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Abstract. The rise of persistent memory is disrupting computing to
its core. Our work aims to help programmers navigate this brave new
world by providing a program logic for reasoning about x86 code that
uses low-level operations such as memory accesses and fences, as well as
persistency primitives such as flushes. Our logic, Pierogi, benefits from a
simple underlying operational semantics based on views, is able to handle
optimised flush operations, and is mechanised in the Isabelle/HOL proof
assistant. We detail the proof rules of Pierogi and prove them sound.
We also show how Pierogi can be used to reason about a range of
challenging single- and multi-threaded persistent programs.
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1 Introduction

In our era of big data, the long-established boundary between ‘memory’ and
‘storage’ is increasingly blurred. Persistent memory is a technology that sits in
both camps, promising both the durability of disks and data access times similar
to those of DRAM. Embracing this technology requires rethinking our decades-
old programming paradigms. As data held in memory is no longer wiped after a
system restart, there is an opportunity to write persistent programs – programs
that can recover their progress and continue computing even after a crash.

However, writing persistent programs is extremely challenging, as it requires
the programmer to keep track of which memory writes have become persistent,
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and which have not. This is further complicated in a multi-threaded setting by
the intricate interplay between the rules of memory persistency (which determine
the order in which writes become persistent) and those of memory consistency
(which determine what data can be observed by which threads).

To address this difficulty, we provide a foundation for persistent program-
ming. We develop a program logic, Pierogi, for reasoning about x86 code that
uses low-level operations such as memory accesses and fences, as well as per-
sistency primitives such as flushes. We demonstrate the utility of Pierogi by
using it to reason about a range of challenging single- and multi-threaded per-
sistent programs, including some that demonstrate the subtle interplay between
optimised flush (flushopt) and store fence (sfence) instructions. Using the Is-
abelle/HOL proof assistant, we have mechanised the Pierogi rules and proved
them sound with respect to an operational semantics for x86 persistency [9]. One
benefit of our Isabelle/HOL formalisation is that Pierogi is already partially au-
tomated: once the user has produced a proof outline (i.e. annotated each instruc-
tion with a postcondition), they can simply use Isabelle/HOL’s sledgehammer,
which automatically decides which axioms and rules of the proof system need
invoking to verify the whole program. Our mechanisation, which includes all the
example programs discussed in this paper, is available as auxiliary material [4,5].
State of the art To our knowledge, the only program logic for persistent
programs is POG (Persistent Owicki–Gries) [29]. As with Pierogi, POG en-
ables reasoning about persistent x86 programs and is based on the Owicki–Gries
method [28]. However, unlike Pierogi, POG is not mechanised in a proof as-
sistant, and does not support optimised flush (flushopt) instructions. Optimised
flush instructions are an important persistency primitive as they are considerably
faster than ordinary flush instructions. Indeed, Intel’s experiments on their Sky-
lake microarchitecture indicate that they can be nine times faster when applied
to buffers that hold tens of kilobytes of data [18, p. 289], and hence programmers
are impelled, “If flushopt is available, use flushopt over flush.” However, flushopt
is a tricky instruction for programmers and program logic designers alike: com-
pared to flush, flushopt can be reordered with more instructions under x86.

Pierogi can reason efficiently about x86 persistency (including flushopt in-
structions) thanks to two key recent advances: 1) Px86view [9], the view-based op-
erational semantics of x86 persistency; and 2) the C11 Owicki-Gries logic [11–13]
to reason about view-based operational semantics, which we adapt to Px86view.
Our contributions 1) We present a program logic, called Pierogi, for reason-
ing about persistent x86 programs. 2) We mechanise (and partially automate)
Pierogi in Isabelle/HOL, and prove it sound relative to an established opera-
tional semantics for x86 persistency. 3) We demonstrate the utility of Pierogi
by using it to verify several idiomatic persistent x86 programs.
Outline We begin with an overview of memory consistency and persistency
in x86 and provide an example-driven account of Pierogi reasoning (§2). We
describe the assertion language and proof rules of Pierogi in §3, and verify a se-
lection of programs using Pierogi in §4. We present the view-based operational
semantics of x86 persistency and prove the soundness of Pierogi in §5.
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Auxiliary material Additional examples as well as the proofs of theorems
stated in the paper are given in the accompanying technical appendix [5]. Our
Isabelle/HOL mechanisation is available as auxiliary material [4].

2 Overview and Motivation

Recent operational models for weak memory use views to capture relaxed be-
haviours of concurrent programs [9, 11, 20, 21], where the memory records the
entire history of writes that have taken place thus far. This way, different threads
can have different subsets of these writes (i.e. different views) visible to them. Be-
low, we review Px86view, a view-based operational semantics for x86 persistency
(§2.1); we then describe Pierogi (§2.2) using a series of running examples.

2.1 Px86view at a Glance

In the literature of concurrency semantics, consistency models describe the per-
mitted behaviours of programs by constraining the volatile memory order, i.e.
the order in which memory writes are made visible to other threads, while per-
sistency models describe the permitted behaviours of programs upon recovering
from a crash (e.g. a power failure) by defining the persistent memory order, i.e.
the order in which writes are committed to persistent memory. To distinguish
between the two, memory stores are differentiated from memory persists: the
former denotes the process of making a write visible to other threads, whilst the
latter denotes the process of committing writes to persistent memory (durably).
Px86view Consistency The consistency semantics of Px86view is that of the
well-known TSO (total store ordering) [31] model, where later (in program or-
der) reads can be reordered before earlier writes on different locations. This is
illustrated in the store buffering (sb) example below (left):

store x 1;
a := load y

store y 1;
b := loadx

a = 0 ∧ b = 0 : ✓
(sb)

store x 42;
store y 7

a := load y;
b := loadx

a = 7 ∧ b = 0 : ✗
(mp)

Specifically, assuming x=y=0 initially, since a := load y (resp. b := loadx) can
be reordered before store x 1 (resp. store y 1), it is possible to observe the weak
behaviour a=0∧ b=0. A well-known way of modelling such reorderings in TSO
is through store buffers: when a thread τ executes a write store x v, its effects
are not immediately made visible to other threads; rather they are delayed in a
thread-local (store) buffer only visible to τ , and propagated to the memory at
a later time, whereby they become visible to other threads. For instance, when
store x 1 and store y 1 are delayed in the respective thread buffers (and thus
not visible to one another), then a := load y and b := loadx may both read 0.

Cho et al. [9] capture this by associating each thread τ with a coherence view
(also called a thread-observable view), describing the writes observable by τ .
Distinct threads may have different coherence views. For instance, after executing
store x 1 and store y 1, the coherence view of the left thread may include
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store x 1 and not store y 1, while that of the right may include store y 1 and
not store x 1. This way, a := load y (resp. b := loadx) may read the initial value
0, as its coherence view does not include store y 1 (resp. store x 1).

After SC (sequential consistency) [25], TSO is one of the strongest consistency
models and supports synchronisation patterns such as message passing, as shown
in mp above, where a = 7 ∧ b = 0 cannot be observed. Specifically, (assuming
x=y=0 initially) if the right thread reads 7 from y (written by the left thread),
then the left thread passes a message to the right. Under TSO, message passing
ensures that the instruction writing the message and all those ordered before it
(e.g. store x 42; store y 7) are executed (ordered) before the instruction reading
it (e.g. a := load y). As such, since b := loadx is executed after a := load y, if
a=7 (i.e. store x 42 is executed before a := load y), then b=42.
Px86view Persistency Cho et al. [9] recently developed the Px86view model,
a view-based description of the Intel-x86 persistency semantics, which follows
a buffered, relaxed persistency model. Under a buffered model, memory persists
occur asynchronously [10]: they are buffered in a queue to be committed to persis-
tent memory at a future time. This way, persists occur after their corresponding
stores and as prescribed by the persistency semantics, while allowing the execu-
tion to proceed ahead of persists. As such, after recovering from a crash, only
a prefix of the persistent memory order may have persisted. (The alternative is
unbuffered persistency in which stores and persists happen simultaneously.)

Under relaxed persistency, the volatile and persistent memory orders may
disagree: the order in which the writes are made visible to other threads may
differ from the order in which they are persisted. (The alternative is strict per-
sistency in which the volatile and persistent memory orders coincide.)

The relaxed and buffered persistency of Px86view is shown in Fig. 1a. If a
crash occurs during (or after) the execution of Fig. 1a, at crash time either write
may have persisted and thus x, y∈{0, 1} upon recovery. Note that the two writes
cannot be reordered under Intel-x86 (TSO) consistency and thus at no point
during the normal (non-crashing) execution of Fig. 1a is x=0, y=1 observable.
Nevertheless, in case of a crash it is possible to observe x=0, y=1 after recovery.
That is, due to the relaxed persistency of Px86view, the store order (x before y)
is separate from the persist order (y before x). More concretely, under Px86view
the writes may persist 1) in any order, when they are on distinct locations; or
2) in the volatile memory order, when they are on the same location.4

To afford more control over when pending writes are persisted, Intel-x86
provides explicit persist instructions such as flush x and flushopt x that can be
used to persist the pending writes on x.5 This is illustrated in Fig. 1b: executing
flush x persists the earlier write on x (i.e. store x 1) to memory. As such, if

4 Given a cache line (a set of locations), writes on distinct cache lines may persist in
any order, while writes on the same cache line persist in the volatile memory order.
For brevity, we assume that each cache line contains a single location, thus forgoing
the need for cache lines. However, it is straightforward to lift this assumption.

