the form {L1, . . . , Ln}/∅ is called a canonical cut. Its applications
allow to infer s1 ∪ . . . ∪ sn from the sequents (Li : ψ) ∪ si for every 1 ≤ i ≤ n (the formula ψ is called the
cut-formula).

Example 3.7. Applications of the cut rule for two-sided sequent calculi are usually presented by the
following schema:

Γ1 ⇒ ψ,∆1 Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

Using the notation from Remark 2.2, the corresponding canonical cut has the form {{t}, {f}}/∅.

Definition 3.8 (Introduction Rules). A canonical introduction rule for an n-ary connective � of L and £
is an expression of the form Q/(L : �(p1, . . . , pn)), where Q is a finite set of n-clauses (see Definition 2.1)
(called premises), and L is a non-empty subset of £. An application of a canonical introduction rule
{c1, . . . , cm}/(L : �(p1, . . . , pn)) is any inference step of the following form:2

σ(c1) ∪ s1 . . . σ(cm) ∪ sm
(L : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm

where σ is a substitution, and si is a sequent for every 1 ≤ i ≤ m.

Example 3.9. The introduction rules for the classical conjunction in LK are usually presented as follows:

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ1 ⇒ ∆1, ψ Γ2 ⇒ ∆2, ϕ

Γ1,Γ2 ⇒ ∆1,∆2, ψ ∧ ϕ

Using the notation from Remark 2.2, the canonical representation of the schemas above is:

r1 = {{f : p1, f : p2}}/{f : p1 ∧ p2} r2 = {{t : p1}, {t : p2}}/{t : p1 ∧ p2}

Their applications have the forms:

{f : ψ, f : ϕ} ∪ s
{f : ψ ∧ ϕ} ∪ s

{t : ψ} ∪ s1 {t : ϕ} ∪ s2
{t : ψ ∧ ϕ} ∪ s1 ∪ s2

Definition 3.10 (Canonical Labelled Systems). A canonical labelled system G for L and £ includes the
weakening rule, a finite set of primitive rules for £, and a finite set of introduction rules for the connectives
of L. We say that a sequent s is derivable in a canonical labelled system G from a set of sequents S,
denoted by S `G s, if there exists a derivation in G of s from S.

2Note the full separation between a rule and its application; p1, . . . , pn appearing in the rule serve as schematic variables,
which are replaced by actual formulas of the language in the application of the rule.
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Notation 3.11. Given a canonical labelled system G for L and £, we denote by PG the set of primitive
rules of G. For every connective � of L, denote by R�G the set of canonical introduction rules for � of G.

Example 3.12. The system LK can be represented as a canonical labelled system for the language of
classical logic and {t, f} (see Remark 2.2 and Examples 3.5 to 3.9).

Henceforth, to improve readability, we shall sometimes omit the parentheses from the set appearing
before the “/” symbol in primitive rules and canonical introduction rules.

Example 3.13. For £ = {a, b, c}, the canonical labelled system Gabc includes the primitive rules
∅/{a, b}, ∅/{b, c}, ∅/{a, c}, and {a, b, c}/∅. It also has the following canonical introduction rules for a
ternary connective ◦:

{a : p1, c : p2}, {a : p3, b : p2}/({a, c} : ◦(p1, p2, p3))

{c : p2}, {a : p3, b : p3}, {c : p1}/({b, c} : ◦(p1, p2, p3))

Their applications are of the forms:

{a : ψ1, c : ψ2} ∪ s1 {a : ψ3, b : ψ2} ∪ s2
({a, c} : ◦(ψ1, ψ2, ψ3)) ∪ s1 ∪ s2

{c : ψ2} ∪ s1 {a : ψ3, b : ψ3} ∪ s2 {c : ψ1} ∪ s3
({b, c} : ◦(ψ1, ψ2, ψ3)) ∪ s1 ∪ s2 ∪ s3

Note that the canonical labelled calculi studied here are substantially more general than the signed
calculi of [2] and the labelled calculi of [1], as the primitive rules of both of these families of calculi
include only canonical cuts and axioms. Moreover, in the latter only introduction rules which introduce
a singleton are allowed, which is not the case for the calculus in Example 3.13. In the former, all systems
have ∅/£ as their only axiom, and the set of cuts is always assumed to be {{l1}, {l2}/∅ | l1 6= l2} (again
leaving the calculus in Example 3.13 out of scope).

4 Partial Non-deterministic Matrices

Non-deterministic matrices (Nmatrices) ([4, 2]) provide a natural generalization of the notion of a standard
many-valued matrix. These are structures, in which the truth value of a complex formula is chosen
non-deterministically out of a non-empty set of options, which is determined by the truth values of its
subformulas. In this paper we introduce a further generalization of the concept of an Nmatrix, in which
this set of options is allowed to be empty. Intuitively, empty sets of options correspond to forbidding some
combinations of truth values. As we shall see, this will allow us to characterize a wider class of calculi than
that obtained by applying usual Nmatrices. However, as shown in the sequel, the property of effectiveness
is preserved in PNmatrices, and like finite-valued matrices and Nmatrices, (calculi characterized by) finite-
valued PNmatrices are decidable.

4.1 Introducing PNmatrices

Definition 4.1. A partial non-deterministic matrix (PNmatrix for short)M for L and £ consists of: (i)
a set VM of truth values, (ii) a function DM : £→ P (VM) assigning a set of (designated) truth values to
the labels of £, and (iii) a function (called truth table) �M : VMn → P (VM) for every n-ary connective
� of L. We say that M is finite if so is VM.

Definition 4.2. Let M be a PNmatrix for L and £.

1. An M-legal L-valuation is a function v : FrmL → VM satisfying
v(�(ψ1, . . . , ψn)) ∈ �M(v(ψ1), . . . , v(ψn)) for every compound formula �(ψ1, . . . , ψn) ∈ FrmL.

2. Let v be an M-legal L-valuation. A sequent s is true in v for M (denoted by v |=M s) if v(ψ) ∈
DM(l) for some l : ψ ∈ s. A set S of sequents is true in v for M (denoted by v |=M S) if v |=M s
for every s ∈ S.

4



3. Given a set of sequents S and a single sequent s, S `M s if for everyM-legal L-valuation v, v |=M s
whenever v |=M S.

It should be stressed that the relation induced by M defined in the last item above is between a set
of sequents and a sequent. However, the usual notion of a consequence relation between a set of formulas
and a formula can be fully characterized in terms of the former relation in the following way:

Definition 4.3. Assume that the set of labels £ contains a distinguished label t.3 LetM be a PNmatrix
for L and £. The consequence relation `frmM between sets of formulas and formulas which is induced by

M is defined as follows: T `frmM ϕ if {{t : ψ} | ψ ∈ T } `M {t : ϕ}.

Remark 4.4. Note that to determine whether T `frmM ϕ, only DM(t) is used, while the values assigned by
DM to all labels in £ \ {t} are immaterial. Thus when one is only interested in the consequence relation
between sets of formulas and formulas, it suffices to define DM as a set of designated truth values, as it
is usually done for many-values matrices and Nmatrices. On the other hand, when the focus is on the
consequence relation between sets of sequents and sequents, we need to determine when v |=M s also for
sequents with labels in £ \ {t}. In general, we can have different conditions for each label, and for this
reason DM is defined to be a function from £ to P (VM).

We now define a special subclass of PNmatrices, in which no empty sets of truth values are allowed
in the truth tables of the logical connectives. This corresponds to the case of Nmatrices.

Definition 4.5. We say that a PNmatrixM for L and £ is proper if VM is non-empty and �M(x1, . . . , xn)
is non-empty for every n-ary connective � of L and x1, . . . , xn ∈ VM.

The usual concept of Nmatrices can be thought of as proper PNmatrices for L and £, where £ is a
singleton (and so DM is taken to be a set of truth values). In this paper, however, we do not require that
the set of designated truth values (for every l ∈ £) is a non-empty proper subset of VM.

Example 4.6. Let £ = {a, b} and suppose that L consists of one unary connective ?. Define the
PNmatrices M1 and M2 as follows: VM1 = VM2 = {t, f}, DM1(a) = DM2(a) = {t} and DM1(b) =
DM2(b) = {f}. The truth tables for ? are defined as follows:

x ?M1(x)

t {f}
f {t, f}

x ?M2(x)

t ∅
f {t, f}

While both M1 and M2 are (finite) PNmatrices, only M1 is proper. Note that in this case we have
{{a : p1}} `M2 ∅, simply because there is no M2-legal L-valuation that assigns t to p1.

Finally, we extend the notion of simple refinements of Nmatrices (see, e.g. [7]) to the context of
PNmatrices:

Definition 4.7. Let M and N be PNmatrices for L and £. We say that N is a simple refinement of
M, denoted by N ⊆ M, if VN ⊆ VM, DN (l) = DM(l) ∩ VN for every l ∈ £, and �N (x1, . . . , xn) ⊆
�M(x1, . . . , xn) for every n-ary connective � of L and x1, . . . , xn ∈ VN .

Proposition 4.8. Let M and N be PNmatrices for L and £, such that N ⊆ M. Then: (1) Every
N -legal L-valuation is also M-legal; and (2) `M⊆`N .

Proof. (1) is trivial. For (2), let S `M s. Let v be an N -legal L-valuation, such that v |=N S. For every
s′ ∈ S, v(ψ) ∈ DN (l) for some l : ψ ∈ s′. Since DN (l) ⊆ DM(l) for every l ∈ £, we have that for every
s′ ∈ S, v(ψ) ∈ DM(l) for some l : ψ ∈ s′. Thus v |=M S, and since v is M-legal (using (1)), v |=M s.
Then v(ψ) ∈ DM(l) for some l : ψ ∈ s. Since DN (l) = DM(l) ∩ VN and v(ψ) ∈ VN (since v is N -legal),
v(ψ) ∈ DN (l) and so v |=N s.

