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Abstract. We present a compositional denotational semantics for a
functional language with first-class parallel composition and shared-mem-
ory operations whose operational semantics follows the Release/Acquire
weak memory model (RA). The semantics is formulated in Moggi’s mon-
adic approach, and is based on Brookes-style traces. To do so we adapt
Brookes’s traces to Kang et al.’s view-based machine for RA, and supple-
ment Brookes’s mumble and stutter closure operations with additional
operations, specific to RA. The latter provides a more nuanced under-
standing of traces that uncouples them from operational interrupted exe-
cutions. We show that our denotational semantics is adequate and use it
to validate various program transformations of interest. This is the first
work to put weak memory models on the same footing as many other
programming effects in Moggi’s standard monadic approach.
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1 Introduction
Denotational semantics defines the meaning of programs compositionally, where
the meaning of a program term is a function of the meanings assigned to its
immediate syntactic constituents. This key feature makes denotational semantics
instrumental in understanding the meaning a piece of code independently of the
context under which the code will run. This style of semantics contrasts with
standard operational semantics, which only executes closed/whole programs. A
basic requirement of such a denotation function !−" is for it to be adequate w.r.t.
a given operational semantics: plugging program terms M and N with equal
denotations—i.e. !M" = !N"—into some program context Ξ [−] that closes over
their variables, results in observationally indistinguishable closed programs in
the given operational semantics. Moreover, assuming that denotations have a
defined order (≤), a “directed” version of adequacy ensures that !M" ≤ !N"
implies that all behaviors exhibited by Ξ [M ] under the operational semantics
are also exhibited by Ξ [N ].

For shared-memory concurrent programming, Brookes’s seminal work [13]
defined a denotational semantics, where the denotation !M" is a set of totally
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ordered traces of M closed under certain operations, called stutter and mumble.
Traces consist of sequences of memory snapshots that M guarantees to provide
while relying on its environment to make other memory snapshots. Brookes [12]
used the insights behind this semantics to develop a semantic model for sepa-
ration logic, and Turon and Wand [46] used them to design a separation logic
for refinement. Additionally, Xu et al. [48] used traces as a foundation for the
Rely/Guarantee approach for verification of concurrent programs, and Liang
et al., Liang et al. [34, 35] used a trace-based program logic for refinement.

A memory model decides what outcomes are possible from the execution of
a program. Brookes established the adequacy of the trace-based denotational
semantics w.r.t. the operational semantics of the strongest model, known as
sequential consistency (SC), where every memory access happens instantaneously
and immediately affects all concurrent threads. However, SC is too strong to
model real-world shared memory, whether it be of modern hardware, such as
x86-TSO [40, 44] and ARM, or of programming languages such as C/C++ and
Java [4, 37]. These runtimes follow weak memory models that allow performant
implementations, but admit more behaviors than SC.

Do weak memory models admit adequate Brookes-style denotational se-
mantics? This question has been answered affirmatively once, by Jagadeesan
et al. [25], who closely followed Brookes to define denotational semantics for
x86-TSO. Other weak memory models, in particular, models of programming
languages, and non-multi-copy-atomic models, where writes can be observed by
different threads in different orders, have so far been out of reach of Brookes’s to-
tally ordered traces, and were only captured by much more sophisticated models
based on partial orders [15, 19, 24, 26, 28, 41].

In this paper we target the Release/Acquire memory model (RA, for short).
This model, obtained by restricting the C/C++11 memory model to Release/
Acquire atomics, is a well-studied fundamental memory model weaker than x86-
TSO, which, roughly speaking, ensures “causal consistency” together with “per-
location-SC” and “RMW (read-modify-write) atomicity” [29, 30]. These assur-
ances make RA sufficiently strong for implementing common synchronization
idioms. RA allows more performant implementations than SC, since, in par-
ticular, it allows the reordering of a write followed by a read from a different
location, which is commonly performed by hardware, and it is non-multi-copy-
atomic, thus allowing less centralized architectures like POWER [45].

Our first contribution is a Brookes-style denotational semantics for RA. As
Brookes’s traces are totally ordered, this result may seem counterintuitive. The
standard semantics for RA is a declarative (a.k.a. axiomatic) memory model, in
the form of acyclicity consistency constraints over partially ordered candidate
execution graphs. Since these graphs are not totally ordered, one might expect
that Brookes’s traces are insufficient. Nevertheless, our first key observation is
that an operational presentation of RA as an interleaving semantics of a weak
memory system lends itself to Brookes-style semantics. For that matter, we de-
velop a notion of traces compatible with Kang et al.’s “view-based” machine [27],
an operational semantics that is equivalent to RA’s declarative formulation. Our
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main technical result is the (directed) adequacy of the proposed Brookes-style
semantics w.r.t. that operational semantics of RA.

A main challenge when developing a denotational semantics lies in mak-
ing it sufficiently abstract. While full abstraction is often out of reach, as a
yardstick, we want our semantics to be able to justify various compiler trans-
formations/optimizations that are known to be sound under RA [47]. Indeed,
an immediate practical application of a denotational semantics is the ability to
provide local formal justifications of program transformations, such as those per-
formed by optimizing compilers. In this setting, to show that an optimization
N !M is valid amounts to showing that replacing N by M anywhere in a larger
program does not introduce new behaviors, which follows from !M" ≤ !N" given
a directionally adequate denotation function !−".

To support various compiler transformations, we close our denotations un-
der certain operations, including analogs to Brookes’s stutter and mumble, but
also several RA-specific operations, that allow us to relate programs which
would naively correspond to rather different sets of traces. Given these closure
operations, our semantics validates standard program transformations, includ-
ing structural transformations, algebraic laws of parallel programming, and all
known thread-local RA-valid compiler optimizations. Thus, the denotational se-
mantics is instrumental in formally establishing validity of transformations under
RA, which is a non-trivial task [19, 47].

Our second contribution is to connect the core semantics of parallel pro-
gramming languages exhibiting weak behaviors to the more standard semantic
account for programming languages with effects. Brookes presented his semantics
for a simple imperative WHILE language, but Benton et al., Dvir et al. [6, 20]
later recast it atop Moggi’s monad-based approach [38] which uses a functional,
higher-order core language. In this approach the core language is modularly ex-
tended with effect constructs to denote program effects. In particular, we define
parallel composition as a first-class operator. This is in contrast to most of the
research of weak memory models that employ imperative languages and assume
a single top-level parallel composition.

A denotational semantics given in this monadic style comes ready-made with
a rich semantic toolkit for program denotation [7], transformations [5, 8–10, 23],
reasoning [2, 36], etc.. We challenge and reuse this diverse toolkit throughout
the development. We follow a standard approach and develop specialized logical
relations to establish the compositionality property of our proposed semantics;
its soundness, which allows one to use the denotational semantics to show that
certain outcomes are impossible under RA; and adequacy. This development
puts weak memory models, which often require bespoke and highly specialized
presentations, on a similar footing to many other programming effects.

Outline. In §2 we lay the groundwork for the rest of the paper by introducing
the programming language that we will use (§2.1), the main ideas that underpin
Brookes’s trace-based denotational semantics (§2.2), and the operational RA
model (§2.3). In §3 we present the core aspects of our denotational semantics.
First, we discuss our extension of RA’s operations semantics with first-class
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parallelism, which enables denotations to be defined for concurrent composition
(§3.1). We then present RA traces (§3.2) and use them to define the denotations
of key program constructs (§3.3). Next, we show how the restriction of traces
within denotations (§3.4) and the addition of closure operations (§3.5) make our
denotational semantics more abstract. The denotational semantics extends to the
entire programming language standardly using Moggi’s monad-based approach
(§3.6). With the denotational semantics in place, we present our main results in
§4. Finally, we conclude and discuss related work in §5. More details are available
in the extended version of this paper [21].

2 Preliminaries

We first introduce the language and its operational semantics under the Sequen-
tial Consistency (SC) memory model (§2.1). We then outline Brookes’s denota-
tional semantics for SC (§2.2). Finally, we introduce Kang et al.’s operational
presentation of Release/Acquire (RA) (§2.3).

