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Sequent Calculi

@ Sequent calculi are a prominent proof-theoretic framework.
@ Suitable for a variety of logics:

o Classical logic, intuitionistic logic
Modal logics, intermediate logics, bi-intuitionistic logic
Many-valued logics, fuzzy logics
Paraconsistent logics
Substructural logics, relevance logics

@ Our goal: effectively reduce the derivability problem in a given
propositional sequent calculus to SAT.
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Pure Sequent Calculi

o We take sequents to be objects of the form I = A, where I' and A are
finite sets of formulas.

@ Intuition:

A,....,Ap=B1,....Bn, e~ AiN...NA, DB V...VB,

@ Special instance 1: A has one element: [ = A.
@ Special instance 2: T is empty: = A

@ Pure sequent calculi are propositional sequent calculi that include all
usual structural rules, and a finite set of pure logical rules.

@ Pure logical rules are logical rules that allow any context [Avron '91].
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Examples

The Propositional Fragment of LK [Gentzen 1934]

Structural Rules:

A=A T=AA

R r=a
r=A r=A
W=) Taza W) T4 aa
Logical Rules:
M= AA LA= A
=) Toasa =) Tooaas
MAB=A = AA [=BA
A=) T arBE=a (&) F= AAB,A
A=A [LB=A = AB,A
= LAVB= A =) T>avea
Fr=AA ILB=A A= B,A
G =) LASB= A =2) T asEa



Examples

Primal Infon Logic [Gurevich,Neeman '09]
@ An extremely efficient propositional logic.

@ One of the main logical engines behind DKAL (Distributed Knowledge
Authorization Language).

@ Provides a balance between expressivity and efficiency.

AB=A Fr~AA F=BA
A=) T ArBESA SN = AAB.A
M= AB,A
(V=) none (=V) = AVB.A
r=AA ILB=A =B A
2= LA>B= A =3 TS A58



Examples

da Costa's Paraconsistent Logic C1 [Avron, Konikowska, Zamansky '12]

A pure calculus for Ci is obtained by augmenting the positive fragment of
LK with the following rules:

A=A

A=A

M= -AA

r=AA [=-AA

M-—A= A

-A=A T,-B=A

[—(AA-A) = A
-A=A T,B,~B=A

IL—(AAB)= A
LA-A=A T,-B=A

r-(AvVB)=A
MA=A T[,B,-B=A

r—(AVB)=A
NA-A=A T,-B=A

-(AD>B)=A

—(AD>B)=A



Examples

A System for Dolev-Yao Intruder Model [Comon-Lundh, Shmatikov ‘02]

@ A basic deductive model of the intruder’'s capabilities.

. rN-A I'kEB . rN-A TEB
Pairing W Encryption W
iy r-(AB) g r-(AB)

Unpairing oA Unpairing T rig
i r-[Alg TEB . .
Decryption Axioms if AeTl

r=A

M=A

@ Equivalent to the pure sequent calculus:

r=AA [=BA

r=AA [=BA

= (A B),A

= (A B),A = (A B),A

r=[Algz,A

r=[Alg,A T=BA

M= AA r=B,A

M= AA



Analyticity

Definition
A calculus is analytic if = T = A implies that there is a derivation of
I = A using only subformulas of ' U A.

@ This notion may be based on more liberal definitions of subformulas
(e.g., usual subformulas and their negations).

@ If a pure calculus is analytic then it is decidable.

@ All calculi presented so far (and many more) are analytic.

There is a simple reduction of derivability in analytic pure calculi to SAT.



Semantics for Pure Calculi

@ Pure calculi correspond to two-valued valuations [Béziau ‘01].
@ Each pure rule is read as a semantic condition.

@ By joining the semantic conditions of all rules in a calculus G, we
obtain the set of G-legal valuations.

Example (Sequent Calculus for Cu)

A= A= = A = A A= -B=
= -A ——A = (AN -A) = -(AAB) =

Corresponding semantic conditions:
O If v(A) =F then v(-A) =T
@ If v(A) =F then v(——A) =F
© If v(A) =T and v(—A) = T then v(=(AA-A)) =F
Q If v(-A) =F and v(—B) = F then v(=(AAB)) =F

This semantics is non-deterministic.



Soundness and Completeness

Soundness and Completeness

The sequent ' = A is provable in G iff every G-legal valuation is a model
of = A.

G is semantically analytic if every G-legal partial valuation whose domain
is closed under subformulas can be extended to a full G-legal valuation.

= A and = A
-A = = -A’

Consider the rules

The partial valuation Ax € {p}.T cannot be extended.

A calculus is analytic iff it is semantically analytic.




Soundness and Completeness

Soundness and Completeness

The sequent [ = A is provable in G using only formulas of F iff every
G-legal valuation whose domain is F is a model of [ = A.

Definition
G is semantically analytic if every G-legal partial valuation whose domain
is closed under subformulas can be extended to a full G-legal valuation.

