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Abstract
We provide a constructive direct semantic proof of the completeness of the cut-free part of the hypersequent calculus
HIF for the standard first-order Gödel logic (thereby proving both completeness of the calculus for its standard seman-
tics, and the admissibility of the cut rule in the full calculus). The results also apply to derivations from assumptions
(or “non-logical axioms”), showing in particular that when the set of assumptions is closed under substitutions, then
cuts can be confined to formulas occurring in the assumptions. The methods and results are then extended to handle
the (Baaz) Delta connective as well.

1 Introduction
In [17] Gödel introduced a sequence {Gn} (n ≥ 2) of n-valued matrices in the language of propositional
intuitionistic logic. He used these matrices to show some important properties of intuitionistic logic. An
infinite-valued matrix Gω in which all the Gns can be embedded was later introduced by Dummett in [14].
Gω, in turn, can naturally be embedded in a matrix G[0,1], the truth-values of which are the real numbers
between 0 and 1 (inclusive). It has not been difficult to show that the sets of valid formulas in Gω and in
G[0,1] are identical, and both are known today as “Gödel logic”.1 Later it has been shown that this logic is
also characterized as the logic of linearly ordered intuitionistic Kripke frames (see [15],[16]). Gödel logic is
probably the most important intermediate logic, i.e. a logic between intuitionistic logic and classical logic.
In the last fifteen years it has again attracted a lot of attention because of its recognition as one of the three
most basic fuzzy logics [18].

Gödel logic can be naturally extended to the first-order framework. In particular, the standard first-order
Gödel logic (the logic based on [0, 1] as the set of truth-values) has been introduced and investigated in [24]
(where it was called “intuitionistic fuzzy logic”). The Kripke-style semantics of this logic is provided by the
class of all linearly ordered intuitionistic Kripke frames with constant domains.

A cut-free Gentzen-type formulation for (propositional) Gödel logic was first given by Sonobe in [21].
Since then several other such calculi which employ ordinary sequents have been proposed (see [11, 1, 12, 5,
13]). All these calculi have the drawback of using some ad-hoc rules of a nonstandard form, in which several
occurrences of connectives are involved. In contrast, in [3] a cut-free Gentzen-type proof system HG for

1It is also called Gödel-Dummett logic, because it was first introduced and axiomatized in [14]. The name Dummett himself
has used is LC.
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propositional Gödel logic was introduced, which does not have this drawback. HG uses (single-conclusion)
hypersequents (a natural generalization of Gentzen’s original (single-conclusion) sequents), and it has exactly
the same logical rules as the usual Gentzen-type system for propositional intuitionistic logic. HG was
furthermore extended by Baaz, Ciabattoni, Fermüller, and Zach to provide appropriate proof systems for
extensions of propositional Gödel logic with quantifiers of various types and modalities (see [7] for a survey).
In particular, an extension of HG for the standard first-order Gödel logic (called HIF) was introduced in [8].
Following the work that started in [3], the framework of hypersequents was used by Metcalfe, Ciabattoni, and
others for other fuzzy logics (like Łukasiewicz infinite-valued logic), and nowadays it is the major framework
for the proof theory of fuzzy logics (see [20]).

Until recently, in all the works about HG and its extensions the proofs of completeness (either for
the Gödel’s many-valued semantics or for the Kripke semantics) and the proofs of cut-elimination have
completely been separated. Completeness has been shown for the full calculus (including cut), while cut-
elimination has been proved syntactically by some type of induction on complexity of proofs. It is well-
known that the syntactic methods are notoriously prone to errors, especially (but certainly not only) in the
case of hypersequent systems.2 In contrast, the recent [4] provided for the first time a constructive, direct,
and simple proof of the completeness of the cut-free part of HG for its intended semantics (thereby proving
both completeness of the calculus and the admissibility of the cut rule in it).3 However, [4] did not deal with
the first-order extension of HG, and it was not clear how to adapt its completeness proof to this case.

In this paper we present a purely semantic, easy to verify, direct proof of cut-admissibility for HIF (the
first-order extension of HG). As usual, this proof is actually a completeness proof of the cut-free part of our
system for its intended semantics. To overcome the difficulties encountered in adapting the proof of [4] to
the first-order case, we introduce extended sequents and extended hypersequents (see Definitions 39 and 40).

Another difference between this work and previous works (e.g. [7]) is that our results apply also to
derivations from assumptions (or non-logical axioms), while previous works concern only proofs without
assumptions. Thus we actually prove strong cut-admissibility, showing that in case that the set of assumptions
is closed under substitutions, derivations can be confined to those in which cuts are made only on formulas
which occur in the assumptions. In addition, we identify an additional semantic condition, whose satisfaction
ensures the existence of a derivation of this kind (in which cuts are only applied on formulas which occur in
the assumptions) also when the set of assumptions is not closed under substitutions.

We end the introduction with an important note: this paper is basically an expanded and improved version
of the conference paper [6]. However, its main result, strong cut-admissibility in HIF, was proved in [6] only
in a roundabout way: the semantic proof of strong cut-admissibility was first given there for a new multiple-
conclusion hypersequent system for the standard first-order Gödel logic. Then this result was used to derive
the analogous result for HIF (which is single-conclusion). In contrast, in this paper we directly treat HIF,
without any detour through another calculus (for this we need several new propositions concerning HIF;
see Propositions 22, 23, 24). This, in turn, makes it easy to extend the met1hod to some natural extensions
of HIF with rules for new connectives. We do it in Subsection 4.2 for HIF2, the extension of the standard
first-order Gödel logic with a globalization connective (also known as the (Baaz) Delta connective). For this
we had to further add some new concepts and results (see Definition 54, Proposition 55, and Corollary 56).
Finally, for the sake of completeness, in the last section we present also the multiple-conclusion hypersequent
system, and reproduce the results of [6].

2In fact, the first proof (in [8]) of cut-elimination for HIF was erroneous. There has also been a gap in the proof given in [3]
in its handling of the case of disjunction. Many other examples, also for ordinary sequent calculi, can be given.

3A semantic proof of cut-admissibility for HG has been given in [10]. However, a complicated algebraic phase semantics was
used there, and the proof is not constructive.
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2 Standard First-Order Gödel Logic
Let L be a first-order language with ∧,∨,⊃ as binary connectives, ⊥ as a propositional constant, and ∀ and
∃ as unary quantifiers. We assume that the set of free variables and the set of bounded variables are disjoint
(thus in a well-formed formula, the use of the bound variables is always in the scope of a quantification of the
same variables). We use the metavariables a, b to range over the free variables, x to range over the bounded
variables, p to range over the predicate symbols of L, c to range over its constant symbols, and f to range
over its function symbols. The sets of L-terms and L-formulas are defined as usual, and are denoted by trmL
and frmL, respectively. We mainly use t as a metavariable standing for L-terms, ϕ, ψ for L-formulas, Γ,∆
for sets of L-formulas, and E,F for sets of L-formulas which are either singletons or empty.

Given an L-term t, a free variable a, and another L-term t′, we denote by t{t′/a} the L-term obtained
from t by replacing all occurrences of a by t′. This notation is extended to formulas, set of formulas, etc. in
the obvious way.

Notation 1 To improve readability we use square parentheses in the meta-language, and reserve round
parentheses to the first-order language.

As usual, there are two main approaches to define the standard first-order Gödel logic:

Proof-theoretically The logic is defined using an Hilbert-style calculus. Such a calculus is obtained by
adding the following axioms to any Hilbert-style calculus for first-order intuitionistic logic (see e.g.
[7]):

• The “linearity” axiom (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ).

• The “quantifier-shifting” axiom (∀x(ϕ{x/a} ∨ ψ)) ⊃ (∀x(ϕ{x/a}) ∨ ψ).

We shall denote such an Hilbert-style calculus by sG, and `sG will stand for the consequence relation
which is naturally associated with it (note that this is a relation between sets of formulas and formulas).

Model-theoretically Here there are two options. First, the standard first-order Gödel logic can be defined
as a first-order fuzzy logic based on the real interval [0, 1]. Second, it can be seen as an intermediate
logic, defined in terms of Kripke-style semantics. In the next two subsections, we briefly review the
many-valued semantics and the Kripke-style semantics of this logic.

2.1 Many-Valued Semantics
Definition 2 An L-algebra is a pair 〈D, I〉whereD is a non-empty domain and I is an interpretation of con-
stants and function symbols of L such that I[c] ∈ D for every constant symbol c of L, and I[f ] ∈ Dn → D
for every n-ary function symbol f of L.

Definition 3 An 〈L, D〉-predicate interpretation is a function J from the set of L-predicate symbols such
that J [p] ∈ Dn → [0, 1] for every n-ary predicate symbol p of L.

Definition 4 Let M = 〈D, I〉 be an L-algebra. An 〈L,M〉-evaluation is a function assigning an element in
D to every free variable of L. An 〈L,M〉-evaluation e is naturally extended to trmL as follows: e[c] = I[c]
for every constant symbol c; and e[f(t1, . . . , tn)] = I[f ][e[t1], . . . , e[tn]] for every f(t1, . . . , tn) ∈ trmL.

Notation 5 Given an 〈L,M〉-evaluation e, a free variable a, and d ∈ D, we denote by e[a:=d] the 〈L,M〉-
evaluation which is identical to e except that e[a:=d][a] = d.
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Definition 6 Let M = 〈D, I〉 be an L-algebra, J be an 〈L, D〉-predicate interpretation, and e be an 〈L,M〉-
evaluation. The function ‖ • ‖〈M,J,e〉 from frmL to [0, 1] is recursively defined as follows:

1. ‖p(t1, . . . , tn)‖〈M,J,e〉 = J [p][e[t1], . . . , e[tn]].

2. ‖⊥‖〈M,J,e〉 = 0.

3. ‖ϕ1 ⊃ ϕ2‖〈M,J,e〉 = 1 if ‖ϕ1‖〈M,J,e〉 ≤ ‖ϕ2‖〈M,J,e〉, and ‖ϕ1 ⊃ ϕ2‖〈M,J,e〉 = ‖ϕ2‖〈M,J,e〉 otherwise.

4. ‖ϕ1 ∨ ϕ2‖〈M,J,e〉 = max{‖ϕ1‖〈M,J,e〉, ‖ϕ2‖〈M,J,e〉}.

5. ‖ϕ1 ∧ ϕ2‖〈M,J,e〉 = min{‖ϕ1‖〈M,J,e〉, ‖ϕ2‖〈M,J,e〉}.

6. ‖∀x(ϕ{x/a})‖〈M,J,e〉 = inf{‖ϕ‖〈M,J,e[a:=d]〉 | d ∈ D}.

7. ‖∃x(ϕ{x/a})‖〈M,J,e〉 = sup{‖ϕ‖〈M,J,e[a:=d]〉 | d ∈ D}.

It is easy to see that ‖ • ‖〈M,J,e〉 is well-defined, and in particular in 6 and 7, the exact choice of the free
variable a is immaterial.

Definition 7 Let M = 〈D, I〉 be an L-algebra, J be an 〈L, D〉-predicate interpretation. We say that 〈M,J〉
is a model of an L-formula ϕ, if ‖ϕ‖〈M,J,e〉 = 1 for every 〈L,M〉-evaluation e. 〈M,J〉 is a model of a set T
of L-formulas if it is a model of every ϕ ∈ T .

We now define the consequence relation of Gödel logic in terms of the many-valued semantics:

Definition 8 (`[0,1]) Let T ∪ {ϕ} be a set of L-formulas. T `[0,1] ϕ if whenever 〈M,J〉 is a model of T , for
some L-algebra M = 〈D, I〉, and 〈L, D〉-predicate interpretation J , then 〈M,J〉 is also a model of ϕ.

Remark 9 As usual in first-order logics, actually there are two natural consequence relations that can be
defined here. In the terminology of [2], in this paper we concentrate on the validity consequence relation,
rather than the truth consequence relation.

Fact 10 ([18],[19]) The Hilbert-style calculus sG is strongly sound and complete with respect to the many-
valued semantics of the standard first-order Gödel logic, i.e. `[0,1] = `sG.

2.2 Kripke-Style Semantics
While the many-valued semantics is perhaps more intuitive, in this paper the Kripke-style semantics is es-
sential to prove our main results. There are two differences between this semantics and the Kripke-style
semantics of first-order intuitionistic logic. First, linearly ordered Kripke frames are considered. Second,
for first-order Gödel logic we use a constant domain, i.e. the same domain in each world, rather than the
expanding domains used for intuitionistic logic.

Definition 11 A Kripke 〈L, D〉-predicate interpretation is a function assigning a subset ofDn to every n-ary
predicate symbol of L.

Definition 12 An L-frame is a tupleW = 〈W,≤,M, I〉 where:

1. W is a set linearly ordered by ≤.

2. M = 〈D, I〉 is an L-algebra (Definition 2).
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3. I = {Iw}w∈W , where for every w ∈ W , Iw is a Kripke 〈L, D〉-predicate interpretation such that for
every predicate symbol p: if u ≤ w then Iu[p] ⊆ Iw[p].