5 Executing flush x or flushopt x persists the pending writes on all locations in the
cache line of x. However, as discussed, we assume cache lines contain single locations.
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store x 1;
store y 1

(a)

store x 1;
flush x;
store y 1

(b)

store x 1;
flushopt x;
store y 1

(c)

store x 1;
flushopt x;
sfence;
store y 1

(d)

store x 1;
flush x;
store y 1

a := load y;
if (a=1)
store z 1

(e)
 :x, y∈{0, 1}  :y=1 ⇒ x=1  :x, y∈{0, 1}  :y=1 ⇒ x=1  : z=1 ⇒ x=1

Fig. 1: Example Px86view programs and possible values after recovery from a
crash ( ). In all examples x, y, z are distinct locations in persistent memory
such that x=y=z=0 initially, and a is a (thread-local) register.

the execution of Fig. 1b crashes and upon recovery y=1, then x=1. That is, if
store y 1 has executed and persisted before the crash, then so must the earlier
store x 1;flush x. Note that y=1 ⇒ x=1 describes a crash invariant, in that it
holds upon crash recovery regardless of when (i.e. at which program point) the
crash may have occurred. Observe that this crash invariant is guaranteed thanks
to the ordering constraints on flush instructions. Specifically, flush instructions
are ordered with respect to all writes; as such, flush x in Fig. 1b cannot be
reordered with respect to either write, and thus upon recovery y=1 ⇒ x=1.

However, instruction reordering means that persist instructions may not exe-
cute at the intended program point and thus not guarantee the intended persist
ordering. Specifically, flushopt x is only ordered with respect to earlier writes on
x, and may be reordered with respect to later writes, as well as earlier writes on
different locations. This is illustrated in Fig. 1c: flushopt x is not ordered with
respect to store y 1 and may be reordered after it. Therefore, if a crash occurs
after store y 1 has executed and persisted but before flushopt x has executed,
then it is possible to observe y=1, x=0 on recovery. That is, there is no guarantee
that store x 1 persists before store y 1, despite the intervening flushopt x.

In order to prevent such reorderings and to strengthen the ordering con-
straints between flushopt and later instructions, one can use either fence instruc-
tions, namely sfence (store fence) and mfence (memory fence), or atomic read-
modify-write (RMW) instructions such as compare-and-set (CAS) and fetch-
and-add (FAA). More concretely, sfence, mfence and RMW instructions are
ordered with respect to all (both earlier and later) flushopt, flush and write in-
structions, and can be used to prevent reorderings such as that in Fig. 1c. This
is illustrated in Fig. 1d. Unlike in Fig. 1c, the intervening sfence ensures that
flushopt in Fig. 1d is ordered with respect to store y 1 and cannot be reordered
after it, ensuring that store x 1 persists before store y 1 (i.e. y=1 ⇒ x=1 upon
recovery), as in Fig. 1b. Note that replacing sfence in Fig. 1d with mfence or an
RMW yields the same result. Alternatively, one can think of flushopt x executing
asynchronously, in that its effect (persisting x) does not take place immediately
upon execution, but rather at a later time. However, upon executing a barrier
instruction (i.e. mfence, sfence or an RMW), execution is blocked until the
effect of earlier flushopt instructions take place; that is, executing such barrier
instructions ensures that earlier flushopt behave synchronously (like flush).
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P :
{
a = b = 0 ∧ ∀τ ∈ {1, 2}. [x]τ = [y]τ = {0}

}
P1 :

{
7 /∈ [y]2 ∧ a = 0

}
store x 42; //SP1,Cons

P2 :
{
[x]1 = {42} ∧ 7 /∈ [y]2

}
store y 7; //SP1,Cons

P3 :
{
true

}
Q1 :

{
[y]2 ⊆ {0, 7} ∧ (7 ∈ [y]2 ⇒ ⟨y, 7⟩[x]2 = {42})

}
a := load y; // LP2

Q2 :
{
a ∈ {0, 7} ∧ (a = 7 ⇒ [x]2 = {42})

}
b := loadx; // LP1,Cons

Q3 :
{
a = 7 ⇒ b = 42

}
Q :

{
a = 7 ⇒ b = 42

}
Fig. 2: A Pierogi proof sketch of message passing (mp), where the // annota-
tion at each step identifies the Pierogi proof rule (in §3.4) applied, and the
highlighted assertions capture the effects of the preceding instruction.

The example in Fig. 1e illustrates how message passing can impose persist
orderings on the writes of different threads. (Note that the program in the left
thread of Fig. 1e is that of Fig. 1b.) As in mp, if a = 1, then store x 1;flush x
is executed before a := load y (thanks to message passing). Consequently, since
store z 1 is executed after a := load y when a = 1, we know store x 1;flush x
is executed before store z 1. Therefore, if upon recovery z=1 (i.e. store z 1 has
persisted before the crash), then x=1 (store x 1;flush x must have also per-
sisted before the crash). As before, replacing flush x in Fig. 1e with flushopt x;C
yields the same result upon recovery when C is an sfence/mfence or an RMW.

2.2 Pierogi: View-Based Owicki–Gries Reasoning for Px86view

Sequential Reasoning about Consistency using Views In Fig. 2 we present
a Pierogi proof sketch of mp. Recall that in order to account for possible write-
read reorderings on Intel-x86 architectures, Px86view associates each thread τ
with a coherence view, describing the writes visible to τ . To reason about such
thread-observable views, Pierogi supports assertions of the form [x]τ = S,
stating that τ may read any value in the set S for location x. That is, the
coherence view of τ for x consists of the writes whose values are those in S.

In the remainder of this article we enumerate the threads in our examples
from left to right; e.g. the left and right threads in Fig. 2 are identified as 1
and 2, respectively. Moreover, we assume the registers of distinct threads have
distinct names. The precondition P in Fig. 2 thus states that both threads may
initially only read 0 for both x and y: ∀τ ∈{1, 2}. [x]τ =[y]τ ={0}.

In the case of thread 1, we can weaken P (using the standard rule of conse-
quence of Hoare logic – see Cons in §3) to obtain P1. Upon executing store x 42
(1) we weaken the resulting assertion by dropping the a = 0 conjunct; and
(2) we update the observable view of thread 1 on x to reflect the new value of
x: [x]1 = {42}; that is, after executing store x 42, the only value observable
by thread 1 for x is 42. Similarly, after executing store y 7, we could assert
[y]1 = {7}; however, this is not necessary for establishing the final postcondition
Q, and we thus simply weaken the postcondition to true (P3).
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{
[y]P = {0}

}
store x 1; //SP1{

[x]1 = {1} ∧ [y]P = {0}
}

flush x; //FP1{
[x]1 = {1} ∧ [x]P = {1} ∧ [y]P = {0}

}
store y 1; //SP1{

[x]1 = {1} ∧ [x]P = {1} ∧ [y]1 = {1}
}{{

 : [y]P = {1} ⇒ [x]P = {1}
}}

{
[y]P = {0}

}
store x 1; //SP1{

[x]1 = {1} ∧ [y]P = {0}
}

flushopt x; //OP1{
[x]1={1} ∧ [x]A1={1} ∧ [y]P={0}

}
sfence; //SFP1{

[x]1={1} ∧ [x]P={1} ∧ [y]P={0}
}

store y 1; //SP1{
[x]1={1} ∧ [x]P={1} ∧ [y]1={1}

}{{
 : [y]P = {1} ⇒ [x]P = {1}

}}
Fig. 3: Proof sketches of Fig. 1b (left) and Fig. 1d (right)

Analogously, in the case of thread 2 we weaken P to obtain Q1: [y]2 = {0}
implies [y]2 ⊆ {0, 7} and 7 ∈ [y]2 ⇒ ⟨y, 7⟩[x]2 = {42}. Note that 7 ∈ [y]2 ⇒
⟨y, 7⟩[x]2 = {42} yields a vacuously true implication as [y]2 = {0} and thus
7 ̸∈ [y]2. The ⟨y, 7⟩[x]2 denotes a conditional view assertion [11] that describes
how reading a value on one location (y) affects the thread-observable view on a
different location (x). More concretely, ⟨y, 7⟩[x]2 = {42} states that if thread 2
executes a load on y and reads value 7, it subsequently may only observe value
42 for x. This is indeed the essence of message passing in mp: once thread 2
reads 7 from y, it may only read 42 for x thereafter. As such, after executing
the read instruction a := load y (1) we apply the LP1 rule (in Fig. 7) which
simply replaces [y]2 with the local register a in which the value of y is read; and
(2) we replace the conditional assertion ⟨y, 7⟩[x]2 = {42} with the implication
a = 7 ⇒ [x]2 = {42}, stating that if the value read by thread 2 for y (in a) is
7, then its observable view for x is {42}. Similarly, upon executing b := loadx
we simply apply LP1 to replace [x]2 with the local register b in which the value
of x is read. Lastly, the final postcondition Q is given by the conjunction of the
thread-local postconditions (P3 ∧Q3).

