Effective Finite-valued Semantics for Labelled Calculi

Matthias Baaz
Anna Zamansky
Ori Lahav
Vienna University of Technology
Tel Aviv University

IJCAR 2012

The Big Picture

- Goals:
- Characterization of important proof-theoretic properties of calculi: cut-admissibility, the subformula property, invertibility of rules,...
- Understanding the dependencies between them
- Tool: Non-deterministic semantics
- Goes back to [Schütte 1960], [Tait 1966]
- Formalized and studied in [Avron,Lev 2001]
- Framework: Canonical labelled sequent calculi
- Labelled = many-sided

Labelled Sequent Calculi

- A propositional language \mathcal{L}
- A finite set of labels \mathcal{C}
$\mathcal{C} \subseteq\{\square, \square, \square, \square, \ldots\}$
- Labelled formula: $=\square: A \quad$ where $A \in \operatorname{Frm}_{\mathcal{L}}$ and $\square \in \mathcal{C}$
- Sequent:= a finite set of labelled formulas

Labelled Sequent Calculi

- A propositional language \mathcal{L}
- A finite set of labels \mathcal{C}
$\mathcal{C} \subseteq\{\square, \square, \square, \square, \ldots\}$
- Labelled formula: $=\square: A \quad$ where $A \in \operatorname{Frm}_{\mathcal{L}}$ and $\square \in \mathcal{C}$
- Sequent:= a finite set of labelled formulas

$$
\mathcal{C}=\{\square, \square, \square, \square\} \quad\left\{\square: p_{1}, \square: \neg p_{1}\right\}
$$

Labelled Sequent Calculi

- A propositional language \mathcal{L}
- A finite set of labels \mathcal{C}

$$
\mathcal{C} \subseteq\{\square, \square, \square, \square, \ldots\}
$$

- Labelled formula: $=\square: A \quad$ where $A \in \operatorname{Frm}_{\mathcal{L}}$ and $\square \in \mathcal{C}$
- Sequent:= a finite set of labelled formulas

$$
\begin{array}{cc}
\mathcal{C}=\{\square, \square, \square, \square\} & \left\{\square: p_{1}, \square: \neg p_{1}\right\} \\
\frac{\left\{\square: p_{1}\right\}}{\left\{\square: \neg p_{1}, \square: \neg p_{1}\right\}} & \frac{\left\{\square: p_{1}\right\}}{\left\{\square: \neg p_{1}, \square: \neg p_{1}\right\}} \\
\left\{\square: \neg p_{1}\right\}
\end{array}
$$

Labelled Sequent Calculi

- A propositional language \mathcal{L}
- A finite set of labels \mathcal{C}

$$
\mathcal{C} \subseteq\{\square, \square, \square, \square, \ldots\}
$$

- Labelled formula: $=\square: A \quad$ where $A \in \operatorname{Frm}_{\mathcal{L}}$ and $\square \in \mathcal{C}$
- Sequent:= a finite set of labelled formulas

$$
\begin{array}{cc}
\mathcal{C}=\{\square, \square, \square, \square\} & \left\{\square: p_{1}, \square: \neg p_{1}\right\} \\
\frac{\left\{\square: p_{1}\right\}}{\left\{\square: \neg p_{1}, \square: \neg p_{1}\right\}} & \frac{\left\{\square: p_{1}\right\}}{\left\{\square: \neg p_{1}, \square: \neg p_{1}\right\}} \\
\left\{\square: \neg p_{1}\right\}
\end{array}
$$

$$
p_{1}, p_{1} \supset p_{2} \Rightarrow p_{2} \quad \text { щ } \quad\left\{\square: p_{1}, \square: p_{1} \supset p_{2}, \square: p_{2}\right\}
$$

Canonical Labelled Calculi

(1) All standard structural rules
(exchange, contraction, weakening)
(2) A finite set of primitive rules
(3) A finite set of canonical logical rules

