A DENOTATIONAL APPROACH TO RELEASE/ACQUIRE CONCURRENGY

GOAL

> Release/Acquire

> For weak, sharedmemory model

Using Brookes-style [1996], totally-ordered traces

Design a standard, monad-based denotational semantics (Moggi [1991])

WHY RELEASE/ACQUIRE?

RA is an important fragment of C/C++, enables decentralized architectures (POWER)

First adaptation of Brookes's traces to a software model (compositional parallelism)

Intricate causal semantics, not overwhelmingly detailed

Threads can disagree about the order of writes
(non-multi-copy-atomic)

Supports flag-based synchronization
(e.g. for signaling a data structure is ready)

Supports important transformations
(e.g. thread sequencing, write-read-reorder)

Supports read-modify-write atomicity

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$
\left\langle\widehat{\left.\mu_{1}, \varrho_{1}\right\rangle\left\langle\mu_{2}, \varrho_{2}\right\rangle \ldots\left\langle\mu_{n-1}, \varrho_{n-1}\right\rangle\left\langle\mu_{n}, \varrho_{n}\right\rangle}\right.
$$

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$
\left\langle\widehat{\mu_{1}, \varrho_{1}}\right\rangle\left\langle\widetilde{\mu_{2}, \varrho_{2}}\right\rangle \ldots\left\langle\mu_{n-1}, \varrho_{n-1}\right\rangle\left\langle\widetilde{\mu_{n}, \varrho_{n}}\right\rangle
$$

$$
\left\langle\mu_{1}, \mu_{1}^{\prime}\right\rangle\left\langle\mu_{2}, \mu_{2}^{\prime}\right\rangle \ldots\left\langle\mu_{n}, \mu_{n}^{\prime}\right\rangle \quad\left\langle\varrho_{1}, \varrho_{1}^{\prime}\right\rangle\left\langle\varrho_{2}, \varrho_{2}^{\prime}\right\rangle \ldots\left\langle\varrho_{n}, \varrho_{n}^{\prime}\right\rangle
$$

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$
\left\langle\mu_{1}, \varrho_{1}\right\rangle\left\langle\mu_{2}, \varrho_{2}\right\rangle \ldots\left\langle\mu_{n-1}, \varrho_{n-1}\right\rangle\left\langle\mu_{n}, \varrho_{n}\right\rangle
$$

$$
\left\langle\mu_{1}, \mu_{1}^{\prime}\right\rangle\left\langle\mu_{2}, \mu_{2}^{\prime}\right\rangle \ldots\left\langle\mu_{n}, \mu_{n}^{\prime}\right\rangle\left\langle\varrho_{1}, \varrho_{1}^{\prime}\right\rangle\left\langle\varrho_{2}, \varrho_{2}^{\prime}\right\rangle \ldots\left\langle\varrho_{n}, \varrho_{n}^{\prime}\right\rangle
$$

Sequence

TRACE-BASED SEMANTICS

Brookes [1996]

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

$$
\left\langle\mu_{1}, \varrho_{1}\right\rangle\left\langle\mu_{2}, \varrho_{2}\right\rangle \ldots\left\langle\mu_{n-1}, \varrho_{n-1}\right\rangle\left\langle\mu_{n}, \varrho_{n}\right\rangle
$$

$$
\left\langle\varrho_{1}, \varrho_{1}^{\prime}\right\rangle\left\langle\mu_{1}, \mu_{1}^{\prime}\right\rangle\left\langle\mu_{2}, \mu_{2}^{\prime}\right\rangle\left\langle\varrho_{2}, \varrho_{2}^{\prime}\right\rangle \ldots\left\langle\mu_{n}, \mu_{n}^{\prime}\right\rangle\left\langle\varrho_{n}, \varrho_{n}^{\prime}\right\rangle
$$

Interleave

TRACE-BASED SEMANTICS

高Brookes [1996]