2.1 Language and Operational Semantics

The programming language we use is an extension of a functional language with
shared-state constructs. Program terms M and N can be composed sequentially
explicitly as M ;N or implicitly by left-to-right evaluation in the pairing construct
⟨M,N⟩. They can be composed in parallel as M ∥ N . We assume preemptive
scheduling, thus imposing no restrictions on the interleaving execution steps
between parallel threads. To introduce the memory-access constructs, we present
the well-known message passing litmus test, adapted to the functional setting:

(x := 1 ; y := 1) ∥ ⟨y?, x?⟩ (MP)

Here, x and y refer to distinct shared memory locations. Assignment ℓ:=v stores
the value v at location ℓ in memory, and dereference ℓ? loads a value from ℓ.
The language also includes atomic read-modify-write (RMW) constructs. For ex-
ample, assuming integer storable values, FAA (ℓ, v) (Fetch-And-Add) atomically
adds v to the value stored in ℓ. In contrast, interleaving is permitted between
the dereferencing, adding, and storing in ℓ := (ℓ?+ v). The underlying memory
model dictates the behavior of the memory-access constructs more specifically.

In the functional setting, execution results in a returned value: ℓ :=v returns
the unit value ⟨⟩, i.e. the empty tuple; ℓ?, and the RMW constructs such as
FAA (ℓ, v), return the loaded value; M ;N returns what N returns; and ⟨M,N⟩,
as well as M ∥ N , return the pair consisting of the return value of M and the
return value of N . We assume left-to-right execution of pairs, so in the (MP)
example ⟨y?, x?⟩ steps to ⟨v, x?⟩ for a value v that can be loaded from y, and
⟨v, x?⟩ steps to ⟨v, w⟩ for a value w that can be loaded from x. In between, the
left side of the parallel composition (∥) can take steps.

We can use intermediate results in subsequent computations via let binding:
let a = M inN binds the result of M to a in N . Thus, we execute M first,
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and substitute the resulting value V for a in N before executing N [a %→ V ].
Similarly, we deconstruct pairs by matching: matchM with ⟨a, b⟩. N binds the
components of the pair that M returns to a and b respectively in N . The first
and second projections fst and snd, as well as the operation swap that swaps the
pair constituents, are defined using match standardly.

Sequential consistency. In the strongest memory model of Sequential Consis-
tency (SC), every value stored is immediately made available to every thread,
and every dereference must load the latest stored value. Thus the underlying
memory model uses maps from locations to values for the memory state that
evolves during program execution. Given an initial state, the behavior of a pro-
gram in SC depends only on the choice of interleaving of steps. Though any
such map can serve as an initial state, litmus tests are traditionally designed
with the memory that sets all values to 0 in mind. In (MP) the order of the two
stores and the two loads ensures that executions under SC may return ⟨⟨⟩ , ⟨0, 0⟩⟩,
⟨⟨⟩ , ⟨0, 1⟩⟩, and ⟨⟨⟩ , ⟨1, 1⟩⟩, but not ⟨⟨⟩ , ⟨1, 0⟩⟩.

Observations. An observable behavior of an entire program is a value it may
evaluate to from given initial memory values. While programs may internally
interact and observe the memory, we do not consider it feasible to observe the
memory directly.

2.2 Overview of Brookes’s Trace-based Semantics

Observable behavior as defined for whole programs is too crude for the study
program terms that can interact with the program context within which they
run. Indeed, compare M1 defined as x := 1 ; y := 1 ; y? versus M2 defined as
x := 1 ; y := x? ; y?. Under SC, the difference between them as whole programs
is unobservable: starting from any initial state both return 1. Now consider
them within the program context − ∥ x := 2. That is, compare M1 ∥ x := 2
versus M2 ∥ x := 2. In the first, M1 still always returns 1; but in the second,
M2 can also return 2 by interleaving the store of 2 in x immediately after the
store of 1 in x. Thus, if !M", i.e. M ’s denotation, were to simply map initial
states to possible results according to executions of M , we could not define
!M ∥ N" in terms of !M" and !N" alone, because we would have !M1" = !M2"
but also !M1 ∥ x := 2" ̸= !M2 ∥ x := 2". We conclude that !M" must contain
more information on M than an “input-output” relation; it must account for
interference by the environment.

Adequacy in SC. A prominent approach to define compositional semantics for
concurrent programs is due to Brookes [13], who defined a denotational semantics
for SC by taking !M" to be a set of traces of M closed under certain rewrite
rules as we detail below. Brookes established a (directional) adequacy theorem:
if !M" ⊇ !N" then the transformation M ! N is valid under SC. The latter
means that, when assuming SC-based operational semantics, M can be replaced
by N within a program without introducing new observable behaviors for it.
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Thus, adequacy formally grounds the intuition that the denotational semantics
soundly captures behavior of program terms.

As a particular practical benefit, formal and informal simulation arguments
which are used to justify transformations in operational semantics can be re-
placed by cleaner and simpler proofs based on the denotational semantics. For
example, a simple argument shows that !x := v ; x := w" ⊇ !x := w" holds in
Brookes’s semantics. Thanks to adequacy, this justifies Write-Write Elimination
(WW-Elim) x := v ; x := w ! x := w in SC.

Traces in SC. In Brookes’s semantics, a program term is denoted by the set of
traces, each trace consisting of a sequence of transitions. Each transition is of
the form ⟨µ, ρ⟩, where µ and ρ are memories, i.e. maps from locations to values.
A transition describes a program term’s execution relying on a memory state µ
in order to guarantee the memory state ρ.

For example, !x := w" includes all traces of the form ⟨ρ, ρ [x := w]⟩ , where
ρ [x := w] is equal to ρ except for mapping x to w. The definition is composi-
tional: the traces in !x := v ; x := w" are obtained from sequential compositions
of traces from !x := v" with traces from !x := w", obtaining all traces of the
form ⟨µ, µ [x := v]⟩ ⟨ρ, ρ [x := w]⟩ . Such a trace relies on µ in order to guaran-
tee µ [x := v], and then relies on ρ in order to guarantee ρ [x := w]. Allowing
ρ ̸= µ [x := v] reflects the possibility of environment interference between the
two store instructions. Indeed, when denoting parallel composition !M ∥ N" we
include all traces obtained by interleaving transitions from a trace from !M"
with transitions from a trace from !N". By sequencing and interleaving, one
subterm’s guarantee can fulfill the requirement which another subterm relies on.
They may also relegate reliances and guarantees to their mutual context.

In the functional setting, executions not only modify the state but also return
values. In this setting, traces are pairs, which we write as ξ ∴ r, where ξ is the
sequence of transitions and r represents the final value that the program term
guarantees to return [6]. For example, the semantics of dereference !x?" includes
all traces of the form ⟨µ, µ⟩ ∴µ(x). Indeed, the execution of x? does not change
the memory and returns the value loaded from x. In the semantics of assignment
!x := v", instead of ⟨µ, µ [x := v]⟩ we have ⟨µ, µ [x := v]⟩ ∴ ⟨⟩.

Rewrite rules in SC. Were denotations in Brookes’s semantics defined to only
include the traces explicitly mentioned above, it would not be abstract enough
to justify (WW-Elim), which eliminates redundant writes. Indeed, we only saw
traces with two transitions in !x := v ; x := w", but in !x := w" we saw traces
with one. The semantics would still be adequate, but it would lack abstraction.
This is where Brookes’s second main idea comes into play, making the denota-
tions more abstract by closing them under two operations that rewrite traces:

Stutter adds a transition of the form ⟨µ, µ⟩ anywhere in the trace. Intuitively,
a program term can always guarantee what it relies on.

Mumble combines a couple of subsequent transitions of the form ⟨µ, ρ⟩ ⟨ρ, θ⟩
into a single transition ⟨µ, θ⟩ anywhere in the trace. Intuitively, a program
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term can always omit a guarantee to the environment, and rely on its own
omitted guarantee instead of relying on the environment.

Denotations in Brookes’s semantics are defined to be sets of traces closed
under rewrite rules: applying a rewrite to a trace in the set results in a trace
that is also in the set. For example, !x := w" is the least closed set with all traces
of the form ⟨ρ, ρ [x := w]⟩ ∴ ⟨⟩, and !x := v ; x := w" is the least closed set with
all sequential compositions of traces from !x := v" with traces from !x := w".