Primitive Rules

Manipulate labels. Have the form (\square 's are replaced by labels)

$$
\frac{\{\square: A, \ldots, \square: A\} \cup s \quad \ldots \quad\{\square: A, \ldots, \square: A\} \cup s}{\{\square: A, \ldots, \square: A\} \cup s}
$$

Primitive Rules

Manipulate labels. Have the form (\square 's are replaced by labels)

$$
\frac{\{\square: A, \ldots, \square: A\} \cup s \quad \ldots \quad\{\square: A, \ldots, \square: A\} \cup s}{\{\square: A, \ldots, \square: A\} \cup s}
$$

Examples:

$$
\begin{gathered}
\frac{\{\square: A\} \cup s \quad\{\square: A\} \cup s}{\{\square: A, \square: A\} \cup s} \\
\frac{\{\square: A\} \cup s \quad\{\square: A\} \cup s}{s} \\
\frac{\square \square: A, \square: A\} \cup s}{\square}
\end{gathered}
$$

Canonical Rules

- "Ideal" logical introduction rules [Avron, Lev 2001]:
- Introduce exactly one connective.
- The active formulas are immediate subformulas of the principal formula.
- The application is context-independent.

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}
$$

Canonical Rules

- "Ideal" logical introduction rules [Avron, Lev 2001]:
- Introduce exactly one connective.
- The active formulas are immediate subformulas of the principal formula.
- The application is context-independent.

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}
$$

- In Labelled Calculi [Avron, Zamansky 2009]:

$$
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

Canonical Rules

- "Ideal" logical introduction rules [Avron, Lev 2001]:
- Introduce exactly one connective.
- The active formulas are immediate subformulas of the principal formula.
- The application is context-independent.

$$
\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}
$$

- In Labelled Calculi [Avron, Zamansky 2009]:

$$
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

- May introduce a connective with more than one label.

$$
\frac{\{\square: A, \square: B\} \cup s \quad\{\square: B, \square: C, \square: C\} \cup s}{\{\square: \odot(A, B, C), \square: \odot(A, B, C)\} \cup s}
$$

Canonical Labelled Calculi

(1) All standard structural rules
(exchange, contraction, weakening)
(2) A finite set of primitive rules
(3) A finite set of canonical logical rules

Semantics

Intuition

- The value of A determines which of the labelled formulas $\square: A, \square: A, \square: A, \ldots$ is true.
- In general, there are $2^{|\mathcal{C}|}$ possible options.
- Primitive rules forbid some of them.
- Logical rules are used to determine the values of compound formulas.

Semantics

Intuition

- The value of A determines which of the labelled formulas $\square: A, \square: A, \square: A, \ldots$ is true.
- In general, there are $2^{|\mathcal{C}|}$ possible options.
- Primitive rules forbid some of them.
- Logical rules are used to determine the values of compound formulas.

Formalization

- The set of truth-values $\mathcal{T}_{\mathbf{G}} \subseteq P(\mathcal{C})$ is determined according to the primitive rules of \mathbf{G}.
- A valuation $v: \operatorname{Frm}_{\mathcal{L}} \rightarrow \mathcal{T}_{\mathbf{G}}$ is a model of $\square: A$ if $\square \in v(A)$.
- A valuation is a model of a sequent s if it is a model of some labelled formula in s.

Example: Semantic Effect of Primitive Rules

$$
\mathcal{C}=\{■, \rrbracket, \square\}
$$

Example: Semantic Effect of Primitive Rules

$$
\mathcal{C}=\{■, \rrbracket, \square\}
$$

Example: Semantic Effect of Primitive Rules

$$
\mathcal{C}=\{■, \rrbracket, \square\}
$$

$$
\frac{\{\square: A\} \cup s}{\{\square: A, \square: A\} \cup s} r_{1}
$$

$$
\mathcal{T}_{\mathbf{G}}=\{\{ \},\{\square\},\{\square\},\{\square\},\{\square, \square\},\{\square, \square\},\{\square, \square\},\{\square, \square, \square\}\}
$$