Concurrent Reasoning and Stability In our description of the Pierogi
proof sketch in Fig. 2 thus far we focused on sequential (per-thread) reasoning,
ignoring how concurrent threads may affect the validity of assertions at each
program point. Specifically, as in existing concurrent logics [11, 24, 28, 29], we
must ensure that the assertions at each program point are stable under con-
current operations. For instance, to ensure that P1 remains stable under the
concurrent operation a := load y, we require that executing a := load y on states
satisfying the conjunction of P1 and the precondition of a := load y (i.e. Q1)
not invalidate P1, in that the resulting states continue to satisfy P1; that is,{
P1 ∧Q1

}
a := load y

{
P1

}
holds. Similarly, we must ensure that P1 is stable

under b := loadx, i.e.
{
P1 ∧Q2

}
b := loadx

{
P1

}
holds. Analogously, we must

establish the stability of P2, P3, Q1, Q2 and Q3 under concurrent operations. In
§3 we present syntactic rules that simplify the task of checking stability obliga-
tions. It is then straightforward to show that the assertions in Fig. 2 are stable.
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Reasoning about flush Persistency To reason about the relaxed, buffered
persistency of Px86view, Cho et al. [9] introduce persistency views, determining
the possible persisted values for each location; i.e. the values of those writes that
may have persisted to memory. Note that the persistency view determines the
possible values observable upon recovery from a crash. By contrast, the (per-
thread) coherence views determine the observable values during normal (non-
crashing) executions, and have no bearing on the post-crash values.

Analogously, we extend Pierogi with assertions of the form [x]P = S, stating
that the persistent view for x includes writes whose values are given by S. To
see this, consider the Pierogi proof sketch of Fig. 1b in Fig. 3 (left). Initially,
y holds 0 in persistent memory: [y]P = {0}. (Note that the precondition could
additionally include [x]1 = [y]1 = {0} ∧ [x]P = {0} to denote that initially the
thread may only observe 0 for x and y and that x holds 0 in persistent memory;
however, this is not needed for the proof and we thus forgo it.)

As before, after executing store x 1, the observable value for x is updated, as
denoted by [x]1 = {1}. Moreover, after executing flush x, the persisted value for
x is 1, as denoted by [x]P = {1}, by committing (persisting) the observable value
for x (i.e., [x]1 = {1}) to memory (see FP1 in Fig. 7). Finally, after executing
store y 1, the observable value for y is updated, as denoted by [y]1 = {1}.
Crash Invariants Recall that  : y=1 ⇒ x=1 in Fig. 1b denotes a crash in-
variant in that it describes the persistent memory upon recover from a crash at
any program point. This is because we have no control over when a crash may
occur. To capture such invariants, in Pierogi we write quadruples of the form{
P
}
C

{
Q
}{{

 : I
}}

, where
{
P
}
C

{
Q
}

denotes a Hoare triple and I denotes
the crash invariant. If C is a sequential program, I must follow from every as-
sertion (including P and Q) in the proof. For instance, in the proof outline of
Fig. 3 (left) all four assertions imply the invariant [y]P = {1} ⇒ [x]P = {1}. We
discuss the meaning of crash invariants for concurrent programs below.
Reasoning about flushopt Persistency Recall that unlike flush, flushopt
instructions (due to instruction reordering) may behave asynchronously and
their effects may not take place immediately after execution. As such, unlike
for flush x, after executing flushopt x we cannot simply copy the observable
view on x to the persistent view on x.

To capture the asynchronous nature of flushopt, Cho et al. [9] introduce
yet another set of views, namely the thread-local asynchronous view : the asyn-
chronous view of thread τ on x describes the values (writes) that will be persisted
at a later time (asynchronously) by τ upon executing a barrier instruction. That
is, 1) when thread τ executes flushopt x, its asynchronous view of x is advanced
to at least its observable view of x; and 2) when τ executes a barrier (sfence,
mfence or RMW), then its persistent view for each location is advanced to at
least its corresponding asynchronous view. We model this in Pierogi by 1) set-
ting [x]Aτ to be a subset of [x]τ when flushopt x is executed; and 2) setting [x]P

to be a subset of [x]Aτ (for each location x) when a barrier is executed.
This is illustrated in the proof sketch of Fig. 1d in Fig. 3 (right). In particular,

unlike the proof sketch of Fig. 1b in Fig. 3 (left), after executing flushopt x we
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P :
{
a = 0 ∧ ∀o ∈ {x, y, z}, τ ∈ {1, 2}. [o]τ = [o]P = {0}

}
P1 :

{
[y]2 = {0} ∧ [z]P = {0} ∧ a = 0

}
store x 1; //SP1

P2 :
{
[y]2 = {0} ∧ [z]P = {0} ∧ a = 0 ∧ [x]1 = {1}

}
flush x; //FP1,Cons

P3 :
{
[x]P = {1}

}
store y 1; //SP1,Cons

P4 :
{
[x]P = {1}

}

{
true

}
a := load y;{

true
}
if (a = 1){

a = 1
}

store z 1;{
true

}
Q :

{
[x]P = {1}

}
I :

{{
 : [z]P = {1} ⇒ [x]P = {1}

}}
Fig. 4: A Pierogi proof sketch of Fig. 1e

cannot simply copy the thread-observable view to the persistent view. Rather,
we copy the thread-observable view [x]1 to its asynchronous view and assert
[x]A1 = {1}; and upon executing the subsequent sfence, we copy the thread-
asynchronous view to the persistent view and assert [x]P = {1}.
Putting It All Together We next present a Pierogi proof sketch of Fig. 1e
in Fig. 4. The proof of the left thread is analogous to that in Fig. 3 (left);
the proof of the right thread is straightforward and applies standard reasoning
principles. The final postcondition Q is obtained by weakening the conjunction
of per-thread postconditions.

Note that the crash invariant I follows from the assertions at each program
point of thread 1 (i.e. P1 ∨ P2 ∨ P3 ∨ P4 ⇒ I). That is, the crash invariant must
follow from the assertions at all program points of some thread (e.g. thread 1
in Fig. 4). In the case of sequential programs (e.g. in Fig. 3), this amounts to all
program points (of the only executing thread). Intuitively, we must ensure that
the crash invariant holds at every program point regardless of how the underlying
state changes. As the assertions are stable under concurrent operations, it is
thus sufficient to ensure that there exists some thread whose assertions at each
program point imply the crash invariant.

3 The Pierogi Proof rules and Reasoning Principles

We proceed with a description of our verification framework. As with prior
work [11], the view-based semantics for persistent TSO [9] allows us to use the
standard Owicki–Gries rules [2, 28] for compound statements. The main ad-
justment is the introduction of a new specialised assertion language capable of
expressing properties about the different “views” described intuitively in §2. As
such, since view updates are highly non-deterministic, the standard “assignment
axiom” of Hoare Logic (and by extension Owicki–Gries) is no longer applicable.
Moreover, unlike SC, reads in a weak memory setting have a side-effect: their
interaction with the memory location being read causes the view of the executing
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v, u∈Val ≜ N x, y, . . .∈Loc a, b, . . .∈Reg τ ∈Tid ≜ N i, j, k, . . .∈Lab
â, b̂, . . . ∈ AuxVar ê ∈ AuxExp ::= v | â | ê+ê | · · ·

e ∈ Exp ::= v | a | e+e | · · · B ∈ BExp ::= true | B ∧B | · · ·
α ∈ ASt ::= skip | a := e | a := loadx | store x e

| a :=CAS x e e | sfence | mfence | flush x | flushopt x
ls ∈ LSt ::= α goto j | if B goto j else to k | ⟨α goto j, â := ê⟩
Π ∈ Prog ≜Tid × Lab → LSt p⃗c ∈ PC ≜ Tid → Lab

Fig. 5: The Pierogi domains and programming language

thread to advance. Therefore, we resort to a set of proof rules that describe how
views are modified and manipulated, as formalised by our view-based assertions.

3.1 The Pierogi Programming Language

We present the programming language in Fig. 5. Atomic statements (in ASt)
comprise skip, assignment, memory reads and writes, barrier instructions and
explicit persists. Specifically, a := e evaluates expression e and returns it in
(thread-local) register a; a := loadx reads from memory location x and returns
it in register a; and store x e writes the evaluated value of e into location x. The
a :=CAS x e1 e2 denotes ‘compare-and-set’ on location x, from the evaluated
value of e1 to the evaluated value of e2, and sets a to 1 if the CAS succeeds and
to 0, otherwise. Finally, mfence denotes a memory fence, sfence denotes a store
fence, and flush x and flushopt x denote explicit persist instructions (see §2).

Formally, we model a program Π as a function mapping each pair (τ, i) of
thread identifier and label to the labelled statement (in LSt) to be executed. A
labelled statement may be 1) a plain statement of the form α goto j, comprising
an atomic statement α to be executed and the label j of the next statement;
2) a conditional statement of the form if B goto j else to k to accommodate
branching, which proceeds to label j if B holds and to k, otherwise; or 3) a state-
ment with an auxiliary update ⟨α goto j, â := ê⟩, which behaves as α goto j,
but in addition (in the same atomic step) updates the value of the auxiliary
variable â with the auxiliary expression ê. It is well known that Owicki-Gries
proofs require auxiliary variables to record the history of executions to differ-
entiate states that would otherwise not be distinguishable [28]. We show how
auxiliary variables are used in Pierogi in the flush buffering example (§4).