Closure under these rules makes traces in !M" correspond precisely to inter-
rupted executions of M , which are executions of M in which the memory can
arbitrarily change between steps of execution. Each transition ⟨µ, ρ⟩ in a trace in
!M" corresponds to multiple execution steps of M that transition µ into ρ, and
each gap between transitions accounts for possible environment interruption.
The rewrite rules maintain this correspondence: stutter corresponds to taking 0
steps, and mumble corresponds to taking n +m steps instead of taking n steps
and then m steps when the environment did not change the memory in between.
Brookes’s adequacy proof is based on this precise correspondence. In particular,
the single-pair traces in !M" correspond to the (uninterrupted) executions, the
“input-output” relation, of M .

Abstraction in SC. Brookes’s semantics is fully abstract, meaning that the con-
verse to adequacy also holds: if N ! M is valid under SC, then !N" ⊇ !M".
However, Brookes’s proof relies on an artificial program construct, await, that
permits waiting for a specified memory snapshot and then step (atomically)
to a second specified memory snapshot. Thus, in realistic languages, when this
construct is unavailable, Brookes’s full abstraction proof does not apply.

Nevertheless, even without full abstraction, one can still provide evidence
that an adequate semantics is abstract by ensuring that it supports known trans-
formations. As an example, we show directly that !x := v ; x := w" ⊇ !x := w"
holds in Brookes’s semantics. Since !x := v ; x := w" is closed, it suffices to show
that !x := v ; x := w" ⊇

{
⟨µ, µ [x := w]⟩ ∴ ⟨⟩

∣∣ memory µ
}

. For a memory µ, we
have ⟨µ, µ [x := v]⟩ ⟨ρ, ρ [x := w]⟩ ∴⟨⟩ ∈ !x := v ; x := w" for every memory ρ, in
particular when ρ = µ [x := v]. Since ρ [x := w] = µ [x := v] [x := w] = µ [x := w],
we have ⟨µ, µ [x := v]⟩ ⟨µ [x := v], µ [x := w]⟩ ∴ ⟨⟩ ∈ !x := v ; x := w". After ap-
plying mumble, we have ⟨µ, µ [x := w]⟩ ∴ ⟨⟩ ∈ !x := v ; x := w".

2.3 Overview of Release/Acquire Operational Semantics

Memory accesses in RA are more subtle in than in SC. To address this we
adopt Kang et al.’s “view-based” machine [27], an operational presentation of
RA proven to be equivalent to the original declarative formulation of RA [e.g.
30]. In this model, rather than the memory holding only the latest value written
to every variable, the memory accumulates a set of memory update messages for
each location. Each thread maintains its own view that captures which messages
the thread can observe, and is used to constrain the messages that the thread
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Fig. 1. Illustrations of a memory (top) and a trace (bottom), in the setting of two
memory locations, x and y. Top: A memory holding six messages. The timelines
are purposefully misaligned and not to scale to emphasize that timestamps for
different locations are incomparable and that only the order between them is
relevant. The graph structure that the views impose is illustrated by arrows
pointing between messages. Messages that are not dovetailed are set apart, e.g.
ν3 dovetails with ν2, which does not dovetail with ν1. Bottom: A trace with
two transitions: α ⟨µ1, ρ1⟩ ⟨µ2, ρ2⟩ ω ∴ 5. The memory illustrated on top is ρ2.
Messages and edges that are not part of a previous memory are highlighted. The
local messages are ν2 and ν3, and the rest are environment messages.

may read and write. The messages in the memory carry views as well, which are
inherited from the thread that wrote the message, and passed to any thread that
reads the message. Thus views indirectly maintain a causal relationship between
messages in memory throughout the evolution of the system.

More concretely, causality is enforced by timestamping messages, thus plac-
ing them on their location’s timeline. To capture the atomicity of RMWs, each
message occupies a half-open segment (q, t] on their location’s timeline, where
t is the message’s timestamp. It dovetails with a message at the same location
with timestamp q. An RMW “modifies” a message by dovetailing with it.

A view κ associates a timestamp κ(ℓ) to each location ℓ, obscuring the portion
of ℓ’s timeline before κ(ℓ). The view points to a message at ℓ with timestamp
κ(ℓ). A view ω dominates a view α, written α ≤ ω, if α(ℓ) ≤ ω(ℓ) for every ℓ.

Messages point to messages via the view they carry, and must point to them-
selves. So when specifying a message, the value its view takes at its location
may be omitted. For example, assuming of two location, x and y, we denote by
x:1@(.5,1.7] ⟪y@3.5⟫ the message at location x that carries the value 1, occupies
the segment (.5, 1.7] on x’s timeline, and carries the view κ such that κ(x) = 1.7
and κ(y) = 3.5. An example memory is depicted on the top of Figure 1.

When a thread writes to ℓ, it must increase the timestamp its view associates
with ℓ and use its new view as the message’s view. The message’s segment
must not overlap with any other segment on ℓ’s timeline. In particular, only one
message can ever dovetail with a given message. A thread can only read from
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Fig. 2. Depictions of a step during an execution of a litmus test, with the view
of the right thread changing from σ to σ′. The value each message carries is in
its bottom-right corner. Views are illustrated implicitly in the graph structure
that they impose. Obscured messages are faded. Left: As the right thread in
(MP) loads 1 from y, it inherits the view of ϵ1, obscuring ν0. Right: The right
thread in (SB) loading 0 from x. Storing ϵ1 did not obscure ν0.

revealed messages, and when it reads, its view increases as needed to dominate
the view of the loaded message. This may obscure messages at other locations.

Revisiting the (MP) litmus test, starting with a memory with a single message
holding 0 at each location, and with all views pointing to the timestamps of these
message, suppose the right thread loaded 1 from y, as depicted on the left side of
Figure 2. Such a message can only be available if the left thread stored it. Before
storing 1 to y, the left thread stored 1 to x, obscuring the initial x message. The
right thread inherits this limitation through the causal relationship, so it will
not be able to load 0 from x. Therefore, RA forbids the outcome ⟨⟨⟩ , ⟨1, 0⟩⟩.

In contrast, consider the litmus test known as store buffering:

(x := 1 ; y?) ∥ (y := 1 ; x?) (SB)

By considering the possible interleavings, one can check that no execution in SC
returns ⟨0, 0⟩. However, in RA some do. Indeed, even if the left thread stores to
x before the right thread loads from x, the right thread’s view allows it to load
0, as depicted on the right side of Figure 2.

We can recover the SC behavior by interspersing fences between sequenced
memory accesses, which we model with FAA (z, 0) to a fresh location z. Thus,
compare (SB) to the store buffering with fences litmus test:

(x := 1 ; FAA (z, 0) ; y?) ∥ (y := 1 ; FAA (z, 0) ; x?) (SB+F)

Both of the FAA (z, 0) instructions store messages that must dovetail with the
message that they load from, and in that also inherit its view. They cannot both
dovetail with the same message because their segments cannot intersect. Thus,
one of them—say, the one on the right—will have to dovetail with the other. In
this scenario, the view of the message that the left thread stores at z points to
the message it previously stored at x. When the right thread loads the message
from z it inherits this view, obscuring the initial message to x. Therefore, when
it later loads from x, it must load what the left thread stored. Thus, like in SC,
no execution in RA returns ⟨0, 0⟩.
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3 Denotational Semantics for Release/Acquire

We start this section by explaining how we support first-class concurrent compo-
sition (∥) in the operational semantics of Release/Acquire (§3.1). In the rest of
the section we present the core of our denotational semantics. First, we present
our notion of a trace, adapted to RA, along with four basic rewrite rules that our
denotations are closed under (§3.2). Next, we define the denotations of the key
program constructs (§3.3). We then present further aspects of the denotational
semantics that make it more abstract: restrictions that traces in denotations
must uphold (§3.4), and three more rewrite rules under which denotations are
closed (§3.5). For completeness, we show how to give denotations to the whole
language standardly, using Moggi’s approach (§3.6).

3.1 First-class Concurrent Composition

Kang et al. presentation assumes top-level parallelism, a common practice in
studies of weak-memory models. This comes at the cost of the uniformity and
compositionality. In particular, the denotation !M ∥ N" cannot be defined. We
resolve this by extending Kang et al.’s operational semantics to support first-class
parallelism by organizing thread views in an evolving view-tree, a binary tree
with view-labelled leaves, rather than in a fixed flat mapping. Thus, states that
accompany executing terms consist of a memory and a view-tree. In discourse,
we do not distinguish between a view-leaf and its label.