Definition 13 Let W = 〈W,≤,M, I〉 be an L-frame, where M = 〈D, I〉 and I = {Iw}w∈W . Let e be an
〈L,M〉-evaluation (Definition 4). The satisfaction relation � is recursively defined as follows:

1. W , w, e � p(t1, . . . , tn) iff 〈e[t1], . . . , e[tn]〉 ∈ Iw[p].

2. W , w, e 6� ⊥.

3. W , w, e � ϕ1 ⊃ ϕ2 iffW , u, e 6� ϕ1 orW , u, e � ϕ2 for every element u ≥ w.

4. W , w, e � ϕ1 ∨ ϕ2 iffW , w, e � ϕ1 orW , w, e � ϕ2.

5. W , w, e � ϕ1 ∧ ϕ2 iffW , w, e � ϕ1 andW , w, e � ϕ2.

6. W , w, e � ∀x(ϕ{x/a}) iffW , w, e[a:=d] � ϕ for every d ∈ D.4

7. W , w, e � ∃x(ϕ{x/a}) iffW , w, e[a:=d] � ϕ for some d ∈ D.

It is easy to see that � is well-defined, and in particular in 6 and 7, the exact choice of the free variable a is
immaterial.

It is a routine matter to prove the following proposition:

Proposition 14 (Persistence) LetW = 〈W,≤,M, I〉 be an L-frame, and e be an 〈L,M〉-evaluation. Let ϕ
be an L-formula, and u be an element of W such thatW , u, e � ϕ. Then,W , w, e � ϕ for every element w
of W such that u ≤ w.

Definition 15 LetW = 〈W,≤,M, I〉 be an L-frame. W is a model of an L-formula ϕ ifW , w, e � ϕ for
every 〈L,M〉-evaluation e and w ∈ W . W is a model of a set T of L-formulas if it is a model of every
ϕ ∈ T .

We now define the consequence relation of Gödel logic in terms of Kripke-style semantics:

Definition 16 (`Kr) Let T ∪ {ϕ} be a set of L-formulas. T `Kr ϕ if every L-frameW which is a model of
T is also a model of ϕ.

Fact 17 ([15]) The Hilbert-style calculus sG is strongly sound and complete with respect to the Kripke-style
semantics of the standard first-order Gödel logic, i.e. `Kr = `sG.

3 The System HIF

As indicated in the introduction, the main tool to obtain well-behaved proof systems for Gödel logic is
single-conclusion hypersequents.

Definition 18 A single-conclusion sequent is an ordered pair of finite sets of L-formulas 〈Γ, E〉, where E is
either a singleton or empty. A single-conclusion hypersequent is a finite set of single-conclusion sequents.

4Note that unlike in Kripke-style semantics of intuitionistic logic, the condition here is “local”.
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Henceforth, we simply write sequent instead of single-conclusion sequent, and hypersequent instead of
single-conclusion hypersequent. We shall use the usual sequent notation Γ⇒E (for 〈Γ, E〉) and the usual
hypersequent notation s1 | . . . | sn (for {s1, . . . , sn}). We also employ the standard abbreviations, e.g.
Γ, ϕ⇒ψ instead of Γ ∪ {ϕ}⇒{ψ}, and H | s instead of H ∪ {s}.

Notation 19 Given a setH of hypersequents, we denote by frm[H] the set of L-formulas that appear inH.

Next, we review the hypersequent system HIF from [8].

Definition 20 HIF is the (single-conclusion) hypersequent system containing the following rules:5

Axioms:
ϕ⇒ϕ ⊥⇒

Structural Rules:

(IW⇒)
H | Γ⇒E

H | Γ, ϕ⇒E
(⇒IW )

H | Γ⇒
H | Γ⇒ϕ

(EW )
H

H | Γ⇒E

(com)
H1 | Γ1,Γ

′
1⇒E1 H2 | Γ2,Γ

′
2⇒E2

H1 | H2 | Γ1,Γ
′
2⇒E1 | Γ2,Γ

′
1⇒E2

(cut)
H1 | Γ1⇒ϕ H2 | Γ2, ϕ⇒E

H1 | H2 | Γ1,Γ2⇒E

Logical Rules:

(⊃⇒)
H1 | Γ1⇒ϕ1 H2 | Γ2, ϕ2⇒E

H1 | H2 | Γ1,Γ2, ϕ1 ⊃ ϕ2⇒E
(⇒⊃)

H | Γ, ϕ1⇒ϕ2

H | Γ⇒ϕ1 ⊃ ϕ2

(∨⇒)
H1 | Γ1, ϕ1⇒E H2 | Γ2, ϕ2⇒E

H1 | H2 | Γ1,Γ2, ϕ1 ∨ ϕ2⇒E

(⇒∨1)
H | Γ⇒ϕ1

H | Γ⇒ϕ1 ∨ ϕ2
(⇒∨2)

H | Γ⇒ϕ2

H | Γ⇒ϕ1 ∨ ϕ2

(∧⇒1)
H | Γ, ϕ1⇒E

H | Γ, ϕ1 ∧ ϕ2⇒E
(∧⇒2)

H | Γ, ϕ2⇒E

H | Γ, ϕ1 ∧ ϕ2⇒E

(⇒∧)
H1 | Γ1⇒ϕ1 H2 | Γ2⇒ϕ2

H1 | H2 | Γ1,Γ2⇒ϕ1 ∧ ϕ2

(∀⇒)
H | Γ, ϕ{t/a}⇒E

H | Γ,∀x(ϕ{x/a})⇒E
(⇒∀) H | Γ⇒ϕ

H | Γ⇒∀x(ϕ{x/a})

(∃⇒)
H | Γ, ϕ⇒E

H | Γ,∃x(ϕ{x/a})⇒E
(⇒∃) H | Γ⇒ϕ{t/a}

H | Γ⇒∃x(ϕ{x/a})

The rules (⇒ ∀) and (∃ ⇒) must obey the eigenvariable condition: a must not occur in the lower hy-
persequent. Note that the sets of formulas denoted by Γ1,Γ2,Γ

′
1,Γ

′
2 need not to be disjoint. Similarly, the

hypersequents denoted by H1 and H2 not to be disjoint.

Definition 21 LetH ∪ {H} be a set of hypersequents.

5What we present is actually an equivalent version of the system presented in [8]. Thus ¬ϕ is defined here as ϕ ⊃ ⊥, and the
density rule is not present (see Subsection 4.3). Other insignificant differences are due to the facts that we define hypersequents as
sets of sequents rather than as multisets, and that we use multiplicative versions of the binary rules rather than additive ones.
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1. We writeH ` H if there exists a derivation of H fromH in HIF.

2. Let E be a set of L-formulas. We write H `E H if there exists a derivation of H from H in HIF in
which the cut-formula of every application of the cut rule is in E .

As usual, we shall write ` H instead of ∅ ` H . Using this notation and the one introduced in the last
definition, cut-admissibility means that ` H iff `∅ H , while strong cut-admissibility means that H ` H iff
H `frm[H] H .

Next, we provide two derivability results for HIF, that will be used in the sequel.

Proposition 22 (Generalized Communication) For every n,m ≥ 0, hypersequents H1 and H2, m + n
singleton or empty sets of L-formulas E1, . . . , En, F1, . . . , Fm, and sets Γ1,Γ

′
1,Γ2,Γ

′
2 of L-formulas:

H1 | H2 | Γ1,Γ
′
2⇒E1 | . . . | Γ1,Γ

′
2⇒En | Γ2,Γ

′
1⇒F1 | . . . | Γ2,Γ

′
1⇒Fm

is cut-free derivable in HIF from the hypersequents

H1 | Γ1,Γ
′
1⇒E1 | . . . | Γ1,Γ

′
1⇒En and H2 | Γ2,Γ

′
2⇒F1 | . . . | Γ2,Γ

′
2⇒Fm

Proof We prove this by induction on n + m. First, when n = 0 or m = 0, the claim follows by applying
an external weakening. Assume that n,m > 0, n + m = l and that the claim holds for every n,m such that
n + m < l. By the induction hypothesis, the following two hypersequents are cut-free derivable in HIF
from H1 | Γ1,Γ

′
1⇒E1 | . . . | Γ1,Γ

′
1⇒En and H2 | Γ2,Γ

′
2⇒F1 | . . . | Γ2,Γ

′
2⇒Fm:

H1 | Γ1,Γ
′
1⇒En | H2 | Γ1,Γ

′
2⇒E1 | . . . | Γ1,Γ

′
2⇒En−1 | Γ2,Γ

′
1⇒F1 | . . . | Γ2,Γ

′
1⇒Fm

H1 | H2 | Γ2,Γ
′
2⇒Fm | Γ1,Γ

′
2⇒E1 | . . . | Γ1,Γ

′
2⇒En | Γ2,Γ

′
1⇒F1 | . . . | Γ2,Γ

′
1⇒Fm−1

An application of (com) on these two hypersequents provides the desired result.

Proposition 23 (Generalized (∨⇒)) For every n,m ≥ 0, hypersequents H1 and H2, m + n singleton or
empty sets of L-formulas E1, . . . , En, F1, . . . , Fm, sets Γ1,Γ2 of L-formulas, and two L-formulas ϕ1, ϕ2:

H1 | H2 | Γ1, ϕ1 ∨ ϕ2⇒E1 | . . . | Γ1, ϕ1 ∨ ϕ2⇒En | Γ2, ϕ1 ∨ ϕ2⇒F1 | . . . | Γ2, ϕ1 ∨ ϕ2⇒Fm

is cut-free derivable in HIF from the hypersequents

H1 | Γ1, ϕ1⇒E1 | . . . | Γ1, ϕ1⇒En and H2 | Γ2, ϕ2⇒F1 | . . . | Γ2, ϕ2⇒Fm

Proof We prove this by induction on n + m. First, for n = 0 or m = 0, the claim follows by applying an
external weakening. Assume that n,m > 0, n + m = l and that the claim holds for every n,m such that
n + m < l. By the induction hypothesis, the following two hypersequents are cut-free derivable in HIF
from H1 | Γ1, ϕ1⇒E1 | . . . | Γ1, ϕ1⇒En and H2 | Γ2, ϕ2⇒F1 | . . . | Γ2, ϕ2⇒Fm:

G1 = H1 | Γ1, ϕ1⇒En | H2 | Γ1, ϕ1 ∨ ϕ2⇒E1 | . . . | Γ1, ϕ1 ∨ ϕ2⇒En−1 | Γ2, ϕ1 ∨ ϕ2⇒F1 | . . . | Γ2, ϕ1 ∨ ϕ2⇒Fm

G2 = H1 | H2 | Γ2, ϕ2⇒Fm | Γ1, ϕ1 ∨ ϕ2⇒E1 | . . . | Γ1, ϕ1 ∨ ϕ2⇒En | Γ2, ϕ1 ∨ ϕ2⇒F1 | . . . | Γ2, ϕ1 ∨ ϕ2⇒Fm−1

An application of (com) on these two hypersequents yields:

H1 | H2 | Γ1, ϕ2⇒En | Γ2, ϕ1⇒Fm | Γ1, ϕ1 ∨ ϕ2⇒E1 | . . . | Γ1, ϕ1 ∨ ϕ2⇒En | Γ2, ϕ1 ∨ ϕ2⇒F1 | . . . | Γ2, ϕ1 ∨ ϕ2⇒Fm

By applying (∨⇒) on this hypersequent and on G1 we get:

H1 | H2 | Γ2, ϕ1⇒Fm | Γ1, ϕ1 ∨ ϕ2⇒E1 | . . . | Γ1, ϕ1 ∨ ϕ2⇒En | Γ2, ϕ1 ∨ ϕ2⇒F1 | . . . | Γ2, ϕ1 ∨ ϕ2⇒Fm

Another application of (∨⇒) on this hypersequent and on G2 provides the desired hypersequent.
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Finally, the next proposition provides a generalization of the rule (∃⇒), to be used in the sequel. The
main idea is taken from the proof of Lemma 30 from [7] (used there in the syntactic proof of cut-elimination
for HIF). However, here we also consider proofs from non-empty sets of assumptions.

Proposition 24 (Generalized (∃⇒)) Let H be a set of hypersequents, and E be a set of L-formulas.
Suppose that both H and E are closed under substitutions. Then, for every n ≥ 0, hypersequent H ,
n singleton or empty sets of L-formulas E1, . . . , En, set Γ of L-formulas, L-formula ϕ, and free vari-
able a which does not occur in H,E1, . . . , En and Γ: H `E H | Γ, ϕ⇒E1 | . . . | Γ, ϕ⇒En implies that
H `E H | Γ, ∃x(ϕ{x/a})⇒E1 | . . . | Γ, ∃x(ϕ{x/a})⇒En.

The following standard lemma is required in the proof:

Lemma 25 Let H be a set of hypersequents, and E be a set of L-formulas. Suppose that both H and E are
closed under substitutions. For every hypersequent H and two free variables a, b, such that b does not occur
in H , ifH `E H thenH `E H{b/a}.

