
Decidable Verification under a Causally Consistent
Shared Memory

Ori Lahav

Tel Aviv University

Israel

orilahav@tau.ac.il

Udi Boker

Interdisciplinary Center (IDC) Herzliya

Israel

udiboker@idc.ac.il

Abstract
Causal consistency is one of the most fundamental and

widely used consistency models weaker than sequential con-

sistency. In this paper, we study the verification of safety

properties for finite-state concurrent programs running un-

der a causally consistent shared memory model. We estab-

lish the decidability of this problem for a standard model of

causal consistency (called also “Causal Convergence” and

“Strong-Release-Acquire”). Our proof proceeds by developing

an alternative operational semantics, based on the notion of

a thread potential, that is equivalent to the existing declara-

tive semantics and constitutes a well-structured transition

system. In particular, our result allows for the verification of

a large family of programs in the Release/Acquire fragment

of C/C++11 (RA). Indeed, while verification under RA was re-

cently shown to be undecidable for general programs, since

RA coincides with the model we study here for write/write-

race-free programs, the decidability of verification under RA

for this widely used class of programs follows from our result.

The novel operational semantics may also be of independent

use in the investigation of weakly consistent shared memory

models and their verification.

CCS Concepts: • Software and its engineering → Soft-
ware verification;Concurrent programming languages;
• Theory of computation → Concurrency; Logic and
verification; Program verification; • Information sys-
tems→ Distributed database transactions.

Keywords: weak memory models, causal consistency, re-

lease/acquire, shared-memory, concurrency, verification, de-

cidability, well-structured transition systems

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’20, June 15–20, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3385966

ACM Reference Format:
Ori Lahav and Udi Boker. 2020. Decidable Verification under a

Causally Consistent Shared Memory . In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’20), June 15–20, 2020, London,
United Kingdom. ACM, New York, NY, USA, 24 pages. https://doi.
org/10.1145/3385412.3385966

1 Introduction
Suppose that one wants to verify that a given sequential

program satisfies a certain safety specification (e.g., that

it never crashes). If the data domain is bounded, we can

represent the program as a finite-state transition system,

and this verification problem is trivially decidable. Moving

to concurrent programs, assuming (non-realistic) sequen-

tially consistent shared memory semantics, does not change

much—the memory constitutes another finite-state system,

and its synchronization with the interleaving of the systems

representing the different threads is easily expressible as a

finite-state system as well. On the other hand, if the memory

does not ensure sequential consistency, but rather provides

weaker consistency guarantees, the decidability of the safety

verification problem is completely unclear.

In this paper, we are interested in the safety verification

problem under causally consistent shared memory. Causal

consistency is one of the most fundamental consistency mod-

els weaker than sequential consistency. It is especially com-

mon and well studied in distributed databases (see, e.g., [37]

and the mongoDB documentation [40]). Roughly speaking,

by allowing nodes to disagree on the relative order of some

memory operations, and require global consensus only on

the order of “causally related” operations, causal consistency

allows scalable, partition-tolerant and available implementa-

tions.

Nowadays, causal consistency models have become cen-

tral also in multithreaded programming. In particular, the

Release/Acquire model (RA) is a form of causal consistency

that specifies the semantics of C/C++11 for synchroniza-

tion accesses annotated with memory_order_release and

memory_order_acquire [14, 23, 24]. A stronger form of

causal consistency, called SRA (for Strong Release/Acquire),

which is equivalent to the standard causal consistency model

https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

in distributed databases [18],
1
characterizes the guarantees

provided by “multi-copy atomic” multiprocessor architec-

tures, such as POWER. Specifically, as shown in [30], SRA
precisely captures the guarantees provided by the POWER

architecture for programs compiled from the C/C++’s re-

lease/acquire fragment.

Despite its centrality, until recently not much was known

about the safety verification problem under causal consis-

tency. The challenge arises first since the standard semantics

of causal consistency models is declarative (identifying pro-

gram behaviors with partially ordered execution histories

that obey certain formal consistency constraints), while veri-

fication is typically applied on operational models. Moreover,

operational versions of causal consistency are inherently

infinite-state, as threads may generally read from an un-

bounded past. In fact, the reduction of Atig et al. [11] from

reachability in lossy FIFO channel machines to safety veri-

fication under x86-TSO semantics can be straightforwardly

adapted to causally consistent models (specifically, RA and

SRA). This implies a non-primitive recursive lower bound on

the safety verification problem under causal consistency.

Very recently, Abdulla et al. [3] proved that the safety verifi-

cation problem is undecidable under one instance of causal
consistency, namely the the RA model.

Our main contribution in this paper is to establish the

decidability of safety verification under the SRA model. If

one is specifically interested in verification under RA, our
result provides a (rather tight) under-approximation (a bug

under SRA implies a bug under RA), and, since RA and SRA
coincide on write/write-race-free programs, we obtain the

decidability of safety verification under RA for this large and

widely used class of programs.

To obtain decidability, we use the framework of well-

structured transition systems [2, 7, 22]. Intuitively speaking,

this framework allows one to establish decidability of infinite-

state “lossy” systems, where (i) states may non-deterministi-

cally forget some information they include; and (ii) the rela-

tion determining whether one state is obtained from another

by losing information constitutes a well-quasi-ordering. This

approach, however, cannot be applied for (an operationalized

version of) SRA directly, whose natural states are execution

histories. First, forgetting information from the history re-

sults, in many cases, in strictly weaker causality constraints

that allow outcomes that cannot be obtained without los-

ing the information. Second, execution histories are only

partially ordered and embedding between (general) partial

orders is not a well-quasi-ordering.

Our solution is to develop a novel operational semantics

that is equivalent to SRA, for which we can use the frame-

work of well-structured transition systems. The key idea in

1
This equivalence excludes the atomicity of read-modify-writes, which

is crucial in multithreaded programming but is not provided by causal

consistency as defined in [18] (see also §3.1).

this semantics is to maintain the potential of future reads
of each thread in the machine state. This semantics can be

straightforwardly made “lossy”, as losing some parts of the

possible potential never allows for additional behaviors. In

addition, potentials can be represented using total orders,

whose embedding relation (based on the ordinary subse-

quence relation) is a well-quasi-ordering. In this semantics,

read transitions are very simple, they only consume a prefix

of the potential. The complexity is left for write transitions

that need to properly increase the potentials of the different

threads in a way that ensures causal consistency. Our funda-

mental observation is that the way the potential of a certain

thread increases when another thread writes to memory can

be defined solely in terms of the existing potentials of the

two threads. This intuition is made precise in our formalized

(and mechanized in Coq) correspondence proofs, which es-

tablish simulations (forward for one direction and backward

for the converse) between the novel lossy semantics and the

straightforward “operationalization” of SRA’s declarative
semantics.

Related Work. Causally consistent shared memory mod-

els, their verification problems and approaches to address

these problems were recently outlined in [29], where the

problem we resolve is left open. As mentioned above, Ab-

dulla et al. [3] proved that safety verification under RA is

undecidable. Operational “message-passing” semantics for

SRA was developed in [30]. It is inadequate for our purposes

as it cannot be made “lossy” without affecting its allowed

outcomes.

The safety verification problem was previously investi-

gated under TSO—the “total store ordering” model of x86

multiprocessors, which, being multi-copy-atomic, is stronger

than any of the models studied here. Atig et al. [11, 12] estab-

lish the decidability of this problem (and the non-primitive

recursive lower bound) by reducing it to (and from) reach-

ability in lossy channel systems. Since causal consistency

models are not multi-copy atomic and they lack any notion

of a global mapping from locations to values, the idea be-

hind their reduction cannot be applied for SRA. Notably,
SRA cannot be fully explained by program transformations

(instruction reordering and merging) [33], whereas, with

the exception of the recent undecidability in [3], all existing

results (of [12] in particular) are for models that are fully

accounted for by such transformations.

More recently, Abdulla et al. [4] greatly simplified previous

proofs for TSO (and demonstrated much better practical

running times on certain benchmarks) by developing and

utilizing a “load-buffer” semantics for TSO. Load-buffers are

roughly similar to our potential lists, but while load buffers

are FIFO queues, our lists necessarily allow the insertion of

future reads at different positions, subject to certain (novel)

conditions ensuring that causal consistency is not violated.

In addition, the “load-buffer” semantics for TSO includes

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

a global machine memory, while our semantics does not

employ any such notion.

Verification of programs under causal consistency (espe-

cially under RA) has received considerable amount of atten-

tion in recent years. The different approaches include (non-

automated) program logics [21, 25, 32, 48, 49], (bounded)

model checking based on partial order reduction [3, 5, 27, 35]

and robustness verification [17, 31, 41]. The latter approach

reduces the verification problem to the verification under

sequential consistency and the verification of the program’s

robustness against causal consistency. Thus, this approach

cannot work for programs that meet their safety specification

but still exhibit non-sequentially-consistent behaviors.

Finally, the problem asking whether a given implementa-

tion provides causal consistency guarantees was studied in

[16]. It is, however, independent from verification of client
programs assuming causal consistency, as we study here.

Outline. The rest of this paper is organized as follows. In
§2 we provide preliminary definitions. In §3 we present the

SRA model and its safety verification problem, and prove

that RA and SRA coincide for write/write-race-free programs.

In §4 we present a straightforward operational version of

SRA’s declarative semantics. In §5 we introduce our novel

operational semantics of SRA. In §6 we show how this se-

mantics is used to decide the safety verification problem.

We conclude in §7. The appendices to this paper, publicly

available in [1], provide full proofs. Mechanized Coq proofs

of the equivalence of the two semantics of SRA are available

in the artifact accompanying this paper.

2 Preliminaries
SRA is a declarative memory model, defined by imposing

certain consistency constraints on execution graphs. The latter
describe the (partially ordered) history of a program run. In

this section, we provide the preliminaries for declarative

memory model: We introduce a toy programming language

(§2.1), interpret its programs as transition systems (§2.2) and

associate these systems with execution graphs (§2.3).

2.1 Programming Language
Let Val ⊆ N, Loc ⊆ {x, y, ...}, Reg ⊆ {a, b, ...} be finite sets
of values, (shared) memory locations, and register names.