3This obviously holds for two-sided sequents, where t is used for the right handside of the sequent.
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4.2 Decidability

A desirable property for a denotational semantics is , its effectiveness. In other words, the question of
whether some conclusion follows from a finite set of assumptions, should be decidable by considering
some computable set of partial valuations defined on some finite set of “relevant” formulas. Usually, the
“relevant” formulas are taken as all the subformulas occurring in the conclusion and the assumptions.
Next, we show that the semantics induced by PNmatrices is effective in this sense. The notion of a partial
valuation is defined similarly to that of L-valuation (Definition 4.2):

Definition 4.9. Let M be a PNmatrix for L and £, and let F ⊆ FrmL be closed under subformulas.
AnM-legal F-valuation is a function v : F → VM satisfying v(�(ψ1, . . . , ψn)) ∈ �M(v(ψ1), . . . , v(ψn)) for
every formula �(ψ1, . . . , ψn) ∈ F . |=M is defined for F-valuations exactly as for L-valuations. We say
that an M-legal F-valuation is extendable in M if it can be extended to an M-legal L-valuation.

In proper PNmatrices, all partial valuations are extendable:

Proposition 4.10. Let M be a proper PNmatrix for L and £, and let F ⊆ FrmL be closed under
subformulas. Then any M-legal F-valuation is extendable in M.

Proof. The proof goes exactly like the one for Nmatrices in [8]. Note that the non-emptiness of VM is
needed in order to extend the empty valuation. Clearly, the different definition of DM is immaterial
here.

However, this is not the case for arbitrary PNmatrices:

Example 4.11. Consider the PNmatrix M2 from Example 4.6. Let v be the M2-legal {p1}-valuation
defined by v(p1) = t. Obviously, there is no M2-legal L-valuation that extends v (as there is no way to
assign a truth value to ?p1). Thus v is not extendable in M2.

However, a simple criterion for extendability can be obtained:

Theorem 4.12. Let M be a PNmatrix for L and £ and F ⊆ FrmL be closed under subformulas. An
M-legal F-valuation v is extendable in M iff v is N -legal for some proper PNmatrix N ⊆M.

Proof. (⇐) Suppose that there is some proper PNmatrix N ⊆ M, such that v is N -legal. By Proposi-
tion 4.10, there exists an N -legal L-valuation v′ that extends v. By Proposition 4.8, v′ is M-legal. Thus
v is extendable in M.

(⇒) Let v′ be an M-legal L-valuation that extends v. Define the PNmatrix N as follows: VN =
Image(v′); for every l ∈ £, DN (l) = DM(l) ∩ VN ; and for every n-ary connective � of L, and x1, . . . , xn ∈
VN , �N (x1, . . . , xn) = �M(x1, . . . , xn) ∩ VN . Clearly, we have N ⊆ M. We show that N is proper.
Obviously, VN is non-empty. Let � be an n-ary connective of L, and let x1, . . . , xn ∈ VN . Since VN =
Image(v′), there are some ψ1, . . . , ψn ∈ FrmL, such that v′(ψi) = xi for every 1 ≤ i ≤ n. Since v′ is
an M-legal L-valuation, v′(�(ψ1, . . . , ψn)) ∈ �M(x1, . . . , xn). Thus v′(�(ψ1, . . . , ψn)) ∈ �N (x1, . . . , xn),
and so �N (x1, . . . , xn) 6= ∅. It remains to show that v is N -legal. Let �(ψ1, . . . , ψn) ∈ F . Since v′ is
an M-legal L-valuation, v′(�(ψ1, . . . , ψn)) ∈ �M(v′(ψ1), . . . , v

′(ψn)). By definition v′(�(ψ1, . . . , ψn)) =
v(�(ψ1, . . . , ψn)), and v′(ψi) = v(ψi) for every 1 ≤ i ≤ n. The construction of �N then ensures that
v(�(ψ1, . . . , ψn)) ∈ �N (v(ψ1), . . . , v(ψn)).

Corollary 4.13. Given a finite PNmatrixM for L and £, a finite set F ⊆ FrmL closed under subformulas,
and a function v : F → VM, it is decidable whether v is an M-legal F-valuation which is extendable in
M.

Proof. Checking whether v is an M-legal F-valuation is straightforward. To verify that it is extendable
in M, we go over all (finite) proper PNmatrices N ⊆ M (there is a finite number of them since M is
finite), and check whether v is N -legal for some such N . We return a positive answer iff we have found
some N ⊆M such that v is N -legal. The correctness is guaranteed by Theorem 4.12.

Corollary 4.14. Given a finite PNmatrix M for L and £, a finite set S of sequents, and a sequent s,
the question whether S `M s is decidable.
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Proof. Using Corollary 4.13, it is possible to enumerate all functions v : sub[S ∪ {s}]→ VM, and check if
one of them is an M-legal sub[S ∪ {s}]-valuation extendable in M, such that v |=M S but v 6|=M s. We
claim that S `M s iff such a function is not found. To see this, note that if S 6`M s, then by definition
there exists anM-legal L-valuation v′ such that v′ |=M S but v′ 6|=M s. Its restriction v to sub[S ∪ {s}] is
anM-legal sub[S ∪ {s}]-valuation extendable inM, such that v |=M S but v 6|=M s. On the other hand,
if there exists an M-legal sub[S ∪ {s}]-valuation v extendable in M, such that v |=M S but v 6|=M s,
then for any of its M-legal extensions v′, we have v′ |=M S but v′ 6|=M s. Consequently, S 6`M s in this
case.

In the literature of Nmatrices (see e.g. [8]) effectiveness is usually identified with the property given
in Proposition 4.10.4 In this case Corollary 4.13 trivially holds: to check that v is an extendableM-legal
F-valuation, it suffices to check that it is M-legal, as extendability is a priori guaranteed for Nmatrices.
However, the results above show that this property is not a necessary condition for decidability. To
guarantee the latter, instead of requiring that all partial valuations are extendable, it is sufficient to have
an algorithm that establishes which of them are.

Remark 4.15. As done for ordinary matrices (see, e.g. [9]) it is also possible to define `F , the consequence
relation induced by a family F of proper PNmatrices to be

⋂
N∈F `N . A PNmatrix can then be thought

of as a succinct presentation of a family of proper PNmatrices: following the proof of Theorem 4.12, the
consequence relation induced by a PNmatrix M can be shown to be equivalent to the relation induced
by the family of all the proper PNmatrices N , such that N ⊆M. Conversely, for every family of proper
PNmatrices it is possible to construct an equivalent PNmatrix.

4.3 Minimality

In the next section, we show that the framework of PNmatrices provides a semantic way of characterizing
canonical labelled systems. A natural question in this context is how one can obtain minimal such
characterizations. Next we provide lower bounds on the number of truth values that are needed to
characterize `M of some PNmatrix M satisfying a separability condition defined below. Moreover, we
provide a method to extract from a given (separable) PNmatrix an equivalent PNmatrix with the minimal
number of truth values.

Definition 4.16. Let M be a PNmatrix for L and £.

1. A truth value x ∈ VM is called useful in M if x ∈ VN for some proper PNmatrix N ⊆M.

2. The PNmatrix R[M] is the simple refinement of M, defined as follows: VR[M] consists of all truth
values in VM which are useful in M; for every l ∈ £, DR[M](l) = DM(l) ∩ VR[M]; and for every
n-ary connective � of L and x1, . . . , xn ∈ VR[M], �R[M](x1, . . . , xn) = �M(x1, . . . , xn) ∩ VR[M].

Proposition 4.17. LetM be a PNmatrix for L and £, and let v be anM-legal L-valuation. Then: (1)
For every formula ψ, v(ψ) is useful in M; and (2) Every M-legal L-valuation is also R[M]-legal.

Proof. (2) easily follows from (1). For (1), note that v is trivially extendable inM, and so Theorem 4.12
entails that there is some proper PNmatrix N ⊆M, such that v is N -legal. By definition, v(ψ) ∈ VN for
every formula ψ. Thus v(ψ) is useful in M for every formula ψ.

Corollary 4.18. `M = `R[M] for every PNmatrix M.

Proof. One direction follows from Proposition 4.8, simply because R[M] is a simple refinement of M by
definition. The converse is easily established using Proposition 4.17.

Definition 4.19. Let M be a PNmatrix for L and £. We say that two truth values x1, x2 ∈ VM are
separable in M for l ∈ £ if x1 ∈ DM(l)⇔ x2 6∈DM(l) holds. M is called separable if every pair of truth
values in VM are separable in M for some l ∈ £.

4This property is sometimes called (semantic) analyticity. Note that in this paper the term ‘analyticity’ refers to a
proof-theoretic property (see Definition 6.1).
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We are now ready to obtain a lower bound on the number of truth values needed to characterize `M
for a given separable PNmatrix M:

Theorem 4.20. Let M be a separable PNmatrix for L and £. If `M=`N for some PNmatrix N for L
and £, then N contains at least |VR[M]| truth values.

Proof. Let N be a PNmatrix for L and £ with |VN | < |VR[M]|. We show that `N 6= `M. For every
y ∈ VN , define Vy = {x ∈ VM | ∀l ∈ £.y ∈ DN (l) ⇔ x ∈ DM(l)}. Since M is separable, Vy is either
singleton or empty for every y ∈ VN . Since |VN | < |VR[M]| (and VR[M] ⊆ VM), there exists some
x0 ∈ VR[M], such that x0 6∈Vy for every y ∈ VN . Let L = {l ∈ £ | x0 ∈ DM(l)}. Let S be the set of
all 1-clauses of the form {l : p1} for l ∈ L, and s be the 1-clause (£ \ L : p1). We claim that S `N s.
Suppose otherwise. Then there exists an N -legal L-valuation v such that v |=N S, but v 6|=N s. Thus
v(p1) ∈ DN (l) for every l ∈ L, and v(p1)6∈DN (l) for every l 6∈L. But, it then follows that x0 ∈ Vv(p1), and
this contradicts our assumption concerning x0.

On the other hand, it is easy to see that S 6`M s. Indeed, consider an M-legal {p1}-valuation v that
assigns x0 to p1. Since x0 is useful inM, there exists some proper PNmatrix N ⊆M such that x0 ∈ VN .
v is trivially an N -legal {p1}-valuation, and so by Theorem 4.12, v is extendable in M. Let v′ be an
M-legal L-valuation which extends v. Clearly, v′ |=M S, but v′ 6|=M s.

5 Finite PNmatrices for Canonical Labelled Systems

Definition 5.1. We say that a PNmatrix M (for L and £) is characteristic for a canonical labelled
system G (for L and £) if `M=`G.