We track the control flow within each thread via the program counter func-
tion, p⃗c, recording the program counter of each thread. We assume a designated
label, ι ∈ Lab, representing the initial label ; i.e. each thread begins execu-
tion with p⃗c(τ) = ι. Similarly, ζ ∈ Lab represents the final label. Moreover,
if p⃗c(τ) = i at the current execution step, then: 1) when Π(τ, i) = α goto j
or Π(τ, i) = ⟨α goto j, a := ê⟩, then p⃗c(τ) = j at the next step; 2) when
Π(τ, i)= if B goto j else to k at the current step, then if B holds in the current
state, then p⃗c(τ)=j at the next step; otherwise p⃗c(τ)=k at the next step.
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Example 1. The program in Fig. 4, assuming that the left thread has id 1, is
given as follows. The formalisation of the right thread is omitted, but is similar.

Π ≜

{
(1, ι) 7→ store x 1 goto 2, (1, 2) 7→ flush x goto 3,
(1, 3) 7→ store y 1 goto ζ, ...

}

3.2 View-Based Expressions

As with prior work on the RC11 model [20], we interpret Pierogi expressions
directly over a view-based state. We use expressions tailored for the view-based
Px86view model [9], which allow us to express relationships between different
system components, including the persistent memory.

Our expressions fall into one of four categories: 1) current view expressions,
which describe the current views of different system components (e.g. the per-
sistent view); 2) conditional view expressions [11], which describe a view on a
location after reading a particular value on a different location; 3) last view ex-
pressions, which hold if a component is viewing the last write to a location; and
4) write-count expressions, which describe the number of writes to a location.

Our current view expressions comprise [x]τ , [x]P and [x]Aτ , as described below;
as shown in §2, each of these expressions describes a set of possible values.

[x]τ denotes the coherence view of thread τ : the set of values τ may read for x.
[x]P denotes the persistent memory view: the set of values that x may hold in

(persistent) memory.
[x]Aτ denotes the asynchronous memory view of thread τ : the set of values that

can be persisted after a barrier instruction (sfence/mfence/RMW) is ex-
ecuted by τ (see rule OP in Fig. 7). Asynchronous views are updated after
executing a flushopt; however, unlike persistent memory views, the values
in asynchronous views are not guaranteed to be persisted until a subsequent
barrier is executed by the same thread.

Conditional view expressions are of the form ⟨x, v⟩[y]τ , as described below.
As discussed in §2, conditional expressions capture the crux of message passing.

⟨x, v⟩[y]τ returns a set of values that τ may read for y after it reads value v
for x. In particular, if ⟨x, v⟩[y]τ = S holds for some set S and τ executes
a := loadx, then in the state immediately after the load, if a = v, then
[y]τ ⊆ S (see LP2 in Fig. 7).

Last-view expressions (cf. [15]) are boolean-valued and hold if a particular
component is synchronised (i.e. observes the latest value) on the given location.
Such expressions provide determinism guarantees on load and flush. For in-
stance if the view of τ is the last write on x, then a read from x by τ will load
this last value. Last-view expressions comprise VxWτ and VxWFτ :

VxWτ holds iff τ is currently viewing the last write to x. Thus, for example, if
VxWτ holds, then a load from x by τ reads the last write to x. Note that
unlike architectural operational models [31], in the view model [9], writes are
visible to all threads as soon as they occur.
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VxWFτ holds iff a flush of x by τ is guaranteed to flush the last write to x to
persistent memory.

Lastly, write-count expressions are of the form |x, v|, as described below. Such
assertions are useful for inferring view expressions from known facts about the
number of writes in the system with a particular value (see Fig. 11).

|x, v| returns the number of writes to x with value v. If |x, v| holds and τ writes
to y ̸= x, or writes a value u ̸= v, then |x, v| continues to hold afterwards.

3.3 Owicki–Gries Reasoning

We present the Pierogi proof system, as an extension of Hoare Logic with
Owicki–Gries reasoning to account for concurrency. The main differences are that
1) our program annotations contain view-based assertions that allow reasoning
about weak and persistent memory behaviours; and 2) we define a crash invariant
to describe the recoverable state of the program after a crash. We proceed by first
defining proof outlines, then providing syntactic rules for proving their validity.
Our proof rules are syntactic, and thus can be understood and used without
having to understand the details of the underlying Px86view model.

We let Assertionpv be the set of assertions (i.e. predicates over Px86view
states) that use view-based expressions (§3.2). A crash invariant, I ∈ Inv ⊂
Assertionpv, is defined over persistent views only, i.e. it only comprises the
persistent view expressions of the form [x]P. We model program annotations via
an annotation function, ann ∈ Ann = Tid × Lab → Assertionpv, associating
each program point (τ, i) with its associated assertion. A proof outline is a tuple
(in, ann, I ,fin), where in,fin ∈ Assertionpv are the initial and final assertions.

Example 2. The annotation of the proof in Fig. 4 is given by ann, with the
mappings of thread 1 as shown below; the mappings of thread 2 are similar.

ann ≜
{
(1, ι) 7→ P1, (1, 2) 7→ P2, (1, 3) 7→ P3, (1, ζ) 7→ P4, . . .

}
Additionally, we have in ≜ a = 0 ∧ ∀o ∈ {x, y, z}, τ ∈ {1, 2}. [o]τ = [o]P = {0},
fin ≜ [x]P = {1} and I ≜ [z]P = {1} ⇒ [x]P = {1}.

Definition 1 (Valid proof outline). A proof outline (in, ann, I ,fin) is valid
for a program Π iff the following hold:

Initialisation. For all τ ∈ Tid, in ⇒ ann(τ, ι).
Finalisation. (

∧
τ∈Tid ann(τ, ζ)) ⇒ fin.

Local correctness. For all τ ∈ Tid and i ∈ Lab, either:
– Π(τ, i) = α goto j and

{
ann(τ, i)

}
α
{
ann(τ, j)

}
; or

– Π(τ, i) = if B goto j else to k and both ann(τ, i)∧B ⇒ ann(τ, j) and
ann(τ, i) ∧ ¬B ⇒ ann(τ, k) hold; or

– Π(τ, i) = ⟨α goto j, â := ê⟩ and
{
ann(τ, i)

}
α
{
ann(τ, j)[ê/â]

}
.

Stability. For all τ1, τ2 ∈ Tid such that τ1 ̸= τ2 and i1, i2 ∈ Lab:
– if Π(τ1, i1) = α goto j, then

{
ann(τ2, i2) ∧ ann(τ1, i1)

}
α
{
ann(τ2, i2)

}
;
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– if Π(τ1, i1) = ⟨α goto j, â := ê⟩, then{
ann(τ2, i2) ∧ ann(τ1, i1)

}
α
{
ann(τ2, i2)[ê/â]

}
.

Persistence. There exists τ ∈ Tid such that for all i ∈ Lab, ann(τ, i) ⇒ I .

Intuitively, Initialisation (resp. Finalisation) ensures that the initial (resp. final)
assertion of each thread holds at the beginning (resp. end); Local correctness
establishes annotation validity for each thread; Stability ensures that each (local)
thread annotation is interference-free under the execution of other threads [28];
and Persistence ensures that the crash invariant holds at every program point
for some thread.

Example 3. Given the program in Example 1 and its annotation in Example 2,
both Initialisation and Finalisation clearly hold. Moreover, Persistence holds for
thread 1. For Local correctness of thread 1, we must prove (1)–(3) below; Local
correctness of thread 2 is similar.{

P1

}
store x 1

{
P2

}
(1){

P2

}
flush x

{
P3

}
(2){

P3

}
store y 1

{
P4

}
(3)

For Stability of P (the precondition of store x 1 in thread 1) against thread 2
we must prove: {

P1

}
a := load y

{
P1

}
(4){

P1 ∧ a = 1
}

store z 1
{
P1

}
(5)

Stability of other assertions (i.e., P2–P4) is similar. We prove (1)–(5) in §3.4.

3.4 Pierogi Proof rules

One of the main benefits of Pierogi is the ability to perform proofs at a high
level of abstraction. In this section, we provide the set of proof rules that we use.
The annotation within a proof outline is, in essence, an invariant mapping each
program location to an assertion that holds at the program location. Thus, we
prove local correctness by checking that each atomic step of a thread establishes
the assertions in that thread. Similarly, we check stability by checking each
assertion in one thread against each atomic step of the other threads. To enable
proof abstraction, we introduce a set of proof rules that describe the interaction
between the assertions from §3.2 and the atomic program steps. We will use
the standard decomposition rules from Hoare Logic to reduce proof outlines and
enable our rules over atomic steps to be applied.
Standard Decomposition Rules The standard decomposition rules we use
are given in Fig. 6, which allow one to weaken preconditions and strengthen
postconditions, and decompose conjunctions and disjunctions.
Rules for Atomic Statements and View-Based Assertions Weak and
persistent memory models (e.g. Px86) are inherently non-deterministic. More-
over in contrast to sequential consistent, in view-based operational semantics
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Cons

