
Explaining relaxed memory models
with program transformations

Ori Lahav and Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

FM, November 2016

Relaxed memory models

I Sequential consistency (aka “interleaving semantics”) is the
standard memory model for reasoning about concurrent programs.

I Modern hardware employs, e.g., local write buffers, hierarchies of
caches, and speculative executions, that significantly improve
performance, but invalidate SC in the presence of data races.

I To further improve performance, compilers perform
concurrency-oblivious optimizations.

Relaxed memory models provide formal sound semantics for
realistic high-performance concurrency.

Litmus tests

Store buffering (SB)
x := 1;
a := y ; // 0

y := 1;
b := x ; // 0

Allowed by x86-TSO, Power,
ARM, C11 with non-SC accesses

Load buffering (LB)
a := x ; // 1
y := 1;

b := y ; // 1
x := 1;

Allowed by Power, ARM,
C11 with relaxed accesses

Program transformations provide intuitive explanations.

Our goal
Formally reconcile relaxed memory models definitions with the
transformations account.

TSO � C11-release/acquire � Power � ARM

Litmus tests

Store buffering (SB)
x := 1;
a := y ; // 0

y := 1;
b := x ; // 0

Allowed by x86-TSO, Power,
ARM, C11 with non-SC accesses

Load buffering (LB)
a := x ; // 1
y := 1;

b := y ; // 1
x := 1;

Allowed by Power, ARM,
C11 with relaxed accesses

Program transformations provide intuitive explanations.

Our goal
Formally reconcile relaxed memory models definitions with the
transformations account.

TSO � C11-release/acquire � Power � ARM

Litmus tests

Store buffering (SB)
x := 1;
a := y ; // 0

y := 1;
b := x ; // 0

Allowed by x86-TSO, Power,
ARM, C11 with non-SC accesses

Load buffering (LB)
a := x ; // 1
y := 1;

b := y ; // 1
x := 1;

Allowed by Power, ARM,
C11 with relaxed accesses

Program transformations provide intuitive explanations.

Our goal
Formally reconcile relaxed memory models definitions with the
transformations account.

TSO � C11-release/acquire � Power � ARM

Litmus tests

Store buffering (SB)
x := 1;
a := y ; // 0

y := 1;
b := x ; // 0

Allowed by x86-TSO, Power,
ARM, C11 with non-SC accesses

Load buffering (LB)
a := x ; // 1
y := 1;

b := y ; // 1
x := 1;

Allowed by Power, ARM,
C11 with relaxed accesses

Program transformations provide intuitive explanations.

Our goal
Formally reconcile relaxed memory models definitions with the
transformations account.

TSO � C11-release/acquire � Power � ARM

Operational account for store buffering in x86-TSO

cpu 1
write

write-back

read

cpu n

. . .

. . .

Memory

Store buffering
x := 1;
a := y ; // 0

y := 1;
b := x ; // 0

Store buffering + fences
x := 1;
fence;
a := y ; // 0

y := 1;
fence;
b := x ; // 0

SB and LB in axiomatic models

Store buffering (SB)
x := 1;
a := y ; // 0

y := 1;
b := x ; // 0

x = y = 0

W(x , 1)

R(y , 0)

W(y , 1)

R(x , 0)

po po

po porf rf

Load buffering (LB)
a := x ; // 1
y := 1;

b := y ; // 1
x := 1;

x = y = 0

R(x , 1)

W(y , 1)

R(y , 1)

W(x , 1)

po po

po po
rfrf

program order
reads-from

po

rf

Axiomatic x86-TSO model

Definition
An execution is TSO-consistent if:
I po ∪ rf is acyclic
I there exists a total ordering mo of all write events, such that

the none of the following occurs:

Wx

Wy

(po ∪ rf)+mo

Wx Wx

Rx

rf (po ∪ rf)+

mo

Wx Wx

Rx

Wy

Ry

rf

mo

rf \ po

po

mo

+ conditions on fences and RMWs

SB and LB in TSO

Store buffering (SB)
x := 1;
a := y ; // 0

y := 1;
b := x ; // 0

x = y = 0

W(x , 1)

R(y , 0)

W(y , 1)

R(x , 0)

po po

po porf rf

mo

mo

allowed by TSO

Load buffering (LB)
a := x ; // 1
y := 1;

b := y ; // 1
x := 1;

x = y = 0

R(x , 1)

