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Sequent Calculi

Sequent calculi are a prominent proof-theoretic framework.
Suitable for a variety of logics:

Classical logic, intuitionistic logic
Modal logics, intermediate logics, bi-intuitionistic logic
Many-valued logics, fuzzy logics
Paraconsistent logics
Substructural logics, relevance logics

Our goal: effectively reduce the derivability problem in a given
propositional sequent calculus to SAT.



Pure Sequent Calculi

We take sequents to be objects of the form Γ⇒ ∆, where Γ and ∆ are
finite sets of formulas.

Intuition:

A1, . . . ,An ⇒ B1, . . . ,Bm ! A1 ∧ . . . ∧ An ⊃ B1 ∨ . . . ∨ Bm

Special instance 1: ∆ has one element: Γ⇒ A.

Special instance 2: Γ is empty: ⇒ A

Pure sequent calculi are propositional sequent calculi that include all
usual structural rules, and a finite set of pure logical rules.

Pure logical rules are logical rules that allow any context [Avron ’91].

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆
but not

Γ,A⇒ B

Γ⇒ A ⊃ B



Examples

The Propositional Fragment of LK [Gentzen 1934]

Structural Rules:

(id)
Γ,A⇒ A,∆

(cut)
Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

(W ⇒)
Γ⇒ ∆

Γ,A⇒ ∆
(⇒W )

Γ⇒ ∆

Γ⇒ A,∆

Logical Rules:

(¬ ⇒)
Γ⇒ A,∆

Γ,¬A⇒ ∆
(⇒ ¬)

Γ,A⇒ ∆

Γ⇒ ¬A,∆

(∧ ⇒)
Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆
(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

(∨ ⇒)
Γ,A⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨ B ⇒ ∆
(⇒ ∨)

Γ⇒ A,B,∆

Γ⇒ A ∨ B,∆

(⊃ ⇒)
Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆
(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆



Examples

Primal Infon Logic [Gurevich,Neeman ’09]

An extremely efficient propositional logic.

One of the main logical engines behind DKAL (Distributed Knowledge
Authorization Language).

Provides a balance between expressivity and efficiency.

(∧ ⇒)
Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆
(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

(∨ ⇒) none (⇒ ∨)
Γ⇒ A,B,∆

Γ⇒ A ∨ B,∆

(⊃ ⇒)
Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆
(⇒⊃)

Γ⇒ B,∆

Γ⇒ A ⊃ B,∆



Examples

da Costa’s Paraconsistent Logic C1 [Avron, Konikowska, Zamansky ’12]

A pure calculus for C1 is obtained by augmenting the positive fragment of
LK with the following rules:

Γ,A⇒ ∆

Γ⇒ ¬A,∆
Γ,A⇒ ∆

Γ,¬¬A⇒ ∆

Γ⇒ A,∆ Γ⇒ ¬A,∆
Γ,¬(A ∧ ¬A)⇒ ∆

Γ,¬A⇒ ∆ Γ,¬B ⇒ ∆

Γ,¬(A ∧ B)⇒ ∆

Γ,¬A⇒ ∆ Γ,B,¬B ⇒ ∆

Γ,¬(A ∨ B)⇒ ∆

Γ,A,¬A⇒ ∆ Γ,¬B ⇒ ∆

Γ,¬(A ∨ B)⇒ ∆

Γ,A⇒ ∆ Γ,B,¬B ⇒ ∆

Γ,¬(A ⊃ B)⇒ ∆

Γ,A,¬A⇒ ∆ Γ,¬B ⇒ ∆

Γ,¬(A ⊃ B)⇒ ∆



Examples

A System for Dolev-Yao Intruder Model [Comon-Lundh, Shmatikov ‘02]

A basic deductive model of the intruder’s capabilities.