P ′ ⇒ P Q ⇒ Q′

{P} Π {Q}
{P ′} Π {Q′}

Conj

{P1} Π {Q1}
{P2} Π {Q2}

{P1 ∧ P2} Π {Q1 ∧Q2}
Disj

{P1} Π {Q1}
{P2} Π {Q2}

{P1 ∨ P2} Π {Q1 ∨Q2}

Fig. 6: Standard decomposition rules of Pierogi

Precondition Statement Postcondition Const. Ref.{
[x]τ = S

}
a := loadx

{
a ∈ S ∧ [x]τ ⊆ S

}
LP1{

u ∈ [x]τ ⇒ ⟨x, u⟩[y]τ = S
} {

a = u ⇒ [y]τ ⊆ S
}

LP2{
|x, u| = 1 ∧ VxWτ ′ ∧[x]τ ′ = {u}

} {
a = u ⇒ [x]τ = {u}

}
LP3{

true
}

store x v

{
[x]τ = {v}

}
SP1{

[x]τ ′ = S
} {

[x]τ ′ = S ∪ {v}
}

τ ̸= τ ′ SP2{
[x]Aτ ′ = S

} {
[x]Aτ ′ = S ∪ {v}

}
SP3{

[x]P = S
} {

[x]P = S ∪ {v}
}

SP4{
[y]τ = S ∧ v /∈ [x]τ ′

} {
⟨x, v⟩[y]τ ′ ⊆ S

}
τ ̸= τ ′ SP5{

true
} {

VxWτ ∧ VxWFτ
}

SP6{
|x, v| = n

} {
|x, v| = n+ 1

}
SP7{

[x]τ = S
}

flush x

{
[x]P ⊆ S ∧ [x]Aτ ⊆ S

}
FP1{

[x]P = S
} {

[x]P ⊆ S
}

FP2{
VxWτ ′ ∧ [x]τ ′ = {u} ∧ VxWFτ

} {
[x]P = {u}

}
FP3{

[x]τ = S ∨ [x]Aτ = S
}

flushopt x
{
[x]Aτ ⊆ S

}
OP{

[x]Aτ = S ∨ [x]P = S
}

sfence
{
[x]P ⊆ S

}
SFP

Fig. 7: Selected proof rules for atomic statements executed by thread τ

(such as Px86view) instructions such as a := loadx have may a side-effect since
they may update the view of the thread performing the load (cf. [11]). There-
fore, unlike Hoare Logic, which contains a single rule for assignment, we have a
set of rules for atomic statements, describing their interaction with view-based
assertions. Each of the rules in this section has been proved sound with respect
to the view-based semantics encoded in Isabelle/HOL.

A selection of these rules for the atomic statements is given in Fig. 7, where
the statement is assumed to be executed by thread τ . The first column contains
the pre/post condition triple, the second any additional constraints and the
third, labels that we use to refer to the rules in our descriptions below. Unless
explicitly mentioned as a constraint, we do not assume that threads, locations
and values are distinct; e.g. rule LP3 (referring to τ and τ ′) holds regardless of
whether τ = τ ′ or not.

The rules in Fig. 7 provide high-level insights into the low-level semantics of
Px86view without having to understand the operational details. The LPi rules
are for statement a := loadx. Rule LP1 states that if τ ’s view of x is the set
of values S, then in the post state a is an element of S and moreover τ ’s view
of x is a subset of S (since τ ’s view may have shifted). By LP2, provided the
conditional view of τ on y (with condition x = u) is S, if the load returns value
u, then the view of τ is shifted so that [y]τ ⊆ S. We only have [y]τ ⊆ S in the
postcondition because there may be multiple writes to x with value u; reading x
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read may shift the view to the latter write, thus reducing the set of values that
τ can read for y. LP3 describes conditions for a deterministic load by thread τ .
The precondition assumes that there is only one write to x with value u, that
some thread τ ′ sees the last write to x with value u. Then, if τ reads u, its view
of x is also constrained to just the set containing u.

The store rules, SPi, reflect that fact that a new write modifies the views of
the other threads as well as the persistent memory and asynchronous views. The
first four rules describe the interaction of a store by thread τ with current view
assertions. By SP1, the store ensures that the current view of τ is solely the
value v written by τ . This is because in Px86view, new writes are introduced by
the executing thread, τ , with a maximal timestamp (see store rule in Fig. 12),
and τ ’s view is updated to this new write. SP2, SP3 and SP4 are similar, and
assuming that the view (of another thread, persistent memory and asynchronous
view, respectively) in the pre-state is S, shows that the view in the post state
is S ∪ {v}. Rule SP5 allows one to introduce a conditional observation assertion
⟨x, v⟩[y]τ ′ where τ ′ ̸= τ . The pre-state of SP5 assumes that τ ’s view of y is
the set S, and that τ ′ cannot view value v for y. Rule SP6 introduces last-view
assertions for τ after τ performs a write to x, and finally SP7 states that the
number of writes to x with value v increases by 1 after executing store x v.

Rules FPi describe the effect of flush x on the state. FP1 states that, provided
that the current view of τ for x is the set of values S, after executing flush x, we
are guaranteed that both the persistent view and asynchronous view of τ for x are
subsets of S. We obtain a subset in the post state since the Px86view semantics
potentially moves the persistent and asynchronous views forward. Similarly, by
FP2 if the current persistent view of x is S, then after executing flush x the
persistent view will be a subset of S. Finally, FP3 provides a mechanism for
establishing a deterministic persistent view u for x. The precondition assumes
that some thread’s view of x is the last write with value u and that τ ’s view is
such that the flush is guaranted to flush to this last write to x.

Rule OP describes how the asynchronous view of τ in the postcondition of
flushopt x is related to the current view of τ and the asynchronous view in the
precondition. Finally, rule SFP describes the relationship between the persistent
view in the postcondition and the asynchronous view and persistent view in the
precondition for an sfence instruction.

Our Isabelle/HOL development contains further rules for the other instruc-
tions, including mfence and cas, which we omit here for space reasons. In
addition, we prove the stability of several assertions (see Fig. 8 for a selection).
An assertion P is stable over a statement α executed by τ iff {P} α {P} holds.

Well-formedness The final major aspect of our framework is a well-formedness
condition that describes the set of reachable states in the Px86view semantics.
The condition is expressed as an invariant of the semantics: it holds initially, and
is stable under every possible transition of Px86view. In fact, the rules in Figs. 7
and 8 are proved with respect to this well-formedness condition.

The majority of the well-formedness constraints are straightforward, e.g. de-
scribing the relationship between the views of different components. The most
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Statement Stable Assert. Const. Ref.

a := loadx

{
[y]τ ′ = S

}
τ ̸= τ ′ LS1{

[y]P = S
}

LS2{
[y]Aτ ′ = S

}
LS3{

a = k
}

LS4{
VyWτ ′

}
LS5

flush x

{
[y]τ ′ = S

}
FS1{

[y]P = S
}

x ̸= y FS2{
VyWτ ′

}
FS3{

VyWFτ ′
}

FS4{
|y, v| = n

}
FS5

sfence
{
[x]τ ′ = S

}
SFS1{

|x, v| = n
}

SFS2

Statement Stable Assert. Const. Ref.

store x v

{
[y]τ ′ = S

}
x ̸= y WS1{

[y]P = S
}

x ̸= y WS2{
[y]Aτ ′ = S

}
x ̸= y WS3{

a = k
}

WS4{
VyWτ ′

}
x ̸= y WS5{

VyWFτ ′
}

x ̸= y WS6{
|y, v′| = n

}
x ̸= y ∨
v ̸= v′

WS7

flushopt x

{
[y]τ ′ = S

}
OS1{

[y]P = S
}

OS2{
|y, v| = n

}
OS3

Fig. 8: Selection of stable assertions for atomic statements executed by thread τ

important component of the well-formedness condition is a non-emptiness con-
dition on views, which states that [x]τ ̸= ∅ ∧ [x]P ̸= ∅ ∧ [x]Aτ ̸= ∅. For instance, a
consequence of this condition is that, in combination with LP1, we have:{

[y]τ = {v}
}
a := loadx

{
[y]τ = {v}

}
(6)

Worked Example We now return to the proof obligations from Example 3 and
demonstrate how they can be discharged using the proof rules described above.
For Local correctness, condition (1) holds by Conj (from Fig. 6) together with
stability rules WS1, WS2 and WS4 (from Fig. 8) which establish the first three
conjunctions in the postcondition, and SP1 from Fig. 7, which establishes the
final conjunction. Condition (2) holds by FP1 in Fig. 7 together with Cons (from
Fig. 6). Finally, condition (3) holds by WS2 (from Fig. 8).

Both the Stability conditions (4) and (5) from Example 3 hold by the stability
rules in Fig. 8 together with Cons and Conj (from Fig. 6). In particular, for (4),
we use rules LS1, LS2 and LS4, and for (5), we use WS1, WS2 and WS4.

4 Examples

In this section we present a selection of programs that we have verified in Is-
abelle/HOL. These examples highlight specific aspects of Px86, in particular, the
interaction between flushopt and sfence, as well as aspects of our view-based
assertion language that simplifies verification.

Optimised Message Passing We start by considering a variant of Fig. 1e,
which contains two optimisations. First, we notice that flushing of the write to x
in thread 1 can be moved to thread 2 since the write to z is guarded by whether
or not thread 2 reads the flag y. Second, it is possible to replace the flush by a
more optimised flushopt followed by an sfence. We confirm correctness of these
optimisations via the proof outline in Fig. 9. The optimised message passing
in Fig. 9 ensures the same persistent invariant as Fig. 1e. However, the way in
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∀o ∈ {x, y, z}, τ ∈ {1, 2}. [o]τ = [o]P = [o]Aτ = {0}

}
{
[y]2 = {0}

}
store x 1;{
[y]2 = {0} ∧
[x]1 = {1}

}
store y 1;{
true

}

{
(1 ∈ [y]2 ⇒ ⟨y, 1⟩[x]2 = {1}) ∧ [y]2 ⊆ {0, 1} ∧ [z]P = {0}

}
a := load y;{
(a = 1 ⇒ [x]2 = {1}) ∧ [z]P = {0}

}
if (a ̸= 0){

[x]2 = {1} ∧ [z]P = {0}
}

flushopt x;{
[x]A2 = {1} ∧ [z]P = {0}

}
sfence;{
[x]P = {1}

}
store z 1;{

[z]P = {0} ∨ [x]P = {1}
}{

[z]P = {0} ∨ [x]P = {1}
}{{

 : [z]P = {1} ⇒ [x]P = {1}
}}

Fig. 9: Proof outline for optimised message passing

which this is established differs. In particular, in Fig. 1e, the persistent invariant
holds due to thread 1, whereas in Fig. 9 it holds due to thread 2.