Example: Semantic Effect of Primitive Rules

$$
\mathcal{C}=\{■, \rrbracket, \square\}
$$

$$
\frac{\{\square: A\} \cup s}{\{\square: A, \square: A\} \cup s} r_{1}
$$

Example: Semantic Effect of Primitive Rules

$$
\begin{gathered}
\mathcal{C}=\{\square, \square, \square\} \\
\frac{\{\square: A\} \cup s}{\{\square: A, \square: A\} \cup s} r_{1} \quad \frac{\{\square: A\} \cup s\{\square: A\} \cup s}{s} r_{2} \\
\mathcal{T}_{\mathbf{G}}=\{\{ \},\{\square\},\{\square\}, \mathcal{X} \not \subset,\{\square, \square\},\{\square, \square\},\{\square, \square\},\{\square, \square, \square\}\}
\end{gathered}
$$

Example: Semantic Effect of Primitive Rules

$$
\begin{aligned}
& \mathcal{C}=\{\square, \square, \square\} \\
& \frac{\{\square: A\} \cup s}{\{\square: A, \square: A\} \cup s} r_{1} \quad \frac{\{\square: A\} \cup s \quad\{\square: A\} \cup s}{s} r_{2}
\end{aligned}
$$

Example: Semantic Effect of Primitive Rules

$$
\begin{aligned}
& \mathcal{C}=\{\square, \square, \square\} \\
& \frac{\{\square: A\} \cup s}{\{\square: A, \square: A\} \cup s} r_{1} \quad \frac{\{\square: A\} \cup s \quad\{\square: A\} \cup s}{s} r_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{\mathbf{G}}=\{\{ \},\{\square\},\{\square\},\{\square, \square\},\{\square, \square\}\}
\end{aligned}
$$

Example: Semantic Effect of Primitive Rules

$$
\begin{aligned}
& \mathcal{C}=\{\square, \square, \square\} \\
& \frac{\{\square: A\} \cup s}{\{\square: A, \square: A\} \cup s} r_{1} \quad \frac{\{\square: A\} \cup s \quad\{\square: A\} \cup s}{s} r_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{\mathbf{G}}=\{\{ \},\{\square\},\{\square\},\{\square, \square\},\{\square, \square\}\}
\end{aligned}
$$

Theorem

Given a canonical calculus \mathbf{G} without logical rules, $\Omega \vdash_{\mathbf{G}} s$ iff every valuation $v: \operatorname{Frm}_{\mathcal{L}} \rightarrow \mathcal{T}_{\mathbf{G}}$ which is a model of every sequent in Ω is also a model of s.

The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.

The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.
For example:

$$
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\}
$$

$$
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.
For example:

$$
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\}
$$

$$
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

$\tilde{\mathcal{S}}$	$\{\square\}$	$\{\square\}$
$\{\square\}$		
$\{\square\}$		

The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.
For example:

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\}
$$

$$
\begin{gathered}
\{\square: A\} \cup s \quad\{\square: B\} \cup s \\
\{\square: A \supset B\} \cup s \\
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
\end{gathered}
$$

$\tilde{\mathcal{J}}$	$\{\square\}$	$\{\square\}$
$\{\boldsymbol{\square}\}$	$\{\square\}$	
$\{\boldsymbol{\square}\}$		

The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.
For example:

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\}
$$

$$
\begin{gathered}
\{\square: A\} \cup s \quad\{\square: B\} \cup s \\
\{\square: A \supset B\} \cup s \\
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
\end{gathered}
$$

$\tilde{\mathcal{S}}$	$\{\square\}$	$\{\square\}$
$\{\square\}$	$\{\square\}$	
$\{\square\}$	$\{\square\}$	

The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.
For example:

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\}
$$

$$
\begin{gathered}
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s} \\
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
\end{gathered}
$$

$\tilde{\mathcal{J}}$	$\{\boldsymbol{\square}\}$	$\{\boldsymbol{\square}\}$
$\{\boldsymbol{\square}\}$	$\{\boldsymbol{\square}\}$	$\{\boldsymbol{\square}\}$
$\{\boldsymbol{\square}\}$	$\{\boldsymbol{\square}\}$	$\{\boldsymbol{\square}\}$

The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.
For example:

$$
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\}
$$

$$
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

$\tilde{\mathcal{S}}$	$\{\square\}$	$\{\square\}$
$\{\square\}$	$\{\square\}$	$\{\square\}$
$\{\square\}$	$\{\square\}$	$\{\square\}$

A legal valuation should respect the table:

$$
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right)=\tilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)
$$

What Can Go Wrong?