Denotational semantics [] - \| for concurrency
Idealized model - Sequential Consistency (SC)
Follows operational semantics

Jagadeesan, Petri, Riely [2012]
Adapts traces to TSO (hardware model)
Follows operational semantics too
Relatively close to SC

Main ingredient: linearly-ordered traces of state-transitions that sequence and interleave

```
\langle\mu
```


This work

Adapts traces to RA (software model)
Kang et al. [2017] operational presentation
$>$ Much more complex notion of state

CONTRIBUTION

Refinement Transformation
Directionally Adequate $\|M\| \supseteq \llbracket K \| \Longrightarrow M \rightarrow K$ denotational semantics for RA based on linearly-ordered traces

Standard (CbV) semantics [Moggi 1991]
enables structural transformations (e.g. $\|K ;(M ; N)\|=\|(K ; M) ; N\|)$
has higher-order functions for free
etc.
Abstract enough to justify every transformation discussed in the literature that we know of (but no full-abstraction)

New challenge - non-operational interpretation:
each trace represents a possible behavior as a Rely/Guarantee sequence

RELEASE/ACQUIRE

TYPICAL EXAMPLES

TYPICAL EXAMPLES

TYPICAL EXAMPLES

TYPICAL EXAMPLES

Propagation is
Store Buffering_ not instant Message Passing

TYPICAL EXAMPLES

propagation is

TYPICAL EXAMPLES

propagation is

TYPICAL EXAMPLES

Propagation is
Store Buffering_ not instant
propagation Message Pas respects causality

$$
x:=0 ; y:=0
$$

message par

$$
x:=0 ; y:=0
$$

$$
\begin{aligned}
& x:=1 ; y:=1 \\
& y ? / / 0 \vee x ? \quad / 0
\end{aligned}
$$

$$
x:=1 ; \| y ? ; / / 1
$$

$$
y:=1 \nabla x ? / / 0
$$

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

Kang et al. [2017]

> Memory: Timeline per location (e.g. x, y, z)
>Populated with immutable messages (e.g. $\mathrm{xO}, \mathrm{yO}, \mathrm{zO}$)
> Each thread's view points to a msgs on each timeline (e.g. T1)
Thread's cannot read from "the past"
> Each msg's view points to a msg on each other timelines (e.g. y1)
> Message views are used for enforcing causal propagation

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

Kang et al. [2017]

> Memory: Timeline per location (e.g. x, y, z)
Populated with immutable messages (e.g. x0, y0, z0)
> Each thread's view points to a msgs on each timeline (e.g. T1)
Thread's cannot read from "the past"

\rangle Each msg's view points to a msg on each other timelines (e.g. y1)
Message views are used for enforcing causal propagation
\qquad

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)

Populated with immutable messages (e.g. x0, yO, zO)
Each thread's view points to a msgs on each timeline (e.g. T1)
Thread's cannot read from "the past"

\geqslant Each msg's view points to a msg on each other timelines (e.g. y1)
> Message views are used for enforcing causal propagation

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)
Populated with immutable messages (e.g. $x 0, y 0, z 0$)
> Each thread's view points to a msgs on each timeline (e.g. T1)
Thread's cannot read from "the past"
$>$ Each msg's view points to a msg on each other timelines (e.g. y1)
Message views are used for enforcing causal propagation

RELEASE/ACQUIRE VIEW-BASED OPERATIONAL SEMANTICS

Kang et al. [2017]

Memory: Timeline per location (e.g. x, y, z)
Populated with immutable messages (e.g. $x 0, y 0, z 0$)
> Each thread's view points to a msgs on each timeline (e.g. T1)
Thread's cannot read from "the past"
\geqslant Each msg's view points to a msg on each other timelines (e.g. y1)
Message views are used for enforcing causal propagation

$$
x:=\mathrm{x} 1
$$

When writing, the message:
> must be placed after thread's view
> may be placed before others
$>$ copies thread's view