An initial state consists of a memory with a single message at each location,
and a view which points to these messages’ timestamps. The example below
shows how threads inherit their parent’s view upon activation and combine their
views as they synchronize:

Example. In the following, # is the execution step relation, #∗ is its reflexive-
transitive closure, µ0 is an initial memory, κ̇ is the κ-labelled view-leaf, T ̂R is
the view-tree that consists of a node connected to the view-trees T and R, and
ω is the least view that dominates both ω1 and ω2:

⟨µ0, α̇⟩ ,M ; (N1 ∥ N2)#∗ ⟨µ1, α̇
′⟩ , N1 ∥ N2 #

〈
µ1, α̇

′ ̂ α̇′
〉
, N1 ∥ N2

#∗
〈
ρ, ω̇1 ̂ ω̇2

〉
, V1 ∥ V2 # ⟨ρ, ω̇⟩ , ⟨V1, V2⟩

First, M runs until it returns a value, which is discarded by the sequencing
construct. Next, the parallel composition N1 ∥ N2 activates. The threads then
interleave executions, each with its associated side of the view-tree. Finally, once
both threads return a value, they synchronize.

Handling parallel composition as a first-class construct allows us to decom-
pose Write-Read Reordering (WR-Reord) (x := v) ; y? ! fst ⟨y?, (x := v)⟩ , a
crucial reordering of memory accesses valid under RA but not under SC, into a
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combination of Write-Read Deorder (WR-Deord) ⟨(x := v) , y?⟩! (x := v) ∥ y?
together with structural transformations and laws of parallel programming:

(x := v) ; y?
↓Structural

! snd ⟨(x := v) , y?⟩
↓(WR-Deord)

! snd ((x := v) ∥ y?)
↓Par. Prog. Law: Symmetry

! snd (swap (y? ∥ (x := v)) )
↓Structural

! fst (y? ∥ (x := v))
↓Par. Prog. Law: Sequencing

! fst ⟨y?, (x := v)⟩

This provides a separation of concerns: the components of this decomposition are
supported by our semantics using independent arguments. It also sheds a light
on the interesting part, as they are all valid under SC except for (WR-Deord).

3.2 Traces for Release/Acquire

Adapting Brookes’s SC-traces, our RA-traces also include a sequence of transi-
tions ξ, each transition a pair of RA memories; and a return value r. Intuitively,
these play a similar role here, formally grounded in analogs to the stutter and
mumble rewrite rules. Seeing that the operational semantics only adds messages
and never modifies them, we require that every memory snapshot in the sequence
ξ be contained in the subsequent one, whether it be within or across transitions.
A message added within a transition is a local message; otherwise it is an en-
vironment message. We call the first memory in ξ’s first transition its opening
memory, and the second memory in ξ’s last transition its closing memory.

In addition, RA-traces include an initial view α, declaring which messages are
relied upon to be revealed in ξ’s opening memory; and a final view ω, declaring
which messages are guaranteed to be revealed in ξ’s closing memory. We ground
these intuition formally in the rewind and forward rewrite rules below.

We write the trace as α ξ ω∴r. See an illustration on the bottom of Figure 1.

Stutter & Mumble. We define the stutter (St) and mumble (Mu) rewrite rules:

α ξη ω ∴ r St−→ α ξ⟨µ, µ⟩η ω ∴ r α ξ⟨µ, ρ⟩⟨ρ, θ⟩η ω ∴ r Mu−−→ α ξ⟨µ, θ⟩η ω ∴ r

As in Brookes’s semantics, their role is to make the semantics more abstract by
divorcing the length of the sequence from the individual steps taken in the oper-
ational semantics, while maintaining the transitions’ Rely/Guarantee character.

Rewind & Forward. The rewind (Rw) rewrite rules establish the fact that the
term only relies on certain messages being revealed, not on messages being ob-
scured. The rewind rule modifies the initial view, making it point to earlier
messages on the timelines. Thus, relied upon messages will remain available af-
ter the rewrite. Similarly, the forward (Fw) rewrite rule establish the fact that
the term only guarantees that certain messages are revealed. The forward rule
modifies the final view, making it point to later messages on the timelines. Thus,
any message guaranteed to be available was already guaranteed beforehand. The
rules are schematically depicted in Figure 3.
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ϵ· · · · · · ν · · ·α
Rw−−→ ϵ ν· · · · · · ν · · ·α′ ν· · · · · · ϵ · · · ω

Fw−→ ν ϵ· · · · · · ϵ · · · ω′

Fig. 3. Schematic depictions of the rewind and forward rewrite rule, focusing on
a single location, where the initial/final view points to ν before and points to ϵ
after. The messages ν and ϵ may coincide, dovetail, or be separated. Left: The
initial view α is “rewound” to α′. Right: The final view ω is “forwarded” to ω′.

3.3 Introducing Denotations for RA

We present denotations of key constructs of the programming language. By
referring to the notion of a closed set below, we mean a set that is closed under
certain rewrite rules, such as stutter, mumble, rewind, and forward from §3.2.

Pure. A pure (i.e. effect-free) computation guarantees a returned value, and
otherwise can only guarantee what it relies on. For example, define !2 + 3" as
least closed set with all traces of the form κ ⟨µ, µ⟩ κ ∴ 5.

Sequence. In denoting sequential composition we must make sure that the first
component does not obscure any message that the second component relies on.
Thus, define !⟨M,N⟩" as least closed set with all traces of the form α ξη ω∴⟨r, s⟩,
where there exists a view κ such that α ξ κ ∴ r ∈ !M" and κ η ω ∴ s ∈ !N".
The existence of the revealed messages is implicit: ξ’s closing memory must
be contained in the memory that follows it, which is η’s opening memory. The
definition of !M ;N" is the same, except that the first component of the returned
pair is discarded. That is, with traces of the form α ξη ω ∴ s.

Parallel. Threads composed in parallel rely on the same preceding sequential en-
vironment and guarantee to the same succeeding sequential environment. Thus,
define !M1 ∥ M2" as the least closed set with all traces of the form α ξ ω∴⟨r1, r2⟩,
where there exist sequences ξ1 and ξ2 such that and ξ is obtained by interleaving
their transitions, and α ξi ω ∴ ri ∈ !Mi" (for i ∈ {1, 2}).

Dereference. We define !ℓ?" to be the least closed set with all traces of the form
α ⟨µ, µ⟩ ω∴v, where ℓ:v@(q,α(ℓ)]⟪κ⟫ ∈ µ for some timestamp q and view κ, and
both α ≤ ω and κ ≤ ω.

Assignment. Define !ℓ := v" as the least closed set with all traces of the form
α ⟨µ, ρ⟩ ω ∴ ⟨⟩ where ρ is obtained by adding the message ℓ:v@(q,ω(ℓ)]⟪ω⟫ to µ
for some timestamp q, and α ≤ ω.

Read-modify-write. The definition of !FAA (ℓ, w)" combines the two above, along
with a dovetailing requirement. Specifically, it is the least closed set with all
traces of the form α ⟨µ, ρ⟩ ω∴ v, where ℓ:v@(q,α(ℓ)]⟪κ⟫ ∈ µ for some timestamp
q and view κ, both α ≤ ω and κ ≤ ω, and ρ is obtained by adding the message
ℓ: (v+w) @(α(ℓ),ω(ℓ)]⟪ω⟫ to µ. The semantics of other RMWs is defined similarly.
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Example. We show that !ℓ := v ; v" ⊆ !ℓ := v ; ℓ?". When sequencing two traces,
the final view of the first must match the initial view of the second, so traces in
!ℓ := v ; v" have the form α ⟨µ, ρ⟩ ⟨θ, θ⟩ ω∴ v, where ρ is obtained by adding the
message ℓ:v@(q,ω(ℓ)]⟪ω⟫ to µ for some timestamp q, and α ≤ ω. Since ω points
to this added message, and since ρ ⊆ θ as memories along a trace’s sequence,
ω ⟨θ, θ⟩ ω ∴ v ∈ !ℓ?". By sequencing, α ⟨µ, ρ⟩ ⟨θ, θ⟩ ω ∴ v ∈ !ℓ := v ; ℓ?".