Example

|

A and = A

Consider the rules :
A= = A

The partial valuation Ax € {p}.T cannot be extended.

Theorem

A calculus is analytic iff it is semantically analytic.



Reduction to SAT

@ The semantic conditions are expressible in propositional classical logic.
@ Given I = A, we build a SAT-instance that says:

e "l satisfy I', but not A"
e "l am a G-legal valuation”

Reduction to SAT

Given an analytic pure calculus G and a sequent ' = A:

@ Assign a variable x4 to every formula A.

o Generate a clause {xa} for every A € [ and {Xa} for every A € A.

@ Generate a set of clauses for each semantic condition of G applied on
all formulas.

Theorem
' = A is provable in G iff this generated set of clauses is UNSAT.




Reduction to SAT

@ The semantic conditions are expressible in propositional classical logic.
@ Given I = A, we build a SAT-instance that says:

e "l satisfy I', but not A"
e "l am a G-legal valuation”

Reduction to SAT

Given an analytic pure calculus G and a sequent ' = A:

@ Assign a variable x4 to every formula A.

o Generate a clause {xa} for every A € [ and {Xa} for every A € A.

@ Generate a set of clauses for each semantic condition of G applied on
subformulas of ' U A.

Theorem
' = A is provable in G iff this generated set of clauses is UNSAT.




The Case of Propositional Primal Logic

Example (Semantics)

Semantic Reading:
O If v(A)=T and v(B) =F then v(AD B) =F
@ Ifv(B)=Tthenv(ADB)=T

Example (Reduction to SAT)
' = A is provable iff the following set of clauses is UNSAT:

@ Singleton clauses {xa} for every A € T and {Xa} for every A € A.

@ Two clauses for every formula A D B occurring in [ = A:

{nv XB7XADB} {@a XADB}



Next Operators

o Unary modalities: *1, %o, ...
@ Often employed in temporal logics.
e O and ¢ in the modal logic (KD!) of functional Kripke models.

=4
#[ = xA

(+1)

Example
In primal infon logic, Next operators serve as quotations, that are
indispensable for access control logics.

= A
g said [ = g said A

for every principal g

Theorem

The addition of (xi) preserves analyticity.



Semantics for Pure Calculi with Next Operators

@ Pure calculi with Next operators are characterized by two-valued
functional Kripke models.

Definition (Functional Kripke Model)
A functional Kripke model is a triple (W, R, V):
e W is a set of states (possible worlds).

@ R assigns a function R, : W — W to every Next operator x.

@ V assigns a valuation v, : Frmy; — {F, T} to every w € W, such that:
Vi (+A) = VR, (w)(A)-

Soundness and Completeness

' = A is provable in G iff every G-legal Kripke model is a model of ' = A.

The stronger version of the theorem works as well.



Reduction to SAT

Instead of relying on subformulas, this reduction uses local formulas.

Definition (Local Formulas)

FA; < %(o(A1, ..., An)) A<A A< C

Correctness is now more challenging:
We prove that a Kripke counter-model can be constructed from a satisfying
assignment (using the fact that the calculus is analytic).

Corollary
Analytic pure calculi with Next operators can be decided by a SAT solver.



Time Complexity

@ The reduction is poly-time computable.

A calculus is k-closed if each of its rules contains k formulas such that
all other formulas in the rule are subformulas of them.

The reduction for a k-closed calculus requires O(n¥) time.

All calculi presented above are 1-closed = linear time reduction.



Horn Calculi

Definition (Horn Pure Calculi)

# of premises with non-empty left side

+ <1
# of formulas in the right side of the conclusion

In each rule:

The SAT instances associated with Horn calculi consist of Horn clauses.

Corollary

Every analytic 1-closed Horn pure calculus (with Next operators) can be
decided in linear time using a HORNSAT solver.

Examples of Horn Calculi

@ Dolev-Yao Intruder Deduction.

@ Primal infon logic with quotations.



Extensions of Primal Logic

@ It is possible to extend the calculus for primal logic (with quotations)
with additional axiom schemes, e.g.:

o =ADA
o AVA=A
:zai(g‘)%’f\) o AV(AAB)= A
e (ANAB)VA=A
e =(AANB)DB

@ Bottom can be also added, and simple interactions between 1, D and
V can be recovered:

°o 1= o LVA=A
e =1 DA e AVI1=A

@ This will bring us a bit closer to a more intuitive multimodal logic.



Conclusions

We have seen:
@ Uniform reduction of derivability in analytic pure calculi to SAT.
@ Extension to some non-pure calculi (with Next operators).

@ Linear time decision procedure for Horn calculi.

Future work:

@ Are there other useful logics that can be reduced to polynomial SAT
fragments (e.g. dual-Horn, 2-SAT)?

@ Extend the reduction to other modalities.
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Thank you!
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