When writing, the message:
> must be placed after thread's view
> may be placed before others
$>$ copies thread's view

When writing, the message:
\rangle must be placed after thread's view
> may be placed before others
$>$ copies thread's view

When reading, the message:
> cannot be before thread's view
> may be before others
and the thread:
inherits the copy of the view

CAUSALITY AND COMPOSITION

With first class parallelism

$$
L \|(T ;((U ; M ; D) \| R) ; B)
$$

> Generalized Sequencing
> $\left(M_{1} ; M_{2}\right) \|\left(K_{1} ; K_{2}\right) \rightarrow\left(M_{1} \| K_{1}\right) ;\left(M_{2} \| K_{2}\right)$

TRACE-BASED SEMANTICS

TRACE-BASED SEMANTICS IN RA

TRACE-BASED SEMANTICS IN RA

TRACE-BASED SEMANTICS IN RA

Rely on the
sequential environment to
reveal messages before α

Guarantee to the
sequential environment to
reveal messages before ω

Analogous ${ }^{\text {S }}$ TRANSITION CLOSURES to Brookes's

Stutter

$$
\alpha \xi \eta \omega \therefore r \in \llbracket M \rrbracket
$$

$$
\alpha \xi\langle\mu, \mu\rangle \eta \omega \therefore r \in \llbracket M \rrbracket
$$

Propagate Reliance as a Guarantee

Mumble

$$
\frac{\alpha \xi\langle\mu, \rho\rangle\langle\rho, \theta\rangle \eta \omega \therefore r \in \llbracket M \rrbracket}{\alpha \xi\langle\mu, \theta\rangle \eta \omega \therefore r \in \llbracket M \rrbracket}
$$

Rely on an omitted Guarantee

Specific

VIEW CLOSURES

Forward

$$
\alpha \xi \omega \therefore r \in\|M\| \quad \omega \leq \omega^{\prime}
$$

being revealed

$$
\alpha \xi \omega^{\prime} \therefore r \in\|M\|
$$

Guaranteeing less being revealed being reveal d

COMPOSITION

Sequential

$$
\frac{\alpha \xi_{1} \kappa \therefore r_{1} \in \llbracket M_{1} \rrbracket \quad \kappa \xi_{2} \omega \therefore r_{2} \in \llbracket M_{2} \|\left[x \mapsto r_{1}\right]}{\alpha \xi_{1} \xi_{2} \omega \therefore r_{2} \in \llbracket \operatorname{let} x=M_{1} \text { in } M_{2} \|}
$$

Parallel

$$
\frac{\forall i \in\{1,2\} . \alpha \xi_{i} \omega \therefore r_{i} \in \llbracket M_{i} \rrbracket}{\alpha \xi \omega \therefore\left\langle r_{1}, r_{2}\right\rangle \in \llbracket M_{1} \| M_{2} \rrbracket}
$$

ABSTRACTION

WHAT WE CAN JUSTIFY

with Stutter, Mumble, Rewind, and Forward

\& Structural equivalences, e.g. if K is effect-free then
Standard Semantics $\quad \|$ if K then $M ; P_{1}$ else $M ; P_{2}\|=\| M ;$ if K then P_{1} else $P_{2} \|$
First-class parallelism of Parallel Programming, e.g. Generalized Sequencing
$\quad\left\|\left(M_{1} ; M_{2}\right)\right\|\left(K_{1} ; K_{2}\right)\left\|\supseteq \rrbracket\left(M_{1} \| K_{1}\right) ;\left(M_{2} \| K_{2}\right)\right\|$

Some memory access related transformations, e.g. Read-Read Elimination \square let $a=x ?$ in let $b=x ?$ in $\langle a, b\rangle \square \supseteq \llbracket$ let $c=x ?$ in $\langle c, c\rangle \square$

SEMANTIC INVARIANTS ON TRACES
 Read Elimination
 $$
x ? ; M \rightarrow M
$$

operational invariant becomes denotational requirement views point to messages that carry a smaller view