3.4 Correspondence to the Operational Semantics
Traces in denotations, if unconstrained, may represent behaviors that include
operationally unreachable states. Forbidding such redundant traces eliminates a
source of differentiation between denotations, thus increasing their abstraction.

Reachable states. Consider the transformation x? ; y? ! y?, a consequence of
the RA-valid Irrelevant Read Elimination (R-Elim) x? ; ⟨⟩ ! ⟨⟩ and structural
equivalences. Consider the state S that consists of the memory at the top of
Figure 1 and the view that points to ν3 and ϵ2. The only step x? ; y? can take
from the state S is to load ν3, inheriting the view that ν3 carries, which changes
the thread’s view to point to ϵ3. Only ϵ3 is available in the following step, which
means the term returns 3. In contrast, starting from S, the term y? can load
from ϵ2 to return 7. This analysis does not invalidate the transformation because
the state S is unreachable by an execution starting from an initial state, and
should therefore be ignored when determining observable behaviors.

Internalizing invariants. Just as we ignore unreachable states in the operational
semantics, we discard “unreachable” traces to refine our denotational semantics.
We consider a state to be valid if it adheres to the following invariants.
Scattering: segments in memory never overlap.
Pointing: views always point to messages.
Dominating: views always dominate the views of the messages to which they

point. This invalidates the state S above, because the view of the thread
does not dominate the view of ν3 even though it points to it.

Descending: a path from a message along the view-induced graph structure can-
not end in another message with a greater timestamp at the same location.
Demonstrated both positively and negatively in Figure 4.

Acyclicity: a cycle along the view-induced graph structure consists solely of mes-
sages which have the smallest timestamp on their timeline.

Memory snapshots in traces are required to obey each of the invariants above.
The initial and final view must point to and dominate the opening and closing
memory respectively. This means that there must be a message to load that
allows the initial and final view to be equal, and we obtain !x? ; ⟨⟩" ⊇ !⟨⟩".

We also uphold requirements that correspond to the relation between the
states across a possibly-interrupted series of steps in the operational semantics:
Accumulating: the memory after contains the memory before. We require that

every memory snapshot contains the one before it.
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Fig. 4. Two variations on the memory illustrated in Figure 1. Top: This can
function as a memory snapshot in a trace. It demonstrates that the views of
messages along a timeline do not have to be ordered: ϵ2 appears earlier than ϵ3 on
y’s timeline but points to a later message on x’s timeline. Bottom: This cannot
function as a memory snapshot in a trace, because it contains an ascending path.
Intuitively, no thread could have written ϵ2 because the view that ϵ2 carries
indicates that the thread would have already “known” about ν3 and therefore,
following the causality chain, about ϵ3 as well. Thus, the thread would have been
forbidden from picking ϵ2’s timestamp.

Delimiting: if the view-trees before and after are leaves, then the view after
dominates the view before, and the view of any written message dominates
the view before and is dominated by the view after. We impose the analogous
requirement on the initial and final views, and on the local messages.

The trace in Figure 1 adheres to the invariants and relationships we have listed.

Concrete operational correspondence. We call the rewrite rules that were de-
fined in §3.2 concrete because they maintain a certain concrete interpretation of
traces. To see this, consider the operational semantics for RA augmented with
an additional kind of step, which any term can take. The only change along this
step is that a view in the view-tree inherits the view from a message that is
available to it. This addition does not change the observable behaviors of whole
programs, and maintains the above invariants.

Each trace in the denotations of §3.3, if closed only under the concrete rewrite
rules, corresponds to an interrupted execution in the augmented operational
semantics. The correspondence is similar to that from Brookes’s semantics in
terms of the sequence of transitions and return value. The initial and final views
determine the views at the beginning and the end of the interrupted execution.

The introduction of the rewrite rules in §3.5 will mean that traces do not
have such a clear operational interpretation. The key to our proof of adequacy
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x: ν· · · · · ·

yk: ϵk · · ·· · · βk · · ·

y1: ϵ1 · · ·· · · β1 · · ·
... Ti−→

x: ν′· · · · · ·

yk: ϵk · · ·· · · βk · · ·

y1: ϵ1 · · ·· · · β1 · · ·
...

Fig. 5. Schematic depiction of the tighten rewrite rule, that focuses on a par-
ticular memory snapshot within the trace, in the setting of k+1 locations. The
message ν is “tightened” to ν′, such that for each i it points to βi instead of ϵi.
This includes the case that βi and ϵi are the same message in some locations.

is to partially recover this operational correspondence in terms of the overall
observable behaviors (§4).

3.5 Abstract Rewrite Rules

Transitions in RA traces consist of sets of messages, which record much more
information about the operational execution than the mappings from locations
to values we had in SC. This makes the trace-based semantics too concrete. We
resolve the memory-concreteness issue by introducing three abstract rewrite rules
that obfuscate information about local messages. This makes the denotations
more abstract by blurring the distinctions that denotations can make.

Tighten. Recall the transformation (WR-Deord) that we wish to support. Let
τ1 ∈ !x := v" and τ2 ∈ !y?", such that they compose sequentially to form a trace
from !⟨(x := v) , y?⟩". Then τ1’s final view κ must equal τ2’s initial view. The
view κ dominates the view σ of the local message ν1 stored by τ1, and κ cannot
obscure the message ν2 from which τ2 loaded its value. Thus, σ cannot obscure
ν2. In contrast, consider τ1 and τ2 that compose in parallel to form a trace from
!(x := v) ∥ y?". Here, the view of the local message may very well obscure the
loaded message. Indeed, the final view of τ1 may dominate the initial view of τ2.

To resolve this, observe that the purpose of recording views in messages is to
encumber its loaders. Under this perspective, the view of a local message guaran-
tees to the environment that loading the local message will keep certain messages
revealed. Therefore, making the view larger only weakens the guarantee. Thus,
we introduce the tighten (Ti) rewrite rule that makes the view of a local mes-
sage larger. The rule is depicted in Figure 5, and Figure 6 provides a concrete
example. Using tighten, we can show that !⟨(x := v) , y?⟩" ⊇ !(x := v) ∥ y?".

Absorb. Recall the transformation (WW-Elim) that we wish to support. To show
this we aim to replicate, as far as we can, the reasoning we have used to show
!x := v ; x := w" ⊇ !x := w" in Brookes’s semantics. Recall that, to use mumble,
we made the memories match across the two transitions of !x := v ; x := w".
Doing so here, we end up with two local messages, whereas traces from !x := w"
only have a single local message. Roughly speaking, the equality concerning SC
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Fig. 6. A possible result from rewriting the trace from Figure 1 using tighten.
Since ν2 is local in the trace from Figure 1, tighten can advance its view to point
to ϵ3 instead of ϵ1. The same replacement is applied throughout the trace’s
sequence, not just the closing memory.

memories µ [x := v] [x := w] = µ [x := w] does not transfer to RA where memory,
by accumulating messages, is more concrete. We resolve this by adding the absorb
(Ab) rewrite rule, which replaces two dovetailed local messages with one that
carries the second message’s value. The rule is depicted in Figure 7, and Figure 8
provides a specific example.

Dilute. There is another known family of transformations that are valid under
RA memory, yet we cannot justify with the rules we presented. These introduce
non-modifying atomic updates, such as Read to FAA (R-FAA) ℓ?! FAA (ℓ, 0).

Running within some context, FAA (ℓ, 0) reads a message ν, to which it dove-
tails another message ϵ with the same value. It’s possible that some β dovetails
with ϵ later in the execution. In the same context, we can simulate this behavior
with ℓ? instead, by having the context provide ν′ instead of ν, with the differ-
ence that it takes up the same segment that ν and ϵ have taken up combined. If
there is a β as mentioned, it can now dovetail with ν′ to the same effect. In this
scenario, ν is an environment message, but we must also account for the case
that it is local to allow for composition, such as in ℓ :=v ;ℓ?! ℓ :=v ;FAA (ℓ, 0).

We internalize the idea behind this argument as the dilute (Di) rewrite rule,
in which a message is replaced by two message that together occupy the same
segment, the second being a local message that cannot appear before the first in
the trace and must carry the same value. With dilute, !ℓ?" ⊇ !FAA (ℓ, 0)". The
rule is depicted in Figure 7, and Figure 9 provides a specific example.