Pairing
Γ ` A Γ ` B

Γ ` 〈A,B〉 Encryption
Γ ` A Γ ` B

Γ ` [A]B

Unpairing
Γ ` 〈A,B〉

Γ ` A
Unpairing

Γ ` 〈A,B〉
Γ ` B

Decryption
Γ ` [A]B Γ ` B

Γ ` A
Axioms

Γ ` A
if A ∈ Γ

Equivalent to the pure sequent calculus:

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ 〈A,B〉,∆

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ [A]B ,∆

Γ⇒ 〈A,B〉,∆

Γ⇒ A,∆

Γ⇒ 〈A,B〉,∆

Γ⇒ B,∆

Γ⇒ [A]B ,∆ Γ⇒ B,∆

Γ⇒ A,∆



Analyticity

Definition

A calculus is analytic if ` Γ⇒ ∆ implies that there is a derivation of
Γ⇒ ∆ using only subformulas of Γ ∪∆.

This notion may be based on more liberal definitions of subformulas
(e.g., usual subformulas and their negations).

If a pure calculus is analytic then it is decidable.

All calculi presented so far (and many more) are analytic.

There is a simple reduction of derivability in analytic pure calculi to SAT.



Semantics for Pure Calculi

Pure calculi correspond to two-valued valuations [Béziau ‘01].

Each pure rule is read as a semantic condition.

By joining the semantic conditions of all rules in a calculus G , we
obtain the set of G -legal valuations.

Example (Sequent Calculus for C1)

A⇒
⇒ ¬A

A⇒
¬¬A⇒

⇒ A, ⇒ ¬A,
¬(A ∧ ¬A)⇒

¬A⇒ ¬B ⇒
¬(A ∧ B)⇒

Corresponding semantic conditions:

1 If v(A) = f then v(¬A) = t

2 If v(A) = f then v(¬¬A) = f

3 If v(A) = t and v(¬A) = t then v(¬(A ∧ ¬A)) = f

4 If v(¬A) = f and v(¬B) = f then v(¬(A ∧ B)) = f

This semantics is non-deterministic.



Soundness and Completeness

Soundness and Completeness

The sequent Γ⇒ ∆ is provable in G iff every G -legal valuation is a model
of Γ⇒ ∆.

Definition

G is semantically analytic if every G -legal partial valuation whose domain
is closed under subformulas can be extended to a full G -legal valuation.

Example

Consider the rules
⇒ A

¬A⇒ and
⇒ A

⇒ ¬A .

The partial valuation λx ∈ {p} .t cannot be extended.

Theorem

A calculus is analytic iff it is semantically analytic.



Soundness and Completeness

Soundness and Completeness

The sequent Γ⇒ ∆ is provable in G using only formulas of F iff every
G -legal valuation whose domain is F is a model of Γ⇒ ∆.

Definition

G is semantically analytic if every G -legal partial valuation whose domain
is closed under subformulas can be extended to a full G -legal valuation.

Example

Consider the rules
⇒ A

¬A⇒ and
⇒ A

⇒ ¬A .

The partial valuation λx ∈ {p} .t cannot be extended.

Theorem

A calculus is analytic iff it is semantically analytic.



Reduction to SAT

The semantic conditions are expressible in propositional classical logic.

Given Γ⇒ ∆, we build a SAT-instance that says:

“I satisfy Γ, but not ∆”
“I am a G -legal valuation”

Reduction to SAT

Given an analytic pure calculus G and a sequent Γ⇒ ∆:

Assign a variable xA to every formula A.

Generate a clause {xA} for every A ∈ Γ and {xA} for every A ∈ ∆.

Generate a set of clauses for each semantic condition of G applied on
all formulas.

Theorem

Γ⇒ ∆ is provable in G iff this generated set of clauses is UNSAT.



Reduction to SAT

The semantic conditions are expressible in propositional classical logic.

Given Γ⇒ ∆, we build a SAT-instance that says:

“I satisfy Γ, but not ∆”
“I am a G -legal valuation”

Reduction to SAT

Given an analytic pure calculus G and a sequent Γ⇒ ∆:

Assign a variable xA to every formula A.

Generate a clause {xA} for every A ∈ Γ and {xA} for every A ∈ ∆.

Generate a set of clauses for each semantic condition of G applied on
subformulas of Γ ∪∆.

Theorem

Γ⇒ ∆ is provable in G iff this generated set of clauses is UNSAT.



