Explaining relaxed memory models
with program transformations

Ori Lahav and Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

FM, November 2016

Relaxed memory models

» Sequential consistency (aka “interleaving semantics”) is the
standard memory model for reasoning about concurrent programs.

» Modern hardware employs, e.g., local write buffers, hierarchies of
caches, and speculative executions, that significantly improve
performance, but invalidate SC in the presence of data races.

» To further improve performance, compilers perform
concurrency-oblivious optimizations.

Relaxed memory models provide formal sound semantics for
realistic high-performance concurrency.

)

Litmus tests

Store buffering (SB)

x =1; y =1
a=y; /0 || b:=x; /0

Allowed by x86-TSO, Power,
ARM, C11 with non-SC accesses

Load buffering (LB)

a=x; /1
y:=1

Allowed by Power, ARM,
C11 with relaxed accesses

b=y, /1

x = 1;

Litmus tests

Store buffering (SB)

Load buffering (LB)

x = 1; y :=1; a=x; /1| b:=y; /1
a=y; /0 b:=x; /0 y =1, x:=1;
Allowed by x86-TSO, Power, Allowed by Power, ARM,

ARM, C11 with non-SC accesses C11 with relaxed accesses

Program transformations provide intuitive explanations.

Litmus tests

Store buffering (SB) Load buffering (LB)
x:=1; y =1, a=x; /1| b=y, /1
a=y; /0| b:=x; /0 y =1, x = 1;
Allowed by x86-TSO, Power, Allowed by Power, ARM,
ARM, C11 with non-SC accesses C11 with relaxed accesses
Program transformations provide intuitive explanations.)

Our goal
Formally reconcile relaxed memory models definitions with the
transformations account.

Litmus tests

Store buffering (SB) Load buffering (LB)
x:=1; y =1, a=x; /1| b=y, /1
a=y; /0| b:=x; /0 y =1, x = 1;
Allowed by x86-TSO, Power, Allowed by Power, ARM,
ARM, C11 with non-SC accesses C11 with relaxed accesses
Program transformations provide intuitive explanations.)

Our goal
Formally reconcile relaxed memory models definitions with the
transformations account.

TSO > Cll-release/acquire >~ Power > ARM |

Operational account for store buffering in x86-TSO

CcrU1 o CPUnN
lWRITE l
READ | | B
lWRITE-BACK l
| Memory |

Store buffering + fences

Store buffering

x = 1; y:=1;
fence; fence;

x =1 Hy:zl;
a:=y;, /0 b:=x; /0

a=y; /0| b:=x; /0

SB and LB in axiomatic models

Store buffering (SB)

Load buffering (LB)

x:=1; y =1 a=x; /1 b=y, /1
a==y; /0 b:=x; /0 y =1; x =1;
Py " V;O py V;o
W(x,1) ;% Wy, 1) R(x, 1) R(y,1)
'l \‘ V~\ ”v
Pol’/rf rf“lPO pOl R lpo
R(y,0) R(x,0) Wy, 1) W(x, 1)

po

— program order

rf
-—-p

reads-from

Axiomatic x86-TSO model

An execution is TSO-consistent if:

» po Urf is acyclic

> there exists a total ordering of all write events, such that
the none of the following occurs:

W Wx Wy
ourty wiofiwer
wy Ry
Wx Wx Wy
rf \\‘ }I’I‘f \pO
RX T Ry

+ conditions on fences and RMWs

SB and LB in TSO

Store buffering (SB)

Load buffering (LB)

x:=1; y =1; a=x; /1 b=y, /1
a=y; /0| b:=x; /0 y =1, x =1;
mo " po MUNUPO po po
W(X, 1) "il"""\> W(y, 1) R‘(X7 1) R(y7 1)
,’ mo “ v. v
Pol ’,'rf rf“ lpo Pol {ﬁl:'\{f lPo
R(y,0) R(x,0) W(y,1) W(x,1)
allowed by TSO Forbidden by TSO

po

— program order
r
---» reads-from

------ > modification order

Sound optimizations under TSO

Sound Transformations
Psource > Ptarget — |IPtarget]] c |IPsource]]

Read-after-write elimination

Write-read reordering

x:=1; a:=y,
A >
a:=y; x =1; a:=x; a:=1;

Sound optimizations under TSO

Sound Transformations
Psource > Ptarget — |IPtarget]] € |I'Dsource]]

Werite-read reordering Read-after-write elimination

x =1; a:=y; x =1; x:=1;
s o d
a:=y,; x = 1; a:= X, a:=1;
G ~»1so G’ if G’ is obtained from G by one of the following:
W(x, vy) R(y,vy) W(x, v)
po‘ ~ poi p0¢ A% W(x,v)
R(y, vy) W(x, vx) R(x, v)

Theorem (Soundness of transformations)

If G ~T1so G’ and G’ is TSO-consistent, so is G.

Alternative TSO characterisation

TSO = SC + WR-reordering + RaW-elimination)

G is TSO-consistent iff
there exists G’ such that G ~+%¢o G’ and G’ is SC-consistent.

(<) By soundness of transformations.
(=) Assume that G is TSO-consistent and not SC-consistent.
Show that some transformation is applicable and that it

preserves TSO-consistency.
Induction metrics: |po N (W X R)|

Application: compilation correctness

Compilation Correctness

Hcompile(P)]]target memory model € IIP]]source memory model

TSO = SC + WR-reordering + RaW-elimination)

To prove [compile(P)]tso < [P]c11, it remains to show:
» Compilation is correct for SC.