Next we provide a systematic way to obtain a characteristic PNmatrixMG for every canonical labelled
system G. The intuitive idea is as follows: the primitive rules of G determine the set of the truth values of
MG, while the introduction rules for the logical connectives dictate their corresponding truth tables. The
semantics based on PNmatrices is thus modular: each rule corresponds to a certain semantic condition,
and the semantics of a system is obtained by joining the semantic effects of each of its derivation rules.

Definition 5.2. Let r = {L1, . . . , Ln}/L0 be a primitive rule for £. Define:

r∗ = {L ⊆ £ | Li ∩ L = ∅ for some 1 ≤ i ≤ n or L0 ∩ L 6= ∅}

Example 5.3. For an axiom r = ∅/L0, we have r∗ = {L ⊆ £ | L0 ∩ L 6= ∅}. For a cut r = {L1, . . . , Ln}/∅,
r∗ = {L ⊆ £ | Li ∩ L = ∅ for some 1 ≤ i ≤ n}. In particular, continuing Examples 3.5 and 3.7 (for
£ = {t, f}), r∗ = {{t}, {f}, {t, f}} for the classical axiom, and r∗ = {∅, {t}, {f}} for the classical cut.

Example 5.4. Suppose £ = {a, b, c, d}. For a primitive rule r = {{a, b}, {c}}/{d}, r∗ consists of all
subsets of £ except for {a, c},{b, c}, and {a, b, c}.

Definition 5.5. Let � be an n-ary connective, and let r = Q/(L0 : �(p1, . . . , pn)) be a canonical intro-
duction rule for � and £. For every L1, . . . , Ln ⊆ £, define:

r∗[L1, . . . , Ln] =

{
{L ⊆ £ | L0 ∩ L 6= ∅} ∀c ∈ Q.((L1 : p1) ∪ . . . ∪ (Ln : pn)) ∩ c 6= ∅
P (£) otherwise

Example 5.6. Let £ = {t, f}. Recall the usual introduction rules for conjunction from Example 3.9. By
Definition 5.5:

r∗1[L1, L2] =

{
{{f}, {t, f}} f ∈ L1 ∪ L2

P ({t, f}) otherwise

r∗2[L1, L2] =

{
{{t}, {t, f}} t ∈ L1 ∩ L2

P ({t, f}) otherwise

Definition 5.7 (The PNmatrixMG). Let G be a canonical labelled system for L and £. The PNmatrix
MG (for L and £) is defined by:
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1. VMG
= {L ⊆ £ | L ∈ r∗ for every r ∈ PG}.

2. For every l ∈ £, DMG
(l) = {L ∈ VMG

| l ∈ L}.

3. For every n-ary connective � of L and L1, . . . , Ln ∈ VMG
:

�MG
(L1, . . . , Ln) = {L ∈ VMG

| L ∈ r∗[L1, . . . , Ln] for every r ∈ R�G}

Example 5.8. Let £ = {t, f} and consider the system G∧ whose primitive rules include only the classical
axiom, and the classical cut (see Examples 3.5 and 3.7), and whose only introduction rules are the two usual
rules for conjunction (see Example 3.9). By Example 5.3 and the construction above, VMG∧

= {{t}, {f}},
DMG∧

(t) = {{t}}, and DMG∧
(f) = {{f}}. Using Example 5.6, we obtain the following interpretation of

∧:
∧MG∧

{t} {f}
{t} {t} {f}
{f} {f} {f}

Now, consider the system GT , which has the same primitive rules, but the following introduction rules:

r1 = {{f : p2}}/{f : p1Tp2} r2 = {{t : p1}}/{t : p1Tp2}

(these are equivalent to the “Tonk” introduction rules of [10]). VMGT
and DMGT

are the same as VMG∧
and DMG∧

, and T has the following truth table:

TMGT
{t} {f}

{t} {t} ∅
{f} {t, f} {f}

Note that the resulting PNmatrix in this case is not proper.

Example 5.9. Let £ = {a, b, c}, and assume that L consists of one unary connective ?. Let us
start with the system G0, the primitive rules of which include the canonical axiom ∅/{a, b, c} and
the canonical cuts {a}, {c}/∅ and {a}, {b}/∅, while G0 has no introduction rules. Here we have
VMG0

= {{a}, {b}, {c}, {b, c}}, DMG0
(a) = {{a}}, DMG0

(b) = {{b}, {b, c}} and DMG0
(c) = {{c}, {b, c}}.

?MG0
is given in the table below (it has the maximal level of non-determinism). One can now obtain

a system G1 by adding the rule {a : p1}/({b, c} : ?p1). This leads to a refinement of the truth table,
described below. Finally, one can obtain the system G2 by adding {b : p1}/{a : ?p1}, resulting in another
refinement of truth table, also described below.

x ?MG0
(x) ?MG1

(x) ?MG2
(x)

{a} {{a},{b},{c},{b, c}} {{b},{c},{b, c}} {{b},{c},{b, c}}
{b} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a}}
{c} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}}
{b, c} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a}}

Soundness and completeness

To establish the soundness and completeness of MG for each canonical labelled system G, the usual
approach would be to show that S `G s iff S `MG

s. However, here we use stronger notions of soundness
and completeness. Later, this will allow us to characterize strong analyticity and strong cut-admissibility
in canonical labelled calculi (Sections 6.1 and 6.2).

Definition 5.10. Let G be a canonical labelled system for L and £, and let F ⊆ FrmL be closed under
subformulas. We write S `FG s if there exists a derivation in G of a sequent s from a set S of sequents
consisting only of (sequents consisting of) formulas from F .

Definition 5.11 (Analytic Soundness). A PNmatrixM for L and £ is analytically sound for a canonical
labelled system G (for L and £) if for every F ⊆ FrmL closed under subformulas, set S of sequents, and
sequent s such that sub[S ∪ {s}] ⊆ F and S `FG s: if v |=MG

S for anMG-legal F-valuation v, then also
v |=MG

s.
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Intuitively, analytic soundness means that if we are able to prove s from S in G using only the
“material” available in F , then for every MG-legal valuation defined on the formulas in this “material”,
if it satisfies S, it must also satisfy s. Obviously, by taking F = FrmL, we obtain the usual notion of
soundness (i.e. S `G s implies S `MG

s).

Theorem 5.12. For a canonical labelled system G (for L and £), MG is analytically sound for G.

Proof. Let F ⊆ FrmL be closed under subformulas, S be a set of sequents, and s be a sequent. Assume
that sub[S ∪ {s}] ⊆ F and that S `FG s. Let v be an MG-legal F-valuation. Suppose that v |=MG

S.
Using induction on the length of P , we show that v |=MG

s for every sequent s occurring in P . This
trivially holds for the sequents of S. We show that this property is also preserved by applications of the
rules of G. This obviously holds for the weakening rule. We show it holds for primitive rules and for
canonical introduction rules as well:

• Suppose (L : ψ) ∪ s1 ∪ . . . ∪ sn is derived from the sequents (L1 : ψ) ∪ s1, . . . , (Ln : ψ) ∪ sn using the
primitive rule r = {L1, . . . , Ln}/L. Assume that v |=MG

(Li : ψ) ∪ si for every 1 ≤ i ≤ n. We
show that v |=MG

(L : ψ) ∪ s1 ∪ . . . ∪ sn. By definition it suffices to show that there exists some
l : ϕ ∈ (L : ψ) ∪ s1 ∪ . . . ∪ sn such that v(ϕ) ∈ DMG

(l). If there exists some l : ϕ ∈ s1 ∪ . . . ∪ sn
such that v(ϕ) ∈ DMG

(l), then we are done. Assume otherwise. Then our assumption entails that
v |=MG

(Li : ψ) for every 1 ≤ i ≤ n, and so for every 1 ≤ i ≤ n, there exists some l ∈ Li such
that v(ψ) ∈ DMG

(l). The definition of DMG
entails that for every 1 ≤ i ≤ n, there exists some

l ∈ Li such that l ∈ v(ψ). In other words, for every 1 ≤ i ≤ n, Li ∩ v(ψ) 6= ∅. Since v is MG-legal,
v(ψ) ∈ VMG

. In particular, v(ψ) ∈ r∗, and so v(ψ) ∩ L 6= ∅. Hence there exists some l0 ∈ L, such
that l0 ∈ v(ψ). It follows that v(ψ) ∈ DMG

(l0). Thus, in this case v |=MG
(L : ψ).

• Suppose (L0 : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm is derived from the se-
quents σ(c1) ∪ s1, . . . , σ(cm) ∪ sm using the canonical introduction rule
r = {c1, . . . , cm}/(L0 : �(p1, . . . , pn)). Assume that v |=MG

σ(ci) ∪ si for every 1 ≤ i ≤ m.
We show that v |=MG

(L0 : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm. By definition it suffices to show that
there exists some l : ϕ ∈ (L0 : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm such that v(ϕ) ∈ DMG

(l). If there
exists some l : ϕ ∈ s1 ∪ . . . ∪ sm such that v(ϕ) ∈ DMG

(l), then we are done. Assume otherwise.
Then our assumption entails that v |=MG

σ(ci) for every 1 ≤ i ≤ m. Thus for every 1 ≤ i ≤ m
there exists some l : p ∈ ci, such that v(σ(p)) ∈ DMG

(l). The definition of DMG
entails that

for every 1 ≤ i ≤ m there exists some l : p ∈ ci, such that l ∈ v(σ(p)). Let Lj = v(σ(pj)) for
every 1 ≤ j ≤ n. It follows that ((L1 : p1) ∪ . . . ∪ (Ln : pn)) ∩ ck 6= ∅ for every 1 ≤ k ≤ m.
Thus r∗[L1, . . . , Ln] = {L ⊆ £ | L ∩ L0 6= ∅}. Since v is MG-legal and σ(�(p1, . . . , pn)) ∈ F ,
v(σ(�(p1, . . . , pn))) ∈ r∗[v(σ(p1)), . . . , v(σ(pn))]. Hence, v(σ(�(p1, . . . , pn))) ∩ L0 6= ∅. Thus there
exists some l ∈ L0, such that l ∈ v(σ(�(p1, . . . , pn))). It follows that v(σ(�(p1, . . . , pn))) ∈ DMG

(l).
Thus, in this case v |=MG

(L0 : σ(�(p1, . . . , pn))).

We now turn to completeness.

