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A DENOTATIONAL APPROACH TO 
RELEASE/ACQUIRE CONCURRENCY



GOAL

Design a standard, monad-based 
denotational semantics (Moggi [1991])

Using Brookes-style [1996], 
totally-ordered traces

For weak, 
shared-

memory model
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RELEASE/ACQUIRE



WHY RELEASE/ACQUIRE?
RA is an important fragment of 
C/C++, enables decentralized 
architectures (POWER)

First adaptation of Brookes’s 
traces to a software model 
(compositional parallelism)

Intricate causal semantics, 
not overwhelmingly detailed

Threads can disagree about the order of writes 
(non-multi-copy-atomic)

Supports flag-based synchronization 
(e.g. for signaling a data structure is ready)

Supports important transformations 
(e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity
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Main ingredient: linearly-ordered traces of 
state-transitions that sequence and interleave

⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩

TRACE-BASED SEMANTICS
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Main ingredient: linearly-ordered traces of 
state-transitions that sequence and interleave

⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩

TRACE-BASED SEMANTICS

Denotational semantics  for concurrency 

Idealized model - Sequential Consistency (SC) 

Follows operational semantics

[| − |]

Adapts traces to TSO (hardware model) 

Follows operational semantics too 

Relatively close to SC

Brookes [1996]

Jagadeesan, Petri, Riely [2012]
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Adapts traces to RA (software model) 

Kang et al. [2017] operational presentation 

Much more complex notion of state

This work



CONTRIBUTION
Directionally Adequate              
denotational semantics for RA based on linearly-ordered traces

[|M |] ⊇ [|K |] ⟹ M ↠ K

Standard (CbV) semantics [Moggi 1991] 
enables structural transformations (e.g. ) 
has higher-order functions for free 
etc.

[|K; (M; N) |] = [| (K; M); N |]

Abstract enough to justify every transformation discussed 
in the literature that we know of       (but no full-abstraction)

New challenge — non-operational interpretation: 
each trace represents a possible behavior as a Rely/Guarantee sequence
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Refinement Transformation



RELEASE/ACQUIRE



TYPICAL EXAMPLES

x := 1
y?

y := 1
x?

Store Buffering

x := 1 y?
y := 1 x?

Message Passing

x := 0; y := 0;
; ; ; ;

x := 0; y := 0;
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TYPICAL EXAMPLES

x := 1
y?

y := 1
x?//0 //0

Store Buffering

x := 1 y?
y := 1 x?

//1
//0

Message Passing

Propagation respects causality

Propagation is not instant
x := 0; y := 0;

; ; ; ;
x := 0; y := 0;
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RELEASE/ACQUIRE VIEW-BASED 
OPERATIONAL SEMANTICS
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Kang et al. [2017]

Memory:   Timeline per location (e.g. x, y, z) 

Populated with immutable messages (e.g. x0, y0, z0) 

Each thread’s view points to a msgs on each timeline (e.g. T1) 

Thread’s cannot read from “the past” 

Each msg’s view points to a msg on each other timelines (e.g. y1) 

Message views are used for enforcing causal propagation 

T1 T2
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x0

x

y

z

y0

z0

T1 T2

T1

x := 𝗑𝟣

x0

x

y

z

y0

z0

T1 T2

x1

must be placed after thread’s view 

may be placed before others 

copies thread’s view
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When writing, the message:



x0

x

y

z

y0

z0

T1 T2

x1 T1

y := 𝗒𝟣

x0

x

y

z

y0

z0

T1 T2

x1

y1
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must be placed after thread’s view 

may be placed before others 

copies thread’s view

When writing, the message:



x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

x := 𝗑𝟤
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must be placed after thread’s view 

may be placed before others 

copies thread’s view

When writing, the message:



x2x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

y?
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cannot be before thread’s view 

may be before others

When reading, the message:

inherits the copy of the view

and the thread:



x2x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

x?
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cannot be before thread’s view 

may be before others

When reading, the message:

inherits the copy of the view

and the thread:



CAUSALITY AND COMPOSITION

L

T

M
U

D
R

B

L ∥ (T; ((U; M; D) ∥ R); B)

With first class parallelism
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T1 T2

(M1; M2) ∥ (K1; K2) ↠ (M1 ∥ K1); (M2 ∥ K2)
Generalized Sequencing



TRACE-BASED SEMANTICS



TRACE-BASED SEMANTICS IN RA

[|M |] ∋ τTerms denote 
sets of traces

Each trace represents a possible behavior 
as a Rely/Guarantee sequence

α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions
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RARA



TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions
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Before or || ||

Rely On μ1

To Guarantee ϱ1

Rely On μ2

To Guarantee ϱ2

Then Then…

||

Guarantee to the 
sequential environment to 

return r

After



TRACE-BASED SEMANTICS IN RA

α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r
Initial View Final View ReturnsSequence of Transitions
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Before After

Rely on the 
sequential environment to 

reveal messages before α

Guarantee to the 
sequential environment to 

reveal messages before ω



TRANSITION CLOSURES

α ξη ω ∴ r ∈ [|M |]
Stutter

α ξ⟨μ, μ⟩η ω ∴ r ∈ [|M |]

Analogous 

to Brookes’s

Propagate Reliance 

as a Guarantee

Mumble
α ξ⟨μ, ρ⟩⟨ρ, θ⟩η ω ∴ r ∈ [|M |]