What Can Go Wrong?

- Non truth-functional connectives, e.g. primal implication [Gurevich, Neeman 2009]:

$$
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

$$
\mathcal{T}_{\mathbf{G}}=\{\{\boldsymbol{\square}\},\{\boldsymbol{\square}\}\}
$$

$$
\frac{\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

How to determine $\tilde{\mathcal{~}}(\{\square\},\{\square\})$?

What Can Go Wrong?

- More than one option satisfies the conclusion, e.g.

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\},\{\square, \square\}\} \begin{gathered}
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s} \\
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
\end{gathered}
$$

How to determine $\tilde{\mathcal{\jmath}}(\{\square\},\{\square\})$?

What Can Go Wrong?

- More than one option satisfies the conclusion, e.g.

$$
\frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\},\{\square, \square\}\}
$$

$$
\frac{\{\square: A, \square: B\} \cup s}{\{\square: A \supset B\} \cup s}
$$

How to determine $\tilde{\supset}(\{\square\},\{\square\})$?

Solution: Non-deterministic Truth-Tables [Avron, Lev 2001]

A table of an n-ary connective \diamond is a function $\tilde{\diamond}: \mathcal{T}^{n} \rightarrow P^{+}(\mathcal{T})$.
A legal valuation satisfies: $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right) \in \tilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\square, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\{\emptyset,\{\square, \square\},\{\square, \square\}\} \quad \circ \text { is a binary connective }
$$

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\amalg, \llbracket, \square\} \quad \mathcal{T}_{\mathbf{G}}=\{\emptyset,\{\square, \llbracket\},\{\llbracket, \square\}\} \quad \circ \text { is a binary connective }
$$

○	\emptyset	\{■, ■\}	\{■, ■\}
\emptyset	$\{\emptyset,\{\mathbf{\square} \boldsymbol{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$		
\{■, ■\}		$\{\emptyset,\{\boldsymbol{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \mathbf{\square}\}\}$
\{■, ■\}		$\{\emptyset,\{\square, \square\},\{\square, \square\}\}$	$\left\{\emptyset,\left\{\begin{array}{\|c\|}\square\end{array}\right.\right.$, $\{\mathbf{\square}, \square\}$

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\square, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\{\emptyset,\{\square, \square\},\{\square, \square\}\} \quad \circ \text { is a binary connective }
$$

$$
\left\{\begin{array}{l}
\text { ■ } \\
\hline
\end{array} \cup s\{\square: B\} \cup s\right.
$$

$$
\{\square: A \circ B\} \cup s
$$

ธ	\emptyset	\{■, ■\}	\{■, ■\}
\emptyset		$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
$\{\boldsymbol{\square}, \boldsymbol{\square}\}$		$\{\emptyset,\{\boldsymbol{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \boldsymbol{\square}\}$	$\{\emptyset,\{\boldsymbol{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \boldsymbol{\square}\}\}$
\{■, []		$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\square, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\{\emptyset,\{\square, \square\},\{\square, \square\}\} \quad \circ \text { is a binary connective }
$$

$$
\left\{\begin{array}{l}
\text { ■ } \\
\hline
\end{array} \cup s\{\square: B\} \cup s\right.
$$

$$
\{\square: A \circ B\} \cup s
$$

ธ	\emptyset	\{■, ■\}	\{■, ■\}
\emptyset		$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \square\}\}$	$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
$\{\boldsymbol{\square}, \boldsymbol{\square}\}$			$\{\emptyset,\{\boldsymbol{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \boldsymbol{\square}\}\}$
\{■, []		$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\square, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\left\{\emptyset,\{\square, \square\},\left\{\begin{array}{|}
\mathbf{\square} \\
\square
\end{array}\right]\right\} \quad \circ \text { is a binary connective }
$$

$$
\frac{\{\llbracket: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \circ B\} \cup s} \quad \frac{\{\square: A\} \cup s}{\{\square: A \circ B, \Pi: A \circ B\} \cup s}
$$