The Case of Propositional Primal Logic

Example (Semantics)

(⊃ ⇒)
⇒ A B ⇒
A ⊃ B ⇒ (⇒⊃)

⇒ B

⇒ A ⊃ B
Semantic Reading:

1 If v(A) = t and v(B) = f then v(A ⊃ B) = f

2 If v(B) = t then v(A ⊃ B) = t

Example (Reduction to SAT)

Γ⇒ ∆ is provable iff the following set of clauses is UNSAT:

Singleton clauses {xA} for every A ∈ Γ and {xA} for every A ∈ ∆.

Two clauses for every formula A ⊃ B occurring in Γ⇒ ∆:

{xA, xB , xA⊃B} {xB , xA⊃B}



Next Operators

Unary modalities: ∗1, ∗2, . . .
Often employed in temporal logics.
� and ♦ in the modal logic (KD!) of functional Kripke models.

(∗i)
Γ⇒ ∆

∗Γ⇒ ∗∆

Example

In primal infon logic, Next operators serve as quotations, that are
indispensable for access control logics.

Γ⇒ ∆

q said Γ⇒ q said ∆
for every principal q

Theorem

The addition of (∗i) preserves analyticity.



Semantics for Pure Calculi with Next Operators

Pure calculi with Next operators are characterized by two-valued
functional Kripke models.

Definition (Functional Kripke Model)

A functional Kripke model is a triple 〈W ,R,V〉:
W is a set of states (possible worlds).

R assigns a function R∗ : W →W to every Next operator ∗.
V assigns a valuation vw : FrmL → {f,t} to every w ∈W , such that:

vw (∗A) = vR∗(w)(A).

Soundness and Completeness

Γ⇒ ∆ is provable in G iff every G -legal Kripke model is a model of Γ⇒ ∆.

The stronger version of the theorem works as well.



Reduction to SAT

Instead of relying on subformulas, this reduction uses local formulas.

Definition (Local Formulas)

~∗Ai ≤ ~∗(�(A1, . . . ,An)) A ≤ A

A ≤ B B ≤ C

A ≤ C

Correctness is now more challenging:
We prove that a Kripke counter-model can be constructed from a satisfying
assignment (using the fact that the calculus is analytic).

Corollary

Analytic pure calculi with Next operators can be decided by a SAT solver.



Time Complexity

The reduction is poly-time computable.

A calculus is k-closed if each of its rules contains k formulas such that
all other formulas in the rule are subformulas of them.

The reduction for a k-closed calculus requires O(nk) time.

All calculi presented above are 1-closed =⇒ linear time reduction.



Horn Calculi

Definition (Horn Pure Calculi)

In each rule:
# of premises with non-empty left side

≤ 1+
# of formulas in the right side of the conclusion

The SAT instances associated with Horn calculi consist of Horn clauses.

Corollary

Every analytic 1-closed Horn pure calculus (with Next operators) can be
decided in linear time using a HORNSAT solver.

Examples of Horn Calculi

Dolev-Yao Intruder Deduction.

Primal infon logic with quotations.



Extensions of Primal Logic

It is possible to extend the calculus for primal logic (with quotations)
with additional axiom schemes, e.g.:

⇒ A ⊃ A
⇒ B ⊃ (A ⊃ B)
⇒ (A ∧ B) ⊃ A
⇒ (A ∧ B) ⊃ B

A ∨ A⇒ A
A ∨ (A ∧ B)⇒ A
(A ∧ B) ∨ A⇒ A

Bottom can be also added, and simple interactions between ⊥, ⊃ and
∨ can be recovered:
⊥⇒
⇒⊥ ⊃ A

⊥ ∨ A⇒ A
A ∨ ⊥⇒ A

This will bring us a bit closer to a more intuitive multimodal logic.



Conclusions

We have seen:

Uniform reduction of derivability in analytic pure calculi to SAT.

Extension to some non-pure calculi (with Next operators).

Linear time decision procedure for Horn calculi.

Future work:

Are there other useful logics that can be reduced to polynomial SAT
fragments (e.g. dual-Horn, 2-SAT)?

Extend the reduction to other modalities.

Thank you!
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