With respect to the persistent invariant, the most important sequence of
steps takes place in thread 2 if it reads 1 for y. Note that by the conditional
view assertion in the precondition of a := load y, thread 2 is guaranteed to read
1 for x after reading 1 for y. Thus, if the test of if statement succeeds, then
thread 2 must see 1 for x. This view is translated into an asynchronous view
after the flushopt is executed, and then to the persistent view after executing
sfence. Note that until this occurs, we can guarantee that [z]P = {0}, which
trivially guarantees the persistent invariant.

Flush Buffering Our next example is a variation of store buffering (sb) and is
used to highlight how writes by different threads on different locations interact
with flushes. Here, thread 1 writes to x and flushes y, while thread 2 writes to y
then flushes x.6 The writes to w and z are used to witness whether the flushes in
both threads have occurred. The persistent invariant states that, if both w and
z hold 1 in persistent memory, then either x or y has the new value (i.e. 1) in
persistent memory. If both threads perform their flush operations, then at least
one must flush value 1 since a flush cannot be reordered with a store.

Although simple to state, the proof is non-trivial since it requires careful
analysis of the order in which the stores to x and y occur. In the semantics of
Cho et al. [9], the flush corresponding to the second store instruction executed
synchronises with writes to all locations. Thus, for example, if thread 1’s store to
x is executed after thread 2’s store to y, then the subsequent flush in thread 1
is guaranteed to flush the new write to y.

The above intuition requires reasoning about the order in which operations
occur. To facilitate this, we use auxiliary variables â and b̂ to record the order
in which the writes to x and y occur; â = 1 iff the write to x occurs before the

6 Note that the flush operations here are analogous to the load instructions in sb.
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{
∀o ∈ {w, x, y, z}, τ ∈ {1, 2}. [o]τ = [o]P = {0}

}
(â, b̂ = 0, 0 ∧ [z]P = {0}) ∨(
â, b̂ = 0, 1 ∧ VyW2 ∧
[y]2 = {1} ∧ [w]P = {0}

)
⟨store x 1, â := b̂+ 1⟩;

(
â = 1 ∧ b̂ ∈ {0, 2}∧
([z]P = {0} ∨ [x]P = {1}

)
∨(

â, b̂ = 2, 1 ∧ VyW2 ∧
[y]2 = {1} ∧ VyWF1 ∧[w]P = {0}

)


flush y;
(
â = 1 ∧ b̂ ∈ {0, 2} ∧
([z]P = {0} ∨ [x]P = {1}))

)
∨

(â, b̂ = 2, 1 ∧ [y]P = {1})


store w 1;

(
â = 1 ∧ b̂ ∈ {0, 2} ∧
([z]P = {0} ∨ [x]P = {1})

)
∨

(â, b̂ = 2, 1 ∧ [y]P = {1})




(â, b̂ = 0, 0 ∧ [w]P = {0}) ∨(
â, b̂ = 1, 0 ∧ VxW1 ∧
[x]1 = {1} ∧ [z]P = {0}

) 
⟨store y 1, b̂ := â+ 1⟩;
(
b̂ = 1 ∧ â ∈ {0, 2} ∧
([w]P = {0} ∨ [y]P = {1})

)
∨(

â, b̂ = 1, 2 ∧ VxW1 ∧
[x]1 = {1} ∧ VxWF2 ∧[z]P = {0}

)


flush x;
(
b̂ = 1 ∧ â ∈ {0, 2} ∧
([w]P = {0} ∨ [y]P = {1})

)
∨

(â, b̂ = 1, 2 ∧ [x]P = {1})


store z 1;

(
b̂ = 1 ∧ â ∈ {0, 2} ∧
([w]P = {0} ∨ [y]P = {1})

)
∨

(â, b̂ = 1, 2 ∧ [x]P = {1})

{
(â, b̂ = 1, 2 ∧ [x]P = {1}) ∨ (â, b̂ = 2, 1 ∧ [y]P = {1})

}{{
 : [w]P = {1} ∧ [z]P = {1} ⇒ [x]P = {1} ∨ [y]P = {1}

}}
Fig. 10: Proof outline for flush buffering

write to y, and â = 2 iff the write to x occurs after the write to y. Let us now
consider the precondition of flush y (the reasoning for flush x is symmetric).
There are two disjuncts to consider.

– The first disjunct describes the case in which thread 1 executes its store
before thread 2. From here, there is a danger that the thread 1 can terminate
having flushed 0 for y. However, from this state, thread 2 is guaranteed to
flush 1 for x before setting z to 1, satisfying the persistent invariant, as
described by the second disjunct of each assertion in thread 2.

– The second disjunct describes the case in which thread 1 executes its store
after thread 2. In this case, thread 1 is guaranteed to flush 1 for y, and this
fact is captured by the conjunct VyW2 ∧[y]2 = {1}∧VyWF1, which ensures that
1) thread 2 sees the last write to y; 2) the only value visible for y to thread 2
is 1; and 3) a flush performed by thread 1 is guaranteed to flush the last
write to y. Note that by 1) and 2), we are guaranteed that the last write
to y has value 1. We use these three facts to deduce that [y]P = {1} in the
second disjunct of the postcondition of flush y using rule FP3.

Epoch Persistency In our next example, we demonstrate how writes of dif-
ferent threads on the same location interact with an optimised flush in the same
location, as well as how the ordering of optimised flushes/loads alters the per-
sistency behaviour. The crash invariant of Fig. 11 states that if z and y hold the
value 1 in persistent memory then x has the value 2 in persistent memory.

In order for thread 2 to read value 2 for x, the store of 2 at x must be
performed before the store of 1 and [x]2 = {1, 2}. Establishing the persistent
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{
(∀τ ∈ {1, 2}, o ∈ {x, y, z}.[o]τ = [o]P = {0}) ∧ a = 0

}


|x, 2| = 0 ∧(
([x]2 = 0 ∧ [x]1 = 0)∨
([x]2 = 1 ∧ [x]1 = {0, 1})

)
store x 2;

|x, 2| = 1 ∧(
VxW1 ∧[x]1 = {2} ∧
[x]2 ⊆ {1, 2}

)
∨

[x]2 ⊆ {0, 1, 2}




{
[y]P = {0} ∧ [z]P = {0} ∧ (|x, 2| ∈ {0, 1})

}
store x 1;

(
[x]2 = 1 ∨

(
[x]2 = {1, 2} ∧ |x, 2| = 1 ∧
VxW1 ∧[x]1 = 2

))
∧

[y]P = {0} ∧ [z]P = {0}


a := loadx;{
(a = 2 ⇒ [x]2 = {2}) ∧ [y]P = {0} ∧ [z]P = {0}

}
flushopt x;{
(a = 2 ⇒ [x]A2 = {2}) ∧ [y]P = {0} ∧ [z]P = {0}

}
if (a = 2){

[x]A2 = {2} ∧ [y]P = {0} ∧ [z]P = {0}
}

store y 1;{
([x]A2 = {2} ∨ [y]P = {0}) ∧ [z]P = {0}

}
sfence;{
[x]P = {2} ∨ [y]P = {0}

}
store z 1;{
[x]P = {2} ∨ [y]P = {0} ∨ [z]P = {0}

}{
[x]P = {2} ∨ [y]P = {0} ∨ [z]P = {0}

}{{
 : [y]P = {1} ∧ [z]P = {1} ⇒ [x]P = {2}

}}
Fig. 11: Proof outline for epoch persistency

invariant for thread 2 requires reasoning about the view of thread 2 for address
x (i.e. [x]2) after the execution of the instruction a := loadx. Notice here that
a := loadx is ordered with respect to the later flushopt x instruction. Conse-
quently, any impact of the execution of the load on [x]2, will also affect [x]A2 .
Taking into account the ordering of the writes at the address x, we can conclude
that if thread 2 reads the value 2, it reads the value of the last write at x. This
is expressed with the assertion VxW1 in the precondition of a := loadx, which
states that the threads 1’s view of x is the last write to x. By rule LP3, if a thread
τ ’s view of an address x contains only the last write at this address, and the last
value written at this address appears only once at the memory, then if a thread
τ read this value at x, its view of x (i.e. [x]τ ) is guaranteed to contain only the
last written value at x. Consequently, after reading value 2, thread 2’s view of x
contains only the value 2 (i.e. [x]2 = {2}). Execution of flushopt x ensures [x]A2
(by rule OP). As a result, in the case that the if statement succeeds, after the
execution of the sfence it is guaranteed that the value 2 is persisted at x (i.e.
[x]P = {2}). In the case that the if statement fails, [y]P = {0} must hold, thus
the persistent invariant holds trivially.