Figure 1 presents our toy language. Its expressions are con-

structed from registers (local variables) and values. Instruc-

tions include assignments and conditional branching, as well

as memory operations. Intuitively speaking, an assignment

𝑟 := 𝑒 assigns the value of 𝑒 to register 𝑟 (involving no mem-

ory access); if 𝑒 goto 𝑛 sets the program counter to 𝑛 iff

the value of 𝑒 is not 0; a “write” 𝑥 := 𝑒 stores the value of

𝑒 in 𝑥 ; a “read” 𝑟 := 𝑥 loads the value of 𝑥 to register 𝑟 ;

𝑟 := FADD(𝑥, 𝑒) atomically increments 𝑥 by the value of 𝑒

and loads the old value of 𝑥 to 𝑟 ; 𝑟 := XCHG(𝑥, 𝑒) atomically

swaps 𝑥 to the value of 𝑒 and loads the old value of 𝑥 to 𝑟 ;

and 𝑟 := CAS(𝑥, 𝑒R, 𝑒W) atomically loads the value of 𝑥 to 𝑟 ,

compares it to the value of 𝑒R, and if the two values are equal,

replaces the value of 𝑥 by the value of 𝑒W.

A sequential program 𝑆 is a function from a set of the form

{0, 1, ... ,𝑁 } (the possible values of the program counter) to

instructions. We denote by SProg the set of all sequential

programs. A (concurrent) program 𝑃 is a top-level parallel

composition of sequential programs, defined as a mapping

from a finite set Tid ⊆ {T1, T2, ...} of thread identifiers to

SProg. In our examples, we often write sequential programs

as sequences of instructions delimited by line breaks, use ‘∥’
for parallel composition, and refer to the program threads

as T1, T2, ... following their left-to-right order in the program

listing (see, e.g., Ex. 3.5 on Page 6).

2.2 From Programs to Labeled Transition Systems
Sequential and concurrent programs induce labeled transi-

tion systems.

Labeled transition systems. A labeled transition system
(LTS) 𝐴 over an alphabet Σ is a triple ⟨𝑄,𝑄0,𝑇 ⟩, where 𝑄
is a set of states, 𝑄0 ⊆ 𝑄 is the set of initial states, and
𝑇 ⊆ 𝑄 × Σ × 𝑄 is a set of transitions. We denote by 𝐴.Q,

𝐴.Q0 and 𝐴.T the components of an LTS 𝐴; write
𝜎−→𝐴 for

the relation {⟨𝑞, 𝑞′⟩ | ⟨𝑞, 𝜎, 𝑞′⟩ ∈ 𝐴.T} and −→𝐴 for

⋃
𝜎 ∈Σ

𝜎−→𝐴.

A state 𝑞 ∈ 𝐴.Q is reachable in 𝐴 if 𝑞0 −→∗
𝐴

𝑞 for some

𝑞0 ∈ 𝐴.Q0. A sequence 𝜎1, ... ,𝜎𝑛 is a trace of 𝐴 if 𝑞0
𝜎1−→𝐴

· ·· 𝜎𝑛−−→𝐴 𝑞 for some 𝑞0 ∈ 𝐴.Q0 and 𝑞 ∈ 𝐴.Q. The set of pre-
decessors of a set 𝑆 ⊆ 𝐴.Q w.r.t. a symbol 𝜎 ∈ Σ, denoted

by pred𝜎𝐴 (𝑆), is given by {𝑞 ∈ 𝐴.Q | ∃𝑞′ ∈ 𝑆. 𝑞
𝜎−→𝐴 𝑞′}. We

define pred𝐴 (𝑆) ≜
⋃

𝜎 ∈Σ pred
𝜎
𝐴 (𝑆).

For sequential programs the alphabet is the set of labels
(extended with 𝜀 for silent transitions), as defined next.

Definition 2.1. A label is either R (𝑥, 𝑣R) (read label), W (𝑥, 𝑣W)
(write label) or RMW (𝑥, 𝑣R, 𝑣W) (read-modify-write label), where
𝑥 ∈ Loc and 𝑣R, 𝑣W ∈ Val. We denote by Lab the set of all la-
bels. The functions typ, loc, valR, and valW return (when

applicable) the type (R/W/RMW), location, read value and writ-
ten value of a given label 𝑙 .

A sequential program 𝑆 ∈ SProg induces an LTS over

Lab ∪ {𝜀}. Its states are pairs 𝑠 = ⟨pc, 𝜙⟩ where 𝑝𝑐 ∈ N
(called program counter) and 𝜙 : Reg → Val (called local
store, and extended to expressions in the obvious way). Its

only initial state is ⟨0, 𝜆𝑟 ∈ Reg. 0⟩ and its transitions are

given in Fig. 2, following the informal description above. (In

particular, a read instruction in 𝑆 induces |Val| transitions
with different read labels.) We identify sequential programs

with their induced LTSs (when writing, e.g., 𝑆.Q and −→𝑆).

In turn, a concurrent program 𝑃 is identified with an LTS

over Tid× (Lab∪ {𝜀}). Its states are functions, often denoted

by 𝑝 , assigning a state in 𝑃 (𝜏).Q to every 𝜏 ∈ Tid; its initial
states set is {𝑝 | ∀𝜏 . 𝑝 (𝜏) ∈ 𝑃 (𝜏).Q0}; and its transitions are

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

𝑣 ∈ Val ⊆ N values

𝑥,𝑦, 𝑧 ∈ Loc ⊆ {x, y, ...} locations

𝑟 ∈ Reg ⊆ {a, b, ...} registers

𝜏, 𝜋, 𝜂 ∈ Tid ⊆ {T1, T2, ...} thread identifiers

𝑆 ∈ SProg ≜ {0, 1, ... ,𝑁 } → Inst sequential programs

𝑃 : Tid → SProg (concurrent) programs

𝑒 ::= 𝑟 | 𝑣 | 𝑒 + 𝑒 | 𝑒 = 𝑒 | 𝑒 ≠ 𝑒 | ...

Inst ∋ inst ::= 𝑟 := 𝑒 | if 𝑒 goto 𝑛 | 𝑥 := 𝑒 | 𝑟 := 𝑥 |
𝑟 := FADD(𝑥, 𝑒) | 𝑟 := XCHG(𝑥, 𝑒) | 𝑟 := CAS(𝑥, 𝑒, 𝑒)

Figure 1. Domains, metavariables and programming language syntax.

𝑆 (pc) = 𝑟 := 𝑒

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒)]

⟨pc, 𝜙⟩ 𝜀−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = if 𝑒 goto 𝑛

𝜙 (𝑒) ≠ 0

⟨pc, 𝜙⟩ 𝜀−→ ⟨𝑛, 𝜙⟩

𝑆 (pc) = if 𝑒 goto 𝑛

𝜙 (𝑒) = 0

⟨pc, 𝜙⟩ 𝜀−→ ⟨pc + 1, 𝜙⟩

𝑆 (pc) = 𝑥 := 𝑒

𝑙 = W (𝑥, 𝜙 (𝑒))

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙⟩

𝑆 (pc) = 𝑟 := 𝑥

𝑙 = R (𝑥, 𝑣) 𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := FADD(𝑥, 𝑒)
𝑙 = RMW (𝑥, 𝑣, 𝑣 + 𝜙 (𝑒))

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := XCHG(𝑥, 𝑒)
𝑙 = RMW (𝑥, 𝑣, 𝜙 (𝑒))
𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := CAS(𝑥, 𝑒R, 𝑒W)
𝑙 = RMW (𝑥, 𝜙 (𝑒R), 𝜙 (𝑒W))
𝜙 ′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒R)]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := CAS(𝑥, 𝑒R, 𝑒W)
𝑙 = R (𝑥, 𝑣) 𝑣 ≠ 𝜙 (𝑒R)

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

Figure 2. Transitions of LTS induced by a sequential program 𝑆 ∈ SProg.

“interleaved transitions” of 𝑃 ’s components, given by:

𝑙 ∈ Lab 𝑝 (𝜏) 𝑙−→𝑃 (𝜏) 𝑠
′

𝑝
𝜏,𝑙−−→ 𝑝 [𝜏 ↦→ 𝑠 ′]

𝑝 (𝜏) 𝜀−→𝑃 (𝜏) 𝑠
′

𝑝
𝜏,𝜀−−→ 𝑝 [𝜏 ↦→ 𝑠 ′]

2.3 From LTSs to Execution Graphs
We present the general notions used to assign declarative

semantics to concurrent programs. First, we define execution

graphs, starting with their nodes, called events.

Definition 2.2. An event is a triple 𝑒 = ⟨𝜏, 𝑛, 𝑙⟩, where
𝜏 ∈ Tid is a thread identifier, 𝑛 ∈ N is a serial number

and 𝑙 ∈ Lab is a label (Def. 2.1). The function tid returns the
thread identifier of an event. The functions typ, loc, valR,
and valW are lifted to events in the obviousway.We denote by

E the set of all events, and use R,W,RMW for its subsets: R ≜
{𝑒 | typ(𝑒) ∈ {R, RMW}}, W ≜ {𝑒 | typ(𝑒) ∈ {W, RMW}} and

RMW ≜ R ∩W. Sub/superscripts are used to restrict these

sets to certain location (e.g., W𝑥 = {𝑤 ∈ W | loc(𝑤) = 𝑥})
and/or thread identifier (e.g., E𝜏 = {𝑒 ∈ E | tid(𝑒) = 𝜏}).

Our representation of events induces a partial order < on

them: events of the same thread are ordered according to

their serial numbers (i.e., ⟨𝜏1, 𝑛1, 𝑙1⟩ < ⟨𝜏2, 𝑛2, 𝑙2⟩ iff 𝜏1 = 𝜏2
and 𝑛1 < 𝑛2). In turn, an execution graph consists of a set of

events, a reads-frommapping that determines the write event

fromwhich each read event reads its value, and amodification
order that totally orders the writes to each location.

Definition 2.3. A relation rf is a reads-from relation for a

set 𝐸 of events if the following hold:

• If ⟨𝑤, 𝑟 ⟩ ∈ rf , then𝑤 ∈ 𝐸∩W, 𝑟 ∈ 𝐸∩R, loc(𝑤) = loc(𝑟)
and valW (𝑤) = valR (𝑟).