Definition 5.13. Let G be a canonical labelled system for L and £, let F ⊆ FrmL be closed under

subformulas, and let C ⊆ FrmL. We write S `〈F ,C〉G s if there exists a derivation P in G of a sequent s
from a set S of sequents such that:

1. P consists only of (sequents consisting of) formulas from F .

2. Only formulas from C serve as cut-formulas in P (see Definition 3.6).

Notation 5.14. We denote by Gcf the canonical labelled system obtained from a canonical labelled system
G by discarding all the canonical cut rules of G.

Definition 5.15 (Cut-Admissible Completeness). A PNmatrixM for L and £ is cut-admissible complete
for a canonical labelled system G (for L and £) if for every F ⊆ FrmL closed under subformulas, C ⊆ FrmL,

set S of sequents, and sequent s such that sub[S ∪ {s}] ⊆ F and S6`〈F ,C〉G s: there exists an MGcf
-legal

F-valuation v, such that (i) v |=MGcf
S, (ii) v 6|=MGcf

s, and (iii) v(ψ) ∈ VMG
for every ψ ∈ C ∩ F .
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Note that the set of truth values VMG
is a subset of the set of truth values VMGcf

. Thus intuitively,
cut-admissible completeness means the following. Suppose that for eachMGcf

-legal F-valuation v, which
assigns to formulas of C ∩F only values from VMG

, it holds that v |=MGcf
S implies v|=MGcf

s. Then s is
provable from S in G using only the “syntactic material” in F , and applying cuts only on formulas from
C. As we show below, by taking F = C = FrmL, we get the usual notion of completeness (i.e. S `MG

s
implies S `G s).

Theorem 5.16. For a canonical labelled system G (for L and £),MG is cut-admissible complete for G.

Proof. Let F ⊆ FrmL be closed under subformulas, C ⊆ FrmL, S be a set of sequents, and s be a sequent.

Assume that sub[S ∪ {s}] ⊆ F and that S 6`〈F ,C〉G s. We construct anMGcf
-legal F-valuation v such that

v(ψ) ∈ VMG
for every ψ ∈ C ∩ F , and v |=MGcf

S but v 6|=MGcf
s. Call a set Ω of labelled formulas

maximal if it satisfies the following conditions:

1. frm[Ω] ⊆ F .

2. S 6`〈F ,C〉G s′ for every sequent s′ ⊆ Ω.

3. For every labelled formula l : ψ 6∈Ω for ψ ∈ F , there exists a sequent s′ ⊆ Ω such that

S `〈F ,C〉G s′ ∪ {l : ψ}.

Let Ω be a maximal set extending s. An existence of such a set is ensured by the next lemma.

Lemma: Let s′ be a set of labelled formulas, such that frm[s′] ⊆ F . If S 6`〈F ,C〉G s′, then there exists a
maximal set Ω such that s′ ⊆ Ω.
Proof: Let γ1, γ2, . . . be an enumeration of all labelled formulas, such that frm[γi] ∈ F and γi 6∈s′ for
every i ≥ 1. We recursively define an (infinite) sequence of sets of labelled formulas Ω0,Ω1, ..., as follows.

Let Ω0 = s′. For k ≥ 1, let Ωk = Ωk−1 iff there exists a sequent s′′ ⊆ Ωk−1 such that S `〈F ,C〉G s′′ ∪ {γk}.
Otherwise, let Ωk = Ωk−1 ∪ {γk}. Finally, let Ω =

⋃
k≥0 Ωk. It is easy to verify that Ω has all required

properties.

Next, let v be a function from F to P (£) defined by v(ψ) = {l ∈ £ | l : ψ 6∈Ω} for every ψ ∈ F . We
claim that:

(A) For every sequent c, such that frm[c] ⊆ F : there exists a sequent s′ ⊆ Ω such that S `〈F ,C〉G c ∪ s′ iff
(v(ψ) : ψ) ∩ c 6= ∅ for some ψ ∈ F .

(B) v is an MGcf
-legal F-valuation.

(C) v(ψ) ∈ VMG
for every ψ ∈ C ∩ F .

(D) v |=MGcf
S.

(E) v 6|=MGcf
s.

Proof of (A): Let c be a sequent such that frm[c] ⊆ F . Suppose that there exists a sequent s′ ⊆ Ω

such that S `〈F ,C〉G c ∪ s′. The maximality of Ω entails that c 6⊆ Ω. Thus there exists a signed formula
l : ψ ∈ c such that l : ψ 6∈Ω. The construction of v entails that l ∈ v(ψ), and so (v(ψ) : ψ) ∩ c 6= ∅. For
the converse, assume that (v(ψ) : ψ) ∩ c 6= ∅ for some ψ ∈ F . Hence there exists some l ∈ v(ψ) such that
l : ψ ∈ c. By definition, l : ψ 6∈Ω. The maximality of Ω entails that there exists a sequent s′ ⊆ Ω such that

S `〈F ,C〉G s′ ∪ {l : ψ}. Using weakening, we obtain S `〈F ,C〉G c ∪ s′.

Proof of (B): We first show that v(ψ) ∈ VMGcf
for every ψ ∈ F . Thus we prove that for every formula

ψ ∈ F , v(ψ) ∈ r∗ for every rule r ∈ PGcf
. Let ψ ∈ F , and let r = {L1, . . . , Ln}/L be a primitive rule

of Gcf . To see that v(ψ) ∈ r∗, we show that if Li ∩ v(ψ) 6= ∅ for every 1 ≤ i ≤ n, then L ∩ v(ψ) 6= ∅.
Suppose that Li ∩ v(ψ) 6= ∅ for every 1 ≤ i ≤ n. (A) entails that for every 1 ≤ i ≤ n, there exists some

sequent si ⊆ Ω such that S `〈F ,C〉G (Li : ψ)∪ si. Using the rule r (which is not a canonical cut), we obtain

S `〈F ,C〉G (L : ψ) ∪ s1 ∪ . . . ∪ sn. (A) again entails that L ∩ v(ψ) 6= ∅.
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Next, we show that v(�(ψ1, . . . , ψn)) ∈ �MGcf
(v(ψ1), . . . , v(ψn)) for every formula �(ψ1, . . . , ψn) ∈ F .

Thus we prove that for every formula �(ψ1, . . . , ψn) ∈ F , v(�(ψ1, . . . , ψn)) ∈ r∗[v(ψ1), . . . , v(ψn)] for ev-
ery rule r ∈ R�G. Let �(ψ1, . . . , ψn) ∈ F , and let r = Q/(L : �(p1, . . . , pn)) be a rule in R�G. To see
that v(�(ψ1, . . . , ψn)) ∈ r∗[v(ψ1), . . . , v(ψn)], we show that if ((v(ψ1) : p1) ∪ . . . ∪ (v(ψn) : pn)) ∩ c 6= ∅ for
every c ∈ Q, then v(�(ψ1, . . . , ψn)) ∩ L 6= ∅. Suppose that ((v(ψ1) : p1) ∪ . . . ∪ (v(ψn) : pn)) ∩ c 6= ∅
for every c ∈ Q. Let σ be a substitution assigning ψi to pi for every 1 ≤ i ≤ n. Thus
((v(ψ1) : ψ1) ∪ . . . ∪ (v(ψn) : ψn)) ∩ σ(c) 6= ∅ for every c ∈ Q. Hence for every c ∈ Q, there exists some
1 ≤ i ≤ n, such that (v(ψi) : ψi) ∩ σ(c) 6= ∅. (A) entails that for every c ∈ Q, there exists some sequent

sc ⊆ Ω such that S `〈F ,C〉G σ(c) ∪ sc. By applying r, we obtain S `〈F ,C〉G (L : �(ψ1, . . . , ψn)) ∪
⋃

c∈Q sc.
Since

⋃
c∈Q sc ⊆ Ω, (A) entails that v(�(ψ1, . . . , ψn)) ∩ L 6= ∅.

Proof of (C): Let ψ ∈ C ∩ F . We show that v(ψ) ∈ VMG
. Following (B), it suffices to show that

v(ψ) ∈ r∗ for every canonical cut r of G. Let r = {L1, . . . , Ln}/∅ be a canonical cut of G. To have
v(ψ) ∈ r∗, it suffices to prove that Li ∩ v(ψ) = ∅ for some 1 ≤ i ≤ n. Suppose otherwise. (A) entails

that for every 1 ≤ i ≤ n, there exists some sequent si ⊆ Ω such that S `〈F ,C〉G (Li : ψ) ∪ si. Using the

canonical cut r (with the cut-formula ψ ∈ C), we obtain S `〈F ,C〉G s1 ∪ . . . ∪ sn. This contradicts the fact
that s1 ∪ . . . ∪ sn ⊆ Ω.

Proof of (D): Let s′ ∈ S. Clearly, S `〈F ,C〉G s′. By (A), (v(ψ) : ψ) ∩ s′ 6= ∅ for some ψ ∈ F . Thus there
exists some l ∈ v(ψ) such that l : ψ ∈ s′. Since l ∈ v(ψ), we have v(ψ) ∈ DMGcf

(l). Hence, v |=MGcf
s′.

Consequently, v |=MGcf
S.

Proof of (E): Since s ⊆ Ω, l 6∈v(ψ) for every l : ψ ∈ s. It follows that for every l : ψ ∈ s, v(ψ) 6∈DMGcf
(l).

Therefore, v 6|=MGcf
s.

Finally, properties (B)-(E) show that v is anMGcf
-legal F-valuation with all required properties.

By the above results, usual soundness and completeness easily follow:

Corollary 5.17. Let G be a canonical labelled system for L and £, and let F ⊆ FrmL be closed under
subformulas. Let S be a set of sequents, and s be a sequent, such that sub[S ∪ {s}] ⊆ F . If v |=MG

S
implies v |=MG

s for every MG-legal F-valuation v, then S `FG s.

Proof. Suppose that for every MG-legal F-valuation v, v |=MG
s whenever v |=MG

S. We prove that
v |=MGcf

S implies v |=MGcf
s for every MGcf

-legal F-valuation v such that v(ψ) ∈ VMG
for every

ψ ∈ F . Theorem 5.16 then implies that S `FG s (choose C = F). Let v be an MGcf
-legal F-valuation

such that v(ψ) ∈ VMG
for every ψ ∈ F , and v |=MGcf

S. The fact that v(ψ) ∈ VMG
for every ψ ∈ F ,

easily entails that v is also an MG-legal F-valuation. Similarly, v |=MG
S. Our assumption entails that

v |=MG
s. It follows that v |=MGcf

s.