MORE CLOSURES

Some transformations are valid even without preserving state

Traces cannot strictly correspond to operational semantics
(e.g. Transition \equiv exec. steps)
$\alpha\left\langle\mu_{1}, \varrho_{1}\right\rangle\left\langle\mu_{2}, \varrho_{2}\right\rangle \ldots\left\langle\mu_{n-1}, \varrho_{n-1}\right\rangle\left\langle\mu_{n}, \varrho_{n}\right\rangle \omega \therefore r$ $\cdots\left\langle\mu_{2},-\right\rangle, M_{1} \rightarrow^{*}\left\langle\rho_{2},-\right\rangle, M_{2} \cdots$

Write-Read Reorder

$$
x:=1 \text {; }
$$

$$
\text { let } a=y \text { ? }
$$

$$
\begin{aligned}
& \text { let } a=y \text { ? } \\
& \text { in } x:=1
\end{aligned}
$$

View in message at \boldsymbol{x}

ABSTRACT CLOSURES

Absorb a redundant local message into a following one (e.g. $\|x:=0 ; x:=1\| \supseteq\|x:=1\|$)
> Dilute a message by a redundant local message (e.g. $\|x ?\| \supseteq \llbracket$ FAA $[x](0) \|)$

Tighten the encumbering view that a local message carries
(e.g. $\| x:=1 ; y ? \square \supseteq \llbracket(x:=1 \| y ?)$.snd $\|)$

ABSTRACT REWRITE RULES

Write-Read Deorder + LoPP + Struct \Rightarrow Write-Read Reorder

$$
\begin{aligned}
& \longleftarrow \text { GuARANTEE IS WEAKER } \\
& \text { because loading this } \\
& \text { MESSAGE OBSCURES MORE } \\
& \llbracket x:=1 ; y ? \rrbracket \supseteq \llbracket(x:=1 \| y ?) . \text { snd \| }
\end{aligned}
$$

NEW ADEQUACY PROOF IDEA

Because traces are not operational, the adequacy proof is more nuanced:
$>$ We define a similar denotational semantics $\|M\|$ but without the abstract rules
\geqslant We show it is adequate (easier because it has an operational interpretation)
$>$ We show $\left\lceil M \|=\llbracket M \rrbracket^{\dagger}\right.$ - it is enough to apply the closure on top
$>$ We show that the abstract closures preserve observations

$$
M\|N \quad \rightarrow \quad \operatorname{match} N\| M \text { with }\langle y, x\rangle .\langle x, y\rangle
$$

Generalized Sequencing

$$
\left(\text { let } x=M_{1} \text { in } M_{2}\right) \|\left(\operatorname{let} y=N_{1} \text { in } N_{2}\right) \quad \rightarrow \quad \operatorname{match} M_{1} \| N_{1} \text { with }\langle x, y\rangle . M_{2} \| N_{2}
$$

Eliminations
Irrelevant Read

$$
\begin{array}{lrll}
\text { Irrelevant Read } & \ell ? ;\langle \rangle & \rightarrow & \rangle \\
\text { Write-Write } & \ell:=v ; \ell:=w & \xrightarrow{\mathrm{Ab}} & \ell:=w \\
\text { Write-Read } & \ell:=v ; \ell ? & \rightarrow & \ell:=v ; v \\
\text { Write-FAA } & \ell:=v ; \mathrm{FAA}(\ell, w) & \xrightarrow{\mathrm{Ab}} & \ell:=(v+w) ; v \\
\text { Read-Write } & \text { let } x=\ell \mathbf{i n} \ell:=(x+v) ; x & \rightarrow & \mathrm{FAA}(\ell, v) \\
\text { Read-Read } & \langle\ell ?, \ell ?\rangle & \rightarrow & \text { let } x=\ell ? \text { in }\langle x, x\rangle \\
\text { Read-FAA } & \langle\ell ?, \mathrm{FAA}(\ell, v)\rangle & \rightarrow & \text { let } x=\mathrm{FAA}(\ell, v) \text { in }\langle x, x\rangle \\
\text { FAA-Read } & \langle\mathrm{FAA}(\ell, v), \ell ?\rangle & \rightarrow & \text { let } x=\mathrm{FAA}(\ell, v) \text { in }\langle x, x+v\rangle \\
\text { FAA-FAA } & \langle\mathrm{FAA}(\ell, v), \mathrm{FAA}(\ell, w)\rangle & \xrightarrow{\mathrm{Ab}} & \text { let } x=\mathrm{FAA}(\ell, v+w) \text { in }\langle x, x+v\rangle
\end{array}
$$