• If ⟨𝑤1, 𝑟 ⟩, ⟨𝑤2, 𝑟 ⟩ ∈ rf , then 𝑤1 = 𝑤2 (that is, rf −1 =

{⟨𝑟,𝑤⟩ | ⟨𝑤, 𝑟 ⟩ ∈ rf } is functional).
• ∀𝑟 ∈ 𝐸 ∩ R. ∃𝑤. ⟨𝑤, 𝑟 ⟩ ∈ rf (each read event reads from

some write event).

Definition 2.4. A relation mo is a modification order for a
set𝐸 of events ifmo is a disjoint union of relations {mo𝑥 }𝑥 ∈Loc
where each mo𝑥 is a strict total order on 𝐸 ∩W𝑥 .

Definition 2.5. An execution graph is a triple𝐺 = ⟨𝐸, rf ,mo⟩
where 𝐸 is a finite set of events, rf is a reads-from relation for

𝐸 andmo is a modification order for 𝐸. We denote by EGraph
the set of all execution graphs. The components of 𝐺 are

denoted by𝐺.E,𝐺.rf and𝐺.mo, and𝐺.po denotes the restric-
tion of < to𝐺.E (i.e.,𝐺.po ≜ {⟨𝑒1, 𝑒2⟩ ∈ 𝐸 × 𝐸 | 𝑒1 < 𝑒2}). For
a set 𝐸 ⊆ E, we write𝐺.𝐸 for𝐺.E∩𝐸 (e.g.,𝐺.W𝑥 = 𝐺.E∩W𝑥).

The next definition is used to associate execution graphs

to programs. Multiple examples below (on Page 6) illustrate

execution graphs of different programs.

Notation 2.6. For a set 𝐸 of events, thread identifier 𝜏 ∈ Tid
and label 𝑙 ∈ Lab, NextEvent(𝐸, 𝜏, 𝑙) denotes the event given
by ⟨𝜏, 1 +max({𝑛 ∈ N | ∃𝑙 ′ ∈ Lab. ⟨𝜏, 𝑛, 𝑙 ′⟩ ∈ 𝐸}), 𝑙⟩.

Definition 2.7. An execution graph 𝐺 is generated by a
program 𝑃 with final state 𝑝 if ⟨𝑝

0
,𝐺0⟩ →∗ ⟨𝑝,𝐺⟩ for some

𝑝
0
∈ 𝑃 .Q0, where 𝐺0 denotes the empty execution graph

(given by 𝐺0 ≜ ⟨∅, ∅, ∅⟩) and → is defined by:

𝑝
𝜏,𝑙−−→𝑃 𝑝

′
𝐸 ′ = 𝐸 ∪ {NextEvent(𝐸, 𝜏, 𝑙)}

rf ⊆ rf ′ mo ⊆ mo′

⟨𝑝, ⟨𝐸, rf ,mo⟩⟩ → ⟨𝑝 ′, ⟨𝐸 ′, rf ′,mo′⟩⟩
𝑝

𝜏,𝜀−−→𝑃 𝑝
′

⟨𝑝,𝐺⟩ → ⟨𝑝 ′,𝐺⟩

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

3 The Strong Release/Acquire Model
Declarative memory models, such as Strong Release/Acquire

(SRA), are formulated by a collection of constraints on ex-

ecution graphs, which determine the consistent execution
graphs—the ones allowed by the model. In this section, we

formulate the constraints of SRA and define the safety veri-

fication problem under SRA, discuss equivalent alternative
formulations (§3.1), provide several examples (§3.2), and in-

vestigate the relation between SRA and RA (§3.3).

Notation 3.1 (Relations). Given a relation 𝑅, dom(𝑅) de-
notes its domain; 𝑅?

and 𝑅+
denote its reflexive and transitive

closures; and 𝑅−1
denotes its inverse. The (left) composition

of relations 𝑅1, 𝑅2 is denoted by 𝑅1 ;𝑅2. We denote by [𝐴] the
identity relation on a set𝐴, and so [𝐴] ;𝑅 ; [𝐵] = 𝑅 ∩ (𝐴×𝐵).

Causal consistency models are based on the following

basic derived “happens-before” relation:

𝐺.hb ≜ (𝐺.po ∪𝐺.rf)+

The happens-before relation captures the “causality relation”

in execution graphs. In words, hb is the smallest transitive

relation that contains the program order (po) and the reads-

from (rf) relations. We note that all reads synchronize with

the writes they read from (rf ⊆ hb), in contrast to more

elaborate models like RC11 [34], where only certain reads-

from edges induce synchronization.

Given hb, the SRA model consists of three constraints,

each of which forbids a certain pattern in execution graphs.

The three disallowed patterns are illustrated as follows:

E

(hb ∪ mo)+

irr-hb-mo

W𝑥 W𝑥

R𝑥

rf hb

mo

read-coherence

W𝑥 W𝑥

RMW𝑥

rf mo

mo

atomicity

irr-hb-mo. This constraint requires that the modification

order mo “agrees” with the causality order:

(𝐺.hb ∪𝐺.mo)+ is irreflexive (irr-hb-mo)

In particular, it implies that 𝐺.hb is indeed a partial order.

Thus, SRA forbids so-called “load-buffering” behaviors [39],

which, unless restricted appropriately, lead to the infamous

“out-of-thin-air” problem [13, 26].

read-coherence. This constraint intuitively requires that

“a thread cannot read a value when it is aware of a later value

written to the same location”. Identifying “thread 𝜏 being

aware of some write event 𝑤” with an hb-path from 𝑤 to

(some event of) 𝜏 , and using the modification order mo to

interpret one write being “later” than another, the precise

condition requires that:

𝐺.mo ;𝐺.hb ;𝐺.rf−1 is irreflexive (read-coherence)

Indeed, if a read event 𝑟 reads from awrite event𝑤1, while be-

ing aware of an mo-later write event𝑤2 to the same location,

we have ⟨𝑤1,𝑤2⟩ ∈ mo, ⟨𝑤2, 𝑟 ⟩ ∈ hb and ⟨𝑟,𝑤1⟩ ∈ rf−1.

atomicity. This condition ensures that RMWs are stronger

than a read followed by a write. It requires that RMWs read

from their immediate mo-predecessors:

𝐺.mo ;𝐺.mo ;𝐺.rf−1 is irreflexive (atomicity)

In words, if an RMW event 𝑒 is reading from a write event

𝑤 , then no write event can intervene mo-between𝑤 and 𝑒 .

We refer to execution graphs that meet the three condi-

tions above as SRA-consistent. With this definition, we can

formally present the reachability problem under SRA, which
we prove to be decidable in this paper.

Definition 3.2. We call a state 𝑝 of a program 𝑃 reachable
under SRA if some SRA-consistent execution graph is gener-

ated by 𝑃 with final state 𝑝 (see Def. 2.7).

Definition 3.3 (SRA Reachability). The reachability prob-

lem under SRA is given by:

Input: a program 𝑃 and a “bad” state 𝑝 ∈ 𝑃 .Q.
Question: is 𝑝 reachable under SRA?

A lower complexity bound to this problem is achieved by

reduction from reachability in lossy FIFO channel machines,

straightforwardly following the analogous reduction of Atig

et al. [11] to safety verification under x86-TSO.

Theorem 3.4. SRA reachability is non-primitive-recursive.

3.1 Other Formulations of SRA
Our presentation above follows [30], where SRA is intro-

duced as a strengthening of RA. The latter is the fragment

of the C/C++11 model [14, 34] consisting of release stores,

acquire reads and acquire-release RMWs. In addition, SRA
appears (in multiple disguises) in the literature:

POWER. As proved in [30], SRA precisely coincides with

the POWER model of [9], when the latter is restricted to

programs that result from compiling C/C++11 programs in

the release/acquire fragment, using the standard compilation

scheme [38] (that is, placing lwsync before every store and

ctrl+isync after every load).

Distributed Key-Value Stores. Ignoring RMWs, the SRA
model is equivalent to the causal convergencemodel, denoted

by CCv, of [16] (when applied to the standard read/write

memory sequential specification), as well as to the causal con-

sistency model of [37] when restricted to single-instruction

transactions. These models are formulated in [18, 20] in

terms of visibility (𝑣𝑖𝑠) and arbitration (𝑎𝑟) relations. One

direction of the correspondence follows by setting 𝑣𝑖𝑠 = hb
and taking 𝑎𝑟 to be some total order extending hb ∪ mo. For
the converse, one takes rf to relate each read 𝑟 with the

𝑎𝑟 -maximal write to the same location that is 𝑣𝑖𝑠-before 𝑟 ,

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

and sets mo =
⋃

𝑥 ∈Loc [W𝑥] ; 𝑎𝑟 ; [W𝑥]. Furthermore, our pro-

gram order (po) corresponds to session order (𝑠𝑜), and SRA’s
consistency ensures strong session guarantees (𝑠𝑜 ⊆ 𝑣𝑖𝑠) [47].

RMWs in distributed databases require expensive global

coordination. A naive implementation of RMWs as transac-

tions that read and write from/to the same location does not

guarantee atomicity, as it allows the lost update anomaly

(e.g., it will allow the outcome in Ex. 3.9 below). In the partic-

ular case when a certain location is only accessed by RMWs,

its accesses are totally ordered by hb, which corresponds

to marking of certain transactions as serializable, as in the

Red-Blue model of [15, 36].

Parallel-Snapshot-Isolation. When all store instructions

are implemented using atomic exchanges (implementing

𝑥 := 𝑒 as 𝑟 := XCHG(𝑥, 𝑒)), SRA precisely captures the par-
allel snapshot isolation model (PSI) [10, 15, 19, 43, 45] when
restricted to single-instruction transactions. Hence, our de-

cidability result for SRA entails the decidability for PSI with

single-instruction transactions.

3.2 Examples
We list some well-known litmus tests to demonstrate SRA
(some of which are revisited in the sequel). To simplify the

presentation, instead of referring to reachable program states,

we consider possible program outcomes assigning final values
to (some) registers. An outcome 𝑂 : Reg ⇀ Val is allowed
for a program under the declarative model SRA if some state

in which the registers are assigned their values in𝑂 is reach-

able under SRA (see Def. 3.2). We use program comment

annotations (“//”) to denote particular outcomes.