Proof (of Proposition 24) We use induction on n. The claim is trivial for n = 0. Now assume that
the claim holds for n − 1, we prove it for n. Let H be a hypersequent, Γ⇒E1, . . . ,Γ⇒En be se-
quents, ϕ be an L-formula, and let a be a free variable which does not occur in H,Γ, E1, . . . , En.
Let G0 = H | Γ, ϕ⇒E1 | . . . | Γ, ϕ⇒En. Let b be a free variable which does not occur in
G0. By Lemma 25, H `E G0{b/a}. Note that since a does not occur in H,Γ, E1, . . . , En,
G0{b/a} = H | Γ, ϕ{b/a}⇒E1 | . . . | Γ, ϕ{b/a}⇒En. By Proposition 22, the following hypersequent is
cut-free derivable from G0 and G0{b/a}:

H | Γ, ϕ⇒En | Γ, ϕ{b/a}⇒E1 | . . . | Γ, ϕ{b/a}⇒En−1

(to see this, take H1 = H | Γ, ϕ⇒En and H2 = H | Γ, ϕ{b/a}⇒E1 | . . . | Γ, ϕ{b/a}⇒En−1). By an
application of (∃⇒) on the last hypersequent, we obtain:

H | Γ, ∃x(ϕ{x/a})⇒En | Γ, ϕ{b/a}⇒E1 | . . . | Γ, ϕ{b/a}⇒En−1

The induction hypothesis now entails thatH `E H | Γ,∃x(ϕ{x/a})⇒E1 | . . . | Γ,∃x(ϕ{x/a})⇒En.

3.1 Interpretation of Hypersequents
A better understanding of hypersequents is obtained using the following interpretation ([8]).

Definition 26 (Interpretation of Hypersequents)

1. For a non-empty finite set of L-formulas Γ,
∧

Γ is the conjunction of the formulas in Γ, and
∨

Γ is
their disjunction.

∧
∅ is defined to be ⊥⊃⊥, and

∨
∅ is defined to be ⊥.

2. For a sequent Γ⇒E, Int [Γ⇒E] is the L-formula
∧

Γ ⊃
∨
E.

3. For a hypersequent H , Int [H] is the L-formula
∨
{Int [s] | s ∈ H}.

Theorem 27 H and Int [H] are interderivable in HIF for every non-empty hypersequent H (i.e.
H `⇒Int [H] and ⇒Int [H] ` H).

To prove this theorem, we use the following lemmas:

Lemma 28 ` Γ⇒
∧

Γ, for every finite set Γ of L-formulas.
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Proof Repeatedly apply identity axioms and (⇒∧). In case Γ is empty, ⊥⇒⊥ and (⇒⊃) are needed.

Lemma 29 Let Γ = {ϕ1, . . . , ϕn} be a non-empty finite set of L-formulas. Then,
`
∨

Γ⇒ϕ1 | . . . |
∨

Γ⇒ϕn.

Proof Repeatedly apply identity axioms and Proposition 23.

Lemma 30 The following hold for every hypersequent H , and sequent Γ⇒E:

1. H | Γ⇒E ` H |
∧

Γ⇒
∨
E.

2. H |
∧

Γ⇒
∨
E ` H | Γ⇒E.

3. H | Γ⇒E ` H |⇒Int [Γ⇒E].

4. H |⇒Int [Γ⇒E] ` H | Γ⇒E.

Proof

1. Repeatedly apply (∧⇒ 1) and (∧⇒ 2). Internal weakenings are required in case Γ or E are empty.

2. Obtained by Lemma 28 using a cut. In case E is empty, (⊥⇒) and another cut are needed.

3. Follows from 1 by applying (⇒⊃).

4. Using identity axioms and (⊃⇒), we can prove
∧

Γ, Int [Γ⇒E]⇒
∨
E. A cut on Int [Γ⇒E] of this

hypersequent and H |⇒Int [Γ⇒E] yields H |
∧

Γ⇒
∨
E. By 2, one can derive H | Γ⇒E.

We can now prove Theorem 27.

Proof (of Theorem 27) H ` ⇒ Int [H] is obtained by repeatedly applying Lemma 30 (3), (⇒∨1)
and (⇒∨2). We show that ⇒ Int [H] ` H . Assume that H = s1 | . . . | sn. By Lemma 29,
` Int [H]⇒Int [s1] | . . . | Int [H]⇒Int [sn]. By n cuts we get ⇒Int [s1] | . . . |⇒Int [sn]. H is now obtained
by repeatedly applying Lemma 30 (4).

Using interpretations of hypersequents, soundness and completeness for HIF with respect to the the
many-valued semantics were formulated and proved in [8]. Soundness means here that ` H implies that
`[0,1] Int [H]. To have this, one proves that `[0,1] ϕ whenever ϕ is an interpretation of an instance of HIF’s
axiom, and that ϕ1, . . . , ϕn `[0,1] ϕ whenever ϕ is an interpretation of a conclusion of an instance of HIF’s
rule, and ϕ1, . . . , ϕn are the interpretations of the premises of this instance. In turn, completeness means
that `[0,1] Int [H] implies ` H . This was done in [8] relatively to sG. Using Fact 10 and Theorem 27,
it suffices to prove that `sG Int [H] implies `⇒ Int [H]. To have this, one proves that `⇒ ϕ for every
axiom instance ϕ of sG, and that whenever ϕ1, . . . , ϕn → ϕ is an instance of a derivation rule in sG, we
have ⇒ ϕ1, . . . , ⇒ ϕn `⇒ ϕ. The existence of the cut rule in HIF turns out to be crucial, to handle the
Modus Ponens rule, as well as in the proof of Theorem 27. Thus, aiming to obtain a completeness proof
of the cut-free fragment of HIF, we will not follow this approach. In fact, we only need interpretations of
hypersequents (and Theorem 27) to obtain the following proposition:

Proposition 31 (Derivability of Substitution) H ` H{t/a} for every hypersequent H , L-term t, and free
variable a.
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Proof The claim trivially holds if H is empty. Assume otherwise. By Lemma 30, there exists a derivation
of ⇒ Int [H] from H in HIF. To have a derivation of H{t/a} one can proceed as follows. First, apply
(⇒ ∀) to obtain ⇒ ∀x(Int [H]{x/a}). Then, Apply (∀ ⇒) on the axiom Int [H]{t/a} ⇒ Int [H]{t/a} to
obtain ∀x(Int [H]{x/a})⇒ Int [H]{t/a}. A cut on ∀x(Int [H]{x/a}) now gives ⇒ Int [H]{t/a}. From the
definition of Int , Int [H]{t/a} = Int [H{t/a}]. By Lemma 30, from ⇒ Int [H{t/a}] it is possible to derive
H{t/a} in HIF.

Corollary 32 Let H ∪ {H} be a set of hypersequents. Let H∗ be a set of hypersequents, consisting only of
substitution instances of the hypersequents inH. IfH∗ ` H , thenH ` H .

4 Soundness, Completeness and Strong Cut-Admissibility
In this section we obtain the main result of this paper, which is a semantic proof of strong cut-admissibility
for HIF. First, we define a semantic consequence relation between sets of hypersequents and hypersequents.
This relation is based on the Kripke-style semantics presented in Section 2.

Notation 33 Given an L-frameW = 〈W,≤,M, I〉, an 〈L,M〉-evaluation e, w ∈ W , and a sequent Γ⇒E,
we writeW , w, e � Γ⇒E if eitherW , w, e 6� ϕ for some ϕ ∈ Γ, orW , w, e � ϕ for some ϕ ∈ E.

Definition 34 LetW = 〈W,≤,M, I〉 be anL-frame.W is a model of a hypersequentH if for every 〈L,M〉-
evaluation e, there exists a component s ∈ H such thatW , w, e � s for every w ∈ W . W is a model of a set
H of hypersequents if it is a model of every H ∈ H.

Definition 35 LetH∪{H} be a set of hypersequents. H `hsKr H iff every L-frame which is a model ofH is
also a model of H .

Next, we prove strong soundness of HIF with respect to `hsKr.

Theorem 36 LetH ∪ {H} be a set of hypersequents. IfH ` H thenH `hsKr H .

Proof Assume that H ` H . Let W = 〈W,≤,M, I〉 be an L-frame which is a model of H, where
M = 〈D, I〉 and I = {Iw}w∈W . We show that for every 〈L,M〉-evaluation e, there exists a component
s ∈ H such thatW , w, e � s for every w ∈ W . Since the axioms of HIF and the assumptions ofH trivially
have this property, it suffices to show that this property is preserved also by applications of the rules of HIF.
This is a routine matter. We do here only two cases:

(com) Suppose that H = H1 | H2 | Γ1,Γ
′
2⇒E1 | Γ2,Γ

′
1⇒E2 is derived from the hypersequents

H1 | Γ1,Γ
′
1⇒E1 and H2 | Γ2,Γ

′
2⇒E2 using (com). Assume for contradiction thatW is not a model

of H . Thus there exists an 〈L,M〉-evaluation e, such that for every s ∈ H , there exists w ∈ W
such that W , w, e 6� s. In particular, for every s ∈ H1 ∪ H2, there exists w ∈ W such that
W , w, e 6� s. In addition, there exist w1 ∈ W such that W , w1, e 6� Γ1,Γ

′
2⇒E1, and w2 ∈ W such

thatW , w2, e 6� Γ2,Γ
′
1⇒E2. By definition,W , w1, e � ϕ for every ϕ ∈ Γ1 ∪ Γ′2, whileW , w1, e 6� ϕ

for every ϕ ∈ E1. Analogously, W , w2, e � ϕ for every ϕ ∈ Γ2 ∪ Γ′1, whileW , w2, e 6� ϕ for every
ϕ ∈ E2. Since ≤ is linear, either w1 ≤ w2 or w2 ≤ w1. Assume w.l.o.g that w1 ≤ w2. Then by
Proposition 14, W , w2, e � ϕ for every ϕ ∈ Γ′2. It follows that W , w2, e 6� Γ2,Γ

′
2 ⇒ E2. But this

implies thatW is not a model of H2 | Γ2,Γ
′
2⇒E2.
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(⇒∀) Suppose that H = H ′ | Γ⇒∀x(ϕ{x/a}) is derived from the hypersequent H ′ | Γ⇒ϕ using (⇒ ∀)
(where a is a free variable which does not occur in H). Assume for contradiction that W is not a
model of H . Thus there exists an 〈L,M〉-evaluation e, such that for every s ∈ H , there exists w ∈ W
such thatW , w, e 6� s. In particular, for every s ∈ H ′, there exists w ∈ W such thatW , w, e 6� s. In
addition, there exists w1 ∈ W such that W , w1, e 6� Γ⇒∀x(ϕ{x/a}). By definition, W , w1, e � ϕ
for every ϕ ∈ Γ, and W , w1, e 6� ∀x(ϕ{x/a}). This implies that there exists some d ∈ D such that
W , w1, e

∗ 6� ϕ where e∗ = e[a:=d]. Since a does not occur in Γ, we obtain thatW , w1, e
∗ � ϕ for every

ϕ ∈ Γ. It follows thatW , w1, e
∗ 6� Γ⇒ϕ. Moreover, since a does not occur in H ′, for every s ∈ H ′,

there exists w ∈ W such thatW , w, e∗ 6� s. Hence,W is not a model of H ′ | Γ⇒ϕ.

For the completeness proof, we introduce extended sequents and extended hypersequents, defined as
follows:

Definition 37 An extended sequent is an ordered pair of (possibly infinite) sets of L-formulas. Given two
extended sequents µ1 = 〈T1,U1〉 and µ2 = 〈T2,U2〉, we write µ1 v µ2 if T1 ⊆ T2 and U1 ⊆ U2. An extended
sequent is called finite if it consists of finite sets of formulas.

Definition 38 An extended hypersequent is a (possibly infinite) set of extended sequents. Given two ex-
tended hypersequents Ω1,Ω2, we write Ω1 v Ω2 (and say that Ω2 extends Ω1) if for every extended sequent
µ1 ∈ Ω1, there exists µ2 ∈ Ω2 such that µ1 v µ2. An extended hypersequent is called finite if it consists of
finite number of finite extended sequents.

We shall use the same notations as above for extended sequents and extended hypersequents. For exam-
ple, we write T ⇒U instead of 〈T ,U〉, and Ω | T ⇒U instead of Ω ∪ {〈T ,U〉}.

Definition 39 An extended sequent T ⇒U admits the witness property if the following hold:

1. If ∀x(ϕ{x/a}) ∈ U then there exists a free variable b such that ϕ{b/a} ∈ U .

2. If ∃x(ϕ{x/a}) ∈ T then there exists a free variable b such that ϕ{b/a} ∈ T .

Definition 40 Let Ω be an extended hypersequent, andH be a set of (ordinary) hypersequents.

1. Ω is called H-consistent if H 6`frm[H] H for every (ordinary) hypersequent H v Ω (see Definition 21
and Notation 19).

2. Let ϕ be an L-formula. Ω is called internallyH-maximal with respect to ϕ if for every T ⇒U ∈ Ω:

(a) If ϕ 6∈ T then Ω | T , ϕ⇒U is notH-consistent.

(b) If ϕ 6∈ U then Ω | T ⇒U , ϕ is notH-consistent.

3. Ω is called internallyH-maximal if it is internallyH-maximal with respect to any L-formula.