3.6 Monadic Presentation

One of the contributions of this work is to bridge research of weak-memory
models with Moggi’s monad-based approach [38] to denotational semantics. In
this approach, one start by defining a monad, which has three components. The
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v
ν

w
ϵ

Ab−→

w
ϵ′

w
ν′

Di−→

w
ν

w
ϵ

Fig. 7. Schematic depictions of the absorb (left) and dilute (right) rewrite rules,
that focus on the segment of the dovetailed messages together with all pointers
into and out of them, within a particular memory snapshot. The circular cloud
represents the subset of the memory that the messages in focus are pointing to,
showing that they all have the same view. The elliptical clouds represent views—
including the initial and final view, as well as other messages—that point to each
of the dovetailing messages. Left: The message ν is “absorbed” into the message
ϵ to become ϵ′. No view may point to ν. Right: The message ν′ “dilutes” into
ν and ϵ. While ϵ must be a local message, ν and ν′ can appear anywhere the
trace’s sequence, as long as they appear in the same places in the sequence, and
that ϵ does not appear before. The views that point to ν′ before diluting can
point either to ν or to ϵ after diluting.

first associates for every set X, which we think of as representing returned values,
to a set T X representing computations that return values from X. In our case,
T X consists of countable sets of traces closed under rewrite rules.

Denotations are then defined according to their typing judgments. For ex-
ample, a, b : Loc ⊢ ⟨a, b?⟩ : (Loc × Val) means that in the context that the free
variables a and b are locations, the term ⟨a, b?⟩ is a location-value pair. Given
a function γ that maps a and b to locations, !⟨a, b?⟩" γ ∈ T (Loc × Val). For
Γ ⊢ M : A and Γ ⊢ N : A, we generalize containment !N" ⊇ !M" pointwise:
if γ maps variables in Γ appropriately by their type, then !N" γ ⊇ !M" γ. This
degenerates when Γ is empty, i.e. when M and N are closed terms.

The second monad component is a function returnT
X : X → T X maps values

to pure computations that return that value. The third component sequences
computations, such that the latter depends on the value returned by the for-
mer: (⟫=T

X,Y ) : (T X) × (X → T Y ) → T Y . Omitting the indices, the monad
components must satisfy certain axioms that formalize the stated intuition:
return r⟫=f = f(r), P⟫= return = P and (P⟫=f) ⟫=g = P⟫=λr. (f(r)⟫=g).

In our case, we define return r as the least closed set with all traces of the
form κ ⟨µ, µ⟩ κ∴ r; and P ⟫= f as the least closed set with all traces of the form
α ξη ω ∴ s, where α ξ κ ∴ r ∈ P and κ η ω ∴ s ∈ f(r) for some κ.

Denotations. This approach comes read-made with denotations for standard lan-
guage constructs. For example, !⟨M,N⟩" γ ! !M" γ ⟫= λr. (!N" γ ⟫= λs. ⟨r, s⟩).
Similarly, !matchM with ⟨a, b⟩. N" γ ! !M" γ ⟫= λ⟨r, s⟩. !N" γ [a %→ r] [b %→ s],
where γ [a %→ r] is obtained from γ by mapping a to r. Pure computations use
the return function, e.g. !v" = return v.

Program effects can be modularly introduced in this approach, such as mem-
ory access, where !ℓ := v" ∈ T {⟨⟩} and !ℓ?", !FAA (ℓ, v)" ∈ T Val; and par-
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Fig. 8. A possible result from rewriting of the trace from Figure 6 using absorb.
The dovetailed messages ν2 and ν3 are local in the trace from Figure 1, added
within the same transition, so by rewriting by absorb they can be replaced by ν′3
obtained by stretching ν3’s segment to cover ν2’s segment.

allel composition, a function (|||TX,Y ) : T X × T Y → T (X × Y ) with which
!M ∥ N" γ ! !M" γ ||| !N" γ. The definition remains the same: we obtain traces
in P ||| Q by interleaving transitions and pairing returned values of traces with
matching views, one from P and one from Q.

Adhering to left-to-right evaluation both operationally and denotationally,
M :=N is equivalent to match ⟨M,N⟩with ⟨a, b⟩. a := b. In traces of assignment,
the added local message is free to dovetail with a previous message, unlike in
RMW traces where it must. Therefore, we have !ℓ := (ℓ?+ v)" ⊇ !FAA (ℓ, v)".

Structural reasoning. Among the general results and proof techniques this ap-
proach supplies are structural equivalences. These are denotational equations
that hold due to the properties of the core calculus, and are preserved by mod-
ular expansions with program effects. For instance, if K is effect-free, then
!ifK thenM ;N elseM ;N ′ " = !M ; ifK thenN elseN ′ ". Equivalences such as
this one may otherwise require challenging ad-hoc proofs [e.g. 24, 26].

More generally, structural reasoning composes to derive further equivalences.
For example, from !⟨⟩" = !ℓ? ; ⟨⟩" and structural equivalences, namely “left neu-
trality” !K" = !⟨⟩ ;K" and “associativity” !(M ;N) ;K" = !M ; (N ;K)":

!K" = !⟨⟩ ;K" = !(ℓ? ; ⟨⟩) ;K" = !ℓ? ; (⟨⟩ ;K)" = !ℓ? ;K" (⋆)

Structural reasoning generalizes to program transformations. For example,
(⟫=) is monotonic, so we can also derive:

!⟨⟩" = !ℓ? ; ⟨⟩" = !ℓ?"⟫=λv.!⟨⟩" ⊇ !FAA (ℓ, 0)"⟫=λv.!⟨⟩" = !FAA (ℓ, 0) ; ⟨⟩"

Since (|||) is also monotonic, we can use this to show that !(SB)" ⊇ !(SB+F)".
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Fig. 9. A possible result from rewriting of the trace from Figure 1 using dilute.
The message ϵ1 from Figure 1 was replaced with ϵ′1, with the same value 1. The
local message β—which takes up the rest of the missing space left behind by
ϵ1—always appears with ϵ′1, dovetailing with it and carrying the same value.
The message ϵ2, that used to dovetail with ϵ1, now dovetails with β.

Higher order. An important aspect of a programming language is its facilitation
of abstraction. Higher-order programming is a flexible instance of this, in which
programmable functions can take functions as input and return functions as
output. Moggi’s approach supports this feature out-of-the-box, in such a way
that does not complicate the rest of the semantics, as the first-order fragment
of the semantics need not change to include it.

Every value returned by an execution has a semantic presentation which
we use as the returned value in traces. The semantic and syntactic values are
identified in the first-order fragment, but different syntactic functions may have
the same semantics, so the identification does not extend to higher-order.

We classify a term as a program if it is closed (every variable occurrence is
bound) and of ground type (all functions are applied to arguments). This defi-
nition is in line with the expectation that a program should return a concrete
result that the end-user can consume. Thus, we only consider observable behav-
iors of programs. Transformations only need to be valid when applied within
programs. Programs degenerate to closed terms in the first-order fragment.

4 Main Results
We present the main results that we have proven about our denotational seman-
tics. Moggi’s semantic toolkit features ubiquitously in their proofs.

Compositionality. In its most basic form, this key feature of denotational seman-
tics means that a program term’s denotation is defined using the denotations of
its immediate subterms. We have used this in (⋆). In our case denotations are
sets, where each elements represents a possible behavior of the term, we are
interested in establishing a directional generalization of compositionality:
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Lemma 1. If !M" ⊆ !N" then !Ξ [M ]" ⊆ !Ξ [N ]" for any program context Ξ [−].

Compositionality is a consequence of its monadic design using monotonic oper-
ators, and is not substantially different from previous work [e.g. 20].

Observability correspondence. The abstract rewrite rules break the direct cor-
respondence between traces and interrupted executions. For example, in our
analysis of (WW-Elim), by using absorb, we ended up with a trace in which only
one message is added even though the program term adds two messages.

Still, some connection must remain to obtain a proof of adequacy. In partic-
ular, we would like traces to correspond to observable behavior of programs. In
one direction, an even stronger property holds, known as soundness:

Lemma 2. For every execution of a program M in the operational semantics of
RA, there exists α ⟨µ, ρ⟩ ω ∴ r ∈ !M" that matches the execution: ⟨α, µ⟩ is the
initial state, ⟨ω, ρ⟩ is the final state, and r matches the value returned.