Remark 1. To simplify our presentation, we require explicit

initialization of memory locations and adapt the examples to

include explicit initialization. Reading from an uninitialized

location blocks the thread. (For example, only the initial

execution graph 𝐺0 is generated by a program consisting

of a single thread that reads from some location, without

previously writing to it.) This is only a presentation matter:

onemay always achieve implicit initialization by augmenting

the program with an additional thread that sets all variables

to their initial value, and then signals all other thread (using

an additional flag) to start running.

Example 3.5 (Store buffering). The following program out-

come is allowed by SRA.

x := 0

x := 1

a := y //0

y := 0

y := 1

b := x //0

✓ SRA

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

W (y, 1)

R (x, 0)

mo

rf

mo

rf
(SB)

In its execution graph the rf-edges are forced because of

the read values, whereas the mo-edges are forced due to irr-

hb-mo. It can be easily verified that the execution graph is

SRA-consistent.

Example 3.6 (Message passing). SRA supports the very

common “flag-based” synchronization. That is, the following

outcome is disallowed:

x := 0

x := 1

y := 1

a := y //1
b := x //0

✗ SRA

W (x, 0)

W (x, 1)

W (y, 1)

R (y, 1)

R (x, 0)

rf

mo

(MP)

An execution graph for this outcome must have rf and mo-
edges as depicted above. However, we have mo from W (x, 0)
to W (x, 1), hb from W (x, 1) to R (x, 0) and rf from W (x, 0) to
R (x, 0). Hence, read-coherence does not hold, and the execu-

tion graph is not SRA-consistent.

Example 3.7 (Transitive message passing). po and rf edges
equally contribute to hb in causal consistency. Hence, as in

Ex. 3.6, the following outcome is disallowed by SRA.

x := 0

y := 1

a := y //1
x := 1

b := x //1
c := x //0 ✗ SRA

W (x, 0)

W (y, 1)

R (y, 1)

W (x, 1)

R (x, 1)

R (x, 0)
rf

rfmo

(MP-trans)

Example 3.8 (Independent reads of independent writes). A

main difference between SRA and the x86-TSO model [42]

is that the former is non-multi-copy-atomic. Namely, differ-

ent threads may observe different stores in different orders.

Thus, unlike x86-TSO, the SRA model allows the following

outcome, in which T2 observes W (x, 1) but not W (y, 1), while
T3 observes W (y, 1) but not W (x, 1).

x := 0

x := 1

a := x //1
b := y //0

c := y //1
d := x //0

y := 0

y := 1

✓ SRA

W (x, 0) W (y, 0)

W (x, 1)

R (x, 1)

R (y, 0)

R (y, 1)

R (x, 0) W (y, 1)
mo morf rf

(IRIW)

Example 3.9. For the implementation of locks, it is crucial

that two RMWs never read from the same write:

x := 0

a :=

CAS(x, 0, 1) //0
b :=

CAS(x, 0, 1) //0
✗ SRA

W (x, 0)

RMW (x, 0, 1) RMW (x, 0, 1)
rf

rf
(2RMW)

Since mo must order the two RMWs and irr-hb-mo dictates

that mo ; rf is irreflexive, any order of the RMWs entails a

violation of atomicity.

Example 3.10. RMWs to an otherwise-unused location can

be used as fences, as the consistency constraints imply that hb
must totally order𝐺.W𝑥 when, except for one (initialization)

write event, all write events to 𝑥 in𝐺 are RMWs. For example,

placing such fences forbids the weak outcome of the SB

program (Ex. 3.5). An execution graph for this outcome must

have the edges as depicted on the right, and any choice of

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

the missing rf-edges (to the two RMW events) will violate a

condition of SRA.

z := 0

x := 0

x := 1

a := FADD(z, 0)
b := y //0

y := 0

y := 1

a := FADD(z, 0)
c := x //0

✗ SRA

W (x, 0) W (y, 0)

W (z, 0)

W (x, 1)

RMW (z, 0, 0)

R (y, 0)

W (y, 1)

RMW (z, 0, 0)

R (x, 0)

rf
(SBF)

3.3 Relation to the RA Model
TheRAmodel is weaker than SRA. It imposes read-coherence

and atomicity, just like SRA, but instead of irr-hb-mo, it only

disallows the following patterns:

E
hb

irr-hb

W𝑥

W𝑥

hbmo

write-coherence

First, irr-hb requires hb to be a partial order:

𝐺.hb is irreflexive (irr-hb)

Second, instead of a global agreement between mo and hb,
RA only requires a local agreement:

𝐺.mo ;𝐺.hb is irreflexive (write-coherence)

In words, if hb orders two writes to the same location, then

mo must follow the same order.

Example 3.11. Cycles in hb∪mo involving only one location
are disallowed by write-coherence (using the fact that mo is

total on writes to the same location). In contrast, irr-hb-mo

(of SRA) restricts the relation between [W𝑥] ; mo ; [W𝑥] and
[W𝑦] ; mo ; [W𝑦] also when 𝑥 ≠ 𝑦. The following example

(adapted from [50]) demonstrates the difference:

x := 1

y := 2

a := y //1

y := 1

x := 2

a := x //1
✓RA ✗ SRA

W (x, 1)

W (y, 2)

R (y, 1)

W (y, 1)

W (x, 2)

R (x, 1)

mo

rf
(2+2W)

An execution graph for this outcome must have rf and mo-
edges as depicted above (to satisfy read-coherence), and it

contains a (hb ∪ mo)-cycle, which is allowed by RA and dis-

allowed by SRA.

Since irr-hb-mo implies both irr-hb and write-coherence,

the following trivially holds:

Proposition 3.12. SRA-consistency implies RA-consistency.

Reachability under RA is defined analogously to reach-

ability under SRA (replacing “SRA” with “RA” in Def. 3.2).

Then, we clearly have that all states of a program 𝑃 that are

reachable under SRA are also reachable under RA. The con-
verse does not hold in general, but it does hold for the large

and widely used class of write/write-race-free programs. In-

spired by DRF models [8], we show that write/write-race

freedom of SRA-consistent execution graphs suffices, so that

programmers may adhere to a safe programming discipline

without even understanding RA.

Definition 3.13. An execution graph 𝐺 is write/write-race
free if for every 𝑤1,𝑤2 ∈ 𝐺.W with loc(𝑤1) = loc(𝑤2),
we have 𝑤1 = 𝑤2, ⟨𝑤1,𝑤2⟩ ∈ 𝐺.hb or ⟨𝑤2,𝑤1⟩ ∈ 𝐺.hb. A
program 𝑃 is write/write-race free under SRA if every SRA-
consistent execution graph that is generated by 𝑃 (with some

final state) is write/write-race free.

Theorem 3.14. Let 𝑃 be a program that is write/write-race
free under SRA. Then, the sets of states of 𝑃 that are reachable
under SRA and RA coincide.

Proof. Using Prop. 3.12, it suffices to show that reachability

under RA implies reachability under SRA. Let G be the set

of all RA-consistent but SRA-inconsistent execution graphs

that are generated by 𝑃 . To show that every state of 𝑃 that is

reachable under RA is also reachable under SRA, it suffices

to show that G is empty.

Suppose otherwise and let 𝐺 be a minimal element in

G, in the sense that every proper 𝐺.hb-prefix of 𝐺 is not

in G. (A proper 𝐺.hb-prefix of 𝐺 is an execution graph

of the form ⟨𝐸𝑝 , [𝐸𝑝] ;𝐺.rf ; [𝐸𝑝], [𝐸𝑝] ;𝐺.mo ; [𝐸𝑝]⟩ where
𝐸𝑝 ⊊ 𝐺.E and dom(𝐺.hb ; [𝐸𝑝]) ⊆ 𝐸𝑝 .) Since the empty

execution graph 𝐺0 is trivially SRA-consistent, 𝐺 cannot

be empty. Let 𝑒 be a 𝐺.hb-maximal event in 𝐺.E, and let

𝐸 ′ = 𝐺.E \ {𝑒}. The minimality of 𝐺 ensures that 𝐺 ′ =

⟨𝐸 ′, [𝐸 ′] ;𝐺.rf ; [𝐸 ′], [𝐸 ′] ;𝐺.mo ; [𝐸 ′]⟩ (the restriction of 𝐺

to 𝐸 ′
) is SRA-consistent. Hence, our assumption on 𝑃 en-

sures that 𝐺 ′
is write/write-race free, thus using irr-hb-mo,

it follows that 𝐺 ′.mo ⊆ 𝐺 ′.hb ⊆ 𝐺.hb.
Now, since 𝐺 is RA-consistent but not SRA-consistent, 𝐺

does not satisfy irr-hb-mo. Since 𝐺 ′
satisfies irr-hb-mo, it

must be the case that there exists𝑤 ∈ 𝐸 ′
such that ⟨𝑒,𝑤⟩ ∈

𝐺.mo and ⟨𝑤, 𝑒⟩ ∈ (𝐺.hb ∪ 𝐺 ′.mo)+. Since 𝐺 ′.mo ⊆ 𝐺.hb, it
follows that ⟨𝑒, 𝑒⟩ ∈ 𝐺.mo ;𝐺.hb. Hence, 𝐺 does not satisfy

write-coherence, which contradicts the fact that it is RA-
consistent. □

4 Operationalizing the SRAModel
In this section, we present an operational semantics for SRA,
formulating it as a memory system. While the formulation in

§3 is declarative, it is straightforward to “operationalize” it.

Indeed, instead of first generating a program execution graph

and then checking for SRA-consistency, one may impose

consistency at each step of an incremental construction of

the execution graph. This results in an equivalent operational

presentation, which is arguably simpler and easier to relate

to the alternative semantics we define in §5.

Definition 4.1. Amemory system is a (possibly infinite) LTS

over the alphabet (Tid × Lab) ∪ {𝜀}.