4. Let s be a sequent. Ω is called externally H-maximal with respect to s if either {s} v Ω, or Ω | s is
notH-consistent.

5. Ω is called externallyH-maximal if it is externallyH-maximal with respect to any sequent of the form
E1⇒E2 (E1 and E2 denote sets of formulas containing at most one formula).

6. Ω admits the witness property if every µ ∈ Ω admits the witness property.

7. Ω is called H-maximal if it is H-consistent, internally H-maximal, externally H-maximal, and it ad-
mits the witness property.

11



Less formally, an extended hypersequent Ω is internally H-maximal if every formula added on some
side of some component of Ω would make it H-inconsistent. Similarly, Ω is externally H-maximal if every
sequent of the form E1⇒E2 added to Ω would make itH-inconsistent.

Obviously, every hypersequent is an extended hypersequent, and so all of these properties apply to (ordi-
nary) hypersequents as well.

Proposition 41 Let Ω be an extended hypersequent, which is internally H-maximal with respect to an L-
formula ϕ. For every T ⇒U ∈ Ω:

1. If ϕ 6∈ T , thenH `frm[H] H | Γ, ϕ⇒E1 | . . . | Γ, ϕ⇒En for some hypersequent H v Ω and sequents
Γ⇒E1, . . . ,Γ⇒En v T ⇒U .

2. If ϕ 6∈ U , thenH `frm[H] H | Γ⇒ϕ for some hypersequent H v Ω and finite set Γ ⊆ T .

Proof

1. Let T ⇒ U ∈ Ω such that ϕ 6∈ T . By internal maximality, Ω | T , ϕ ⇒ U is not H-
consistent, and so there exists a hypersequent H ′ v Ω | T , ϕ ⇒ U , such that H `frm[H] H ′. Let
H = {s ∈ H ′ | {s} v Ω}. Note that for every sequent Γ ⇒ E ∈ H ′ which does not occur in H ,
we have ϕ ∈ Γ, Γ \ {ϕ} ⊆ T , and E ⊆ U . Let Γ1 ⇒ E1, . . . ,Γn ⇒ En be an enumeration
of these sequents, and let Γ =

⋃
Γi \ {ϕ}. By applying internal weakenings on H ′, we obtain

H `frm[H] H | Γ, ϕ⇒E1 | . . . | Γ, ϕ⇒En. Clearly, H v Ω and Γ⇒E1, . . . ,Γ⇒En v T ⇒U .

2. Let T ⇒ U ∈ Ω such that ϕ 6∈ U . By internal maximality, Ω | T ⇒ U , ϕ is not H-
consistent, and so there exists a hypersequent H ′ v Ω | T ⇒ U , ϕ, such that H `frm[H] H ′. Let
H = {s ∈ H ′ | {s} v Ω}. Note that for every sequent Γ ⇒ E ∈ H ′ which does not occur in H ,
we have E = {ϕ} and Γ ⊆ T . Let Γ1 ⇒ ϕ, . . . ,Γn ⇒ ϕ be an enumeration of the sequents of
H ′ which does not appear in H . Let Γ =

⋃
Γi. By applying internal weakenings on H ′, we obtain

H `frm[H] H | Γ⇒ϕ. Clearly, H v Ω and Γ ⊆ T .

Proposition 42 Let Ω be an extended hypersequent, which is externallyH-maximal with respect to a sequent
s. If {s} 6v Ω, then there exists a hypersequent H v Ω such thatH `frm[H] H | s.

Proof Immediately follows from the definitions using internal and external weakenings.

A certainH-maximal extended hypersequent serves as the set of worlds in the refuting frame constructed
in our completeness proof. Lemma 45 below ensures the existence of that extended hypersequent. In turn,
for the proof of Lemma 45 we need the next two lemmas.

Lemma 43 Let H be a set of hypersequents closed under substitutions, and let
H = Γ1⇒∆1 | . . . | Γn⇒∆n be a H-consistent finite extended hypersequent. Then there exists a H-
consistent finite extended hypersequent H ′ of the form Γ′1⇒∆′1 | . . . | Γ′n⇒∆′n, such that Γi ⊆ Γ′i and
∆i ⊆ ∆′i for every 1 ≤ i ≤ n, and H ′ admits the witness property.

Proof This extension is done in steps. In every step, we take some extended sequent Γ⇒∆ ∈ H . If ∆
contains a formula of the form ∀x(ϕ{x/a}), we take a fresh free variable b (a free variable that does not
occur in the current extended hypersequent), and add the formula ϕ{b/a} to ∆. Furthermore, if Γ contains a
formula of the form ∃x(ϕ{x/a}), we again take a fresh free variable b, and add the formula ϕ{b/a} to Γ. We
continue this procedure until the obtained extended hypersequent admits the witness property. Note that since
the number of formulas in H is finite, and the complexity of the formulas which are added is decreasing, this
procedure would terminate after a finite number of steps. H ′ is the finite extended hypersequent obtained
fromH by this procedure. We show that every such extension keeps the extended hypersequentH-consistent
(and thus H ′ isH-consistent):
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• Suppose that aH-consistent extended hypersequent H1 contains a sequent Γ⇒∆, where ∆ contains a
formula of the form ∀x(ϕ{x/a}). Let H2 be the extended hypersequent obtained from H1 by adding
ϕ{b/a} to ∆, where b is a free variable which does not occur inH1. Assume for contradiction thatH2 is
notH-consistent. By Proposition 41, there exist a hypersequent G v H1, and a finite set Γ′ ⊆ Γ, such
thatH `frm[H] G | Γ′⇒ϕ{b/a}. By applying (⇒∀), we obtainH `frm[H] G | Γ′⇒∀x(ϕ{b/a}{x/b}).
Obviously, ∀x(ϕ{b/a}{x/b}) = ∀x(ϕ{x/a}), and so this contradicts the fact the H1 isH-consistent.

• Suppose that a H-consistent extended hypersequent H1 contains a sequent Γ ⇒ ∆,
where Γ contains a formula of the form ∃x(ϕ{x/a}). Let H2 be the extended hyperse-
quent obtained from H1 by adding ϕ{b/a} to Γ, where b is a free variable which does
not occur in H1. Assume for contradiction that H2 is not H-consistent. By Proposi-
tion 41, there exist a hypersequent G v H1, and sequents Γ′⇒E1, . . . ,Γ

′⇒En v Γ⇒∆,
such that H `frm[H] G | Γ′, ϕ{b/a}⇒E1 | . . . | Γ′, ϕ{b/a}⇒En. Proposition 24 entails
that H `frm[H] G | Γ′,∃x(ϕ{b/a}{x/b})⇒E1 | . . . | Γ′,∃x(ϕ{b/a}{x/b})⇒En. Obviously,
∃x(ϕ{b/a}{x/b}) = ∃x(ϕ{x/a}), and so this contradicts the fact the H1 isH-consistent.

Lemma 44 Let H be a set of hypersequents closed under substitutions. and H = Γ1⇒∆1 | . . . | Γn⇒∆n

be aH-consistent finite extended hypersequent. Let ϕ be an L-formula, and s be a sequent. Then there exists
aH-consistent finite extended hypersequent H ′, such that:

• H ′ = Γ′1⇒∆′1 | . . . | Γ′n′⇒∆′n′ , where n′ ∈ {n, n+ 1}, Γi ⊆ Γ′i and ∆i ⊆ ∆′i for every 1 ≤ i ≤ n.

• H ′ is internallyH-maximal with respect to ϕ.

• H ′ is externallyH-maximal with respect to s.

• H ′ admits the witness property.

Proof Suppose s = Γ∗ ⇒ E. First, if H | s is H-consistent, let n′ = n + 1 and define Γn+1 = Γ∗

and ∆n+1 = E. Otherwise, let n′ = n. We recursively define a finite sequence of finite extended hyper-
sequents, H0 = Γ0

1⇒∆0
1 | . . . | Γ0

n′⇒∆0
n′ , . . . , Hn′ = Γn′

1 ⇒∆n′
1 | . . . | Γn′

n′⇒∆n′

n′ , in which Γi
j ⊆ Γi+1

j and
∆i

j ⊆ ∆i+1
j for every 1 ≤ j ≤ n′ and 0 ≤ i ≤ n′ − 1.

First, define Γ0
j = Γj , ∆0

j = ∆j for every 1 ≤ j ≤ n′. Let 0 ≤ i ≤ n′ − 1.
Assume that Hi = Γi

1⇒∆i
1 | . . . | Γi

n′⇒∆i
n′ is defined. We show how to construct

Hi+1 = Γi+1
1 ⇒∆i+1

1 | . . . | Γi+1
n′ ⇒∆i+1

n′ :

1. If Γi
1 ⇒ ∆i

1 | . . . | Γi
i+1, ϕ ⇒ ∆i

i+1 | . . . | Γi
n′ ⇒ ∆i

n′ is H-consistent, then Γi+1
i+1 = Γi

i+1 ∪ {ϕ},
∆i+1

i+1 = ∆i
i+1, and Γi+1

j = Γi
j and ∆i+1

j = ∆i
j for every j 6= i+ 1.

2. Otherwise, if Γi
1⇒U i

1 | . . . | Γi
i+1⇒∆i

i+1, ϕ | . . . | Γi
n′ ⇒∆i

n′ is H-consistent, then Γi+1
i+1 = Γi

i+1,
∆i+1

i+1 = ∆i
i+1 ∪ {ϕ}, and Γi+1

j = Γi
j and ∆i+1

j = ∆i
j for every j 6= i+ 1.

3. If both do not hold, then Γi+1
j = Γi

j and ∆i+1
j = U i

j for every 1 ≤ j ≤ n′.

It is easy to verify that Hn′ = Γn′
1 ⇒ ∆n′

1 | . . . | Γn′

n′ ⇒ ∆n′

n′ is a H-consistent finite extended hy-
persequent. By Lemma 43, there exists a H-consistent finite extended hypersequent, H ′ of the form
Γ′1⇒∆′1 | . . . | Γ′n′⇒∆′n′ , such that Γn′

j ⊆ Γ′j and ∆n′
j ⊆ ∆′j for every 1 ≤ j ≤ n′, and H ′ admits the

witness property. It is again easy to see that H ′ has all the required properties. For example, we show that
H ′ is internallyH-maximal with respect to ϕ. Let Γ⇒∆ ∈ H ′. Suppose that Γ = Γ′j and ∆ = ∆′j .

• Assume that ϕ 6∈ Γ. Then, since Γj
j ⊆ Γ, this implies that

Γj−1
1 ⇒∆j−1

1 | . . . | Γj−1
j , ϕ⇒∆j−1

j | . . . | Γj−1
n′ ⇒∆j−1

n′ is not H-consistent. It easily follows
that H ′ | Γ, ϕ⇒∆ (which extends this finite extended hypersequent) is notH-consistent.
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• Now, assume that ϕ 6∈ ∆. If ϕ ∈ Γ, then since ϕ ⇒ ϕ is an axiom of HIF, H ′ | Γ ⇒ ∆, ϕ is
not H-consistent. Otherwise, ϕ 6∈ Γ, and since Γj

j ⊆ Γ and ∆j
j ⊆ ∆, our construction ensures

that Γj−1
1 ⇒∆j−1

1 | . . . | Γj−1
j ⇒∆j−1

j , ϕ | . . . | Γj−1
n′ ⇒∆j−1

n′ is notH-consistent. It easily follows that
H ′ | Γ⇒∆, ϕ (which extends this finite extended hypersequent) is notH-consistent.

Lemma 45 Let H be a set of hypersequents closed under substitutions. Every H-consistent hypersequent
H can be extended to aH-maximal extended hypersequent Ω.

Proof Suppose that H = Γ1⇒E1 | . . . | Γn⇒En. Let ϕ0, ϕ1 . . . be an enumeration of all L-formulas, in
which every formula appears an infinite number of times. Let s0, s1 . . . be an enumeration of all sequents of
the form E ′1⇒E ′2.

We recursively define an infinite sequence of H-consistent finite extended hypersequents,
H0 = Γ0

1⇒∆0
1 | . . . | Γ0

n0
⇒∆0

n0
, H1 = Γ1

1⇒∆1
1 | . . . | Γ1

n1
⇒∆1

n1
, . . ., in which: (a) n0 ≤ n1 ≤ . . . and

(b) Γi
j ⊆ Γi+1

j and ∆i
j ⊆ ∆i+1

j for every i ≥ 0 and 1 ≤ j ≤ ni.
First, let n0 = n and let Γ0

j = Γj , ∆0
j = Ej for every 1 ≤ j ≤ n0. Let i ≥ 0. Assume

Hi = Γi
1⇒∆i

1 | . . . | Γi
ni
⇒∆i

ni
is defined. By Lemma 44, there exists a H-consistent hypersequent H ′

such that:

• H ′ = Γ′1 ⇒ ∆′1 | . . . | Γ′n′ ⇒ ∆′n′ where n′ ∈ {ni, ni + 1}, and Γi ⊆ Γ′i and ∆i ⊆ ∆′i for every
1 ≤ i ≤ ni.

• H ′ is internallyH-maximal with respect to ϕi.

• H ′ is externallyH-maximal with respect to si.