To prove soundness, we take a trace where transitions correspond to the memory-
accessing execution steps, and then use mumble to obtain a single transition.

Ignoring the final state, the correspondence holds in the other direction too:

Lemma 3. For every program M and α ⟨µ, ρ⟩ ω∴r ∈ !M" there is an observable
behavior of M with initial state ⟨α, µ⟩ and return value matching r.

The lack of correspondence with the final state is an artifact of the concreteness-
abstraction divergence between the operational and denotational semantics. Due
to this divergence, it is significantly more challenging to establish this direction
of the correspondence than in previous work.

Overcoming the concreteness-abstraction hurdle. The most technically challeng-
ing step in proving Lemma 3 is to prove the application of abstract rewrite rules
can be deferred to the end. We define the basic denotation of a term M by !M",
which is the denotation were it defined using only the concrete rewrite rules.
Denoting its closure under the abstract rewrite rules by !M"†, we claim:

Lemma 4. If M is a program, then !M"† = !M".

Thus, to obtain all of the traces that result from the regular denotational con-
struction, where all of the rewrite rules are applied throughout the entire de-
notational construction, it is enough to close only under the concrete rewrite
rules as the denotation of a program is built-up from its subterms, applying the
abstract rewrite rules only at the top level.

The intuition that guides the inductive proof of Lemma 4 is that the abstract
rewrite rules can be percolated out. To get the main idea across while keeping
the discussion self-contained, we focus on the !M1 ∥ M2"† ⊇ !M1 ∥ M2" case.

Let π ∈ !M1 ∥ M2". By definition, π is obtained by first composing some
τ1 ∈ !M1" in parallel with some τ2 ∈ !M2", i.e. interleaving transitions and
pairing return values, and then rewriting the resulting trace τ with concrete
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and abstract rules. By the inductive hypothesis, !Mi"† ⊇ !Mi". So τi ∈ !Mi"†,
meaning that τi is the result of rewriting some τ ′i ∈ !Mi" with abstract rules.

To warm up, we first address the case where τ ′1
Ab−→ τ1 and τ ′2 = τ2. We would

hope, naively, that we can compose τ ′1 with τ ′2 to obtain some τ ′ ∈ !M1 ∥ M2"
such that τ ′ Ab−→ τ , and thus τ ′ rewrites to π. However, they do not compose
because τ ′1 has two local message, and τ ′2 has only the one environment mes-
sage that matches the result of “absorbing” the two messages. Rather, τ ′1 can
compose with a trace τ̄2 which is equal to τ ′2 except for having the required two
environment messages instead of the combined one.

We formalize this by introducing a dual auxiliary rewrite rule x̄ for each
abstract rule x. For example, the dual of absorb is expel, which splits up an en-
vironment message dually to how absorb combines local messages. The auxiliary
rewrite rules keep us within the basic denotations:

Lemma 5. If τ ∈ !M" and τ z−→ π for some auxiliary rule z, then π ∈ !M".

Then we apply τ ′2
x̄−→ τ̄2 ∈ !Mi", and obtain the required τ ′ by composing τ ′1

in parallel with τ̄2. This process of applying the dual rewrite in order to percolate
an abstract rewrite out holds for sequential composition too. We summarize:

Lemma 6. If π′ x−→ π for some abstract x, and π composes in parallel with ϱ to
obtain τ , then there exist ϱ′ x̄−→ ϱ and τ ′ x−→ τ , such that π′ composes in parallel
with ϱ′ to obtain τ ′. Similarly for sequential composition.

In the case where there are more abstract rewrite rules needed to obtain τ1
from τ ′1, we can repeat the process. Yet two problems remain.

The first problem is that π is obtained from τ ′ ∈ !M1 ∥ M2" by both concrete
and abstract rewrites, starting with the abstract rewrites that we have “peeled
off” τ1. To show that π ∈ !M1 ∥ M2"†, we need the concrete rewrites to come
before the abstract rewrites.

The second problem appears once we remove our simplifying assumption
that τ ′2 = τ2. In the general case, we obtain τ̄2 from τ ′2 using abstract rewrites
followed by auxiliary rewrites. If we could replace the sequence of rewrites with
one in which the abstract rewrites follow the auxiliary rewrites, then τ ′2 could be
rewritten with auxiliary rules to some τ̄ ′2 ∈ !M2" by using Lemma 5, which in
turn could be rewritten with abstract rewrites to τ̄2 ∈ !M2"†. This would allow
the proof to continue by repeating the process to the other side.

Both problems are solved by commuting the abstract rewrites outwards:

Lemma 7. For any rewrite sequence starting with τ and ending with π, there
exists one in which all of the abstract rewrites appear last.

Thus, we can do as we planned and repeat the process to the other side,
“peeling off” the abstract rewrites from τ̄2 to obtain τ̄ ′2 ∈ !M2", rewriting τ ′1 with
the dual auxiliary rules in lockstep, resulting in some τ̄ ′1 ∈ !M1" by Lemma 5. By
Lemma 6, these compose in parallel to some τ̄ ∈ !M1 ∥ M2" that rewrites with
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concrete and abstract rules to τ , and thus to π. By Lemma 7, we can rewrite
τ̄ with concrete rules to some τ̄ ′ ∈ !M1 ∥ M2" first, and with abstract rules
afterwards, obtaining π ∈ !M1 ∥ M2"†.

Having established Lemma 4, the rest is relatively straightforward. First,
traces in basic denotations correspond to interrupted executions, and in partic-
ular, an analog of Lemma 3 holds for basic denotations:
Lemma 8. For every program M and α ⟨µ, ρ⟩ ω∴r ∈ !M" there is an observable
behavior of M with initial state ⟨α, µ⟩ and return value matching r.

Next, it is clear from their definition that the abstract rules do not change the
number of transitions. Thus, thanks to Lemma 4, the single-transition traces in
!M" are the result of rewriting single-transition traces in !M" by abstract rules,
which correspond to observable behaviors of M by Lemma 8.

Lemma 3 follows from the fact that the abstract rules preserve the corre-
spondence between traces and observable behavior of programs. For example,
due to absorb there is a trace which only adds one message in the denotation of a
program that adds two messages; yet the initial view, the opening memory, and
the returned value are maintained. The tighten rule similarly preserves these. In
both cases, the execution exhibiting the behavior can remain unchanged. The
dilute rule may replace an initial message’s timestamp with a smaller one, in
which case the execution exhibiting the behavior needs to use the new times-
tamp accordingly, but otherwise remains the same.

Adequacy. The central result is (directional) adequacy, stating that denotational
approximation corresponds to refinement of observable behaviors:
Theorem 9. If !M" ⊆ !N", then for all program contexts Ξ [−], every observ-
able behavior of Ξ [M ] is an observable behavior of Ξ [N ].
In particular, !M" ⊆ !N" implies that N ! M is valid under RA, because the
effect of applying it is unobservable.

Adequacy follows immediately from the above results. Indeed, using sound-
ness, an observable behavior of Ξ [M ] corresponds to a single-transition τ ∈
!Ξ [M ]"; by the assumption and compositionality τ ∈ !Ξ [N ]"; and using the
other direction, τ corresponds to an observable behavior of Ξ [N ].

Higher-order subtleties. When applying the above results in the presence of
higher order, one must pay attention to the program assumption. Indeed, suppose
!M" ⊇ !M ′". Compositionality does not entail that !λa.M" ⊇ !λa.M ′". Indeed,
a function λa.M is a value, i.e. it does not execute, and in particular it does not
perform any effects, regardless of M . Accordingly, !λa.M" consists of closures
of traces of the form κ ⟨µ, µ⟩ κ ∴ f , where f is a function that returns sets of
traces obtained from !M". The fact that !M" ⊇ !M ′" is not helpful, because
traces in !λa.M ′" have different returned values f ′ from traces in !λa.M".

Directional compositionality is still useful in the presence of abstractions. For
example, if M is a program that returns a location, then from !a := v ; a := w" ⊇
!a := w" it follows that !(λa. a := v ; a := w)M" ⊇ !(λa. a := w)M".