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

write

𝐺 = ⟨𝐸, rf ,mo⟩
𝑒 = NextEvent(𝐺.E, 𝜏, W (𝑥, 𝑣W))

𝐺 ′ = ⟨𝐸 ∪ {𝑒}, rf ,mo ∪ (𝐺.W𝑥 × {𝑒})⟩

𝐺
𝜏,W (𝑥,𝑣W)−−−−−−−→opSRA 𝐺 ′

read

𝐺 = ⟨𝐸, rf ,mo⟩
𝑒 = NextEvent(𝐺.E, 𝜏, R (𝑥, 𝑣R))
𝐺 ′ = ⟨𝐸 ∪ {𝑒}, rf ∪ {⟨𝑤, 𝑒⟩},mo⟩
𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(mo ;𝐺.hb? ; [E𝜏])

𝐺
𝜏,R (𝑥,𝑣R)−−−−−−−→opSRA 𝐺 ′

rmw

𝐺 = ⟨𝐸, rf ,mo⟩
𝑒 = NextEvent(𝐺.E, 𝜏, RMW (𝑥, 𝑣R, 𝑣W))

𝐺 ′ = ⟨𝐸 ∪ {𝑒}, rf ∪ {⟨𝑤, 𝑒⟩},mo ∪ (𝐺.W𝑥 × {𝑒})⟩
𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(mo)

𝐺
𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−−−→opSRA 𝐺 ′

Figure 3. Transitions of opSRA.

The alphabet symbols of the memory system are pairs in

Tid × Lab, representing the thread identifier and the label of

the operation, or 𝜀 for internal (silent) memory actions.

Example 4.2. The most well-known memory system is the

one of sequential consistency, denoted here by SC. This
memory system simply tracks the most recent value writ-

ten to each location (or ⊥ for uninitialized locations). For-

mally, it is defined by SC.Q ≜ Loc → (Val ∪ {⊥}), SC.Q0 ≜
{𝜆𝑥 ∈ Loc.⊥} and −→SC is given by:

𝜇 ′ = 𝜇 [𝑥 ↦→ 𝑣W]

𝜇
𝜏,W (𝑥,𝑣W)−−−−−−−→SC 𝜇 ′

𝜇 (𝑥) = 𝑣R

𝜇
𝜏,R (𝑥,𝑣R)−−−−−−−→SC 𝜇

𝜇 (𝑥) = 𝑣R
𝜇 ′ = 𝜇 [𝑥 ↦→ 𝑣W]

𝜇
𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−→SC 𝜇 ′

Note that SC is oblivious to the thread that takes the action

(𝜇
𝜏,𝑙−−→SC 𝜇 ′ iff 𝜇

𝜋,𝑙−−→SC 𝜇 ′), and it has no silent transitions.

By synchronizing a program and a memory system, we

obtain a concurrent system:

Definition 4.3. A program 𝑃 and a memory system𝑀 form

a concurrent system, denoted by 𝑃𝑀 . It is an LTS over (Tid ×
(Lab∪ {𝜀})) ∪ {𝜀} whose set of states is 𝑃 .Q×𝑀.Q; its initial
states set is 𝑃 .Q0×𝑀.Q0; and its transitions are “synchronized
transitions” of 𝑃 and𝑀 , given by:

𝑙 ∈ Lab 𝑝
𝜏,𝑙−−→𝑃 𝑝

′

𝑚
𝜏,𝑙−−→𝑀 𝑚′

⟨𝑝,𝑚⟩ 𝜏,𝑙−−→𝑃𝑀 ⟨𝑝 ′,𝑚′⟩

𝑝
𝜏,𝜀−−→𝑃 𝑝

′

⟨𝑝,𝑚⟩ 𝜏,𝜀−−→𝑃𝑀 ⟨𝑝 ′,𝑚⟩

𝑚
𝜀−→𝑀 𝑚′

⟨𝑝,𝑚⟩ 𝜀−→𝑃𝑀 ⟨𝑝,𝑚′⟩

Next, we present the memory system opSRA that is equiv-

alent to SRA (in the sense that is made formal in Thm. 4.5).

We also refer the reader to Fig. 5 on Page 12, which illustrates

a run of opSRA for the SB example.

The states of opSRA are execution graphs capturing (par-

tially ordered) histories of executed actions (opSRA.Q ≜
EGraph); the (only) initial state is the empty execution graph

𝐺0 (opSRA.Q0 ≜ {𝐺0}); and the transitions are given in Fig. 3.
A write step by thread 𝜏 adds a corresponding fresh write

event 𝑒 to the graph placed after all events of thread 𝜏 and

extends mo to order 𝑒 after all existing writes to the same

location. A read step by thread 𝜏 adds a corresponding fresh

read event and justifies it with a reads-from edge. Its source

𝑤 must be a write event to the same location (𝑤 ∈ 𝐺.W𝑥),

writing the value being read (valW (𝑤) = 𝑣R), and the thread

executing the read is not aware of an mo-later write to the

same location (𝑤 ∉ dom(mo ; hb? ; [E𝜏])). An rmw step com-

bines a read and a write, but it is enforced to pick the

mo-maximal write to the relevant location in the current

graph as the reads-from source of the freshly added RMW.

This semantics exploits the fact that hb ∪ mo is acyclic in
SRA-consistent execution graphs (as per irr-hb-mo). Hence,

to generate an SRA-consistent execution graph in a run of an

operational semantics, we can follow a total order extending

hb∪mo, which guarantees that writes are executed following
their mo-order. In turn, since RMWs should read from their

immediate mo-predecessor, we require that RMWs read from

the current mo-maximal write.

The next definition and simple theorem formalize the

correspondence between SRA and opSRA.

Definition 4.4. A state 𝑝 of a program 𝑃 is reachable under
a memory system 𝑀 if ⟨𝑝,𝑚⟩ is reachable in 𝑃𝑀 for some

𝑚 ∈ 𝑀.Q.

Theorem 4.5. A state 𝑝 of program 𝑃 is reachable under SRA
(see Def. 3.2) iff it is reachable under opSRA.

Proof. Given an SRA-consistent execution graph 𝐺 , one ob-

tains a run of opSRA by following any total order extending

𝐺.hb∪𝐺.mo. The preconditions required by each step follow

directly from the fact that 𝐺 is SRA-consistent. For the con-
verse, it suffices to note that all reachable states of opSRA are

SRA-consistent execution graphs. Hence, if ⟨𝑝,𝐺⟩ is reach-
able in opSRA, then𝐺 is an SRA-consistent execution graph

that is generated by 𝑃 with final state 𝑝 . □

Remark 2. Following [27], our formulation of opSRA does

not directly refer to the consistency predicates, but rather

articulate necessary and sufficient conditions that ensure

that the target state is a consistent execution graph. It is

possible to take a step further and develop an equivalent

semantics with more compact states that may feel “more

operational” and intuitive. Indeed, it suffices to maintain a

partially ordered set of write events, together with amapping

of which writes each thread is aware of (the “observed writes

set” of [21]). This can be implemented using timestamps,
messages and thread views, as was done, e.g., in [25].

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

5 Making Strong Release/Acquire Lossy
For resolving the reachability problem under SRA, we intro-
duce an alternative memory system, which we call loSRA
(for “lossy-SRA”). In this section, we present loSRA, estab-
lish its equivalence to opSRA, and show how it is used to

decide the reachability problem. We begin with an intuitive

discussion to motivate our definitions.

A memory state of loSRA maintains a collection of “read-

option” lists for each thread, called the potential of the thread,
where each read option 𝑜 contains a location loc(𝑜), a value
val(𝑜) and two other components that are explained below.

Each read-option list stands for a sequence of possible future

reads of the thread, listing the writes that it may read in

the order that it may read them. For example, the list 𝑜1 ·
𝑜2 allows the thread to read val(𝑜1) from location loc(𝑜1)
and then val(𝑜2) from location loc(𝑜2). These lists do not
ascribe mandatory continuations, but rather possible futures

(hence, read options). In the beginning, the empty list is

assigned to all threads—before anywrite is executed, no reads

are possible (recall that we assume explicit initialization,

see Remark 1). In addition, the semantics is designed so that

read-option lists are “lossy”, allowing a non-deterministic

step that removes arbitrary options from the lists.

The read-option lists in the potentials dictate the possible

read steps threads can take: for a thread 𝜏 to read 𝑣 from 𝑥 ,

an option 𝑜 with val(𝑜) = 𝑣 and loc(𝑜) = 𝑥 must be the first

in each of 𝜏 ’s lists. Then, to progress to the next option in

the list, the thread may consume these options, and discard

the first element from each of its lists.

A write step is more involved, encapsulating the require-

ments of opSRA. First, since opSRA performs write events

following their mo-order, when a thread writes to 𝑥 , it cannot

later read 𝑥 from a write that was already performed (this

would violate read-coherence). Accordingly, we do not allow

a thread to write to 𝑥 if some read option 𝑜 with loc(𝑜) = 𝑥

appears in its potential. Second, when a thread performs a

write of 𝑣 to 𝑥 , it allows future reads from this write. That

is, read options 𝑜 with loc(𝑜) = 𝑥 and val(𝑜) = 𝑣 may be

added to every list of every thread. This makes the write step

in loSRA (unlike the one of opSRA) non-deterministic—the
writer essentially has to “guess” what thread will read from

the new write and when.

But, where in the lists should we allow to add such op-

tions? The following examples demonstrate two possible

cases. We write in them 𝑜𝑣𝑥 for a read option of value 𝑣 from

location 𝑥 .

Example 5.1. Consider the IRIW program with its (SRA-
allowed) outcome in Ex. 3.8. Clearly, the first step may only

be a write by T1 or T4. Suppose, w.l.o.g., that T1 begins. Since
T3 reads 0 from x, a read option 𝑜0x should be added in the

lists of T3. Now, before reading 0 from x, T3 has to read 1

from y. Hence, when T4 writes 1 to y, a read option 𝑜
1

y should

be placed before 𝑜0x in the lists of T3.

Example 5.2. Consider the MP program with its outcome

in Ex. 3.6. It is forbidden under SRA, and so we need to avoid
the following scenario: First, T1 writes 0 to x and adds a

corresponding option 𝑜0x to the (initially empty) list of T2,
and then writes 1 to x without adding any option to any list

(no thread reads 1 from x in this program outcome). Then,

T1 further writes 1 to y and adds a corresponding option 𝑜1y
in the list of T1 placed before 𝑜0x. Finally, T2 may run: read 1

from y (consuming 𝑜1y) and then 0 from x (consuming 𝑜0x).