» WR-reorderings and RaW-eliminations correspond to
Cl1-sound transformations in the source program.

Explaining memory models with program transformations

TSO = SC + WR-reordering + RaW-elimination J
C11 release/acquire = ? |
Power = 7 J

ARM = ? J

C11 release/acquire

Independent reads of independent writes (IRIW)

c=y, /1
d:=x; /0

a=x; /1

b:=y; /0 Gt l At

> This behavior is allowed by C11.
» No sound thread-local transformation can be applied.

» Sequentialization, C; || G ~ Cy; Gy, is applicable, and then
the outcome is possible.

a=x; /1 x:=1 x:=1 b:=y;
b=y /0 x: =1, ~ ai=x ~ o ai=1 ~ x:=1;
- b:y b:y a: =1;

C11 release/acquire counterexample

RA < SC + WR-reordering + RaW-elimination + SEQ

» This behavior is allowed by C11.
» No local transformations are possible.

» Sequentialisation rules out the outcome.

POWER multiprocessor

» weaker than C11 release/acquire

Power < SC + reorderings + eliminations + SEQ

Power axiomatic model

An execution G is Power-consistent if the following hold:
1.

ook~

7.

[Alglave et al.14]

is a disjoint union of relations {mox }xcloc, such that each relation moy is a

strict total order on W, Uy.
hb is acyclic.
po|x Urf Ufr Umo is acyclic for every x € Loc.
fre; prop; hb* is irreflexive.
U prop is acyclic.
fr; is irreflexive.

: [U]; po; [U] is acyclic.

where:
— sync = po; [Fsync]; po and lwsync = po; [Fiusyac]; po

— fence = sync U ([RU]; lwsync; [RWU] U ([W]; lwsync; [WU]))

— fr = (rf Luo) \ [

— rfe =rf \ po and fre = fr \ po
— ppo = ...

— hb = ppo U fence U rfe

— prop; = [WU];rer;fence;hb*; [wu]

— prop, = ((

— prop = prop; U prop,

Ufr)\ po)?; rfe’: (fence; hb*)?; sync; hb*

(no-thin-air)
(SC-per-loc)
(observation)
(propagation)
(atomicity)

(fence order)

(read before)

(external relations)
(preserved program order)
(happens-before)

(propagation relation)

Power axiomatic model [Alglave et al 14]

An execution G is Power-consistent if the following hold:

1. is a disjoint union of relations {mox }xcloc, such that each relation moy is a
strict total order on W, Uy.

2. hb is acyclic. (no-thin-air)

3. polx Urf U fr Umo is acyclic for every x € Loc. (SC-per-loc)

4. fre;prop; hb* is irreflexive. (observation)

5. U prop is acyclic. (propagation)

6. fr;mo is irreflexive. (atomicity)

. The model allows cycles in po U rf!

» The definition is not prefix-closed.

» Speculation is required to operationally construct executions.

— ppo = ... (preserved program order)
— hb = ppo U fence U rfe (happens-before)
— prop; = [WU];rer;fence;hb*; [wu]

— prop, = ((mo U fr) \ po)?; rfe’; (fence; hb*)’; sync; hb*

— prop = prop; U prop, (propagation relation)

Load buffering

The model allows cycles in po U rf!

» The definition is not prefix-closed.

» Speculation is required to operationally construct executions.

R(x,1) R(y,1)
Load buffering (LB) 1po‘:}:§/'pol deps
=x; /1 e T
P =y W)

allowed by Power

Definition (Strong Power model)

An execution is StrongPower-consistent if it is Power-consistent
and po U rf is acyclic.

Reduction to StrongPower-consistency

Power = StrongPower + reorderings J

G ~power G' if G’ is obtained from G by reordering two
independent adjacent memory accesses to different locations:

WR(xv) W/R(y,v)

e fre - w)

WR (%) W/R (x)

Theorem

| \

*

/
Power G for some

An execution G is Power-consistent iff G ~~
StrongPower-consistent execution G’.

» Limitation: Power's isync fences are excluded

A strange ARM behaviour

ARM < StrongARM + reorderings + eliminations

ARM weak

v \
pol f:f’ pol : deps ,/{)ol : deps ,
.7 | P ¥
W(x,1) W(y,1) W(x,1)"
allowed by ARM

» No local transformation can be applied.

Summary

High-level points

» Some memory models can be defined via transformations.

» But there is more to weak memory than transformations.

Technical results
» TSO = SC + WR-reordering + RaW-elimination
» RA < SC+ WR-reordering + RaW-elimination + SEQ

» Power = StrongPower + reorderings

| \

» ARM =< StrongARM + reorderings + eliminations

Application

» Simplify compilation correctness proofs

See http://plv.mpi-sws.org/trns/ for more details and Coq proofs.

http://plv.mpi-sws.org/trns/

Summary

High-level points

» Some memory models can be defined via transformations.

» But there is more to weak memory than transformations.

Technical results
» TSO = SC + WR-reordering + RaW-elimination
» RA < SC+ WR-reordering + RaW-elimination + SEQ

» Power = StrongPower + reorderings

| \

» ARM =< StrongARM + reorderings + eliminations

Application

» Simplify compilation correctness proofs

See http://plv.mpi-sws.org/trns/ for more details and Coq proofs.

Thank you!

http://plv.mpi-sws.org/trns/