Corollary 5.18 (Soundness and Completeness). For every canonical labelled system G, MG is charac-
teristic PNmatrix for G.

Proof. Follows directly from Theorem 5.12 and Corollary 5.17 (by choosing F = FrmL).

Decidability is automatically obtained by the above results.

Corollary 5.19 (Decidability). Given a canonical labelled system G, a finite set S of sequents, and a
sequent s, the question whether S `G s is decidable. In particular: the question whether a given canonical
labelled system G is consistent (i.e. 6`G∅) is decidable.

Proof. Follows directly by Corollary 5.18 and Corollary 4.14.

MG provides a semantic characterization for G, however it may not be a minimal one. For a minimal
semantic representation, we should consider the equivalent PNmatrix R[MG]:

Corollary 5.20 (Minimality). For every canonical labelled system G, R[MG] is a minimal (in terms of
number of truth values) characteristic PNmatrix for G.

Proof. The claim follows by Theorem 4.20 from the fact that MG is separable for every system G.
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6 Proof-Theoretic Consequences

In this section we apply the general soundness and completeness results to provide decidable semantic
criteria for syntactic properties of canonical labelled calculi that are not easily generally characterized
by other means. We focus on the notions of analyticity and cut-admissibility, extended to the context of
reasoning with assumptions.

6.1 Strong Analyticity

Strong analyticity is a crucial property of a useful (propositional) calculus, as it usually implies its con-
sistency and decidability. Intuitively, a calculus is strongly analytic if whenever a sequent s is provable in
it from a set of assumptions S, then s can be proven using only the formulas available within S and s.

Definition 6.1. A canonical labelled system G is strongly analytic if S `G s implies that S `FG s for
F = sub[S ∪ {s}] (i.e. there exists a derivation in G of s from S consisting solely of formulas from
sub[S ∪ {s}]).

Below we provide a decidable semantic characterization of strong analyticity of canonical labelled
calculi:

Theorem 6.2 (Characterization of Strong Analyticity). Let G be a canonical labelled system for L and
£. Suppose that G does not include the (trivial) primitive rule ∅/∅. Then, G is strongly analytic iffMG

is proper.

Proof. Suppose that MG is proper. Assume that S 6`FG s for F = sub[S ∪ {s}]. We show that S 6`G s.
By Corollary 5.17, there exists some MG-legal F-valuation v, such that v |=MG

S but v 6|=MG
s. By

Proposition 4.10, v is extendable to a (full) MG-legal L-valuation v′. Clearly, v′ |=MG
S but v′ 6|=MG

s,
and so S 6`MG

s. By the soundness of MG for G (Corollary 5.18), S 6`G s.
For the converse, suppose that MG is not proper. If VMG

is empty, then `MG
∅ (since there are no

MG-legal L-valuations), and so (by Corollary 5.18) `G ∅. Clearly, without using a rule of the form ∅/∅,
there is no derivation in G that does not contain any formula. It follows that G is not strongly analytic
in this case. Otherwise VMG

is non-empty. Thus �MG
(L1, . . . , Ln) = ∅ for some n-ary connective � of L

and L1, . . . , Ln ∈ VMG
. For every 1 ≤ i ≤ n, let Si be the set of all clauses of the form {l : pi} where

l ∈ Li, and let si = {l : pi | l 6∈Li}. We claim that S1 ∪ . . .∪Sn `G s1 ∪ . . .∪ sn, but there does not exist a
derivation of s1∪ . . .∪sn from S1∪ . . .∪Sn in G that consists solely of formulas from {p1, . . . , pn}. For the
latter, note that for theMG-legal {p1, . . . , pn}-valuation v assigning Li to pi for every 1 ≤ i ≤ n, we have
v |=MG

S1 ∪ . . . ∪ Sn but v 6|=MG
s1 ∪ . . . ∪ sn. Thus the claim follows by Theorem 5.12. For the former,

note that every MG-legal L-valuation v′ for which v′ |=MG
S1 ∪ . . . ∪ Sn but v′ 6|=MG

s1 ∪ . . . ∪ sn, we
must have v′(pi) = Li for every 1 ≤ i ≤ n. But then v′(�(p1, . . . , pn)) should be an element of the empty
set. Since such an L-valuation does not exist, Corollary 5.18 entails that S1∪ . . .∪Sn `G s1∪ . . .∪sn.

Corollary 6.3. The question whether a given canonical labelled system is strongly analytic is decidable.

6.2 Strong Cut-Admissibility

As the property of strong analyticity is sometimes difficult to establish, it is traditional in proof theory
to investigate the property of cut-admissibility, which means that whenever s is provable in G, it has a
cut-free derivation in G. In this paper we investigate a stronger notion of this property, defined as follows
for labelled calculi:

Definition 6.4. A canonical labelled system G enjoys strong cut-admissibility if whenever S `G s, there
exists a derivation in G of s from S in which only formulas from frm[S] serve as cut-formulas.

Due to the special form of primitive and introduction rules of canonical calculi (which, except for
canonical cuts, enjoy the subformula property), the above property guarantees strong analyticity:

Proposition 6.5. If a canonical labelled system enjoys strong cut-admissibility, then it is strongly ana-
lytic.
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Although for two-sided canonical sequent calculi the notions of strong analyticity and strong cut-
admissibility coincide (see [2]), this is not the case for general canonical labelled calculi, for which the
converse of Proposition 6.5 does not necessarily hold, as shown by the following example:

Example 6.6. Let £ = {a, b, c}, and assume that L consists of a unary connective ?. Let G be the
canonical labelled system for L and £, the primitive rules of which include only the canonical cuts
{a}, {b}/∅, {a}, {c}/∅, and {b}, {c}/∅, and its only introduction rules are {a : p1}/({a, b} : ?p1) and
{a : p1}/({b, c} : ?p1). To see that this system is strongly analytic, by Theorem 6.2, it suffices to
constructMG and check that it is proper. The construction proceeds as follows: VMG

= {∅, {a}, {b}, {c}},
DMG

(l) = {l} for l ∈ {a, b, c}, and the truth table for ? is the following:

x ?MG
(x)

∅ {∅, {a}, {b}, {c}}
{a} {{b}}
{b} {∅, {a}, {b}, {c}}
{c} {∅, {a}, {b}, {c}}

This is a proper PNmatrix, and so G is strongly analytic. However, it impossible to derive the sequent
{b : ?p1} from the singleton set {{a : p1}} using only p1 as a cut-formula. This is possible by applying
the two introduction rules of G and then using the cut {a}, {c}/∅ (with ?p1 as the cut-formula). Thus
although this system is strongly analytic, it does not enjoy strong cut-admissibility.

The intuitive explanation is that non-eliminable applications of canonical cuts (like the one in the
above example) are not harmful for strong analyticity because they enjoy the subformula property. Thus,
the equivalence between strong analyticity and cut-admissibility can be restored if we enforce the following
property:

Definition 6.7. A canonical labelled system G for L and £ is cut-saturated if for every canonical cut
{L1, . . . , Ln}/∅ of G and l ∈ £, G contains the primitive rule {L1, . . . , Ln}/{l}.

Proposition 6.8. For every canonical labelled system G, there is an equivalent cut-saturated canonical
labelled system G′ (i.e. `G=`G′).

Example 6.9. Revisiting the system from Example 6.6, we observe that G is not cut-saturated. To obtain
a cut-saturated equivalent system G′, we add (among others) the three primitive rules: r1 = {a}, {b}/{c},
r2 = {a}, {c}/{b}, and r3 = {b}, {c}/{a}. Clearly, each of these rules can be simulated in G by applying
cut and weakening. Note that the addition of these rules does not affect the corresponding PNmatrix,
i.e. MG =MG′ . However, we can now derive {b : ?p1} from {{a : p1}} without any cuts using the two
introduction rules for ? and the new rule r2. Moreover, by Theorem 6.12 below, G′ does enjoy strong
cut-admissibility.

We are now ready to provide a decidable semantic characterization of strong cut-admissibility. For
that we use the following lemmas:

Lemma 6.10. Let G be a canonical labelled system for L and £. For every n-ary connective �
of L, and every L1, . . . , Ln, L

′
1, . . . , L

′
n ∈ VMG

such that Li ⊆ L′i for every 1 ≤ i ≤ n, we have
�MG

(L′1, . . . , L
′
n) ⊆ �MG

(L1, . . . , Ln).

Proof. It suffices to note that for every L1, . . . , Ln, L
′
1, . . . , L

′
n ∈ VMG

such that Li ⊆ L′i for every
1 ≤ i ≤ n, and r ∈ R�G, we have: r∗[L′1, . . . , L

′
n] ⊆ r∗[L1, . . . , Ln].

Lemma 6.11. Let G be a cut-saturated canonical labelled system for L and £. VMGcf
= VMG

∪ {£},
DMGcf

(l) = DMG
(l) ∪ {£} for every l ∈ £, and �MGcf

(L1, . . . , Ln) = �MG
(L1, . . . , Ln) ∪ {£} for every

n-ary connective � of L and every L1, . . . , Ln ∈ VMG
.

Proof. It suffices to show that VMGcf
= VMG

∪{£}, and the other claims easily follow. Since PGcf
⊆ PG,

we obviously have VMG
⊆ VMGcf

. In addition, since there are no canonical cuts in Gcf , £ ∈ r∗ for every
primitive rule r of Gcf , and thus £ ∈ VMGcf

. Now, let L ∈ VMGcf
, and suppose that L6∈VMG

. We show
that L = £. Since L6∈VMG

, L6∈r∗ for some r ∈ PG. The fact that L ∈ VMGcf
entails that r must be a
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canonical cut, and thus r = {L1, . . . , Ln}/∅ for some L1, . . . , Ln ⊆ £. Consequently, since L6∈VMG
, we

have Li ∩L 6= ∅ for every 1 ≤ i ≤ n. Since G is cut-saturated, for every l ∈ £, Gcf includes the primitive
rule rl = {L1, . . . , Ln}/{l}. The fact that L6∈VMGcf

then entails that L ∈ r∗l for every l ∈ £. It follows
that {l} ∩ L 6= ∅ for every l ∈ £, and thus L = £.

Theorem 6.12 (Characterization of Strong Cut-Admissibility). Let G be a cut-saturated canonical
labelled system for L and £. Suppose that G does not include the (trivial) primitive rule ∅/∅. Then, G
enjoys strong cut-admissibility iff MG is proper.