The restriction we impose on the positions of the added

read options stems from the following key observation:
2

Shared-memory causality principle:After thread𝜋 reads
from a certain write executed by thread 𝜏 , it can perform a
sequence of operations only if thread 𝜏 could perform the same
sequence immediately after it executed the write.
Indeed, if thread 𝜏 has just performed a write𝑤 , then after

thread 𝜋 reads from 𝑤 , it “synchronizes” with 𝜏 and it is

thus confined by the sequences of reads that 𝜏 may perform.

Hence, to allow the addition of a read option 𝑜 in certain

positions of a list 𝐿 of some thread 𝜋 , we require a justifica-
tion: the suffix of 𝐿 after the first occurrence of 𝑜 should be

a subsequence of a read-option list of the writing thread 𝜏 .

This guarantees that after 𝜋 reads from a write𝑤 of 𝜏 , it will

not be able to read something that 𝜏 could not read at the

time that it wrote𝑤 . (Revisiting Ex. 5.2, the read option 𝑜1y
cannot be placed before 𝑜0x, because T1 cannot have 𝑜

0

x in its

lists at the point of writing 1 to y.)
Now, since the potential of thread 𝜏 is used both for (i) dic-

tating future reads of 𝜏 , and (ii) justifying placement of read

options that are generated by 𝜏 ’s write steps, we may need

more than one option list for each thread. We also allow to

discard existing lists in silent moves of the memory system.

This is demonstrated in the following example.

Example 5.3. Consider the following program, whose an-

notated outcome is allowed under SRA:
x := 0

x := 1

a1 := z //1
a2 := y //0

y := 0

y := 1

b1 := x //1
b2 := z //0

z := 0

z := 1

c1 := y //1
c2 := x //0

d1 := x //1
d2 := y //1
d3 := z //0

e1 := y //1
e2 := z //1
e3 := x //0

f1 := z //1
f2 := x //1
f3 := y //0

Suppose that it can be obtained by the memory system out-

lined above with one read-option list per thread (i.e., single-

ton potentials). Suppose, w.l.o.g., that z := 1 is the last write

performed in the execution. Later, T3 has to read 1 from y
and 0 from x. Hence, its read-option list must include 𝑜1y and

𝑜0x in this order. In addition, a read option 𝑜
1

z should be placed

in T6’s list before 𝑜
1

x ·𝑜0y. The justification for it requires 𝑜1x ·𝑜0y
to be a subsequence of T3’s list. This implies that T3’s list
should contain some interleaving of 𝑜1y ·𝑜0x and 𝑜1x ·𝑜0y. But, no
such interleaving is a possible future for T3 (and thus cannot
be generated by loSRA): reading 𝑜1y does not allow T3 to read

2
A weaker observation, which only considers single reads, was essential for

the soundness of OGRA—an Owicki Gries logic for RA introduced in [32].

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

𝑜0y later; and reading 𝑜1x does not allow T3 to read 𝑜
0

x later. By

allowing more than one read-option list per thread, we can

have 𝑜1y ·𝑜0x and 𝑜1x ·𝑜0y in two separate lists in the potential of

T3—both are possible continuations for it after z := 1. Then,

after executing z := 1, T3 may “lose” the justifying list 𝑜1x · 𝑜0y,
and choose to continue with 𝑜1y · 𝑜0x for its own reads.

Another complication arises due to the fact that read op-

tions do not uniquely identify write events in the execution

graph (this is unavoidable: for the decision procedure, we

need the alphabet of read options to be finite):

Example 5.4. Consider the following program:

x := 0

x := 1

z := 1

y := 0

y := 1

z := 1

a := z //1
w := 1

b := x //0

c := w //1
d := y //0 ✗ SRA (2MP)

Its annotated outcome is disallowed under SRA. Indeed, since
T3 reads x = 0 after z = 1, the read of z must read from the

write of T2. But then, T4, after reading w = 1 (from T3) cannot
read y = 0. However, the semantics described so far allows

this outcome as in the following snippet:

{𝜖} {𝜖} {𝜖} {𝜖} T1−−−−→
W (x,0)

T1−−−−→
W (x,1)

T2−−−−→
W (y,0)

T2−−−−→
W (y,1)

T1−−−−→
W (z,1)

{𝑜0y} {𝑜0x} {𝑜0x, 𝑜1z𝑜0y} {𝑜0y}
T2−−−−→

W (z,1)
{𝑜0y} {𝑜0x} {𝑜1z𝑜0x, 𝑜1z𝑜0y} {𝑜0y}

T3−−−−→
R (z,1)

{𝑜0y} {𝑜0x} {𝑜0x, 𝑜0y} {𝑜0y}
T3−−−−→

W (w,1)
{𝑜0y} {𝑜0x} {𝑜0x, 𝑜0y} {𝑜1w𝑜0y} ...

What went wrong? The problem arises when T3 reads 1 from
z. At this point it has two possible futures, 𝑜1z𝑜

0

x and 𝑜1z𝑜
0

y.

Since read options, consisting of location and value, do not

uniquely identify writes, it may read 1 from z, and remain

with both 𝑜0x and 𝑜0y. Now, it uses one of these options to

justify the position of 𝑜1w in the list of T4, and the other for its
own read. However, in a single run of opSRA, when reading

1 from z, T3 must pick which write event to read from, and

then, either it cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more

informative. Together with location and value, read options

also include the thread identifier that performed the write.

When a thread writes, it adds options with its own thread

identifier in the different lists. For a thread 𝜏 to read 𝑣 from

𝑥 , a read option 𝑜 with val(𝑜) = 𝑣 and loc(𝑜) = 𝑥 and some

unique writing thread identifier must be the first in every

read-option list of 𝜏 . In this example, the two 𝑜1z options will

have different thread identifiers, which forces T3 to discard

one of its lists before reading.

Even with thread identifiers, read options do not uniquely

identify write events. Nevertheless, as our proof shows, an

ambiguity inside the writing thread does not harm the ade-

quacy of the semantics. Roughly speaking, it can be resolved

by picking the po-earliest write event, as reading from it

enforces the weakest constraints for the rest of the run.

Finally, RMWs behave like an atomic combination of a read

and a write, with a slight adaptation of the above semantics.

Recall that in opSRA, an RMW may only read from the mo-
maximal write to the relevant location. To achieve this in

loSRA, we include an additional field in read options, which

is a binary flag that can be set to either R or RMW. Intuitively,
an RMW value means that the read option is set to read from

the mo-maximal write. Accordingly, an rmw step may only

consume read options marked as RMW. Since write steps to

𝑥 replace the mo-maximal write to 𝑥 in the execution graph,

they may choose to mark any of the added read options as

RMW, but they can only execute when no read option (of any

thread) with location 𝑥 is marked as an RMW.

Next, we turn to the formal definitions.

Notation 5.5 (Sequences). We use 𝜖 to denote the empty

sequence. The length of a sequence 𝑠 is denoted by |𝑠 | (in
particular |𝜖 | = 0). We often identify sequences with their

underlying functions (whose domain is {1, ... ,|𝑠 |}), and write
𝑠 (𝑘) for the symbol at position 1 ≤ 𝑘 ≤ |𝑠 | in 𝑠 . We write

𝜎 ∈ 𝑠 if 𝜎 appears in 𝑠 , that is if 𝑠 (𝑘) = 𝜎 for some 1 ≤ 𝑘 ≤ |𝑠 |.
We use “·” for the concatenation of sequences, which is lifted

to concatenation of sets of sequences in the obvious way.

We identify symbols with sequences of length 1 or their

singletons when needed (e.g., in expressions like 𝜎 · 𝑆).

Definition 5.6. Read options, read-option lists and potentials
are defined as follows:

1. A read option is a quadruple 𝑜 = ⟨𝜏, 𝑥, 𝑣,𝑢⟩, where 𝜏 ∈ Tid,
𝑥 ∈ Loc, 𝑣 ∈ Val and 𝑢 ∈ {R, RMW}. The functions tid,
loc, val and rmw return the thread identifier (𝜏), location

(𝑥), value (𝑣), and RMW flag (𝑢) of a given read option.

2. A read-option list 𝐿 is a sequence of read options.

3. A potential 𝐵 is a finite non-empty set of read-option lists.

We define an ordering on read-option lists, which extends

to potentials and to assignments of potentials to threads.

Definition 5.7. The (overloaded) relation ⊑ is defined by:

1. on read-option lists: 𝐿 ⊑ 𝐿′
if 𝐿 is a (not necessarily

contiguous) subsequence of 𝐿′
;

2. on potentials: 𝐵 ⊑ 𝐵′
if ∀𝐿 ∈ 𝐵. ∃𝐿′ ∈ 𝐵′. 𝐿 ⊑ 𝐿′

(a.k.a. “Hoare ordering”);

3. on functions from Tid to the set of potentials: B ⊑ B ′
if

B(𝜏) ⊑ B ′(𝜏) for every 𝜏 ∈ Tid.

The loSRA memory system is formally defined as follows.

Figure 5 illustrates a run of loSRA for the SB program (Ex. 3.5)

together with the corresponding run of opSRA.

Definition 5.8. loSRA is defined by: loSRA.Q is the set of

functionsB assigning a potential to every𝜏 ∈ Tid; loSRA.Q0 =
{𝜆𝜏 ∈ Tid. {𝜖}};3 and the transitions are given in Fig. 4.

3
To achieve implicit initialization of all locations to 0, one should take

loSRA.Q0 to consist of all functions assigning to each thread sequences

consisting of read options of the form ⟨T0, 𝑥, 0,𝑢 ⟩where T0 is a distinguished
thread identifier that is not used in programs (corresponds to the initializing

thread, see Remark 1).

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

write

∀𝜋 ∈ Tid, 𝐿′ ∈ B ′(𝜋). ∃𝑛 ≥ 0, 𝑢1, ... ,𝑢𝑛, 𝐿0, ... ,𝐿𝑛 .