• H ′ admits the witness property.

Let ni+1 = n′, and Γi+1
j = Γ′j , ∆i+1

j = ∆′j for every 1 ≤ j ≤ ni+1.

Note that after every step we have a H-consistent finite extended hypersequent, so Lemma 44 can
be applied. Finally, let N be max{n0, n1, . . .} + 1, if such a maximum exists, and infinity otherwise.
Let n(j) = min{i | j ≤ ni} for every 1 ≤ j < N . Define Tj = ∪i≥n(j)Γ

i
j and Uj = ∪i≥n(j)∆

i
j for every

1 ≤ j < N . Let Ω be the extended hypersequent T1⇒U1 | T2⇒U2 | . . .. Obviously, Ω extends H . We
prove that Ω isH-maximal:

Consistency Suppose by way of contradiction that H `frm[H] H for some hypersequent H v Ω. Assume
that H = Γ1⇒∆1 | . . . | Γn⇒∆n. The construction of Ω ensures that for every 1 ≤ i ≤ n, there
exists ki ≥ 1 such that Γi ⊆ Tki and ∆i ⊆ Uki . This entails that for every 1 ≤ i ≤ n, there exists
mi ≥ 0 such that Γi ⊆ Γmi

ki
and ∆i ⊆ ∆mi

ki
. By the construction of the Γi

j’s and ∆i
j’s, we have that

for every 1 ≤ i ≤ n and l ≥ mi, Γi ⊆ Γl
ki

and ∆i ⊆ ∆l
ki

. Let m = max{m1, . . . ,mn}. Then, by
definition H v Hm. Since H `frm[H] H , it follows that Hm is not H-consistent. But, this contradicts
the fact that H0 is consistent, and that each application of Lemma 44 yields a H-consistent extended
hypersequent.

Internal Maximality We show that Ω is internally H-maximal with respect to every L-formula. Let ϕ be
an L-formula, and let Tj⇒Uj ∈ Ω. Since we included ϕ infinite number of times in the enumeration
of the formulas, there exists some i ≥ n(j) such that ϕi = ϕ. Our construction ensures that Hi+1

is internally H-maximal with respect to ϕ, and so if ϕ 6∈ Γi+1
j then Hi+1 | Γi+1

j , ϕ⇒ ∆i+1
j is not

H-consistent, and if ϕ 6∈ ∆i+1
j then Hi+1 | Γi+1

j ⇒∆i+1
j , ϕ is not H-consistent. Since Hi+1 v Ω, it

follows that if ϕ 6∈ Tj then Ω | Tj, ϕ⇒Uj is notH-consistent, and if ϕ 6∈ Uj then Ω | Tj⇒Uj, ϕ is not
H-consistent.
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External Maximality We show that Ω is externally H-maximal with respect to every sequent of the form
E ′1⇒E ′2. Let s be such a sequent. Assume that s = si (i ≥ 0), our construction ensures that Hi+1 is
externally H-maximal with respect to s. Hence, either {s} v Hi+1, or Hi+1 | s is not H-consistent.
Since Hi+1 v Ω, either {s} v Ω, or Ω | s is notH-consistent.

The Witness Property Let 1 ≤ j < N . We show that Tj ⇒ Uj admits the witness property. Assume
∀x(ϕ{x/a}) ∈ Uj . Then ∀x(ϕ{x/a}) ∈ ∆i

j for some i ≥ n(j). We can assume that i > 0 (if it holds
for i = 0 then it holds for i = 1 as well). Our construction ensures that Hi admits the witness property,
and so there exists a free variable b such that ϕ{b/a} ∈ ∆i

j . Since ∆i
j ⊆ Uj . It follows that there exists

a free variable b such that ϕ{b/a} ∈ Uj . The case in which ∃x(ϕ{x/a}) ∈ Tj is analogous.

Next we define the L-algebra used in the completeness proof.

Definition 46 The Herbrand L-algebra is an L-algebra, 〈D, I〉, such that D = trmL (the set of all L-
terms), I[c] = c for every constant c, and I[f ][t1, . . . , tn] = f(t1, . . . , tn) for every n-ary function symbol f
and t1, . . . , tn ∈ D.

Note that the domain of the Herbrand L-algebra contains also non-closed terms. However, recall that we
assume that the set of free variables and the set of bounded variables are disjoint, and so an L-term cannot
contain a bounded variable. The following technical proposition is proved by a standard structural induction:

Proposition 47 Let M = 〈D, I〉 be the Herbrand L-algebra, and e be the identity 〈L,M〉-evaluation (de-
fined by e[a] = a for every free variable a). For every L-frameW = 〈W,≤,M, I〉, t1, . . . , tn ∈ D, distinct
free variables a1, . . . , an, and w ∈ W :

• For every L-term t: e[a1:=t1,...,an:=tn][t] = t{t1/a1, . . . , tn/an}. In particular, e[t] = t.

• For every L-formula ϕ: W , w, e[a1:=t1,...,an:=tn] � ϕ iffW , w, e � ϕ{t1/a1, . . . , tn/an}.

• For every sequent s: W , w, e[a1:=t1,...,an:=tn] � s iffW , w, e � s{t1/a1, . . . , tn/an}.

We are now ready to establish the main completeness theorem.

Theorem 48 Let H0 be a set of hypersequents closed under substitutions, and H0 be a hypersequent. If
H0 `hsKr H0 thenH0 `frm[H0] H0.

Proof Assume thatH0 6`frm[H0] H0. We construct an L-frameW which is a model ofH0 but not ofH0. The
availability of external and internal weakenings ensures that H0 is H0-consistent. Thus by Lemma 45, there
exists aH0-maximal extended hypersequent Ω such that H0 v Ω. Using Ω,W = 〈W,≤,M, I〉 is defined as
follows:

• W = Ω.

• For every T1⇒U1, T2⇒U2 ∈ W , T1⇒U1 ≤ T2⇒U2 iff T1 ⊆ T2.

• M = 〈D, I〉 is the Herbrand L-algebra.

• I = {Iw}w∈W where 〈t1, . . . , tn〉 ∈ IT⇒U [p] iff p(t1, . . . , tn) ∈ T .

We first prove that 〈W,≤〉 is linearly ordered:
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Partial Order Obviously ≤ is reflexive and transitive. To see that it is also anti-symmetric, let w1, w2 be
elements of W such that w1 ≤ w2 and w2 ≤ w1. Assume that w1 = T1⇒U1 and w2 = T2⇒U2. By
definition, T1 = T2 in this case. Assume for contradiction that U1 6= U2, and let ϕ ∈ U1 \ U2 (w.l.o.g.).
Since Ω is internally H-maximal, by Proposition 41, H0 `frm[H0] H | Γ⇒ϕ for some hypersequent
H v Ω and finite set Γ ⊆ T2. But, Γ⇒ ϕ v w1, and this contradicts Ω’s H0-consistency. Hence
U1 = U2, and so w1 = w2.

Linearity Let T1 ⇒ U1, T2 ⇒ U2 ∈ W . Assume for contradiction that T1 6⊆ T2 and T2 6⊆ T1.
Let ϕ1 ∈ T1 \ T2 and ϕ2 ∈ T2 \ T1. Since Ω is internally H0-maximal, by Proposition 41,
there exist hypersequents H1, H2 v Ω and sequents Γ1⇒E1, . . . ,Γ1⇒En v T1⇒U1 and
Γ2⇒F1, . . . ,Γ2⇒Fm v T2⇒U2 such that H0 `frm[H0] H1 | Γ1, ϕ2⇒E1 | . . . | Γ1, ϕ2⇒En

and H0 `frm[H0] H2 | Γ2, ϕ1⇒F1 | . . . | Γ2, ϕ1⇒Fm. By Proposition 22,
H0 `frm[H0] H1 | H2 | Γ1, ϕ1⇒E1 | . . . | Γ1, ϕ1⇒En | Γ2, ϕ2⇒F1 | . . . | Γ2, ϕ2⇒Fm. But, note
that Ω extends this hypersequent, and so this contradicts Ω’sH0-consistency.

Now, let e be the identity 〈L,M〉-evaluation (defined by e[a] = a for every free variable a). Next we prove
that the following hold for every w = T ⇒U ∈W :

(a) If ψ ∈ T thenW , w, e � ψ.

(b) If ψ ∈ U thenW , w, e 6� ψ.

(a) and (b) are proved together using a simultaneous induction on the complexity of ψ. Letw = T ⇒U ∈W .

• Suppose ψ is an atomic L-formula of the form p(t1, . . . , tn). By definition, W , w, e � ψ iff
〈e[t1], . . . , e[tn]〉 ∈ Iw[p]. By Proposition 47, e[ti] = ti for every 1 ≤ i ≤ n. Hence our construction
ensures thatW , w, e � ψ iff ψ ∈ T . This proves (a). For (b), note that ϕ⇒ϕ is an axiom (for every
L-formula ϕ), and since Ω isH0-consistent, ψ ∈ U implies ψ 6∈ T . It follows thatW , w, e 6� ψ.

• Suppose ψ = ⊥. Then (b) is trivially true. On the other hand, (a) is vacuously true. To see this,
assume that ⊥ ∈ T . Since ⊥⇒ is an axiom,H0 `frm[H0] ⊥⇒. But, in this case {⊥⇒} v Ω, and this
contradicts Ω’sH0-consistency.

• Suppose ψ = ϕ1 ⊃ ϕ2.

1. Assume that ψ ∈ T . We show that for every element w′ ∈ W such that w ≤ w′ either
W , w′, e 6� ϕ1 orW , w′, e � ϕ2.
Let w′ = T ′ ⇒ U ′ be an element of W , such that w ≤ w′ (and so, T ⊆ T ′). By
the induction hypothesis, it suffices to show that either ϕ1 ∈ U ′ or ϕ2 ∈ T ′. As-
sume otherwise. By Proposition 41, there exist hypersequents H1, H2 v Ω, a finite set
Γ1 ⊆ T ′, and sequents Γ2⇒E1, . . . ,Γ2⇒En v T ′⇒U ′, such that H0 `frm[H0] H1 | Γ1⇒ϕ1,
and H0 `frm[H0] H2 | Γ2, ϕ2⇒E1 | . . . | Γ2, ϕ2⇒En. By n consecutive applications of (⊃⇒),
we obtain H0 `frm[H0] H1 | H2 | Γ1,Γ2, ψ⇒E1 | . . . | Γ1,Γ2, ψ⇒En. But since ψ ∈ T ,
ψ ∈ T ′ and so H1 | H2 | Γ1,Γ2, ψ⇒E1 | . . . | Γ1,Γ2, ψ⇒En v Ω. This contradicts Ω’s H0-
consistency.

2. Assume that ψ ∈ U .
First we claim that H0 6`frm[H0] H | ϕ1⇒ϕ2 for every hypersequent H v Ω. To see this, as-
sume for contradiction thatH0 `frm[H0] H | ϕ1⇒ϕ2 for some H v Ω. By applying (⇒⊃) to this
hypersequent we obtain H0 `frm[H0] H |⇒ψ. But this contradicts Ω’s H0-consistency (because
H |⇒ψ v Ω).
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Therefore, by Proposition 42, Ω’s external H0-maximality entails that ϕ1⇒ϕ2 v Ω. Thus there
exists an extended sequent T ′ ⇒ U ′ ∈ Ω, such that ϕ1 ∈ T ′ and ϕ2 ∈ U ′. By the induction
hypothesis, W , T ′ ⇒ U ′, e � ϕ1 and W , T ′ ⇒ U ′, e 6� ϕ2. It follows that if T ⊆ T ′, then
W , w, e 6� ψ and we are done.
Assume now that T 6⊆ T ′. By linearity, T ′ ⊆ T , and so ϕ1 ∈ T . By the induction hy-
pothesis, W , w, e � ϕ1. Now notice that ϕ2 ∈ U . To see this assume for contradiction that
ϕ2 6∈ U . Then by Ω’s internal H0-maximality, there exist a hypersequent H v Ω, and a fi-
nite set Γ ⊆ T , such that H0 `frm[H0] H | Γ⇒ϕ2. By applying internal weakening we obtain
H0 `frm[H0] H | Γ, ϕ1⇒ϕ2. By (⇒⊃) we obtain H0 `frm[H0] H | Γ⇒ψ. But this contradicts
Ω’s H0-consistency (because H | Γ⇒ψ v Ω). Finally, since ϕ2 ∈ U , the induction hypothesis
entails thatW , w, e 6� ϕ2, and this again implies thatW , w, e 6� ψ.

• Suppose ψ = ϕ1 ∨ ϕ2.

1. Assume that ψ ∈ T . Then either ϕ1 ∈ T or ϕ2 ∈ T . To see this, sup-
pose ϕ1 6∈ T and ϕ2 6∈ T . By Proposition 41, there exist hypersequents
H1, H2 v Ω, and sequents Γ1⇒E1, . . . ,Γ1⇒En,Γ2⇒F1, . . . ,Γ2⇒Fm v T ⇒U ,
such that H0 `frm[H0] H1 | Γ1, ϕ1⇒E1 | . . . | Γ1, ϕ1⇒En and
H0 `frm[H0] H2 | Γ2, ϕ2⇒F1 | . . . | Γ2, ϕ2⇒Fm. By Proposition 23, it follows that
H0 `frm[H0] H1 | H2 | Γ1, ψ⇒E1 | . . . | Γ1, ψ⇒En | Γ2, ψ⇒F1 | . . . | Γ2, ψ⇒Fm. But
this contradicts Ω’sH0-consistency.
By the induction hypothesis,W , w, e � ϕ1 orW , w, e � ϕ2. And so,W , w, e � ψ.