5 Pierogi Soundness

In this section we present the Px86view model from [9] (§5.1), formally interpret
our assertions as predicates on states of that model (§5.2), and establish the
soundness of the proposed reasoning technique (§5.3).
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(assign)
α = a := e

v = T.regs(e)
T ′ = T [regs(a) 7→ v]

⟨T,M⟩ α−→ ⟨T ′,M⟩

(store)
α = store x e
v = T.regs(e)

M ′ = M ++ [⟨x := v⟩]
T ′ = T [coh(x) 7→ |M |]
⟨T,M⟩ α−→ ⟨T ′,M ′⟩

(load-internal)
α = a := loadx
M [t] = ⟨x := v⟩
T.coh(x) = t

T ′ = T [regs(a) 7→ v]

⟨T,M⟩ α−→ ⟨T ′,M⟩

(load-external)
α = a := loadx
M [t] = ⟨x := v⟩
T.coh(x) < t

x ̸∈ M(t..T.vrNew]

T ′ = T


regs(a) 7→ v,
coh(x) 7→ t,
vrNew 7→⊔ t,
vpReady 7→⊔ t


⟨T,M⟩ α−→ ⟨T ′,M⟩

(sfence)
α = sfence

T ′ = T

[
vpReady 7→⊔ T.maxcoh,
vpCommit 7→⊔ T.vpAsync

]
⟨T,M⟩ α−→ ⟨T ′,M⟩

(flush)
α = flush x

T ′ = T

[
vpAsync(x) 7→⊔ T.maxcoh,
vpCommit(x) 7→⊔ T.maxcoh

]
⟨T,M⟩ α−→ ⟨T ′,M⟩

(flushopt)
α = flushopt x

T ′ = T [vpAsync(x) 7→⊔ T.coh(x) ⊔ T.vpReady]

⟨T,M⟩ α−→ ⟨T ′,M⟩

(program-normal)
p⃗c(τ) = i Π(τ, i) = α goto j

⟨T⃗ (τ),M⟩ α−→ ⟨T ′,M ′⟩
p⃗c′ = p⃗c[τ 7→ j] T⃗ ′ = T⃗ [τ 7→ T ′]

⟨p⃗c, T⃗ ,M,G⟩ ⇒Π ⟨p⃗c′, T⃗ ′,M ′, G⟩

(program-if)
p⃗c(τ) = i Π(τ, i) = if B goto j else to k

p⃗c′ = p⃗c

[
τ 7→

{
j T⃗ (τ).regs(B) = true

k T⃗ (τ).regs(B) = false

]
⟨p⃗c, T⃗ ,M,G⟩ ⇒Π ⟨p⃗c′, T⃗ ,M,G⟩

(program-ghost)
p⃗c(τ) = i Π(τ, i) = ⟨α goto j, â := ê⟩

⟨T⃗ (τ),M⟩ α−→ ⟨T ′,M ′⟩
p⃗c′ = p⃗c[τ 7→ j] T⃗ ′ = T⃗ [τ 7→ T ′] G′ = G[â 7→ G(ê)]

⟨p⃗c, T⃗ ,M,G⟩ ⇒Π ⟨p⃗c′, T⃗ ′,M ′, G′⟩

Fig. 12: Transitions of Px86view for a program Π

5.1 The Px86view Model

Like previous view-based models, Px86view employs a non-standard memory cap-
turing all previously executed writes, alongside so-called “thread views” that
track several position(s) of each thread in that history and enforce limitations
on the ability of the thread to read from and write to the memory. In addition,
the thread views contain the necessary information for determining the possible
contents of the non-volatile memory upon a system crash. Formally, Px86view’s
memory and thread states are defined as follows.

Definition 2 (Px86view’s memory). A memory M ∈ Memory is a list of
messages, where each message has the form ⟨x := v⟩ for some x ∈ Loc and
v ∈ Val. We use w.loc and w.val to refer to the two components of a message
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w. We use standard list notations for memories (e.g. M1 ++ M2 for appending
memories, [w] for a singleton memory, and |M | for the length of M). We refer
to indices (starting from 0) in a memory M as timestamps, and denote the t’th
element of M as M [t]. We use ⊔ for obtaining the maximum among timestamps
(i.e. t1 ⊔ t2 = max(t1, t2)), and extend this notation pointwise to functions. We
write x ̸∈ M(t2..t1] for the condition ∀t2 < t ≤ t1.M [t].loc ̸= x.

Definition 3 (Px86view’s thread states). A thread state T ∈ Thread is a
record consisting of the following fields: coh : Loc → N, vrNew : N, vpReady : N,
vpAsync : Loc → N, and vpCommit : Loc → N. We use standard function/record
update notation (e.g. T ′ = T [coh(x) 7→ t] denotes the thread state obtained from
T be modifying the x entry in the coh component of T to t). In addition, 7→⊔
is used to incorporate certain timestamps in fields (e.g. T [vrNew 7→⊔ t] denotes
the thread state obtained from T be modifying the vrNew component of T to
T.vrNew ⊔ t). We denote by T.maxcoh the maximum among the coherence view
timestamps (T.maxcoh =

⊔
x T.coh(x)).

The two components, together with program counters and the “ghost mem-
ory”, are combined in Px86view’s machine states as defined next.

Definition 4 (Px86view’s machine states). A machine state is a tuple σ =

⟨p⃗c, T⃗ ,M,G⟩ where p⃗c : Tid → Lab is a mapping assigning the next program
label to be executed by each thread, T⃗ : Tid → Thread is a mapping assigning
the current thread state to each thread, M ∈ Memory is the current memory,
and G : AuxVar → Val is storing the current values of the auxiliary variables.
Below we assume that G is extended to expressions ê ∈ AuxExp in a standard
way. We denote the components of a machine state σ by σ.p⃗c, σ.T⃗ , σ.M , and σ.G.
In addition, we denote by σ.maxpCommit(x) the maximum among the persistency
view timestamps for location x (σ.maxpCommit =

⊔
τ σ.T⃗ (τ).vpCommit(x)).

The transitions of Px86view are presented in Fig. 12. These closely follow
the model in [9] with minor presentational simplifications. Note, however, that,
for simplicity and following [22], we conservatively assume that writes persist
atomically at the location granularity (representing, e.g. machine words) rather
than at the granularity of the width of a cache line. We refer the interested
reader to [9] for a detailed discussion of the transitions rules in Fig. 12.

The above operational definitions naturally induce a notion of a execution
(or a “run”) of Px86view on a certain program Π starting from some initial state
of the form ⟨λτ. ι, T⃗ ,M,G⟩. A system crash might occur at any point during the
execution. Again, following the model of [9], the non-volatile memory (NVM)
is not modeled as a concrete part of the state. Instead, the possible contents of
the NVM can be inferred from the machine state (specifically from the memory
and the vpCommit views of the different threads), as defined next. This definition
is presented as “crash transition” in [9].

Definition 5. A non-volatile memory NVM : Loc → Val is possible in a state
σ if for every x ∈ Loc, there exists some t such that σ.M [t] = ⟨x :=NVM (x)⟩
and x ̸∈ σ.M(t..σ.maxpCommit(x)].
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5.2 The Semantics of Pierogi Assertions

We present the formal definitions of the expressions introduced in §3.2 in terms
of Px86view’s machine states.
Current and conditional views When formalising the current and condi-
tional view expressions, we start with auxiliary functions that return the sets of
observable timestamps visible to the components in question, then extract the
values in memory corresponding these timestamps. To facilitate this, we define

Vals(M,TS) ≜ {M [t].loc | t ∈ TS}
where M ∈ Memory and TS is a set of timestamps.
Thread view To define the meaning of the thread view expression, [x]τ , we use:

TSOF
τ (σ, x, t) ≜ {t′ | σ.M [t′].loc = x ∧ σ.T⃗ (τ).coh(x) ≤ t′ ∧ x ̸∈ σ.M(t′..t]}

TSτ (σ, x) ≜ TSOF
τ (σ, x, σ.T⃗ (τ).vrNew)

TSOF
τ (σ, x, t) returns the set of timestamps that are observable from times-

tamp t for thread τ to read for location x in state σ; and TSτ (σ, x) returns the
set of timestamps that are observable for τ to read x in σ. Note that after in-
stantiating t to σ.T⃗ (τ).vrNew in TSOF

τ (σ, x, t), we obtain the premises of the load
rules in Fig. 12. Then, [x]τ ≜ λσ.Vals(σ.M,TSτ (σ, x)), i.e. is the set of values in
σ.M corresponding to the timestamps in TSτ (σ, x).
Persistent memory view For the persistent memory view expression, [x]P,
we use:

TSP(σ, x) = {t | σ.M [t].loc = x ∧ x ̸∈ σ.M(t..σ.maxpCommit(x)]}
which returns the set of timestamps that are observable to the persistent memory
for x in σ. Then, [x]P ≜ λσ.Vals(σ.M,TSP(σ, x)). Note that the second conjunct
within the definition of TSP(σ, x) is precisely the condition that links Px86view
states to NVM states (Definition 5). Given this definition, we have:

Proposition 1. A non-volatile memory NVM : Loc → Val is possible in a
state σ iff NVM (x) ∈ [x]P(σ) for every x ∈ Loc.