𝐿′ = 𝐿0 · ⟨𝜏, 𝑥, 𝑣W, 𝑢1⟩ · 𝐿1 · ... · ⟨𝜏, 𝑥, 𝑣W, 𝑢𝑛⟩ · 𝐿𝑛
∧ 𝐿0 · ... · 𝐿𝑛 ∈ B(𝜋) ∧ 𝐿1 · ... · 𝐿𝑛 ∈ B(𝜏)
∧ (𝜋 = 𝜏 =⇒ ∀𝑜 ∈ 𝐿0 · ... · 𝐿𝑛 . loc(𝑜) ≠ 𝑥)
∧ ∀𝑜 ∈ 𝐿0 · ... · 𝐿𝑛 . loc(𝑜) = 𝑥 =⇒ rmw(𝑜) = R

B 𝜏,W (𝑥,𝑣W)−−−−−−−→loSRA B ′

read

loc(𝑜) = 𝑥

val(𝑜) = 𝑣R
B = B ′[𝜏 ↦→ 𝑜 · B ′(𝜏)]

B 𝜏,R (𝑥,𝑣R)−−−−−−−→loSRA B ′

rmw

loc(𝑜) = 𝑥 val(𝑜) = 𝑣R
rmw(𝑜) = RMW

B = Bmid [𝜏 ↦→ 𝑜 · Bmid (𝜏)]
Bmid

𝜏,W (𝑥,𝑣W)−−−−−−−→loSRA B ′

B 𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−→loSRA B ′

lower

B ′ ⊑ B

B 𝜀−→loSRA B ′

Figure 4. Transitions of loSRA.

The definition of the write step generally follows the

intuitive explanation above. Every read-option list after the

write transition is obtained from some previous list, with

the addition of 𝑛 ≥ 0 read options of the current write,

provided that: (i) the suffix of the existing list right after

the position of the first added option is a read-option list of

the writing thread; (ii) the lists of the writing thread (which

are not discarded in this transition) cannot have options

to read from 𝑥 besides the ones that are currently added;

and (iii) the original lists (which are not discarded in this

transition) cannot have an RMW option for 𝑥 . Note that since

the universal quantification is on lists of the new state, the

step allows to “duplicate” lists before modifying them, as

well as to “discard” complete lists (as often useful when a

certain list is needed only as a justification for positioning a

read option). We also note that several RMW options can be

added, but only one of them may be later fulfilled, due to

condition (iii).

Remark 3. Our formal write step insists on having a jus-

tification in the form of a complete read-option list of the

writing thread (𝐿1 ·...·𝐿𝑛 ∈ B(𝜏)). It suffices, however, for the

suffix after the first added read option to be a subsequence
of some list of the writing thread ({𝐿1 · ... · 𝐿𝑛} ⊑ B(𝜏)). In-
deed, this less restrictive step is derivable by combining a

lower step and a write step. Note also that for 𝜋 = 𝜏

(adding read options in the lists of the thread that performed

the write), this means that no justification is needed (since

𝐿0 · ... · 𝐿𝑛 ∈ B(𝜏) implies {𝐿1 · ... · 𝐿𝑛} ⊑ B(𝜏)).

The read step requires the first option in all lists in the

executing thread’s potential the read to be the same, and

consumes it from all these lists. Note that, by definition, the

potential B ′(𝜏) is non-empty, and so the set B(𝜏) as defined
in the step is non-empty. When all options are consumed,

𝜏 ’s potential consists of a single empty list.

Remark 4. Our formal read step always discards the first

option from the lists, which was used to justify the read. An

alternative semantics that keeps the lists unchanged in read

steps (allowing to discard the first option using the lower

step) would be completely equivalent. Indeed, the write step

that added the consumed option could always add multiple

identical consecutive read options.

The rmw step is an atomic sequencing of read andwrite

to the same location. The read part can only be performed

provided that the first option in all lists is marked with RMW.
The lower transition allows to remove read options, as

well as full read-option lists, at any point. It also allows to add

new lists, provided that each new list is “at most as powerful”

as some existing list (as used in Remark 3). Intuitively, lower

can only reduce the possible traces, while it allows us to show

that loSRA is a well-structured transition system.

Example 5.9. Consider the 2+2W program with its (SRA-
disallowed) outcome in Ex. 3.11. To see that this outcome

cannot be obtained by loSRA, consider the last write executed
in a run of this program. Suppose, w.l.o.g., that it is y := 2

by T1. Before executing this write, T1 may not have any read

options of location y in its lists. Hence, a read option of the

form ⟨𝜋, y, 1, 𝑢⟩ should be added to T1’s potential after T1
executed y := 2. This contradicts our assumption that y := 2

was the last executed write.

Example 5.10. Consider the 2RMW program with its (SRA-
disallowed) outcome in Ex. 3.9. To try to obtain this out-

come in loSRA, the x := 0 by T1 must add a read option

⟨T1, x, 0, RMW⟩ in both its own list and in a list of T2. But, the
execution of the first RMW, which consumes one of these

options, can only proceed after the other option marked with

RMW is discarded. Hence, the second RMW cannot read 0, and

this outcome cannot be obtained by loSRA.

Next, we establish the equivalence of loSRA and opSRA.
To do so, we define a relation ⋎ ⊆ loSRA.Q × opSRA.Q,
formalizing the intuitive simulation discussed so far between

loSRA’s lists and opSRA’s execution graphs. For defining ⋎,
we first define a “write list” linking the read options in a

read-option list 𝐿 to write events in an execution graph 𝐺 .

Definition 5.11. Awrite list is a sequence𝑊 of write events.

A write list 𝑊 is a ⟨𝐺, 𝐿⟩-write-list if |𝐿 | = |𝑊 | and the

following hold for every 1 ≤ 𝑘 ≤ |𝑊 | with 𝐿(𝑘) = ⟨𝜏, 𝑥, 𝑣,𝑢⟩:
• 𝑊 (𝑘) ∈ 𝐺.W.

• tid(𝑊 (𝑘)) = 𝜏 , loc(𝑊 (𝑘)) = 𝑥 and valW (𝑊 (𝑘)) = 𝑣 .

• if 𝑢 = RMW, then𝑊 (𝑘) ∉ dom(𝐺.mo).

A write list𝑊 is ⟨𝐺, 𝜏⟩-consistent if, intuitively, the ex-

tension of 𝐺 with a sequence of read events in thread 𝜏

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

T
1−−−−−→

W (x,0)

W (x, 0)

T
1−−−−−→

W (x,1)

W (x, 0)

W (x, 1)

mo

T
2−−−−−→

W (y,0)

W (x, 0) W (y, 0)

W (x, 1)

mo

T
1−−−−−→

R (y,0)

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

mo rf
T
2−−−−−→

W (y,1)

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

W (y, 1)

mo rf mo

T
2−−−−−→

R (x,0)

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

W (y, 1)

R (x, 0)

mo rf mo

{𝜖 }
{𝜖 }

T
1−−−−−→

W (x,0)

{𝜖 }
{ ⟨T1, x, 0, R⟩ }

T
1−−−−−→

W (x,1)

{𝜖 }
{ ⟨T1, x, 0, R⟩ }

T
2−−−−−→

W (y,0)

{ ⟨T2, y, 0, R⟩ }
{ ⟨T1, x, 0, R⟩ }

T
1−−−−−→

R (y,0)

{𝜖 }
{ ⟨T1, x, 0, R⟩ }

T
2−−−−−→

W (y,1)

{𝜖 }
{ ⟨T1, x, 0, R⟩ }

T
2−−−−−→

R (x,0)

{𝜖 }
{𝜖 }

Figure 5. Illustration of runs of opSRA and loSRA for the SB program (Ex. 3.5). In opSRA’s states (execution graphs), events of

T1 are on the left and of T2 on the right. In loSRA’s states (a potential for each thread), the potential of T1 is at the top and of T2
at the bottom. In this simple example, all option lists consist of at most one option and all potentials are singletons.

reading from the sequence of write events in𝑊 satisfies

read-coherence. Thus, we ensure that thread 𝜏 is not already

aware of some write that is mo-later than some write of𝑊 ,

and that after reading from a write 𝑤1 of𝑊 , thread 𝜏 will

not become aware of some write that is mo-later than some

write𝑤2 that appears after𝑤1 in𝑊 . Formally:

Definition 5.12. A write list𝑊 is called ⟨𝐺, 𝜏⟩-consistent if
𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]) for
every 1 ≤ 𝑘 ≤ |𝑊 |.

Now, ⋎ relates a loSRA state B with an execution graph

𝐺 if each read-option list in B has an appropriate write list.

Definition 5.13. A stateB ∈ loSRA.Qmatches an execution
graph𝐺 , denoted byB⋎𝐺 , if for every 𝜏 ∈ Tid and 𝐿 ∈ B(𝜏),
there exists a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿⟩-write-list.

Next, we establish the equivalence of loSRA and opSRA,
showing that every trace of opSRA is a trace of loSRA, and
vice versa. Notice that 𝜀-transitions do not affect reachabil-

ity of problem states, which only concerns the sequence

of labels of the program. As loSRA employs 𝜀-transitions

(lower), while opSRA does not, the trace equivalence ig-

nores 𝜀-transitions.

Definition 5.14. Two traces are equivalent if their restric-
tions to non 𝜀-transitions are equal.

Full proofs of Lemmas 5.15 and 5.16 are provided in [1],

and their mechanization in the Coq proof assistant is pro-

vided in the artifact accompanying this paper.

Lemma 5.15. For every trace of loSRA there is an equivalent
trace of opSRA.

Proof Outline. We show that ⋎ constitutes a (weak) forward

simulation from loSRA to opSRA. Handling the lower step

is easy (new write lists are restrictions of the ones we have).

Now, suppose that (i) B ⋎𝐺 , witnessed by

a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list𝑊⟨𝜋,𝐿⟩
for every 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋); and
(ii) B 𝜏,𝑙−−→loSRA B ′

. We construct 𝐺 ′
such

thatB ′⋎𝐺 ′
and𝐺

𝜏,𝑙−−→opSRA 𝐺 ′
(as depicted

on the right).

B 𝐺

B′ 𝐺 ′

⋎

⋎
∃

𝜏, 𝑙 𝜏, 𝑙

We describe here thewrite and read steps (the rmw step

is obtained by carefully combining them).

For a write step, 𝐺 ′
is trivially constructed by adding a

new write event𝑤 to 𝐺 , placed last in po inside the writing

thread 𝜏 , and last in mo among the writes to the same location.