A Denotational Approach to Release/Acquire Concurrency 23

Laws of Parallel Programming
Symmetry !M ∥ N swap (N ∥ M)

Generalized Sequencing
!(let a = M1 inM2) ∥ (let b = N1 inN2) matchM1 ∥ N1 with ⟨a, b⟩.M2 ∥ N2

Eliminations
Irrelevant Read !ℓ? ; ⟨⟩ ⟨⟩
Write-Write !ℓ := v ; ℓ := w ℓ := w

Ab

Write-Read !ℓ := v ; ℓ? ℓ := v ; v

Write-FAA !ℓ := v ; FAA (ℓ, w) ℓ := (v + w) ; v
Ab

Read-Write !let a = ℓ? in ℓ := (a+ v) ; a FAA (ℓ, v)

Read-Read !⟨ℓ?, ℓ?⟩ let a = ℓ? in ⟨a, a⟩
Read-FAA !⟨ℓ?,FAA (ℓ, v)⟩ let a = FAA (ℓ, v) in ⟨a, a⟩
FAA-Read !⟨FAA (ℓ, v) , ℓ?⟩ let a = FAA (ℓ, v) in ⟨a, a+ v⟩
FAA-FAA !⟨FAA (ℓ, v) ,FAA (ℓ, w)⟩ let a = FAA (ℓ, v + w) in ⟨a, a+ v⟩Ab

Others
Irrelevant Read Introduction !⟨⟩ ℓ? ; ⟨⟩
Read to FAA !ℓ? FAA (ℓ, 0)

Di

Write-Read Deorder !⟨(ℓ := v) , ℓ′?⟩ (ℓ := v) ∥ ℓ′?
Ti (ℓ ̸= ℓ′)

Write-Read Reorder !(ℓ := v) ; ℓ′? fst ⟨ℓ′?, (ℓ := v)⟩Ti (ℓ ̸= ℓ′)

Fig. 10. A selective list of supported non-structural transformations. Along with
Symmetry, the denotational semantics supports all symmetric-monoidal laws
with the binary operator (∥) and the unit ⟨⟩. Similar transformations, replacing
FAA with other RMWs, are supported too. The abstract rewrite rules used to
validate a transformation is mentioned, if there is one.

To deal with the need to prove properties “pointwise” that abstractions bring
about, such as containment of denotations in the proof of directional composi-
tionality, we use logical relations. Moggi’s toolkit provides a standard way to
define these, thereby lifting properties to their higher-order counterparts.

Transformations exhibiting abstraction. To the best of our knowledge, all trans-
formations N ! M proven to be valid under RA in the existing literature are
supported by our denotational semantics, i.e. !N" ⊇ !M". Structural transforma-
tions are supported by virtue of using Moggi’s standard semantics. Our seman-
tics also validates “algebraic laws of parallel programming”, such as sequencing
M ∥ N ! ⟨M,N⟩ and its generalization that Hoare and van Staden [22] recog-
nized, (M1 ;M2) ∥ (N1 ;N2)! (M1 ∥ N1) ; (M2 ∥ N2), which in the functional
setting can take the more expressive form in which the values returned are passed
on to the following computation. See Figure 10 for a partial list.

Hence we claim that our adequate denotational semantics is sufficiently ab-
stract. This supports the case that Moggi’s semantic toolkit can successfully
scale to handle the intricacies of RA concurrency by adapting Brookes’s traces.
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5 Related Work and Concluding Remarks

Our work follows the approach of Brookes [13] and its extension to higher-order
functions using monads by Benton et al. [6]. Brookes developed a denotational
semantics for shared memory concurrency under standard sequentially consis-
tency [33], and established full abstraction w.r.t. a language that has a global
atomic await instruction that locks the entire memory. The concepts behind this
approach had been used in multiple related developments, e.g. [12, 34, 35, 46]. We
hope that our work that targets RA will pave the way for similar continuations.

Jagadeesan et al. [25] adapted Brookes’s semantics to the x86-TSO memory
model [40]. They showed that for x86-TSO it suffices to include the final store
buffer at the end of the trace and add two additional simple closure rules that
emulate non-deterministic propagation of writes from store buffers to memory,
and identify observably equivalent store buffers. The x86-TSO model, however,
is much closer to sequential consistency than RA, which we study in this pa-
per. In particular, unlike RA, x86-TSO is “multi-copy-atomic” (writes by one
thread are made globally visible to all other threads at the same time) and
successful RMW operations are immediately globally visible. Additionally, the
parallel composition construct in Jagadeesan et al. [25] is rather strong: threads
are forked and joined only when the store buffers are empty. Being non-multi-
copy-atomic, RA requires a more delicate notion of traces and closure rules, but
it has more natural meta-theoretic properties, which one would expect from a
programming language concurrency model: sequencing, a.k.a. thread-inlining, is
unsound under x86-TSO [see 25, 31] but sound under RA (see Figure 10).

Burckhardt et al. [14] developed a denotational semantics for hardware weak
memory models (including x86-TSO) following an alternative approach. They
represent sequential code blocks by sequences of operations that the code per-
forms, and close them under certain rewrite rules (reorderings and eliminations)
that characterize the memory model. This approach does not validates impor-
tant optimizations, such as Read-Read Elimination. Moreover, unlike x86-TSO,
RA cannot be characterized by rewrite operations on SC traces [31].

Dodds et al. [19] developed a fully abstract denotational semantics for RA,
extended with fences and non-atomic accesses. Their semantics is based on
RA’s declarative (a.k.a. axiomatic) formulation as acyclicity criteria on execution
graphs. Roughly speaking, their denotation of code blocks (that they assume to
be sequential) quantifies over all possible context execution graphs and calculates
for each context the “happens-before” relation between context actions that is
induced by the block. They further use a finite approximation of these histories
to atomically validate refinement in a model checker. While we target RA as
well, there are two crucial differences between our work and Dodds et al. [19].
First, we employ Brookes-style totally ordered traces and use interleaving-based
operational presentation of RA. Second, and more importantly, we strive for a
compositional semantics where denotations of compound programs are defined
as functions of denotations of their constituents, which is not the case for Dodds
et al. [19]. Their model can nonetheless validate transformations by checking
them locally without access to the full program.
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Others present non-compositional techniques and tools to check refinement
under weak memory models between whole-thread sequential programs that ap-
ply for any concurrent context. Poetzl and Kroening [43] considered the SC-for-
DRF model, using locks to avoid races. Their approach matches source to target
by checking that they perform the same state transitions from lock to subsequent
unlock operations and that the source does not allow more data-races. Morisset
et al. [39] and Chakraborty and Vafeiadis [16] addressed this problem for the
C/C++11 model, of which RA is a central fragment, by implementing match-
ing algorithms between source and target that validate that all transformations
between them have been independently proven to be safe under C/C++11.

Cho et al. [18] introduced a specialized semantics for sequential programs that
can be used for justifying compiler optimizations under weak memory concur-
rency. They showed that behavior refinement under their sequential semantics
implies refinement under any (sequential or parallel) context in the Promising
Semantics 2.1 [17]. Their work focuses on optimizations of race-free accesses
that are similar to C11’s “non-atomics” [4, 32]. It cannot be used to establish
the soundness of program transformations that we study in this paper. Adding
non-atomics to our model is an important future work.

Denotational approaches were developed for models much weaker than RA [15,
24, 26, 28, 41] that allow the infamous Read-Write Reorder and thus, for a
high-level programming language, require addressing the challenge of detecting
semantic dependencies between instructions [3]. These approaches are based on
summarizing multiple partial orders between actions that may arise when a given
program is executed under some context. In contrast, we use totally ordered
traces by relating to RA’s interleaving operational semantics. In particular, Ka-
vanagh and Brookes [28] use partial orders, Castellan, Paviotti et al. [15, 41] use
event structures, and Jagadeesan et al., Jeffrey et al. [24, 26] employ “Pomsets
with Preconditions” which trades compositionality for supporting non-multi-
copy-atomicity, as in RA. These approaches do not validate certain access elim-
inations, nor Irrelevant Load Introduction, which our model validates.

An exciting aspect of our work is the connection between memory models
to Moggi’s monadic approach. For SC, Abadi and Plotkin, Dvir et al. [1, 20]
have made an even stronger connection via algebraic theories [42]. These allow
to modularly combine shared memory concurrency with other computational
effects. Birkedal et al. [11] develop semantics for a type-and-effect system for SC
memory which they use to enhance compiler optimizations based on assumptions
on the context that come from the type system. We hope to the current work
can serve as a basis to extend such accounts to weaker models.
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