ธ	\emptyset	\{■, ■\}	\{■, ■ $\}$
\emptyset	$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \square\}\}$	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
\{■, ■\}	$\{\emptyset,\{\mathbf{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \square\}\}$		
\{■, [$\}$			

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\square, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\left\{\emptyset,\{\square, \square\},\left\{\begin{array}{|}
\mathbf{\square} \\
\square
\end{array}\right]\right\} \quad \circ \text { is a binary connective }
$$

$$
\frac{\{\llbracket: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \circ B\} \cup s} \quad \frac{\{\square: A\} \cup s}{\{\square: A \circ B, \Pi: A \circ B\} \cup s}
$$

ธ	\emptyset	\{■, ■\}	\{■, ■ $\}$
\emptyset	$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \square\}\}$	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
\{■, ■\}	$\{\emptyset,\{\mathbf{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \square\}\}$		
\{■, [$\}$			

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\square, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\{\emptyset,\{\square, \square\},\{\mathbf{\square}, \square\}\} \quad \circ \text { is a binary connective }
$$

ธ	\emptyset	\{■, ■\}	\{■, ■\}
\emptyset	$\{\emptyset,\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square} \boldsymbol{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
\{■, ■\}	$\{\emptyset,\{\mathbf{\square}, \boldsymbol{\square}\},\{\square, \square\}\}$		$\{$ W, $\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \square\}\}$
\{■, -	$\left\{\emptyset,\left\{\begin{array}{\|l\|l\|}\square\end{array}\right.\right.$, $\left.\left.\boldsymbol{\square}, \square\right\}\right\}$	$\left\{\emptyset,\left\{\begin{array}{\|l\|l\|}\square\end{array}\right.\right.$, $\left.\boldsymbol{\square}, \square\right\}$	$\left\{\emptyset,\left\{\begin{array}{\|l\|l\|}\square\end{array}\right\},\left\{\begin{array}{l}\square \\ \square\end{array}\right\}\right\}$

Example: Construction of a Non-deterministic Truth-Table

$$
\mathcal{C}=\{\square, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\{\emptyset,\{\square, \square\},\{\mathbf{\square}, \square\}\} \quad \circ \text { is a binary connective }
$$

ธ	\emptyset	\{■, ■\}	\{■, ■\}
\emptyset	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square} \boldsymbol{\square}\},\{\mathbf{\square}, \square\}$	$\{$ W, \{ $\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
\{■, ■\}			$\{$ W, \{■, ■ \}, \{■, - \} \}
\{■, - $\}$			$\{$ W, \{■, ■ \}, \{■, ■\}\}

Example: Construction of a Non-deterministic Truth-Table

$$
\begin{aligned}
& \mathcal{C}=\{■, \square, \square\} \quad \mathcal{T}_{\mathbf{G}}=\{\emptyset,\{\boldsymbol{\square}, \boldsymbol{\square}\},\{\mathbf{\square}, \square\}\} \\
& \text { - is a binary connective } \\
& \frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \circ B\} \cup s} \quad \frac{\{\square: A\} \cup s \quad\{\square: B\} \cup s}{\{\square: A \circ B, \square: A \circ B\} \cup s} \quad \frac{\{\square: A, \square: B\} \cup s}{\{\square: A \circ B \cup s}
\end{aligned}
$$

ธ	\emptyset	\{■, ■\}	■, ■\}
\emptyset	$\{\emptyset,\{\mathbf{\square} \boldsymbol{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\times,\{\mathbf{\square} \boldsymbol{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
$\{\square, \square\}$	$\{$ W, $\mathbf{\square} \mathbf{\square}, \mathbf{\square}\},\{\square, \square\}\}$		$\{$ W, $\mathbf{\square} \mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \square\}\}$
\{ $\square, \square\}$		$\{$,, ■, $\mathbf{\square}\},\{\square, \square\}\}$	