Proof. Suppose thatMG is not proper. By Theorem 6.2, G is not strongly analytic. By Proposition 6.5,
it does not enjoy strong cut-admissibility.

Now suppose that MG is proper. Assume that there does not exist a derivation of a sequent s
from a set S of sequents in G in which only formulas from frm[S] serve as cut-formulas. We show
that S 6`G s. By choosing F = FrmL and C = frm[S] in Theorem 5.16, we obtain that there exists
some MGcf

-legal L-valuation v′ assigning only values from VMG
to the formulas in frm[S], such that

v′ |=MGcf
S but v′ 6|=MGcf

s. By Lemma 6.11, v′ is a function from FrmL to VMG
∪ {£}. We con-

struct a function v : FrmL → VMG
, such that v is an MG-legal L-valuation; v(ψ) ⊆ v′(ψ) for every

ψ ∈ FrmL; and v(ψ) = v′(ψ) whenever v′(ψ) ∈ VMG
. In particular, it is easy to verify that we will

have v |=MG
S, and v 6|=MG

s, and consequently (by Corollary 5.18) S 6`G s. The construction of v is
done by recursion on the build-up of formulas. First, for atomic formulas, if v′(p) ∈ VMG

, we choose
v(p) = v′(p). Otherwise, v′(p) = £, and we (arbitrarily) choose v(p) to be an element of VMG

(VMG

is non-empty since MG is proper). Now, let � be an n-ary connective of L, and suppose v(ψi) was
defined for every 1 ≤ i ≤ n. We choose v(�(ψ1, . . . , ψn)) to be equal to v′(�(ψ1, . . . , ψn)) if the latter
is in VMG

. Otherwise, v′(�(ψ1, . . . , ψn)) = £, and we choose v(�(ψ1, . . . , ψn)) to be some element of
�MG

(v(ψ1), . . . , v(ψn)) (such an element exists since MG is proper). Obviously, v(ψ) ⊆ v′(ψ) for every
ψ ∈ FrmL, and v(ψ) = v′(ψ) whenever v′(ψ) ∈ VMG

. To see that v is an MG-legal L-valuation, suppose
(for contradiction) that v(�(ψ1, . . . , ψn))6∈ �MG

(v(ψ1), . . . , v(ψn)) for some formula �(ψ1, . . . , ψn). By
Lemma 6.11, v(�(ψ1, . . . , ψn))6∈ �MGcf

(v(ψ1), . . . , v(ψn)). Now, since v(ψ) ⊆ v′(ψ) for every ψ ∈ FrmL,
Lemma 6.10 entails that v(�(ψ1, . . . , ψn))6∈ �MGcf

(v′(ψ1), . . . , v
′(ψn)). Consequently, since v′ is anMGcf

-
legal L-valuation, v′(�(ψ1, . . . , ψn)) 6= v(�(ψ1, . . . , ψn)). It follows that v′(�(ψ1, . . . , ψn)) = £. By defini-
tion, v(�(ψ1, . . . , ψn)) ∈ �MG

(v(ψ1), . . . , v(ψn)), reaching a contradiction.

Corollary 6.13. Let G be a cut-saturated canonical labelled system for L and £. Suppose that G does
not include the (trivial) primitive rule ∅/∅. Then the following statements concerning G are equivalent:
(i) MG is proper, (ii) G is strongly analytic, and (iii) G enjoys strong cut-admissibility.

Remark 6.14. When G is not cut-saturated, (i) and (ii) in the corollary above are equivalent to the
following property: (iii’) whenever S `G s, there exists a derivation in G of s from S in which for
every application of a canonical cut deriving a sequent of the form s1 ∪ . . . ∪ sn from the sequents
(L1 : ψ) ∪ s1, . . . , (Ln : ψ) ∪ sn, we have ψ ∈ frm[S ∪ {s1, . . . , sn}].
Remark 6.15. In [11, 4] a necessary and sufficient condition for cut-admissibility is provided using a
simple syntactic condition of coherence for canonical Gentzen-type systems, which are particular instances
of (two-sided) labelled canonical calculi. It should be noted that in these systems cut-admissibility is
equivalent to strong cut-admissibility, and so coherence of such system is equivalent to the existence of a
characteristic proper PNmatrix.

7 An Application: Quasi-Canonical Systems

The theory of canonical labelled calculi developed here can be applied for characterization of logics, which
are not necessarily given in terms of canonical labelled systems. In this section we demonstrate one such
application for the class of quasi-canonical systems, defined in [7]. Many well-known logics are induced
by quasi-canonical systems, including a variety of paraconsistent logics. Quasi-canonical systems are two-
sided sequent calculi, which are not necessarily canonical in the sense of this paper, as they may have more
complex introduction rules than those allowed in two-sided canonical systems. However, we show that they
can still be translated to canonical labelled systems (with more than two labels). The translation easily
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implies decidability for all quasi-canonical systems, and also allows for providing finite-valued PNmatrices
semantics for logics they induce.

7.1 Quasi-Canonical Systems

Quasi-canonical systems, defined in [7], are two-sided systems, which in addition to the usual weakening
rule, identity axiom and cut, include also logical rules with the following properties (the language is
assumed to have a unary connective ¬):

1. Exactly one formula is introduced in the conclusion of the rule, on exactly one of its two sides.

2. The formula being introduced is either of the form �(p1, . . . , pn) or of the form ¬ � (p1, . . . , pn).

3. All formulas in the premises of a rule introducing an n-ary connective, belong to the set
{p1, . . . , pn,¬p1, . . . ,¬pn}.

4. There are no restrictions on the side formulas in the rule application (i.e. every context is legitimate).

Of course, the rules described above are not canonical introduction rules in the sense of Definition 3.8,
due to the following two “violations”: (i) the introduced formula can be not only �(p1, . . . , pn), but also
¬ � (p1, . . . , pn), and (ii) the premises may contain not only atomic formulas pi, but also ¬pi. Hence the
results obtained in this paper for canonical labelled calculi do not directly apply. However, below we show
that these results can still be exploited by translating quasi-canonical calculi into equivalent (in the sense
defined below) canonical labelled calculi.

As noted above, the language of quasi-canonical systems is assumed in [7] to include a unary connective
¬. This restriction can be lifted by considering quasi-canonical rules defined with respect to any finite
set of unary connectives. Thus in what follows we assume that L contains some fixed set U of unary
connectives. The notion of such generalized quasi-canonical rule can then be formalized in our terms as
follows:

Definition 7.1. An n-quasi-clause is a two-sided sequent consisting only of formulas of the form pi or
?pi for 1 ≤ i ≤ n and ? ∈ U .

Definition 7.2. A (generalized) quasi-canonical rule for an n-ary connective � of L is an expression of the
form Q/s, where Q is a set of n-quasi-clauses and s has the form: {l : ?�(p1, . . . , pn)} or {l : �(p1, . . . , pn)}
(l ∈ {t, f} and ? ∈ U). An application of a quasi-canonical rule {q1, . . . , qm}/s is an inference step of the
form:

σ(q1) ∪ s1 . . . σ(qm) ∪ sm
σ(s) ∪ s1 ∪ . . . ∪ sm

where σ is a substitution, and si is a sequent for every 1 ≤ i ≤ m.

Example 7.3. Suppose that ¬ ∈ U . The following rules from [12] are quasi-canonical rules for ∧:

{¬p1 ⇒,¬p2 ⇒}/¬(p1 ∧ p2)⇒ {⇒ ¬p1}/⇒ ¬(p1 ∧ p2) {⇒ ¬p2}/⇒ ¬(p1 ∧ p2)

Their applications have the forms:

Γ,¬ψ ⇒ ∆ Γ,¬ϕ⇒ ∆

Γ,¬(ψ ∧ ϕ)⇒ ∆

Γ⇒ ∆,¬ψ
Γ⇒ ∆,¬(ψ ∧ ϕ)

Γ⇒ ∆,¬ϕ
Γ⇒ ∆,¬(ψ ∧ ϕ)

Definition 7.4. A quasi-canonical system for L is a two-sided sequent system consisting of the weakening
rule (see Definition 3.1), the standard identity axiom and the cut rule (see Examples 3.5 and 3.7), and an
arbitrary finite set of quasi-canonical rules. As before, we say that a (two-sided) sequent s is derivable in
a quasi-canonical system G from a set of (two-sided) sequents S (and denote it by S `G s) if there exists
a derivation in G of s from S.

While in this paper we have been interested in derivability of sequents from sets of sequents, in quasi-
canonical systems one is usually interested in its logic, i.e. the consequence relation between sets of
formulas and formulas which is induced by the system. This relation can be defined as follows:
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Definition 7.5. Let G be a quasi-canonical system for L. The consequence relation `frmG between sets

of formulas and formulas which is induced by G is defined as follows: T `frmG ϕ if {{t : ψ} | ψ ∈ T } `G
{t : ϕ}.

Various well-known logics are induced by quasi-canonical systems. This includes a large family of
paraconsistent logics known as C-systems ([13]), for which cut-free quasi-canonical systems were proposed
in [7], and various other paraconsistent extensions of positive classical logic studied in [12].

7.2 Translation of Quasi-Canonical Systems to Canonical Labelled Systems

Next we provide a translation of a given quasi-canonical calculus G into a canonical labelled one GL,
which is equivalent to the original one in a sense defined below. The idea is to “encode” the information
related to the connectives from U in the labels of GL, so that connectives from U “violating” canonicity
are removed. To this end, we use {t, f} ∪ {t? | ? ∈ U} ∪ {f? | ? ∈ U} as the set of labels. We denote this
set by £U .

Definition 7.6. For a labelled formula l : ψ where l ∈ {t, f}, T (l : ψ) is a labelled formula over £U ,
defined as follows: T (l : ψ) = l? : ϕ if ψ = ?ϕ for some ? ∈ U , and otherwise T (l : ψ) = l : ψ. T is extended
to two-sided sequents and sets of two-sided sequents in the obvious way (e.g. T (s) = {T (l : ψ) | l : ψ ∈ s}).

Example 7.7. Suppose that ¬ ∈ U . Then T (¬¬p1 ⇒ ¬p1, p3) = {t : p3, t¬ : p1, f¬ : ¬p1}.