2. Assume that ψ ∈ U . Then ϕ1 ∈ U and ϕ2 ∈ U . To see this, suppose for example that
ϕ1 6∈ U . By Proposition 41, there exist hypersequent H v Ω, and finite set Γ ⊆ T , such
that H0 `frm[H0] H | Γ⇒ϕ1. By applying (⇒ ∨1) we obtain H0 `frm[H0] H | Γ⇒ψ. But this
contradicts Ω’sH0-consistency.
By the induction hypothesis,W , w, e 6� ϕ1 andW , w, e 6� ϕ2. And so,W , w, e 6� ψ.

• Suppose ψ = ϕ1 ∧ ϕ2.

1. Assume that ψ ∈ T . Then ϕ1 ∈ T and ϕ2 ∈ T . To see this, suppose for example that ϕ1 6∈ T . By
Proposition 41, there exist hypersequent H v Ω, and sequents Γ⇒E1, . . . ,Γ⇒En v T ⇒U ,
such that H0 `frm[H0] H | Γ, ϕ1⇒E1 | . . . | Γ, ϕ1⇒En. By n consecutive applications of
(∧ ⇒ 1), we obtain H0 `frm[H0] H | Γ, ψ⇒E1 | . . . | Γ, ψ⇒En. But this contradicts Ω’s H0-
consistency.
By the induction hypothesis,W , w, e � ϕ1 andW , w, e � ϕ2, and so,W , w, e � ψ.

2. Assume that ψ ∈ U . Then ϕ1 ∈ U or ϕ2 ∈ U . To see this, suppose that ϕ1 6∈ U and ϕ2 6∈ U .
Then by Proposition 41, there exist hypersequents H1, H2 v Ω, and finite sets Γ1,Γ2 ⊆ T , such
that H0 `frm[H0] H1 | Γ1⇒ϕ1 and H0 `frm[H0] H2 | Γ2⇒ϕ2. By applying (⇒ ∧), we obtain
H0 `frm[H0] H1 | H2 | Γ1,Γ2⇒ψ. But this contradicts Ω’sH0-consistency.
By the induction hypothesis,W , w, e 6� ϕ1 orW , w, e 6� ϕ2, and so,W , w, e 6� ψ.

• Suppose ψ = ∀x(ϕ{x/a}).

1. Assume that W , w, e 6� ψ. We show that ψ 6∈ T . By definition, there exists
some t ∈ D such that W , w, e[a:=t] 6� ϕ. By Proposition 47, W , w, e 6� ϕ{t/a}.
By the induction hypothesis, ϕ{t/a} 6∈ T . By Proposition 41, there exist hy-
persequent H v Ω, and sequents Γ⇒E1, . . . ,Γ⇒En v T ⇒U , such that
H0 `frm[H0] H | Γ, ϕ{t/a}⇒E1 | . . . | Γ, ϕ{t/a}⇒En. By n consecutive applications of
(∀⇒), we obtainH0 `frm[H0] H | Γ, ψ⇒E1 | . . . | Γ, ψ⇒En. Since Ω isH0-consistent, ψ 6∈ T .
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2. Assume that ψ ∈ U . By Ω’s witness property, there exists a free variable b such that ϕ{b/a} ∈ U .
From the induction hypothesis it follows that W , w, e 6� ϕ{b/a}. By Proposition 47, it follows
thatW , w, e[a:=b] 6� ϕ, and soW , w, e 6� ψ (since b ∈ D).

• Suppose ψ = ∃x(ϕ{x/a}).

1. Assume that ψ ∈ T . By Ω’s witness property, there exists a free variable b such that
ϕ{b/a} ∈ T . By the induction hypothesis, W , w, e � ϕ{b/a}. By Proposition 47, it follows
thatW , w, e[a:=b] � ϕ, and soW , w, e � ψ (since b ∈ D).

2. Assume that W , w, e � ψ. We show that ψ 6∈ U . By definition, there exists some t ∈ D such
thatW , w, e[a:=t] � ϕ. By Proposition 47, it follows thatW , w, e � ϕ{t/a}. By the induction hy-
pothesis, ϕ{t/a} 6∈ U . By Proposition 41, there exist hypersequent H v Ω, and finite set Γ ⊆ T ,
such that H0 `frm[H0] H | Γ⇒ϕ{t/a}. By applying (⇒ ∃), we obtain H0 `frm[H0] H | Γ⇒ψ.
Since Ω isH0-consistent, ψ 6∈ U .

It remains to show that W is a model of H0 but not of H0. First, note that for every ϕ ∈ frm[H0]
and T ⇒ U ∈ Ω, either ϕ ∈ T or ϕ ∈ U . Otherwise, by Proposition 41, there exist hyper-
sequents H1, H2 v Ω, sequents Γ1⇒E1, . . . ,Γ1⇒En v T ⇒U , and a finite set Γ2 ⊆ T , such that
H0 `frm[H0] H1 | Γ1, ϕ⇒E1 | . . . | Γ1, ϕ⇒En, and H0 `frm[H0] H2 | Γ2⇒ϕ. Now using n (legal) appli-
cations of the cut rule, we obtain H0 `frm[H0] H1 | H2 | Γ1,Γ2⇒E1 | . . . | Γ1,Γ2⇒En, but this contradicts
Ω’sH0-consistency.

Second, we prove that for every hypersequent H 6v Ω such that frm[H] ⊆ frm[H0], there exists some
s ∈ H such thatW , w, e � s for every w ∈ W . Indeed, if H 6v Ω, then there exists a sequent s = Γ⇒E,
such that s ∈ H and s 6v w for every w ∈ W . Let w ∈ W . Assume that w = T ⇒ U . Since s 6v w,
there either exists ϕ ∈ Γ such that ϕ 6∈ T , or ϕ ∈ E such that ϕ 6∈ U . By the previous claim (since
frm[H] ⊆ frm[H0]), this implies that there either exists ϕ ∈ Γ such that ϕ ∈ U , or ϕ ∈ E such that ϕ ∈ T .
By (a) and (b), either there exists ϕ ∈ Γ such thatW , w, e 6� ϕ, or there exists ϕ ∈ E such thatW , w, e � ϕ.
Therefore,W , w, e � s.

Now let H ∈ H0, and let e∗ be an arbitrary 〈L,M〉-evaluation. We show that there exists some s ∈ H
such that W , w, e∗ � s for every w ∈ W . Let a1, . . . , ak be the free variables appearing in H , and
let H ′ = H{e∗[a1]/a1, . . . , e

∗[ak]/ak}. Since H0 is closed under substitutions H ′ ∈ H0, and obviously
H0 `frm[H0] H ′. Since Ω is H0-consistent, H ′ 6v Ω. By the previous claim, there exists some s′ ∈ H ′, such
thatW , w, e � s′ for every w ∈ W . Let s be a sequent in H such that s′ = s{e∗[a1]/a1, . . . , e

∗[ak]/ak}. By
Proposition 47, it follows thatW , w, e[a1:=e∗[a1],...,ak:=e∗[ak]] � s for everyw ∈ W . Since e[a1:=e∗[a1],...,ak:=e∗[ak]]

and e∗ agree on a1, . . . , ak, we have thatW , w, e∗ � s for every w ∈ W .
We end the proof by showing thatW is not a model of H0. Indeed, we show that for every s ∈ H0, there

exists some w ∈ W such thatW , w, e 6� s. Let s ∈ H0. Assume that s = Γ⇒E. Since H0 v Ω, there exists
an extended sequent w = T ⇒U ∈ Ω such that s v w. By (a), for every ϕ ∈ Γ,W , w, e � ϕ. By (b), for
every ϕ ∈ E,W , w, e 6� ϕ. Thus,W , w, e 6� Γ⇒E.

Corollary 49 (Strong Soundness and Completeness) HIF is strongly sound and complete with respect to
the Kripke semantics of the standard first-order Gödel logic, i.e. H ` H iffH `hsKr H .

Proof One direction follows from Theorem 36. For the converse, suppose that H `hsKr H . Let H∗ be the
closure of H under substitutions. Obviously, H∗ `hsKr H . By Theorem 48, H∗ `frm[H∗] H , and so H∗ ` H .
By Corollary 32,H ` H .

We can now provide semantic basis for the interpretation of hypersequents (see Subsection 3.1).

Corollary 50 An L-frameW is a model of a hypersequent H , iff it is a model of (the L-formula) Int [H].
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Proof By Theorem 27, H `⇒Int [H]. Hence, H `hsKr⇒Int [H]. It follows that every L-frame which is a
model of H is also a model of ⇒ Int [H]. By definition, an L-frame is a model of a formula ϕ iff it is a
model of ⇒ϕ. The converse is similar.

Recall that hypersequents are just a tool to obtain a well-behaved deduction system for the standard
first-order Gödel logic. The following corollary reestablishes this link:

Corollary 51 T `Kr ϕ iff {⇒ψ | ψ ∈ T } `⇒ϕ.

Proof From the definition of `hsKr, it easily follows that a {⇒ψ | ψ ∈ T } `hsKr⇒ϕ iff T `Kr ϕ. Thus the
claim follows from Corollary 49.

Obviously, following facts 10 and 17, `Kr in the last corollary can be replaced with `[0,1] or `sG.

4.1 Strong Cut-Admissibility
Taken together, Theorems 36 and 48 naturally entail the following strong cut-admissibility result.

Corollary 52 H ` H implies H `frm[H] H , for every set H of hypersequents closed under substitutions,
and a hypersequent H . In particular, for every hypersequent H , ` H implies that there exists a proof of H
in HIF− (cut).

Proof By Theorem 36, H ` H entails that H `hsKr H . Since H is closed under substitutions, Theorem 48
implies thatH `frm[H] H .

Note that in the last corollary, it is necessary to require that the set of assumptions H is closed under
substitutions. Indeed, ⇒p(a1) `⇒p(a2), but there is no derivation of ⇒p(a2) from ⇒p(a1) in HIF with
cuts only on p(a1).

Remark 53 Equivalently, one can consider the substitution rule (allowing to inferH{t/a} fromH for every
hypersequent H , L-term t and free variable a), and prove that for every set H ∪ {H} of hypersequents, if
H ` H , then there exists a proof of H from H in HIF + (substitution), in which the substitution rule is
applied only to hypersequents of H and all cuts are on substitution instances of formulas which occur in H.
Note that cuts on formulas which occur in H do not suffice. Indeed, ⇒p(a, c) , p(c, a)⇒`⇒ , but there is
no derivation of the empty sequent from ⇒ p(a, c) and p(c, a)⇒ in HIF + (substitution), in which cuts
are only on p(a, c) and p(c, a).

In the rest of this subsection, we identify a natural, more restrictive, semantic consequence relation `hs−tKr

between hypersequents. Unlike `hsKr, H`hs−tKr H ensures that H `frm[H] H also when H is not closed under
substitutions.

Definition 54

1. LetW = 〈W,≤,M, I〉 be an L-frame, and e be an 〈L,M〉-evaluation. Given a hypersequent H , we
writeW , e � H if there exists a component s ∈ H such thatW , w, e � s for every w ∈ W . Given a
setH of hypersequents, we writeW , e � H ifW , e � H for every H ∈ H.

2. LetH∪{H} be a set of hypersequents. H `hs−tKr H iffW , e � H impliesW , e � H for every L-frame
W = 〈W,≤,M, I〉 and 〈L,M〉-evaluation e.

Clearly,H `hs−tKr H implies thatH `hsKr H (compare the last definition to Definition 35). In addition, the
following reduction easily follows from the definitions:
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Proposition 55 LetH∪{H} be a set of hypersequents, and letH∗∪{H∗} be the set obtained fromH∪{H}
by simultaneous substitutions of new constant symbols for the free variables inH∪ {H}. Then,H `hs−tKr H
iffH∗ `hsKr H

∗.

Corollary 52 and the last proposition easily entail the following strong cut-admissibility result:

Corollary 56 IfH `hs−tKr H thenH `frm[H] H , for every setH of hypersequents and a hypersequent H .

Proof Suppose that H `hs−tKr H . By Proposition 55, H∗ `hsKr H
∗, where H∗ and H∗ are, respectively, the

set obtained from H and the hypersequent obtained from H by simultaneous substitutions of new constant
symbols for the free variables (if necessary, one can augment the language with infinitely many new constant
symbols). Now, since H∗ is closed under substitutions, Corollary 52 entails that there exists a derivation P
in HIF of H∗ from H∗ in which cuts are only applied on formulas from frm[H∗]. Evidently, without a loss
in generality we can further assume that the set of free variables occurring in P and the set of free variables
occurring inH∪{H} are disjoint. Thus, by back-substituting the new constant symbols in P with the former
free variables of H and H , we obtain a derivation in HIF of H from H in which cuts are only applied on
formulas from frm[H].