α ξ⟨μ, θ⟩η ω ∴ r ∈ [|M |]

Rely on an 

omitted Guarantee
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VIEW CLOSURES

α ξ ω ∴ r ∈ [|M |]α′ ≤ α

α′ ξ ω ∴ r ∈ [|M |]

α ξ ω ∴ r ∈ [|M |] ω ≤ ω′ 

α ξ ω′ ∴ r ∈ [|M |]
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Rewind Forward

Guaranteeing less 

being revealedRelying on more 

being revealed

Specific 
to RA



COMPOSITION
α ξ1 κ ∴ r1 ∈ [|M1 |] κ ξ2 ω ∴ r2 ∈ [|M2 |][x ↦ r1]

α ξ1ξ2 ω ∴ r2 ∈ [| let x = M1 in M2 |]
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Sequential

α ξi ω ∴ ri ∈ [|Mi |]∀i ∈ {1,2} . ξ ∈ ξ1 ∥ξ2

α ξ ω ∴ ⟨r1, r2⟩ ∈ [|M1 ∥ M2 |]

Parallel



ABSTRACTION



WHAT WE CAN JUSTIFY

[| let a = x? in let b = x? in ⟨a, b⟩ |] ⊇ [| let c = x? in ⟨c, c⟩ |]
Some memory access related transformations, e.g. Read-Read Elimination
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Structural equivalences, e.g. if  is effect-free thenK
[| if K then M; P1 else M; P2 |] = [|M; if K then P1 else P2 |]Standard Semantics

[| (M1; M2) ∥ (K1; K2) |] ⊇ [| (M1 ∥ K1); (M2 ∥ K2) |]
Laws of Parallel Programming, e.g. Generalized SequencingFirst-class parallelism

with Stutter, Mumble, Rewind, and Forward



x?; M ↠ M
Read Elimination
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x2x0

x

y

z

y0

z0

T1 T2

x1

y1

SEMANTIC INVARIANTS 
ON TRACES 

operational invariant becomes denotational requirement   
views point to messages that carry a smaller view 

κ ⟨μ, μ⟩ κ ∴ ⟨⟩ ∈ [|⟨⟩ |] ⟹ ∃v . κ ⟨μ, μ⟩ κ ∴ v ∈ [|x? |]



MORE CLOSURES
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Write-Read Reorder
x := 1; let a = y?

let a = y? ↠ in x := 1;
in M M

Some transformations are valid 
even without preserving state 

Traces cannot strictly correspond 
to operational semantics                         
(e.g. Transition ≡ exec. steps)

View in message at x

≤α ⟨μ1, ϱ1⟩⟨μ2, ϱ2⟩…⟨μn−1, ϱn−1⟩⟨μn, ϱn⟩ ω ∴ r

⟨μ2, − ⟩, M1 →* ⟨ρ2, − ⟩, M2⋯ ⋯

RA Specific Compiler Optimization



Absorb a redundant local message into a following one            
(e.g. ) 

Dilute a message by a redundant local message                        
(e.g. ) 

Tighten the encumbering view that a local message carries                        
(e.g. )

[|x := 0; x := 1 |] ⊇ [|x := 1 |]

[|x? |] ⊇ [|FAA[x](0) |]

[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

ABSTRACT 
CLOSURES

π ∈ [|M |]
Rewrite

π τ

τ ∈ [|M |]

Specific 
to RA
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ABSTRACT REWRITE RULES

Tighten1 1
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[|x := 1; y? |] ⊇ [| (x := 1 ∥ y?).snd |]

GUARANTEE IS WEAKER 
BECAUSE LOADING THIS 

MESSAGE OBSCURES MORE

Write-Read Deorder + LoPP + Struct  Write-Read Reorder⇒



Because traces are not operational, the adequacy proof is more nuanced: 

We define a similar denotational semantics  but without the abstract rules 

We show it is adequate (easier because it has an operational interpretation) 

We show  — it is enough to apply the closure on top 

We show that the abstract closures preserve observations

[|M |]

[|M |] = [|M |]†

NEW ADEQUACY PROOF IDEA
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CONCLUSION



Standard, adequate and fully-compositional denotational semantic for RA 

More nuanced traces 

Sufficiently abstract: validates all RA transformations that we know of                                                        
(memory access, laws of parallel programming, structural transformations) 

Extended RA view-based machine with compositional (i.e. first-class) parallelism                                                        
(weak-memory models are usually studied with top-level parallelism)

CONCLUSION



Parsimonious in features (e.g. no recursion) 

No type-and-effect system 

No algebraic presentation 

No non-atomics, not the full C/C++ model 

No full abstraction theorem even for first-order

LIMITATIONS



Address the mentioned limitations, e.g. promising semantics to cover more of C/C++ 

Algebraic effects as Rely/Guarantee traces

FUTURE DIRECTIONS
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REWRITE RULE: ABSORB

Write Eliminations

x := 0; x := 1 ↠ x := 1

x := 0; CAS[x](0,1) ↠ x := 1
10 1Ab

Eliminate redundant message



REWRITE RULE: DILUTE
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1 11Di

Write Eliminations

x? ↠ CAS[x](1,1)

CAS[x](1,1) ↠ FAA[x](0)

Introduce redundant message