ธ	\emptyset	\{■, ■\}	\{■, ■
\emptyset	$\{\emptyset,\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\emptyset,\{\mathbf{\square} \boldsymbol{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	\{ $\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$
\{■, ■\}	$\{\{\boldsymbol{\square}, \boldsymbol{\square}\},\{\boldsymbol{\square}, \boldsymbol{\square}\}\}$		
$\{\square, \square\}$	$\{\{\mathbf{\square}, \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\{\mathbf{\square} \mathbf{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$	$\{\{\boldsymbol{\square}, \boldsymbol{\square}\},\{\mathbf{\square}, \mathbf{\square}\}\}$

What Else Can Go Wrong?

What Else Can Go Wrong?

- Contradictions between rules, e.g.

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\} \quad \frac{\{\square: B\} \cup s}{\{\square: A \diamond B\} \cup s} \quad \frac{\{\square: A\} \cup s}{\{\square: A \diamond B\} \cup s}
$$

How to determine $\tilde{\diamond}(\{\square\},\{\square\})$?

What Else Can Go Wrong?

- Contradictions between rules, e.g.

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\} \quad \frac{\{\square: B\} \cup s}{\{\square: A \diamond B\} \cup s} \quad \frac{\{\square: A\} \cup s}{\{\square: A \diamond B\} \cup s}
$$

How to determine $\tilde{\diamond}(\{\square\},\{\square\})$?

$\tilde{\delta}$	$\{\square\}$	$\{\boldsymbol{\square}\}$
$\{\square\}$	$\{\{\boldsymbol{\square}\}\}$	$\{\{\square\},\{\square\}\}$
$\{\square\}$	\emptyset	$\{\{\square\}\}$

$\{\square\}$ and $\{\square\}$ cannot be used by the same valuation.

What Else Can Go Wrong?

- Contradictions between rules, e.g.

$$
\mathcal{T}_{\mathbf{G}}=\{\{\square\},\{\square\}\} \quad \frac{\{\square: B\} \cup s}{\{\square: A \diamond B\} \cup s} \quad \frac{\{\square: A\} \cup s}{\{\square: A \diamond B\} \cup s}
$$

How to determine $\tilde{\diamond}(\{\square\},\{\square\})$?

$\tilde{\delta}$	$\{\square\}$	$\{\square\}$
$\{\square\}$	$\{\{\square\}\}$	$\{\{\square\},\{\square\}\}$
$\{\square\}$	\emptyset	$\{\{\square\}\}$

$\{\square\}$ and $\{\square\}$ cannot be used by the same valuation.

Solution: Partial Truth-Tables

Allow empty entries: $\tilde{\delta}: \mathcal{T}^{n} \rightarrow P(\mathcal{T})$.

The Semantic Framework

Partial Non-deterministic Matrices

A PNmatrix \mathbf{M} for \mathcal{L} and \mathcal{C} consists of:

- A set \mathcal{T} of truth-values.
- A function $\mathcal{D}: \mathcal{C} \rightarrow P(\mathcal{T})$ assigning a set of designated truth-values for every label.
- A truth-table $\tilde{\diamond}: \mathcal{T}^{n} \rightarrow P(\mathcal{T})$ for every n-ary connective of \mathcal{L}.

A valuation $v: \operatorname{Frm}_{\mathcal{L}} \rightarrow \mathcal{T}$ is:

- a model (in \mathbf{M}) of a sequent s if $v(A) \in \mathcal{D}(\square)$ for some $\square: A$ in s.
- M-legal if $v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right) \in \tilde{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)$ for every $\diamond\left(A_{1}, \ldots, A_{n}\right) \in \operatorname{Frm}_{\mathcal{L}}$.