W(y , 1)

R(y , 1)

W(x , 1)

po po

po po
rfrf

Forbidden by TSO

program order
reads-from

modification order

po

rf

mo

Sound optimizations under TSO

Sound Transformations
Psource Ptarget =⇒ [[Ptarget]] ⊆ [[Psource]]

Write-read reordering
x := 1;
a := y ;

a := y ;
x := 1;

Read-after-write elimination
x := 1;
a := x ;

x := 1;
a := 1;

Definition
G TSO G ′ if G ′ is obtained from G by one of the following:

W(x , vx)

R(y , vy)
po

R(y , vy)

W(x , vx)
 po

W(x , v)

R(x , v)
po W(x , v)

Theorem (Soundness of transformations)
If G TSO G ′ and G ′ is TSO-consistent, so is G.

Sound optimizations under TSO

Sound Transformations
Psource Ptarget =⇒ [[Ptarget]] ⊆ [[Psource]]

Write-read reordering
x := 1;
a := y ;

a := y ;
x := 1;

Read-after-write elimination
x := 1;
a := x ;

x := 1;
a := 1;

Definition
G TSO G ′ if G ′ is obtained from G by one of the following:

W(x , vx)

R(y , vy)
po

R(y , vy)

W(x , vx)
 po

W(x , v)

R(x , v)
po W(x , v)

Theorem (Soundness of transformations)
If G TSO G ′ and G ′ is TSO-consistent, so is G.

Alternative TSO characterisation

TSO = SC + WR-reordering + RaW-elimination

Theorem
G is TSO-consistent iff
there exists G ′ such that G ∗TSO G ′ and G ′ is SC-consistent.

(⇐) By soundness of transformations.
(⇒) Assume that G is TSO-consistent and not SC-consistent.

Show that some transformation is applicable and that it
preserves TSO-consistency.

Induction metrics: |po ∩ (W× R)|

Application: compilation correctness

Compilation Correctness
[[compile(P)]]target memory model ⊆ [[P]]source memory model

TSO = SC + WR-reordering + RaW-elimination

To prove [[compile(P)]]TSO ⊆ [[P]]C11, it remains to show:
I Compilation is correct for SC.
I WR-reorderings and RaW-eliminations correspond to

C11-sound transformations in the source program.

Explaining memory models with program transformations

TSO = SC + WR-reordering + RaW-elimination

C11 release/acquire = ?

Power = ?

ARM = ?

C11 release/acquire

Independent reads of independent writes (IRIW)
a := x ; // 1
b := y ; // 0 x := 1; y := 1; c := y ; // 1

d := x ; // 0

I This behavior is allowed by C11.
I No sound thread-local transformation can be applied.
I Sequentialization, C1 ‖ C2 C1;C2, is applicable, and then

the outcome is possible.

a := x ; // 1
b := y ; // 0 x := 1;

x := 1;
a := x ;
b := y ;

x := 1;
a := 1;
b := y ;

b := y ;
x := 1;
a := 1;

C11 release/acquire counterexample

RA ≺ SC + WR-reordering + RaW-elimination + SEQ

y := 1;
x := 1;
a := x ; // 3
b := z ; // 0

x := 3;

z := 1;
x := 2;
c := x ; // 3
d := y ; // 0

I This behavior is allowed by C11.
I No local transformations are possible.
I Sequentialisation rules out the outcome.

POWER multiprocessor

I weaker than C11 release/acquire

Power ≺ SC + reorderings + eliminations + SEQ

Power axiomatic model [Alglave et al.’14]

An execution G is Power-consistent if the following hold:
1. mo is a disjoint union of relations {mox}x∈Loc, such that each relation mox is a

strict total order on WxUx .
2. hb is acyclic. (no-thin-air)
3. po|x ∪ rf ∪ fr ∪ mo is acyclic for every x ∈ Loc. (SC-per-loc)
4. fre; prop; hb∗ is irreflexive. (observation)
5. mo ∪ prop is acyclic. (propagation)
6. fr; mo is irreflexive. (atomicity)
7. mo; [U]; po; [U] is acyclic.