Asynchronous memory view To define the meaning of the asynchronous
memory view, [x]Aτ , we use:

TSAτ (σ, x) ≜ {t | σ.M [t].loc = x ∧ x ̸∈ σ.M(t..σ.T⃗ (τ).vpAsync(x)]}
which returns the timestamps of the asynchronous view of thread τ in location
x and state σ. Then, as before, [x]Aτ ≜ λσ.Vals(σ.M,TSAτ (σ, x)).
Conditional view The functions used to define conditional memory view,
⟨x, v⟩[y]τ , are slightly more sophisticated than those above. We define:

TSOV
τ (σ, x, v) ≜


t′ ∃t ∈ TSτ (σ, x). σ.M [t].val = v ∧

t′ = if t = σ.T⃗ (τ).coh(x) then σ.T⃗ (τ).vrNew
else t ⊔ σ.T⃗ (τ).vrNew


TSCOτ (σ, x, v, y) ≜

⋃
{TSOF

τ (σ, y, t) | t ∈ TSOV
τ (σ, x, v)}
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where TSOV
τ (σ, x, v) returns the set of timestamps that τ can observe for x with

value v. Assuming t is a timestamp that τ can observe for x, and the value for x at
t is v, the corresponding timestamp t′ that TSOV

τ (σ, x, v) returns is σ.T⃗ (τ).vrNew if
τ ’s coherence view for x is t, and the maximum of t and σ.T⃗ (τ).vrNew, otherwise.
Given this, TSCOτ (σ, x, v, y) returns the timestamps that τ can observe for y, from
any timestamp t ∈ TSOV

τ (σ, x, v). Finally, the set of conditional values is defined
by ⟨x, v⟩[y]τ ≜ λσ.Vals(σ.M,TSCOτ (σ, x, v, y)).
Last view assertions We use the following auxiliary definition:

Last(M,x) ≜
⊔
{t | M [t].loc = x}

which returns the timestamp of the last write to x in M . Then, the last view
assertions are given by:

– VxWτ ≜ {σ | TSτ (σ, x) = {Last(σ.M, x)}}, i.e. τ ’s view of x in σ is the last
write to x in σ.

– VxWFτ ≜ {σ | Last(σ.M, x) ≤ σ.T⃗ (τ).maxcoh ⊔ σ.maxpCommit(x)}, i.e. the max-
imum of τ ’s maximum coherence view and the maximum commit view of x
(over all threads) is beyond the last write to x in σ. This means that exe-
cuting a flush x operation in τ will cause the last write of x to be flushed
(see Flush rule in Fig. 12).

Value count Finally, the value count expression is defined as follows:
|x, v| ≜ λσ. |{t | σ.M [t] = ⟨x := v⟩}|

5.3 Soundness of Pierogi

Given the above building blocks, the soundness of the proposed reasoning tech-
nique is stated as follows.

Theorem 1 (Soundness of Pierogi). Suppose that a program Π has a
valid proof outline ⟨in, ann, I ,fin⟩. Let σ be a state of Px86view that is reachable
in an execution of Π from some state σinit of the form ⟨λτ. ι, T⃗init,Minit, Ginit⟩
such that σinit ∈ in. Then, the following hold:

1) For every τ ∈ Tid, we have that σ ∈ ann(τ, σ.p⃗c(τ)).
2) If σ.p⃗c(τ) = ζ for every τ ∈ Tid, then σ ∈ fin.
3) Every non-volatile memory NVM that is possible in σ satisfies the crash

invariant I .

Finally, it is straightforward to show the soundness of a standard “auxiliary
variable transformation” [28] which removes all auxiliary variables from a pro-
gram Π (translating each command ⟨α goto j, â := ê⟩ into α goto j) provided
that the crash invariant and the final assertion do not contain occurrences of
the auxiliary variables. Indeed, it is easy to see that the auxiliary memory G in
the operational semantics in Fig. 12 serves only as an instrumentation, and does
not restrict the possible runs. (Formally, if Π ′ is obtained from Π by removing
all auxiliary variables and ⟨p⃗c, T⃗ ,M,G′⟩ is reachable in ⇒Π′ from some initial
state, then ⟨p⃗c, T⃗ ,M,G⟩ is reachable in ⇒Π from the same state for some G.)
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6 Mechanisation

Perhaps the greatest strength of our development is an integrated Isabelle/HOL
mechanisation providing a fully fledged semi-automated verification tool for
Px86view programs. This mechanisation builds on the existing work on Owicki–
Gries for RC11 by Dalvandi et al [11,12] applying it to the Px86view semantics.
We start by encoding the operational semantics of Cho et al. [9], followed by the
view-based assertions described in §3.2. Then, we prove correctness of all of the
proof rules for the atomic statements, including those described in §3.4. These
rules can be challenging to prove since they require unfolding of the assertions
and examination of the low-level operational semantics and their effect on the
views of different system components.

Once proved, the rules provided are highly reusable, and are key to making
verification feasible. Specifically, when showing the validity of a proof outline
(Definition 1), Isabelle/HOL generates the necessary proof obligations (after mi-
nor interactions) and automatically finds the set of high-level proof rules needed
to discharge each proof obligation via the built-in sledgehammer tool [6]. This
enables a high degree of experimentation and debugging of proof outlines, includ-
ing the ability to reduce assertion complexity once a proof outline is validated.

The base development (semantics, view-based assertions, and soundness of
proof rules) comprise ∼7000 lines of Isabelle/HOL code. With this base devel-
opment in place, each example comprises 200–400 lines of code (including the
encoding of the program, the annotations, and the proofs of validity). The entire
development took approximately 3 months of full-time work.

7 Related Work

The soundness of Pierogi is proven relative to the Px86view of Cho et al. [9];
there are however other equivalent models in the literature [?,1,22,30], as well as
other persistency models [?,?]. While the original persistent x86 semantics has
asynchronous explicit persist instructions [30], the underlying model assumed
here is due to Cho et al. [9] with synchronous persist instructions. Nevertheless,
Khyzha and Lahav [22] formally proved that the two alternatives are equivalent
when reasoning about states after crashes (e.g. using our “crash invariants”).

As mentioned in §1, the only existing program logic for persistent programs
is POG [29], which (as with Pierogi) is a descendent of Owicki–Gries [28].
Pierogi goes beyond POG by handling examples that involve flushopt instruc-
tions, which cannot be directly verified using POG. Raad et al. [29] provide a
transformation technique to replace certain patterns of flushopt and sfence with
flush. Specifically, given a program Π that includes flushopt instructions, pro-
vided that Π meets certain conditions, this transformation mechanism rewrites
Π into an equivalent program Π ′ that uses flush instructions instead, allowing
one to use POG. However, there are three limitations to this strategy: 1) the
rewriting is an external mechanism that requires stepping outside the POG logic;
2) the rewriting is potentially expensive and must be done for every program
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that includes flushopt; and 3) the transformation technique is incomplete in that
not all programs meet the stipulated conditions (e.g. Epoch Persistency 2), and
thus cannot be verified using this technique. Pierogi has no such limitations, as
we showed in the examples in Section 4. Moreover, POG has no corresponding
mechanisation, and developing a mechanisation that also efficiently handles the
program transformation for flushopt instructions would be non-trivial.

The Owicki–Gries method was first applied to non-SC memory consistency by
Lahav et al. [24]. One way that their approach, which targets the release/acquire
memory model, is different from ours is that they aim to use standard SC-like
assertions; in order to retain soundness under a weak memory model, they had
to strengthen the standard stability conditions on proof outlines. Dalvandi et
al. [11, 13] took a different approach when designing their Owicki–Gries logic
for the release/acquire fragment of C11: by employing a more expressive, view-
based assertion language, they were able to stick with the standard stability
requirement. In our work, we follow Dalvandi et al.’s approach. However, our
assertions are fine-tuned to cope with the other types of view present in Px86view,
such as those corresponding to the persistent and the asynchronous views. It is
interesting that some of the principles of view-based reasoning apply to different
memory models, and future work could look at unifying reasoning across models.

Dalvandi et al. [13] have developed a deeper integration of their view-based
logic using the Owicki–Gries encoding of Nipkow and Prensa Nieto [26] in Is-
abelle/HOL. Such an integration would be straightforward for Pierogi too,
allowing verification to take place without translating programs into a transi-
tion system. This would be much more difficult for POG since Owicki–Gries rules
themselves are different from the standard encoding in Isabelle/HOL, in addition
to the transformation required for flushopt instructions discussed above.

The idea of extending Hoare triples with crash conditions first appeared in
the work of Chen et al. [8]. However, that work supports neither concurrency
nor explicit flushing instructions. Related ideas are found in the works of Ntzik
et al. [27] and Chajed et al. [7]. However, in contrast to Pierogi, both of these
works 1) assume sequentially consistent memory, as opposed to a weak memory
model such as TSO; 2) assume strict persistency (where store and persist orders
coincide); and 3) assume there is a synchronous flush operation, which is easier
to reason about than the asynchronous flushopt operation.

Besides program logics, there have been other recent efforts to help program-
mers reason about persistent programs. For instance, Abdulla et al. [1] have
proven that state-reachability for persistent x86 is decidable, thus opening the
door to automatic verification of persistent programs, and Gorjiara et al. [17]
and Kokologiannakis et al. [?] have developed model checkers for finding bugs in
persistent programs. Recent works have considered durable atomic objects such
as concurrent data structures [16] and transactional memory [3] and their veri-
fication [?,3,14], which have been designed to satisfy conditions such as durable
linearizability [19, 23] and durable opacity [3]. These proofs assume persistency
under SC; our work provides foundations for extending these proofs to persistent
x86-TSO.
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