Main Result

Theorem

For every canonical labelled calculus G, there exists a strongly characteristic PNmatrix $\mathbf{M}_{\mathbf{G}}$ (i.e. $\Omega \vdash_{\mathbf{G}} s$ iff every $\mathbf{M}_{\mathbf{G}}$-legal valuation which is a model of every sequent in Ω is also a model of s).

Moreover, we provide a uniform algorithm to obtain $\mathbf{M}_{\mathbf{G}}$ from \mathbf{G}.

Main Result

Theorem

For every canonical labelled calculus G, there exists a strongly characteristic PNmatrix $\mathbf{M}_{\mathbf{G}}$ (i.e. $\Omega \vdash_{\mathbf{G}} s$ iff every $\mathbf{M}_{\mathbf{G}}$-legal valuation which is a model of every sequent in Ω is also a model of s).

Moreover, we provide a uniform algorithm to obtain $\mathbf{M}_{\mathbf{G}}$ from \mathbf{G}.

In many cases, the obtained semantics coincides with a known one:

- Propositional fragment of LK
- LK without cut [Girard 1987]
- LK without identity axiom [Hösli,Jäger 1994]
- Two-sided canonical systems [Avron,Lev 2001]
- Labelled calculi studied in [Baaz et al. 1998] and [Avron,Zamansky 2009]

Effectiveness

Theorem

Semantic consequence relations induced by PNmatrices are decidable.

Corollary

All canonical labelled calculi are decidable.

Effectiveness

Theorem

Semantic consequence relations induced by PNmatrices are decidable.

Proof Outline.

- Usual method: To decide whether $\Omega \vdash_{\mathrm{M}} s$, check one-by-one all M-legal partial valuations defined $\operatorname{sub}[\Omega, s]$.
- Hidden assumption: All M-legal partial valuations can be extended to full ones (semantic analyticity).
But, it does not hold for PNmatrices (recall $\tilde{\delta}(\{\square\},\{\square\})=\emptyset!)$.
- Lemma: It is decidable whether an M-legal partial valuations can be extended to a full one.
- Solution: Check one-by-one all extendable M-legal partial valuations defined $s u b[\Omega, s]$.

Characterization of Cut-Admissibility

A cut is a primitive rule of the form:

$$
\frac{\{\square: A, \ldots, \square: A\} \cup s \quad \ldots \quad\{\square: A, \ldots, \square: A\} \cup s}{s}
$$

A is called the cut-formula, s is called the cut-context

Characterization of Cut-Admissibility

A cut is a primitive rule of the form:

$$
\frac{\{\square: A, \ldots, \square: A\} \cup s \quad \ldots \quad\{\square: A, \ldots, \square: A\} \cup s}{s}
$$

A is called the cut-formula, s is called the cut-context

Strong Cut-Admissibility

$\Omega \vdash_{\mathbf{G}} s \Longrightarrow$ there is a derivation of s from Ω in \mathbf{G} in which: the cut-formula of each cut occurs either in the cut-context or in Ω.

Characterization of Cut-Admissibility

A cut is a primitive rule of the form:

$$
\{\square: A, \ldots, \square: A\} \cup s \quad \ldots \quad\{\square: A, \ldots, \square: A\} \cup s
$$

A is called the cut-formula, s is called the cut-context

Strong Cut-Admissibility

$\Omega \vdash_{\mathbf{G}} s \Longrightarrow$ there is a derivation of s from Ω in \mathbf{G} in which: the cut-formula of each cut occurs either in the cut-context or in Ω.

Theorem

For every canonical labelled calculus \mathbf{G} :
\mathbf{G} enjoys strong cut-admissibility iff $\mathbf{M}_{\mathbf{G}}$ does not include empty entries.

Summary

- We provided effective and modular semantic characterization for labelled canonical sequent calculi using partial non-deterministic matrices.
- Application: semantic characterization of proof-theoretic properties.
- Similar ideas can be applied for: single-conclusion canonical calculi, sequent calculi for modal logics, canonical Gödel hypersequent calculi...
- Future research directions:
- First-order
- Less restrictive primitive and introduction rules

Thank you!