where:
− sync = po; [Fsync]; po and lwsync = po; [Flwsync]; po
− fence = sync ∪ ([RU]; lwsync; [RWU] ∪ ([W]; lwsync; [WU])) (fence order)
− fr = (rf−1; mo) \ [E] (read before)
− rfe = rf \ po and fre = fr \ po (external relations)
− ppo = ... (preserved program order)
− hb = ppo ∪ fence ∪ rfe (happens-before)
− prop1 = [WU]; rfe?; fence; hb∗; [WU]
− prop2 = ((mo ∪ fr) \ po)?; rfe?; (fence; hb∗)?; sync; hb∗
− prop = prop1 ∪ prop2 (propagation relation)

Power axiomatic model [Alglave et al.’14]

An execution G is Power-consistent if the following hold:
1. mo is a disjoint union of relations {mox}x∈Loc, such that each relation mox is a

strict total order on WxUx .
2. hb is acyclic. (no-thin-air)
3. po|x ∪ rf ∪ fr ∪ mo is acyclic for every x ∈ Loc. (SC-per-loc)
4. fre; prop; hb∗ is irreflexive. (observation)
5. mo ∪ prop is acyclic. (propagation)
6. fr; mo is irreflexive. (atomicity)
7. mo; [U]; po; [U] is acyclic.

where:
− sync = po; [Fsync]; po and lwsync = po; [Flwsync]; po
− fence = sync ∪ ([RU]; lwsync; [RWU] ∪ ([W]; lwsync; [WU])) (fence order)
− fr = (rf−1; mo) \ [E] (read before)
− rfe = rf \ po and fre = fr \ po (external relations)
− ppo = ... (preserved program order)
− hb = ppo ∪ fence ∪ rfe (happens-before)
− prop1 = [WU]; rfe?; fence; hb∗; [WU]
− prop2 = ((mo ∪ fr) \ po)?; rfe?; (fence; hb∗)?; sync; hb∗
− prop = prop1 ∪ prop2 (propagation relation)

The model allows cycles in po ∪ rf!
I The definition is not prefix-closed.
I Speculation is required to operationally construct executions.

Load buffering

The model allows cycles in po ∪ rf!
I The definition is not prefix-closed.
I Speculation is required to operationally construct executions.

Load buffering (LB)
a := x ; // 1
y := 1; x := y ;

R(x , 1)

W(y , 1)

R(y , 1)

W(x , 1)

po po deps
rf
rf

allowed by Power

Definition (Strong Power model)
An execution is StrongPower-consistent if it is Power-consistent
and po ∪ rf is acyclic.

Reduction to StrongPower-consistency

Power = StrongPower + reorderings

Definition
G Power G ′ if G ′ is obtained from G by reordering two
independent adjacent memory accesses to different locations:

W/R (x , vx)

W/R (y , vy)
po

�
��HHHdeps

W/R (y , vy)

W/R (x , vx)
 po

Theorem
An execution G is Power-consistent iff G ∗Power G ′ for some
StrongPower-consistent execution G ′.

I Limitation: Power’s isync fences are excluded

A strange ARM behaviour

ARM ≺ StrongARM + reorderings + eliminations

ARM weak
a := x ; // 1
x := 1; y := x ; x := y ;

R(x , 1)

W(x , 1)

R(x , 1)

W(y , 1)

R(y , 1)

W(x , 1)

po po podeps deps
rf

rf

rf

allowed by ARM

I No local transformation can be applied.

Summary

High-level points
I Some memory models can be defined via transformations.
I But there is more to weak memory than transformations.

Technical results
I TSO = SC + WR-reordering + RaW-elimination
I RA ≺ SC+ WR-reordering + RaW-elimination + SEQ
I Power = StrongPower + reorderings
I ARM ≺ StrongARM + reorderings + eliminations

Application
I Simplify compilation correctness proofs

See http://plv.mpi-sws.org/trns/ for more details and Coq proofs.

Thank you!

http://plv.mpi-sws.org/trns/

Summary

High-level points
I Some memory models can be defined via transformations.
I But there is more to weak memory than transformations.

Technical results
I TSO = SC + WR-reordering + RaW-elimination
I RA ≺ SC+ WR-reordering + RaW-elimination + SEQ
I Power = StrongPower + reorderings
I ARM ≺ StrongARM + reorderings + eliminations

Application
I Simplify compilation correctness proofs

See http://plv.mpi-sws.org/trns/ for more details and Coq proofs.

Thank you!

http://plv.mpi-sws.org/trns/