Write-Read
Write-FAA
Read-Write

Others

Irrelevant Read Introduction	\rangle	\rightarrow	$\ell ? ;\langle \rangle$		
Read to FAA	$\ell ?$	$\xrightarrow{\mathrm{Di}}$	$\operatorname{FAA}(\ell, 0)$		
Write-Read Deorder	$\left\langle(\ell:=v), \ell^{\prime} \boldsymbol{?}\right\rangle$	$\xrightarrow[\rightarrow]{\mathrm{Ti}_{i}}$	$(\ell:=v) \\| \ell^{\prime} ?$	$\left(\ell \neq \ell^{\prime}\right)$	
Write-Read Reorder	$\left\langle(\ell:=v), \ell^{\prime} ?\right\rangle$	$\xrightarrow{\mathrm{Ti}_{i}}$	let $x=\ell^{\prime} ?$ in $(\ell:=v) ; x$	$\left(\ell \neq \ell^{\prime}\right)$	

CONGLUSION

CONCLUSION

Standard, adequate and fully-compositional denotational semantic for RA
More nuanced traces

Sufficiently abstract: validates all RA transformations that we know of (memory access, laws of parallel programming, structural transformations)

Extended RA view-based machine with compositional (i.e. first-class) parallelism (weak-memory models are usually studied with top-level parallelism)

LIMITATIONS

$>$ Parsimonious in features (e.g. no recursion)
No type-and-effect system

No algebraic presentation
No non-atomics, not the full C/C++ model
No full abstraction theorem even for first-order

FUTURE DIRECTIONS

> Address the mentioned limitations, e.g. promising semantics to cover more of C/C++
Algebraic effects as Rely/Guarantee traces

$$
\begin{array}{ll}
(-) & : \operatorname{Term}_{\{\mathrm{L}, \mathrm{U}\}} X \rightarrow \mathcal{P}_{\text {fin }}(\mathbb{T} X) \\
(x) & :=\{\langle \rangle \therefore x\} \\
\left(\mathrm{L}_{\ell}\left\langle t_{v}\right\rangle_{v \in \mathrm{Val}}\right) & :=\bigcup_{v \in \operatorname{Val}}\left\{\left(\mathrm{R}_{\ell, v}:: \mathrm{t}\right) \therefore x \mid \mathrm{t} \therefore x \in\left(t_{v}\right)\right\} \\
\left(\mathrm{U}_{\ell, v} \mathrm{t}\right) & :=\left\{\left(\mathrm{G}_{\ell, v}:: \mathrm{t}\right) \therefore x \mid \mathrm{t} \therefore x \in(\mathrm{t})\right\}
\end{array}
$$

REWRITE RULE: ABSORB

Write Eliminations

$$
\begin{aligned}
& x:=0 ; x:=1 \rightarrow x:=1 \\
& x:=0 ; \operatorname{CAS}[x](0,1) \rightarrow x:=1
\end{aligned}
$$

REWRITE RULE: DILUTE

Write Eliminations

$$
\begin{aligned}
& x ? \rightarrow \operatorname{CAS}[x](1,1) \\
& C A S[x](1,1) \rightarrow F A A[x](0)
\end{aligned}
$$

Introduce redundant message