4.2 Globalization Connective
The extension of Gödel logic with a globalization connective 2 (also known as the (Baaz) Delta connective)
was widely studied (see e.g. [25], [7] and [9]). Intuitively, 2ϕ means that “ϕ is completely true”. Next we
show that our results and methods are easily extended to the extension of the standard first-order Gödel logic
with 2.

As before, there are two approaches to formally define the extension of Gödel logic with 2. Proof-
theoretically, the logic is defined by augmenting the Hilbert-style calculus sG with appropriate axioms and
the necessitation rules (see e.g. [9]). Model-theoretically, one adds the following interpretation of 2 to the
definition of ‖ • ‖〈M,J,e〉 (Definition 6):

‖2ϕ‖〈M,J,e〉 = 1 if ‖ϕ‖〈M,J,e〉 = 1, and ‖2ϕ‖〈M,J,e〉 = 0 otherwise.

Alternatively, the following interpretation of 2 is added to the Kripke-style semantics (Definition 13):

W , w, e � 2ϕ iffW , u, e � ϕ for every element u ∈ W .

We denote by `hsKr2
and `hs−tKr2

the semantic consequence relations between hypersequents obtained by the
last addition (see Definitions 35 and 54). It is very easy to see that the reduction of `hs−tKr to `hsKr given in
Proposition 55 holds between `hsKr2

and `hs−tKr2
as well.

Now, let HIF2 be the system obtained by augmenting HIF with the following two rules:

(2⇒)
H | Γ, ϕ⇒E

H | 2ϕ⇒| Γ⇒E
(⇒2)

H |⇒ϕ
H |⇒2ϕ

All of our results are easily extended to HIF2. First, it is straightforward to prove the soundness of
HIF2 with respect to `hsKr2

. For this, one simply extends the proof of Theorem 36 with two more cases, one
for each additional rule. We do here the case of (2⇒), leaving the other rule for the reader:

Suppose that H = H ′ | 2ϕ⇒| Γ⇒E is derived from the hypersequent H | Γ, ϕ⇒E using
(2⇒). Assume that W is not a model of H . Thus there exists an 〈L,M〉-evaluation e, such
that for every s ∈ H , there exists w ∈ W such that W , w, e 6� s. In particular, for every
s ∈ H ′, there exists w ∈ W such thatW , w, e 6� s. In addition, there exist w1 ∈ W such that
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W , w1, e 6� 2ϕ⇒ , and w2 ∈ W such thatW , w2, e 6� Γ⇒E. By definition, W , w1, e � 2ϕ.
Therefore, the semantics of 2 implies thatW , w2, e � ϕ. Thus we haveW , w2, e 6� Γ, ϕ⇒E.
But this implies thatW is not a model of H ′ | Γ, ϕ⇒E.

Next, Theorem 48 is extended to HIF2 by adding one case to the proof of (a) and (b):

• Suppose ψ = 2ϕ.

1. Assume that ψ ∈ T . We show that for every element w′ ∈ W we haveW , w′, e � ϕ.
Let w′ = T ′ ⇒ U ′ be an element of W . By the induction hypothesis, it suf-
fices to show that ϕ ∈ T ′. Assume otherwise. By Proposition 41, there ex-
ist a hypersequent H v Ω, and sequents Γ⇒E1, . . . ,Γ⇒En v T ′⇒U ′, such
that H0 `frm[H0] H | Γ, ϕ⇒E1 | . . . | Γ, ϕ⇒En. By n consecutive applications of
(2⇒), we obtain H0 `frm[H0] H | ψ⇒| Γ⇒E1 | . . . | Γ⇒En. But since ψ ∈ T ,
H | ψ⇒| Γ⇒E1 | . . . | Γ⇒En v Ω. This contradicts Ω’sH0-consistency.

2. Assume that ψ ∈ U . First note that H0 6`frm[H0] H |⇒ϕ for every hyperse-
quent H v Ω (otherwise By applying (⇒ 2) we obtain H0 `frm[H0] H |⇒ψ, but
H |⇒ψ v Ω). Therefore, by Proposition 42, Ω’s external H0-maximality entails that
⇒ϕ v Ω. Thus there exists an extended sequent T ′⇒U ′ ∈ Ω, such that ϕ ∈ U ′. By
the induction hypothesis,W , T ′⇒U ′, e 6� ϕ. It follows thatW , w, e 6� ψ.

Now Corollaries 49, 52 and 56 can easily be extended to HIF2. Thus we obtain strong soundness and
completeness for HIF2 (with respect to `hsKr2

), as well as the two strong cut-admissibility results we had for
HIF.

Remark 57 In [9] a different single-conclusion hypersequent system for the standard first-order Gödel logic
with 2 was provided, and it was (syntactically) proved that this system admits cut-elimination. Instead of
the two rules above, the system in [9] includes the following three rules:

(2⇒ ∗) H | Γ, ϕ⇒E
H | Γ,2ϕ⇒E

(⇒2∗)
H | 2Γ⇒ϕ
H | 2Γ⇒2ϕ

(cl2)
H | 2Γ,Γ′⇒E

H | 2Γ⇒| Γ′⇒E

where 2Γ is standing for any set of formulas prefixed by 2. Clearly, our two rules for 2 are derivable from
these three rules without using the cut rule. Hence our strong cut-admissibility result applies also to the sys-
tem in [9]. On the other hand, it is easy to verify that each of these rules describes a valid inference in `hs−tKr2

,
and consequently, our results imply that each of these rules is derivable in HIF2 using only permissible
cuts. For example, for every 2Γ,Γ′ and E, we have 2Γ,Γ′⇒E `hs−tKr2

2Γ⇒| Γ′⇒E (this is easy to verify
from the semantic definitions). Thus Corollary 56 (adapted to HIF2) entails that there exists a derivation of
2Γ⇒| Γ′⇒E from 2Γ,Γ′⇒E using only cuts on formulas from Γ ∪ Γ′ ∪E. The hypersequential context
(denoted by H in the formulation of the rules) can obviously be added, and hence (cl2) is derivable in HIF2

using only permissible cuts. Here is an example of such a derivation (where 2Γ consists of one formula):

ϕ⇒ϕ

2ϕ⇒|⇒ϕ
(2⇒)

2ϕ⇒|⇒2ϕ
(⇒2)

H | 2ϕ,Γ′⇒E

H | 2ϕ⇒| Γ′⇒E
cut
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4.3 Density Rule
In [24] the following density rule was introduced and used to axiomatize standard first-order Gödel logic:

Γ⇒ϕ ∨ (ψ1 ⊃ p) ∨ (p ⊃ ψ2)
Γ⇒ϕ ∨ (ψ1 ⊃ ψ2)

where p (a metavariable for a nullary predicate symbol) does not occur in the conclusion. In [22] this rule
was proved to be admissible (using a semantic proof). The (single-conclusion) hypersequent version of this
rule has the form (see [7]):

(density)
H | Γ1⇒p | Γ2, p⇒E

H | Γ1,Γ2⇒E

where, again, p does not occur in the conclusion. Note that if we allow also derivations from a non-empty set
of assumptions, then this rule is not valid (for example, ⇒ p `⇒ using external weakening and this rule).
To solve this, we should require that p does not occur in the set of assumptions as well. We next prove the
strong soundness of (density) under this condition.

Proposition 58 If H `hsKr H | Γ1⇒ p | Γ2, p⇒E then H `hsKr H | Γ1,Γ2⇒E, provided that the nullary
predicate symbol p does not occur inH, H,Γ1,Γ2 and E.

Proof Assume that H `hsKr H | Γ1⇒ p | Γ2, p⇒E. LetW = 〈W,≤,M, {Iw}w∈W 〉 be an L-frame, which
is a model of H. We show that it is a model of H | Γ1,Γ2⇒E. Since H `hsKr H | Γ1⇒ p | Γ2, p⇒E,W
is a model of H | Γ1⇒ p | Γ2, p⇒E. IfW is a model of H then we are done. Otherwise, W is a model
of Γ1⇒p | Γ2, p⇒E. We prove thatW is a model of Γ1,Γ2⇒E. Assume otherwise. Thus there exists an
〈L,M〉-evaluation e0 and w0 ∈ W , such thatW , w0, e0 6� Γ1,Γ2⇒E. LetW ′ = 〈W ′,≤′,M, {I ′w}w∈W ′〉,
where:

• W ′ = W ∪ {w′0} where w′0 is a new world.

• ≤′=≤ ∪{〈w,w′0〉 | w < w0} ∪ {〈w′0, w〉 | w0 ≤ w} ∪ {〈w′0, w′0〉}

• For every w ∈ W , I ′w = Iw, except (possibly) for I ′w[p] which is ∅ for w < w0, and {〈〉} for w ≥ w0.
In addition, I ′w′0 = Iw0 , except (possibly) for I ′w′0 [p] which is ∅.

It is easy to see that for every sequent s in which p does not occur, w ∈ W , and 〈L,M〉-evaluation e,
W , w, e 6� s iff W ′, w, e 6� s, and W , w0, e 6� s iff W ′, w′0, e 6� s. Hence, W ′, w0, e0 6� Γ1,Γ2⇒ E, and
W ′, w′0, e0 6� Γ1,Γ2⇒E. Now, note thatW ′, w0, e0 6� p⇒ andW ′, w′0, e0 6�⇒p. It follows thatW ′ is not a
model of Γ1⇒p | Γ2, p⇒E. Moreover, sinceW is not a model of H (and p does not occur in H), so does
W ′, and soW ′ is not a model of H | Γ1⇒p | Γ2, p⇒E. Since H `hsKr H | Γ1⇒p | Γ2, p⇒E,W ′ is not a
model ofH. But, p does not occur inH, and so this contradicts the fact thatW is a model ofH.

Finally, note that by Corollary 49, it follows that (density) is admissible in HIF (also with non-empty
set of assumptions).

5 Multiple-Conclusion Version
In this section we present the multiple-conclusion version from [6] of the system HIF, and prove its strong
soundness and completeness, as well as strong cut-admissibility. The proposed system, which we call MCG,
can be seen as a combination of HIF and the well-known multiple-conclusion sequent system for intuition-
istic logic (called LJ′ in [23]).
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Definition 59 A multiple-conclusion sequent is an ordered pair of finite sets of L-formulas 〈Γ,∆〉. A
multiple-conclusion hypersequent is a finite set of multiple-conclusion sequents.

We shall again use the usual sequent notation Γ ⇒ ∆ (for 〈Γ,∆〉) and the usual hypersequent notation
s1 | . . . | sn (for {s1, . . . , sn}). frm[H] for a set of multiple-conclusion hypersequents H is defined as for
sets of single-conclusion hypersequents (see Notation 19).

Definition 60 MCG is the multiple-conclusion hypersequent system containing the following rules:6

Axioms:
ϕ⇒ϕ ⊥⇒

Structural Rules:

(IW⇒)
H | Γ⇒∆

H | Γ, ϕ⇒∆
(⇒IW )

H | Γ⇒∆

H | Γ⇒∆, ϕ
(EW )

H

H | Γ⇒∆

(com)
H1 | Γ1,Γ

′
1⇒∆1 H2 | Γ2,Γ

′
2⇒∆2

H1 | H2 | Γ1,Γ
′
2⇒∆1 | Γ2,Γ

′
1⇒∆2

(cut)
H1 | Γ1⇒∆1, ϕ H2 | Γ2, ϕ⇒∆2

H1 | H2 | Γ1,Γ2⇒∆1,∆2

Logical Rules:

(⊃⇒)
H1 | Γ1⇒∆1, ϕ1 H2 | Γ2, ϕ2⇒∆2

H1 | H2 | Γ1,Γ2, ϕ1 ⊃ ϕ2⇒∆1,∆2
(⇒⊃)

H | Γ, ϕ1⇒ϕ2

H | Γ⇒ϕ1 ⊃ ϕ2

(∨⇒)
H1 | Γ1, ϕ1⇒∆1 H2 | Γ2, ϕ2⇒∆2

H1 | H2 | Γ1,Γ2, ϕ1 ∨ ϕ2⇒∆1,∆2
(⇒∨)

H | Γ⇒∆, ϕ1, ϕ2

H | Γ⇒∆, ϕ1 ∨ ϕ2

(∧⇒)
H | Γ, ϕ1, ϕ2⇒∆

H | Γ, ϕ1 ∧ ϕ2⇒∆
(⇒∧)

H1 | Γ1⇒∆1, ϕ1 H2 | Γ2⇒∆2, ϕ2

H1 | H2 | Γ1,Γ2⇒∆1,∆2, ϕ1 ∧ ϕ2

(∀⇒)
H | Γ, ϕ{t/a}⇒∆

H | Γ,∀x(ϕ{x/a})⇒∆
(⇒∀) H | Γ⇒∆, ϕ

H | Γ⇒∆,∀x(ϕ{x/a})

(∃⇒)
H | Γ, ϕ⇒∆

H | Γ,∃x(ϕ{x/a})⇒∆
(⇒∃) H | Γ⇒∆, ϕ{t/a}

H | Γ⇒∆,∃x(ϕ{x/a})

The rules (⇒∀) and (∃⇒) must obey the eigenvariable condition: amust not occur in the lower hypersequent.
Note that right context-formulas are not allowed in (⇒⊃), and so this rule looks exactly like its single-
conclusion counterpart.

