On the Construction of Analytic Sequent Calculi for Sub-classical Logics

Ori Lahav

Yoni Zohar

Tel Aviv University

Workshop on Gentzen Systems and Beyond 3 July 2014

- Sequent calculi reveal a wide variety of options to define sub-classical logics:
 - Begin with Gentzen's **LK**.
 - Discard some of its (logical) rules.
 - Add other (logical) rules, that are derivable in LK.
- The usefulness of the resulting calculus depends on its *analyticity*.

What general conditions guarantee the analyticity of the obtained calculus?

Examples

$$\begin{array}{c} \hline \ A \Rightarrow B, A \\ \hline \ F \Rightarrow A \supset B, A \end{array} \quad \begin{array}{c} \hline \ \Gamma, A \Rightarrow B \\ \hline \ \Gamma \Rightarrow A \supset B \end{array}$$

Intuitionistic logic

÷

Primal logic [Gurevich, Neeman '09]

Paraconsistent logic

- *Pure sequent calculi* are propositional sequent calculi that include all usual structural rules (including (*cut*)), and a finite set of pure logical rules.
- Pure logical rules are logical rules that allow any context [Avron '91].

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta} \qquad \text{but not} \qquad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \supset B}$$

• Rules vs. applications:

 $\begin{array}{c|c} \Gamma, A \Rightarrow B, \Delta & p_1 \Rightarrow p_2 & p_1, p_3 \Rightarrow p_4, p_3 \\ \hline \Gamma \Rightarrow A \supset B, \Delta & \Rightarrow p_1 \supset p_2 & p_1 \Rightarrow p_3 \supset p_4, p_3 \\ \hline Application \ Scheme & Rule & Application \\ \end{array}$

- *Pure sequent calculi* are propositional sequent calculi that include all usual structural rules (including (*cut*)), and a finite set of pure logical rules.
- Pure logical rules are logical rules that allow any context [Avron '91].

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta} \qquad \text{but not} \qquad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \supset B}$$

• Rules vs. applications:

$\Gamma, A \Rightarrow B, \Delta$	$p_1 \Rightarrow p_2$	$p_1, p_3 \Rightarrow p_4, p_3$
$\Gamma \Rightarrow A \supset B, \Delta$	$\Rightarrow p_1 \supset p_2$	$p_1 \Rightarrow p_3 \supset p_4, p_3$
Application Scheme	Rule	Application
	Application	Rule

Analyticity

Definition

A calculus is *analytic* if $\vdash \Gamma \Rightarrow \Delta$ implies that there is a derivation of $\Gamma \Rightarrow \Delta$ using only subformulas of $\Gamma \cup \Delta$.

• If a pure calculus is analytic then it is decidable.

Analyticity

Definition

A calculus is *analytic* if $\vdash \Gamma \Rightarrow \Delta$ implies that there is a derivation of $\Gamma \Rightarrow \Delta$ using only subformulas of $\Gamma \cup \Delta$.

• If a pure calculus is analytic then it is decidable.

Definition (k-subformula)
$$\frac{A \preceq_k \neg A}{\neg ^k A_i \preceq_k A_1 \diamond A_2} \quad \frac{A \preceq_k B}{A \preceq_k A} \quad \frac{A \preceq_k B}{A \preceq_k C}$$

Definition

A calculus is *k*-analytic if $\vdash \Gamma \Rightarrow \Delta$ implies that there is a derivation of $\Gamma \Rightarrow \Delta$ using only *k*-subformulas of $\Gamma \cup \Delta$.

Basic Criterion for k-Analyticity

- All rules are *k-closed*:
 - The conclusion has the form \Rightarrow A or A \Rightarrow
 - The premises consist of k-subformulas of A
- Right and left rules play well together:

For any two contextless applications of the form $\frac{s_1 \dots s_n}{\Rightarrow A} \quad \frac{s'_1 \dots s'_m}{A \Rightarrow}$ we have $s_1, \dots, s_n, s'_1, \dots, s'_m \vdash^{(cut)} \Rightarrow$

• Generalizes coherence (Avron, Lev '01,'05).

Basic Criterion for Analyticity

• The above criterion suffices for various calculi, e.g.:

- The propositional fragment of LK.
- The calculus for the logic of first degree entailment (FDE).
- The calculus for Primal logic.
- However, this criterion is not necessary.