Notation 7.8. Given a labelled formula γ, we denote by lab[γ] the label appearing in γ. lab is extended
to sequents in the obvious way.

Definition 7.9. Let G be a quasi-canonical system for L. GL is the canonical labelled system for L and
£U with the following rules (except for weakening):

• Primitive rules:

– The canonical axioms ∅/{t, f} and ∅/{t?, f?} for every ? ∈ U .

– The canonical cuts {t}, {f}/∅ and {t?}, {f?}/∅ for every ? ∈ U .

– {lab[T (q)] | q ∈ Q}/{l?} for every quasi-canonical rule Q/{l : ?p1} of G (l ∈ {t, f} and ? ∈ U).

• Canonical introduction rules:

– {l? : p1}/{l : ?p1} every l ∈ {t, f} and ? ∈ U .

– T (Q)/{l : �(p1, . . . , pn)} for every quasi-canonical rule Q/{l : �(p1, . . . , pn)} of G where
l ∈ {t, f}, and � is an n-ary connective of L which does not belong to U .

– T (Q)/{l? : �(p1, . . . , pn)} for every quasi-canonical rule Q/{l : ? � (p1, . . . , pn)} of G where
l ∈ {t, f}, � is an n-ary connective of L, and ? ∈ U .

Example 7.10. Suppose that U = {¬}, and that L consists of a unary connective ¬ and a binary
connective ∧. The system PLK[{(¬∧ ⇒)}] from [12] is a quasi-canonical system for L, whose only
quasi-canonical rules are {p1 ⇒}/ ⇒ ¬p1, {¬p1 ⇒ , ¬p2 ⇒}/¬(p1 ∧ p2) ⇒, and the two usual rules
for ∧ (see Example 3.9). We denote this system by G0. GL

0 is the canonical labelled system for L and
£U = {t, f, t¬, f¬}, with the following rules (except for weakening):

• Primitive rules:

– The canonical axioms ∅/{t, f} and ∅/{t¬, f¬}.
– The canonical cuts {t}, {f}/∅ and {t¬}, {f¬}/∅.
– {f}/{t¬} (since G0 has a quasi-canonical rule {p1 ⇒}/⇒ ¬p1, and T (p1 ⇒) = {f : p1}).

• Canonical introduction rules:

– {t¬ : p1}/{t : ¬p1} and {f¬ : p1}/{f : ¬p1}.
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– {f¬ : p1}, {f¬ : p2}/{f¬ : p1 ∧ p2} (since G0 has a quasi-canonical rule
¬p1 ⇒ , ¬p2 ⇒ /¬(p1 ∧ p2)⇒, and T (¬pi ⇒) = {f¬ : pi}).

– The two usual rules for ∧ (since these rules are already canonical).

The obtained labelled system GL is equivalent to the original quasi-canonical system G in the following
sense:

Theorem 7.11. For every quasi-canonical system G, S `G s iff T (S) `GL T (s).

Proof. See Appendix A.

A general decidability result for quasi-canonical systems easily follows:

Corollary 7.12 (Decidability). Given a quasi-canonical system G, a finite set S of sequents, and a
sequent s, the question whether S `G s is decidable.

Proof. Follows directly from Corollary 5.19 and Theorem 7.11. Note that the construction of GL from G
is obviously computable.

Next, we use the semantic framework of PNmatrices to provide finite-valued semantics for all logics
induced by quasi-canonical systems.

Proposition 7.13. Let G be a quasi-canonical system for L, and let v be an MGL-legal L-valuation.
For every two-sided sequent s: v |=M

GL
s iff v |=M

GL
T (s).

Proof. Suppose that v |=M
GL

T (s). By definition, there exists some formula ψ such that l : ψ ∈ s and
l ∈ v(ψ) (where l ∈ £U ). If l ∈ {t, f} then l : ψ ∈ s as well, and clearly v |=M

GL
s. Otherwise l = t?

or l = f? for some ? ∈ U . Suppose that l = t? (the other case is symmetric). Thus t : ?ψ ∈ s. Since v
is MGL-legal, v(?ψ) ∈ ?M

GL
(v(ψ)). The construction of MGL ensures that t ∈ v(?ψ) (this follows from

the fact that GL includes the introduction rule {t? : p1}/{t : ?p1}). It follows that v |=M
GL

s.
For the converse, suppose that v |=M

GL
s. By definition, there exists some formula ψ such that

l : ψ ∈ s and l ∈ v(ψ) (where l ∈ {t, f}). If ψ does not have a form ?ϕ for ? ∈ U , then l : ψ ∈ T (s), and
clearly v |=M

GL
T (s). Otherwise, ψ = ?ϕ for some ? ∈ U . Thus l? : ϕ ∈ T (s). Since v is MGL-legal,

v(ψ) ∈ ?M
GL

(v(ϕ)). Suppose now that l = t (the other case is symmetric). The construction of MGL

ensures that t? ∈ v(ϕ) (this follows from the fact that GL includes the canonical axiom ∅/{t?, f?}, the
introduction rule {f? : p1}/{f : ?p1}, and the canonical cut {t}, {f}/∅). It follows that v |=M

GL
T (s).

Corollary 7.14 (Soundness and Completeness). For every quasi-canonical system G, T `frmG ϕ iff

T `frmM
GL

ϕ.

Proof. Easily follows from Proposition 7.13, Theorem 7.11, and Corollary 5.18.

Example 7.15. Let us revisit the system G0 from Example 7.10. The corresponding (proper) PNmatrix
MGL

0
, which is obtained from the canonical labelled calculus GL

0 constructed in that example, is defined

as follows: VM
GL

0

= {{t, t¬}, {t, f¬}, {f, t¬}}, DM
GL

0

= {{t, t¬}, {t, f¬}},5 and ¬ and ∧ have the following

interpretations:

∧M
GL

0

{t, f¬} {t, t¬} {f, t¬}
{t, f¬} {{t, f¬}} {{t, t¬}, {t, f¬}} {{f, t¬}}
{t, t¬} {{t, t¬}, {t, f¬}} {{t, t¬}, {t, f¬}} {{f, t¬}}
{f, t¬} {{f, t¬}} {{f, t¬}} {{f, t¬}}

¬M
GL

0

{t, f¬} {{f, t¬}}
{t, t¬} {{t, t¬}, {t, f¬}}
{f, t¬} {{t, t¬}, {t, f¬}}

The PNmatrix MGL
0

is isomorphic to the Nmatrix given for the system PLK[(¬∧ ⇒)] in [12]. It is
easy to check that this is the case for all the PNmatrices obtained by this procedure for the quasi-canonical
systems considered in [12, 7].

5Note that we take DM
GL

0

to be a set, as explained in Remark 4.4.
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8 Related work

In addition to the aforementioned papers [1, 11, 4, 2], there are a number of works providing syntactic
and semantic criteria for cut-elimination (and analyticity) in various other proof-theoretic domains. For
example, [14, 15] consider a family of two-sided single-conclusion calculi obtained by extending the full
Lambek calculus with structural and logical rules. The systems of this family all include the usual identity
axiom and the usual cut rule. Thus, in [14, 15] the primitive rules remain fixed, while the structural and
logical rules change. This is in contrast to the current paper, where a large variety of primitive rules is
allowed, but the structural rules are predetermined (as we discuss only fully-structural calculi). Note also
that as opposed to the multiple-conclusion systems used in this paper, an investigation of cut-admissibility
and analyticity for two-sided single-conclusion canonical calculi was carried out in [16].

Another interesting connection is provided by [17], where a general framework for specifying proof
systems using linear logic is proposed (further extended in [18] using subexponentials), providing also a
necessary condition that guarantees that the specified systems admit cut-elimination. Many systems of
our framework (at least all the two-sided ones) can be specified using these methods. Due to the general
nature of our framework, an algorithmic approach to such specification (instead of doing it manually for
each concrete calculus) is a promising direction for further research.

9 Conclusions and Further Research

In this paper we have defined an abstract framework of canonical labelled calculi, which includes many
calculi previously studied in the literature. To provide semantics for all the calculi in our framework, we
have introduced PNmatrices, an effective generalization of Nmatrices, in which empty entries in logical
truth tables are allowed. We have provided a method to construct a characteristic PNmatrix for every
canonical labelled calculus, which in turn implies its decidability. We have also shown that this PNmatrix
has no empty entries (i.e. is proper) iff the corresponding calculus is strongly analytic. For cut-saturated
canonical calculi, these properties are also equivalent to strong cut-admissibility. Thus we obtain a simple
and decidable semantic characterization of these crucial proof-theoretical properties for canonical labelled
calculi.

Canonical labelled calculi are a general family of calculi which are decidable, have simple semantics and
exhibit nice proof-theoretical properties. As demonstrated in this paper, they can be used as a formalism
for “encoding” other types of calculi. It is thus interesting to characterize the type of calculi which can be
translated into canonical labelled calculi, and investigate the properties preserved by such translations.
Another direction for further research is generalizing the results of this paper to more complex classes of
labelled calculi, e.g., those defined in [19] for inquisitive logic. Finally, to make the framework useful for
more practical applications, extending the results to the first-order case is required.
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A Proof of Theorem 7.11

Lemma A.1. Let G be a quasi-canonical system. For every n-quasi-clause q, substitution σ, and sequent
s: T (σ(q)) ∪ s `GL σ(T (q)) ∪ s.