We denote by `MCG the provability relation (between sets of multiple-conclusion hypersequents and
multiple-conclusion hypersequents) induced by MCG. We denote by `EMCG the provability relation in-
duced by MCG, in which the cut-formulas are confined to the formulas of E (see Definition 21 for similar
definitions for HIF). To avoid confusion, we henceforth use `HIF instead of `.

Proposition 61 H | Γ⇒∆1,∆2 `frm[∆1∪∆2]
MCG H | Γ⇒∆1 | Γ⇒∆2, for every multiple-conclusion hyperse-

quent H , and finite sets Γ,∆1,∆2.

6The system described in [6] includes an extra (split) rule. The results of this paper show that (split) is redundant.
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Proof We prove the claim by induction on |∆1|+|∆2|. First, if ∆1 or ∆2 is empty, then the claim follows by
applying external weakening. Assume that |∆1|, |∆2| > 0, |∆1|+ |∆2| = l and that the claim holds for every
∆1,∆2 such that |∆1|+ |∆2| < l. Let ϕ1 ∈ ∆1 and ϕ2 ∈ ∆2, and let ∆′1 = ∆1 \ {ϕ1} and ∆′2 = ∆2 \ {ϕ2}.
Using (com) on the identity axioms ϕ1⇒ϕ1 and ϕ2⇒ϕ2, we derive ϕ1⇒ϕ2 | ϕ2⇒ϕ1. By a cut on ϕ1

of this hypersequent and the assumption H | Γ⇒∆1,∆2, we obtain H | Γ⇒∆′1,∆2 | ϕ2⇒ϕ1. Another cut
on ϕ2 of this hypersequent and the same assumption now yields H | Γ⇒∆′1,∆2 | Γ⇒∆1,∆

′
2. By applying

(twice) the induction hypothesis, we obtain a derivation ofH | Γ⇒∆′1 | Γ⇒∆2 | Γ⇒∆1 | Γ⇒∆′2 in which
cuts are only made on formulas from ∆1 ∪∆2. The claim follows by applying internal weakenings.

Next, we study the relation between MCG and HIF.

Definition 62 Given a multiple-conclusion sequent s = (Γ⇒ ϕ1, . . . , ϕn), s≤1 is the (single-conclusion)
hypersequent Γ⇒ ϕ1 | . . . | Γ⇒ ϕn | Γ⇒ . Given a multiple-conclusion hypersequent H , H≤1 is the
(single-conclusion) hypersequent

⋃
s∈H s

≤1. For a set of multiple-conclusion hypersequents H, we denote
the set {H≤1 | H ∈ H} byH≤1.

For example, ( ⇒ p1(a1) | p2(a1) ⇒ p3(a1), p4(a1))≤1 is the hypersequent:
⇒p1(a1) |⇒| p2(a1)⇒p3(a1) | p2(a1)⇒p4(a1) | p2(a1)⇒ .

Theorem 63 Let H ∪ {H} be a set of multiple-conclusion hypersequents, and E be a set of L-formulas. If
H≤1 `EHIF H

≤1 thenH `E∪frm[H]
MCG H .

Proof Suppose that H≤1 `EHIF H
≤1. We show that H is derivable from H in MCG, using only cuts on

formulas from E and frm[H]. First, by Proposition 61, G `frm[G]
MCG G≤1 for every G ∈ H. In addition, every

proof in HIF can obviously be modified into a proof in MCG with the same set of cut-formulas (simple
internal weakenings should be used before applying the rules (∧⇒) and (⇒∨)). Thus, we can now proceed
according to the derivation in HIF of H≤1 fromH≤1. Then, by applying internal weakenings we can obtain
H from H≤1.

Theorem 64 Let H ∪ {H} be a set of multiple-conclusion hypersequents, and E be a set of L-formulas.
Suppose that bothH and E are closed under substitutions. Then,H `EMCG H impliesH≤1 `EHIF H

≤1.

Proof (Outline) Proved by a standard induction on the length of proofs in MCG. The base case is easily
established, since MCG and HIF have the same set of axioms. We include here only some cases of the
induction step. The other cases are left to the reader.

1. Consider an application of (com) that derives the multiple-conclusion hypersequent
G = H1 | H2 | Γ1,Γ

′
2⇒ϕ1, . . . , ϕn | Γ2,Γ

′
1⇒ψ1, . . . , ψm from G1 = H1 | Γ1,Γ

′
1⇒ϕ1, . . . , ϕn

and G2 = H2 | Γ2,Γ
′
2⇒ψ1, . . . , ψm. We prove that G≤1

1 , G≤1
2 `∅HIF G

≤1. For this,
it suffices to prove that for every n,m ≥ 0, hypersequents H1 and H2, L-
formulas ϕ1, . . . , ϕn, ψ1, . . . , ψm, and sets of L-formulas Γ1,Γ

′
1,Γ2,Γ

′
2, the hypersequent

H1 | H2 | Γ1,Γ
′
2⇒| Γ1,Γ

′
2⇒ϕ1 | . . . | Γ1,Γ

′
2⇒ϕn | Γ2,Γ

′
1⇒| Γ2,Γ

′
1⇒ψ1 | . . . | Γ2,Γ

′
1⇒ψm is

cut-free derivable in HIF from the hypersequents H1 | Γ1,Γ
′
1⇒| Γ1,Γ

′
1⇒ϕ1 | . . . | Γ1,Γ

′
1⇒ϕn and

H2 | Γ2,Γ
′
2⇒| Γ2,Γ

′
2⇒ψ1 | . . . | Γ2,Γ

′
2⇒ψm. This follows directly from Proposition 22.

2. Applications of (∨⇒) and (∃⇒) are treated similarly using Propositions 23 and 24.

3. Consider an application of (⇒ ∀) that derives the multiple-conclusion hypersequent
G = H0 | Γ ⇒ ψ1, . . . , ψn,∀x(ϕ{x/a}) from G1 = H0 | Γ⇒ψ1, . . . , ψn, ϕ (a
does not occur in G). Here G≤1

1 = H≤1
0 | Γ⇒| Γ⇒ψ1 | . . . | Γ⇒ψn | Γ⇒ϕ, and

G≤1 = H≤1
0 | Γ⇒| Γ⇒ψ1 | . . . | Γ⇒ψn | Γ⇒∀x(ϕ{x/a}). Now, G≤1 is obtained from G≤1

1

by one application of (⇒∀) in HIF.
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Corollary 65 Let H ∪ {H} be a set of multiple-conclusion hypersequents. If H `MCG H then
H≤1 `HIF H

≤1.

Proof Suppose that H `MCG H . Let H∗ be the set of multiple-conclusion hypersequents obtained from
H by closing it under substitutions. Obviously, H∗ `MCG H . By Theorem 64, H≤1

∗ `HIF H
≤1 (take

E = frmL). Since H≤1
∗ consists of substitution instances of H≤1, Corollary 32 implies that H≤1 `HIF H

≤1.

Minor modifications are needed in the semantic consequence relation between (single-conclusion) hyper-
sequents to support multiple-conclusion hypersequents. First, Notation 33 is extended to multiple-conclusion
sequents in the obvious way (W , w, e � Γ⇒∆ if either W , w, e 6� ϕ for some ϕ ∈ Γ, or W , w, e � ϕ
for some ϕ ∈ ∆). Models of multiple-conclusion hypersequents, and the relation `hsKr between sets of
multiple-conclusion hypersequents and multiple-conclusion hypersequents are defined exactly as for single-
conclusion hypersequents (see Definitions 34 and 35). Next, we prove the following semantic relation:

Theorem 66 LetH ∪ {H} be a set of multiple-conclusion hypersequents. H `hsKr H iffH≤1 `hsKr H
≤1.

Proof We prove that an L-frame is a model of a multiple-conclusion hypersequent H iff it is a model of
H≤1. The claim then easily follows. Suppose first that W = 〈W,≤,M, I〉 is a model of H≤1. Then, for
every 〈L,M〉-evaluation e, there exists a component Γ⇒E ∈ H≤1 such that W , w, e � Γ⇒E for every
w ∈ W . Now, for every Γ⇒E ∈ H≤1, there exists a component Γ⇒∆ ∈ H such that E ⊆ ∆. In this case,
by definition, ifW , w, e � Γ⇒E thenW , w, e � Γ⇒∆. It follows that for every 〈L,M〉-evaluation e, there
exists a component Γ⇒∆ ∈ H such thatW , w, e � Γ⇒∆ for every w ∈ W . ThereforeW is a model of H .

Next, suppose thatW = 〈W,≤,M, I〉 is not a model of H≤1. Thus, there exists an 〈L,M〉-evaluation e,
such that for every component s ∈ H≤1,W , w, e 6� s for some w ∈ W . We show that for every component
s ∈ H , W , w, e 6� s for some w ∈ W . It follows thatW is not a model of H . Let Γ⇒{ϕ1, . . . , ϕn} be a
component of H . For every 1 ≤ i ≤ n, let wi be an element of W such thatW , wi, e 6� Γ⇒ϕi, and let w0 be
a element of W such thatW , wi, e 6� Γ⇒ . Then, by definition, for every 1 ≤ i ≤ n,W , wi, e � ϕ for every
ϕ ∈ Γ, andW , wi, e 6� ϕi. Similarly,W , w0, e � ϕ for every ϕ ∈ Γ. Let w be the minimum of {w1, . . . , wn}.
ThusW , w, e � ϕ for every ϕ ∈ Γ, and by Proposition 14,W , w, e 6� ϕi for every 1 ≤ i ≤ n. This implies
thatW , w, e 6� Γ⇒{ϕ1, . . . , ϕn}.

We finally establish strong soundness and completeness, as well as strong cut-admissibility, for MCG.

Corollary 67 (Strong Soundness and Completeness) MCG is strongly sound and complete with respect
to the Kripke semantics of the standard first-order Gödel logic, i.e. H `MCG H iffH `hsKr H .

Proof Theorem 63 and Corollary 65 imply that H `MCG H iff H≤1 `HIF H
≤1. Soundness and complete-

ness of HIF (Corollary 49) implies that H≤1 `HIF H≤1 iff H≤1 `hsKr H
≤1. Finally, Theorem 66 provides

the last link.

Again, we can straightforwardly reduce `Kr to `MCG (equivalently, `[0,1] or `sG):

Corollary 68 T `Kr ϕ iff {⇒ψ | ψ ∈ T } `MCG⇒ϕ.

Proof Theorems 63 and 64 imply that {⇒ψ | ψ ∈ T } `MCG⇒ϕ iff {⇒ψ | ⇒ | ψ ∈ T } `HIF⇒ϕ | ⇒.
It is easy to see that {⇒ψ | ⇒ | ψ ∈ T } `HIF⇒ϕ | ⇒ iff {⇒ψ | ψ ∈ T } `HIF⇒ϕ. Thus the claim
follows from Corollary 51.

Corollary 69 (Strong Cut-Admissibility for MCG) H `MCG H impliesH `frm[H]
MCG H , for every setH of

multiple-conclusion hypersequents closed under substitutions, and a multiple-conclusion hypersequent H .

Proof Assume H `MCG H . By Corollary 65, H≤1 `HIF H
≤1. Obviously, H≤1 is closed under substitu-

tions. Strong cut-admissibility of HIF (Corollary 52) then implies that H≤1 `frm[H]
HIF H≤1. By Theorem 63,

H `frm[H]
MCG H .
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6 Further Research
Many other (multiple or single-conclusion) hypersequent systems for various propositional and first-order
fuzzy logics and intermediate logics have only syntactic proofs of (usual) cut-elimination theorem (see e.g.
[20]). It should be interesting to find for them too simpler semantic proofs and derive corresponding strong
cut-admissibility theorems. However, for other fuzzy logics, simple Kripke-style semantics do not exist (to
the best of our knowledge), and new methods should be developed.
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[18] Hájek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, 1998.

[19] Horn A., Logic with Truth Values in a Linearly Ordered Heyting Algebra, Journal of Symbolic Logic,
Vol. 34, No. 3 (Sep., 1969), pp. 395-408

[20] Metcalfe G., Olivetti N., and Gabbay D., Proof Theory for Fuzzy Logics, Springer, 2009.

[21] Sonobe O., A Gentzen-type Formulation of Some Intermediate Propositional Logics, Journal of Tsuda
College 7 (1975), 7–14.

[22] M. Takano, P Another proof of the strong completeness of the intuitionistic fuzzy logic, Tsukuba J.
Math. 11 (1984), 851–866.

[23] G. Takeuti, Proof Theory, North-Holland, 1975.

[24] Takeuti G., Titani T., Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set Theory, Journal of Symbolic
Logic 49 (1984), 851–866.

[25] Takeuti G., Titani T., Global intuitionistic fuzzy set theory, The Mathematics of Fuzzy Systems, TUV-
Verlag (1986), 291–301.

27