Figure A \Rightarrow B, Δ $\Gamma \Rightarrow B, \Delta$ $\Gamma \Rightarrow B, \Delta$ $\Gamma \Rightarrow A \supset (B \supset A), \Delta$ $\Gamma \Rightarrow A \supset (B \supset A), \Delta$ and $\Gamma \Rightarrow A, \Delta = \Gamma, B \Rightarrow \Delta$ do not "play well" together.

Example: A 1-analytic Pure Calculus for da Costa's Paraconsistent Logic **C**₁ [Avron, Konikowska, Zamansky '12]

Analyticity by Construction

Definition (Safe Application)

An application of an **LK** rule is k-safe if the context formulas are all k-subformulas of the principal formula.

Example (Derivable rules that are 0-safe applications)

$$\begin{array}{c|c} p_2, p_1 \Rightarrow p_2 \\ \hline p_2 \Rightarrow p_1 \supset p_2 \end{array} \quad \begin{array}{c|c} p_1 \Rightarrow p_1 \\ \hline \Rightarrow p_1 \supset p_1 \end{array} \quad \begin{array}{c|c} p_1 \Rightarrow p_2 \supset p_1 \\ \hline \Rightarrow p_1 \supset (p_2 \supset p_1) \end{array} \quad \begin{array}{c|c} p_1 \land p_2 \Rightarrow p_1 \\ \hline \Rightarrow (p_1 \land p_2) \supset p_1 \end{array}$$

Theorem

A calculus whose rules are all k-safe applications is k-analytic.

- Simple "analyticity preserving transformations" are also useful.
- The same holds for any calculus admitting the basic criterion instead of **LK**.

Example: Paraconsistent Logic

Example: Paraconsistent Logic

- Pure calculi can be characterized by *two-valued valuations* [Béziau '01].
- Each pure rule is read as a semantic condition.
- By joining the semantic conditions of all rules in a calculus **G**, we obtain the set of **G**-*legal* valuations.

Soundness and Completeness

 $\Gamma \Rightarrow \Delta \text{ is provable in } \textbf{G} \text{ iff every } \textbf{G}\text{-legal valuation is a model of } \Gamma \Rightarrow \Delta.$

Stronger Version

 $\Gamma \Rightarrow \Delta$ is provable in **G** using only formulas of \mathcal{F} iff every **G**-legal valuation whose domain is \mathcal{F} is a model of $\Gamma \Rightarrow \Delta$.

Semantic Analyticity

Definition

G is semantically *k*-analytic if every **G**-legal **partial** valuation whose domain is closed under *k*-subformulas can be extended to a full **G**-legal valuation.

Theorem

A calculus is k-analytic iff it is semantically k-analytic.

Proof Outline

Theorem

A calculus whose rules are all k-safe applications is k-analytic.

- Suppose that \mathcal{F} is closed under *k*-subformulas.
- \bullet Enumerate all formulas that are not included in \mathcal{F} :

$$A_1 \preceq_k A_2 \preceq_k \ldots$$

- LK has a trivial "extension procedure" to assign values for all formulas.
- The same procedure applies for any collection of k-safe applications.

Proof Outline

Theorem

A calculus whose rules are all k-safe applications is k-analytic.

- Suppose that \mathcal{F} is closed under *k*-subformulas.
- Enumerate all formulas that are not included in \mathcal{F} :

$$A_1 \preceq_k A_2 \preceq_k \ldots$$

LK has a trivial "extension procedure" to assign values for all formulas.
The same procedure applies for any collection of k-safe applications.

$$\begin{array}{c} \Gamma \Rightarrow A \land B, \neg A, \neg B, \Delta \\ \hline \Gamma, \neg (A \land B) \Rightarrow \neg A, \neg B, \Delta \end{array} \qquad \begin{array}{c} \text{If } \neg A \text{ and } \neg B \text{ are false, but } A \land B \text{ is } \\ \text{true, then } \neg (A \land B) \text{ must be false.} \end{array}$$

(In the presence of $(\Rightarrow \land)$ and $(\Rightarrow \neg)$, this is equivalent to $\frac{\Gamma, \neg A \Rightarrow \Delta}{\Gamma, \neg (A \land B) \Rightarrow \Delta}$)

Conclusions and Further Work

- We provided a general sufficient condition for *k*-analyticity in pure calculi.
- We identified a large family of classically derivable rules that form analytic calculi.
- This allows one to easily verify analyticity, introduce new analytic calculi, and augment analytic calculi with more useful rules.
- Further work:
 - Cut-elimination
 - Non-pure calculi (context restrictions)
 - First order logics

Thank you!