Proof. We prove it for n-quasi-clauses with exactly one labelled formula. For larger n-quasi-clauses, the
claim follows by repeatedly applying the following argument. Let q be an n-quasi-clause with exactly
one labelled formula, σ be an arbitrary substitution, and s be an arbitrary sequent. By definition,
q = {l : ϕ}, where l ∈ {t, f}, and ϕ is either pi or ?pi for 1 ≤ i ≤ n and ? ∈ U . Suppose first
that ϕ = ?pi. Then T (σ(q)) = T ({l : ?σ(pi)}) = {l? : σ(pi)} = σ({l? : pi}) = σ(T (q)). Obviously,
T (σ(q)) ∪ s `GL σ(T (q)) ∪ s. Suppose now that ϕ = pi. If σ(pi) is not a formula of the form ?ψ for
? ∈ U , then again T (σ(q)) = T ({l : σ(pi)}) = {l : σ(pi)} = σ({l : pi}) = σ(T (q)). Otherwise, σ(pi) = ?ψ
for some ? ∈ U . Then: T (σ(q)) = T ({l : ?ψ}) = {l? : ψ}. By definition, GL includes the introduction
rule {l? : p1}/{l : ?p1}. By applying this rule, we obtain that T (σ(q)) ∪ s `GL {l : ?ψ} ∪ s, where
{l : ?ψ} = {l : σ(pi)} = σ({l : pi}) = σ(T (q)).
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Proof of Theorem 7.11. (⇒) Suppose that S `G s. Thus there exists a sequence P = s1, . . . , sN such that
sN = s and for every 1 ≤ i ≤ N , si is either in S, or derived from previous sequents by applying a rule
of G. We prove that for every 1 ≤ i ≤ N : if T (S) `GL T (sj) for every 1 ≤ j < i then T (S) `GL T (si) (it
then follows that T (S) `GL T (s)). Let 1 ≤ i ≤ N , and suppose that T (S) `GL T (sj) for every 1 ≤ j < i.
Consider the possible cases:

• si ∈ S. By definition, T (si) ∈ T (S), and so T (S) `GL T (si).

• si = si1 ∪ s is derived from a previous sequent si1 by applying the weakening rule. In this case, we
can derive T (si) = T (si1) ∪ T (s) from T (si1) by applying weakening as well.

• si is obtained by applying the identity axiom. Thus si = {t : ψ, f : ψ} for some formula ψ. T (si)
is either {t : ψ, f : ψ} or {t? : ϕ, f? : ϕ} (if ψ = ?ϕ). In any case, T (si) is obtained by applying a
canonical axiom of GL.

• si is derived from previous sequents si1 and si2 by applying the cut rule. Thus si = c1 ∪ c2,
si1 = c1∪{t : ψ}, and si2 = c2∪{f : ψ} for some formula ψ and sequents c1 and c2. If ψ does not have
the form ?ϕ (for ? ∈ U and formula ϕ), then T (si1) = T (c1) ∪ {t : ψ} and T (si2) = T (c2) ∪ {f : ψ}.
By applying a canonical cut in GL, we obtain a derivation of T (si). Otherwise, ψ = ?ϕ for some
? ∈ U and formula ϕ, then T (si1) = T (c1) ∪ {t? : ψ} and T (si2) = T (c2) ∪ {f? : ψ}. Again, by
applying a canonical cut in GL, we obtain a derivation of T (si).

• si = {l : ?σ(p1)}∪c1∪. . .∪cm is derived from previous sequents si1 = σ(q1)∪c1, . . . , sim = σ(qm)∪cm
by applying a quasi-canonical rule of G of the form {q1, . . . , qm}/{l : ?p1} where l ∈ {t, f} and ? ∈ U .
By Lemma A.1, for every 1 ≤ k ≤ m, T (σ(qk) ∪ ck) `GL σ(T (qk)) ∪ T (ck). By definition, each qk
consists only of the formulas p1 or .p1 for . ∈ U , and so σ(T (qk)) = (lab[T (qk)] : σ(p1)). Thus,
we obtain that T (S) `GL (lab[T (qk)] : σ(p1)) ∪ T (ck) for every 1 ≤ k ≤ m. By applying the
corresponding primitive rule of GL {lab[T (q1)], . . . , lab[T (qm)]}/{l?}, we obtain a derivation in GL

of the sequent T (si) = {l? : σ(p1)} ∪ T (c1) ∪ . . . ∪ T (cm).

• si = {l : σ(�(p1, . . . , pn))} ∪ c1 ∪ . . . ∪ cm is derived from previous sequents
si1 = σ(q1) ∪ c1, . . . , sim = σ(qm) ∪ cm by applying a quasi-canonical rule of G for �6∈U of the
form {q1, . . . , qm}/{l : �(p1, . . . , pn)} where l ∈ {t, f}. By Lemma A.1, for every 1 ≤ k ≤ m,
T (σ(qk) ∪ ck) `GL σ(T (qk)) ∪ T (ck). By applying the corresponding canonical introduction rule of
GL T ({q1, . . . , qm})/{l : �(p1, . . . , pn)}, we obtain a derivation in GL of T (si).

• si = {l : σ(? � (p1, . . . , pn))} ∪ c1 ∪ . . . ∪ cm is derived from previous sequents
si1 = σ(q1) ∪ c1, . . . , sim = σ(qm) ∪ cm by applying a quasi-canonical rule of G for � of the form
{q1, . . . , qm}/{l : ? � (p1, . . . , pn)} where l ∈ {t, f} and ? ∈ U . The proof is similar to the previous
case, using the rule T ({q1, . . . , qm})/{l? : �(p1, . . . , pn)} of GL.

(⇐) For the converse, we define a translation T−1, mapping labelled formulas over £U to labelled formulas
over {t, f}: T−1(l : ψ) = l : ψ for l ∈ {t, f}, and T−1(l? : ψ) = l : ?ψ for l? ∈ £U \ {t, f}. T−1 is extended
to sequents for £U and sets of sequents for £U as follows:

T−1(s) = {T−1(l : ψ) | l : ψ ∈ s} T−1(S) = {T−1(s) | s ∈ S}

Since T−1(T (s)) = s for every (two-sided) sequent s, it suffices to show that S `GL s implies T−1(S) `G
T−1(s) (for every set S ∪ {s} of sequents over £U ). Suppose that S `GL s. Hence there exists a sequence
P = s1, . . . , sN such that sN = s and for every 1 ≤ i ≤ N , si is either in S, or is derived from previous
sequents by applying a rule of GL. We prove that for every 1 ≤ i ≤ N : if T−1(S) `G T−1(sj) for every
1 ≤ j < i then T−1(S) `G T−1(si) (it then follows that T−1(S) `G T−1(s)). Let 1 ≤ i ≤ N , and suppose
that T−1(S) `G T−1(sj) for every 1 ≤ j < i. Consider the possible cases:

• si ∈ S. By definition, T−1(si) ∈ T−1(S), and so T−1(S) `GL T−1(si).

• si = si1 ∪ s is derived from a previous sequent si1 by applying the weakening rule. In this case,
T−1(si) = T−1(si1) ∪ T−1(s) can be also derived from a previous sequent T−1(si1) by applying
weakening as well.
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• si = (L : ϕ) ∪ c1 ∪ . . . ∪ cm is derived from previous sequents si1 = (L1 : ϕ) ∪ c1, . . . , (Lm : ϕ) ∪ cm
by applying a primitive rule rL of GL of the form {L1, . . . , Lm}/L. By the construction of GL, one
of the following holds:

– rL is the canonical axiom ∅/{t, f}. Thus si = {t : ψ, f : ψ} for some formula ψ. In this case,
T−1(si) = si is obtained by applying the identity axiom of G.

– rL is a canonical axiom of the form ∅/{t?, f?} for some ? ∈ U . Thus si = {t? : ψ, f? : ψ} for
some formula ψ. T−1(si) = {t : ?ψ, f : ?ψ} is obtained by applying the identity axiom of G.

– rL is the canonical cut {t}, {f}/∅. Thus si = c1 ∪ c2, si1 = c1 ∪ {t : ψ}, and si2 = c2 ∪ {f : ψ}
for some formula ψ and sequents c1 and c2. Here, T−1(si1) = T−1(c1)∪{t : ψ} and T−1(si2) =
T−1(c2) ∪ {f : ψ}. T−1(si) = T−1(c1) ∪ T−1(c2) is derived by applying the cut rule of G.

– rL is a canonical cut of the form {t?}, {f?}/∅ for some ? ∈ U . Thus si = c1 ∪ c2,
si1 = c1 ∪ {t? : ψ}, and si2 = c2 ∪ {f? : ψ} for some formula ψ and sequents c1 and c2. Here,
T−1(si1) = T−1(c1) ∪ {t : ?ψ} and T−1(si2) = T−1(c2)∪{f : ?ψ}. T−1(si) = T−1(c1)∪T−1(c2)
is derived by applying the cut rule of G.

– L = {l?} for some l ∈ {t, f} and ? ∈ U , and there exists a quasi-canonical rule r in G
of the form {q1, . . . , qm}/{l : ?p1} in G such that Lk = lab[T (qk)] for every 1 ≤ k ≤ m.
In this case, let σ be any substitution such that σ(p1) = ϕ. It is easy to see that for
every 1 ≤ k ≤ m, T−1(lab[T (qk)] : ϕ) = σ(qk). Therefore, for every 1 ≤ k ≤ m,
T−1(sik) = σ(qk) ∪ T−1(ck). By applying the rule r on these provable sequents, we obtain
T−1(si) = {l : ?ϕ} ∪ T−1(c1) ∪ . . . ∪ T−1(cm).

• si = (L : σ(�(p1, . . . , pn))) ∪ c1 ∪ . . . ∪ cm is derived from previous sequents
si1 = σ(s′1) ∪ c1, . . . , σ(s′m) ∪ cm by applying a canonical introduction rule rL of GL of the form
{s′1, . . . , s′m}/(L : �(p1, . . . , pn)). By the construction of GL, one of the following holds:

– rL = {l? : p1}/{l : ?p1} for l ∈ {t, f} and ? ∈ U . Thus si = {l : ?σ(p1)} ∪ c1, m = 1, and
si1 = {l? : σ(p1)} ∪ c1. In this case we have T−1(si) = T−1(si1), and obviously we are done.

– L = {l} where l ∈ {t, f}, �6∈U , and there exists a quasi-canonical rule r of the form
{q1, . . . , qm}/{l : �(p1, . . . , pn)} in G such that s′k = T (qk) for every 1 ≤ k ≤ m. Here,
T−1(si) = {l : σ(�(p1, . . . , pn))} ∪ T−1(c1) ∪ . . . ∪ T−1(cm). It is easy to see that for every
1 ≤ k ≤ m, T−1(σ(s′k)) = T−1(σ(T (qk))) = σ(qk). Thus we have T−1(sik) = σ(qk) ∪ T−1(ck)
for every 1 ≤ k ≤ m. By applying the rule r to these m provable sequents, we obtain T−1(si).

– L = {l?} where l ∈ {t, f} and ? ∈ U , and there exists a quasi-canonical rule r of the form
{q1, . . . , qm}/{l : ? � (p1, . . . , pn)} in G such that s′k = T (qk) for every 1 ≤ k ≤ m. The proof
is similar to the previous case.
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