Then,𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

is trivial. To show that B ′ ⋎𝐺 ′
, we con-

struct for every 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋), a ⟨𝐺 ′, 𝜋⟩-consistent
⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′

. The write list𝑊 ′
maps: (i) the new

options to the new write event𝑤 ; (ii) the “old” options that

appear before the first new option as mapped in the existing

write list𝑊 for the corresponding list in B(𝜋); and (iii) each
old option that appears after the first new option to the

mo-maximal write event among (1) its mapping in the exist-

ing write list𝑊 for the corresponding list in B(𝜋) and (2) its
mapping in the existing write list𝑊𝜏 for the justifying list

in B(𝜏). Roughly speaking, picking the mo-maximal write in

the third case ensures that𝑊 ′
is ⟨𝐺 ′, 𝜋⟩-consistent: In the

new state, thread 𝜋 might not be able to read from a write

that it previously read from (since it “synchronized” with 𝜏

that may be aware of a later write) and might not be able

to read from the a write that 𝜏 reads from (since 𝜋 may be

already aware of a later write); but, it may read from the

later write between these two writes.

In turn, to simulate a read step of loSRA in opSRA, we
need to pick a write event 𝑤 from which the added read

event 𝑟 will read-from in𝐺 ′
. We pick𝑤 to be the po-minimal

event among the write events that the𝑊⟨𝜏,𝐿⟩ lists associate
to the first option in some 𝐿 ∈ B(𝜏). (All these options are
consumed during the step, and their corresponding writes

are all in the same thread as dictated by the thread identifier

stored in the read options). The consistency of the𝑊⟨𝜏,𝐿⟩ lists
ensures that𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), so we can make

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

the read step in opSRA when reading from𝑤 . To show that

B ′⋎𝐺 ′
, for every thread 𝜋 ≠ 𝜏 , we simply reuse the write list

𝑊⟨𝜋,𝐿⟩ that we had for𝐺 ; while for thread 𝜏 itself, we shift its

write lists by one (setting𝑊 ′
⟨𝜏,𝐿⟩ ≜ 𝜆𝑘. 𝑊⟨𝜏,𝐿⟩ (1+𝑘)), and use

the po-minimality of𝑤 to establish ⟨𝐺 ′, 𝜏⟩-consistency. □

For the converse, we favor backward simulation, since

loSRA requires to “guess” the future, and without knowing

the target state, we cannot construct the next step.

Lemma 5.16. For every trace of opSRA there is an equivalent
trace of loSRA.

Proof Outline. We show that ⋎−1 constitutes a backward sim-

ulation from opSRA to loSRA.
For the main proof obligation (depicted on

the right), suppose that 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

and

B ′ ⋎ 𝐺 ′
, witnessed by a ⟨𝐺 ′, 𝜋⟩-consistent

⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
⟨𝜋,𝐿′⟩ for every 𝜋 ∈ Tid

and 𝐿′ ∈ B ′(𝜋). We construct a state B such

that B 𝜏,𝑙−−→loSRA B ′
and B ⋎ 𝐺 .

B 𝐺

B′ 𝐺 ′

⋎

⋎

∃

𝜏, 𝑙 𝜏, 𝑙

Again, we describe here the write and read steps. First,

for a write step, let 𝑤 be the write event that is added in

opSRA’s transition from𝐺 to𝐺 ′
. Roughly speaking, we con-

struct B by removing the read options that were associated

to𝑤 in the existing write lists, and copying the suffix of each

read-option list after the first read option associated to 𝑤

to the potential of thread 𝜏 . The write lists for B are then

induced by those for B ′
in the obvious way.

In turn, for a read step, let 𝑟 be the read event that is

added in opSRA’s transition from 𝐺 to 𝐺 ′
, and 𝑤 be the

write event that 𝑟 reads from in𝐺 ′
. Then, we construct B by

setting B = B ′[𝜏 ↦→ ⟨tid(𝑤), loc(𝑟), valR (𝑟), R⟩ · B ′(𝜏)],
and B 𝜏,𝑙−−→loSRA B ′

follows by definition. Now, to show that

B ⋎𝐺 , we use the write lists of B ′
for every 𝜋 ≠ 𝜏 . For 𝜋 = 𝜏

we append𝑤 in the beginning of the write lists of B ′
. □

We conclude with the equivalence of opSRA and loSRA.

Theorem5.17. For every program 𝑃 , the set of program states
that are reachable under opSRA coincides with the set of pro-
gram states that are reachable under loSRA.

Proof. Directly follows from Lemmas 5.15 and 5.16. □

6 Decidability of the Reachability Problem
We show how loSRA is used for establishing the decidability

of the reachability problem under the declarative SRAmodel

(see Def. 3.3). We start with recalling the framework of well-

structured transition systems.

Preliminaries. A well-quasi-ordering (wqo) on a set 𝑆 is

a reflexive and transitive relation ≾ on 𝑆 such that for every

infinite sequence 𝑠1, 𝑠2, ... of elements of 𝑆 , we have 𝑠𝑖 ≾ 𝑠 𝑗
for some 𝑖 < 𝑗 . In a context of a set 𝑆 and a wqo ≾ on 𝑆 , the

upward closure of a set 𝑈 ⊆ 𝑆 , denoted by ↑𝑈 , is given by

{𝑠 ∈ 𝑆 | ∃𝑢 ∈ 𝑈 . 𝑢 ≾ 𝑠}; a set 𝑈 ⊆ 𝑆 is called upward closed
if 𝑈 = ↑𝑈 ; and a set 𝐵 ⊆ 𝑈 is called a basis of 𝑈 if 𝑈 = ↑𝐵.
The properties of a wqo ensure that every upward closed set

has a finite basis.
A well-structured transition system (WSTS) is an LTS 𝐴

equipped with a wqo ≾ on 𝐴.Q that is compatible with 𝐴,

that is: if 𝑞1 −→𝐴 𝑞2 and 𝑞1 ≾ 𝑞3, then there exists 𝑞4 ∈ 𝐴.Q
such that 𝑞3 −→∗

𝐴
𝑞4 and 𝑞2 ≾ 𝑞4. The coverability problem

for ⟨𝐴,≾⟩ asks whether an input state 𝑞 ∈ 𝐴.Q is coverable,
namely: is some state 𝑞′ with 𝑞 ≾ 𝑞′ reachable in 𝐴?

Coverability is decidable (see, e.g., [7, 22]) for a WSTS

⟨𝐴,≾⟩ provided that ≾ is decidable and the following hold:

(i) effective initialization: there exists an algorithm that ac-

cepts a state𝑞 ∈ 𝐴.Q and decides whether ↑{𝑞}∩𝐴.Q0 = ∅.
(ii) effective pred-basis: there exists an algorithm that accepts

a state 𝑞 ∈ 𝐴.Q and returns a finite basis of ↑pred𝐴 (↑{𝑞}).
Roughly speaking, these conditions ensure that (i) backward

reachability analysis from 𝑞 will converge to a fixed point;

(ii) each step in its calculation is effective; and (iii) we can

check whether the fixed point contains an initial state.

loSRA as a Well-Structured Transition System. The
⊑ ordering on the states of loSRA is clearly decidable and

also forms a wqo. Indeed, by Higman’s lemma, ⊑ is a wqo

on the set of all read-option lists. In turn, its lifting to po-

tentials (which are finite by definition) is a wqo on the set

of all potentials (see [44]). Finally, by Dickson’s lemma, the

pointwise lifting of ⊑ to functions assigning a potential to

every 𝜏 ∈ Tid (i.e., states of loSRA) is also a wqo.

Now, let 𝑃 be a program. The ⊑ ordering is naturally

lifted to states of the concurrent system 𝑃loSRA (that is, pairs

⟨𝑝,B⟩ ∈ 𝑃 .Q × loSRA.Q, see Def. 4.3) by defining ⟨𝑝,B⟩ ⊑
⟨𝑝 ′

,B ′⟩ iff 𝑝 = 𝑝
′
and B ⊑ B ′

.

Lemma 6.1. 𝑃loSRA equipped with ⊑ is a WSTS that admits
effective initialization and effective pred-basis.

Proof. First, since 𝑃 .Q is (by definition) finite and ⊑ is a wqo

on loSRA.Q, we have that ⊑ is a wqo of 𝑃loSRA .Q.
Second, since lower is explicitly included in loSRA, ⊑ is

clearly compatible with 𝑃loSRA. Indeed, given 𝑞1 = ⟨𝑝
1
,B1⟩,

𝑞2 = ⟨𝑝
2
,B2⟩ and 𝑞3 = ⟨𝑝

3
,B3⟩ such that 𝑞1 −→𝑃loSRA 𝑞2 and

𝑞1 ⊑ 𝑞3 (so 𝑝1 = 𝑝
3
), for 𝑞4 = 𝑞2, we have 𝑞3 −→∗

𝑃loSRA
𝑞4 (since

B3

𝜀−→loSRA B1 using the lower step) and 𝑞2 ⊑ 𝑞4.

Next, 𝑃loSRA trivially admits effective initialization. Indeed,

the states ⟨𝑝,B⟩ for which ↑{⟨𝑝,B⟩} ∩ 𝑃loSRA .Q0 ≠ ∅ are

exactly the initial states themselves—𝑃 .Q0 × {𝜆𝜏 . {𝜖}}.
Finally, [1] establishes the effective pred-basis for 𝑃loSRA.

For this matter, we demonstrate how to calculate a finite

basis of ↑pred𝛼loSRA (↑{B ′}) for 𝛼 of the form ⟨𝜏, W (𝑥, 𝑣W)⟩,
⟨𝜏, R (𝑥, 𝑣R)⟩, ⟨𝜏, RMW (𝑥, 𝑣R, 𝑣W)⟩ or 𝜀. □

It is now easy to establish the decidability of reachability

under loSRA.

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

Theorem 6.2 (loSRA reachability). Given a program 𝑃 and
a state 𝑝 ∈ 𝑃 .Q, it is decidable to check whether 𝑝 is reachable
(see Def. 4.4) under the memory system loSRA.

Proof. Since the first component (the program state) in ⊑-
ordered pairs of 𝑃loSRA’s states is equal, reachability under

loSRA is reduced to coverability in ⟨𝑃loSRA, ⊑⟩, which is de-

cidable by Lemma 6.1 and the framework of [7]. □

We are now in position to prove our main results.

Corollary 6.3. The SRA reachability problem is decidable.

Proof. Directly follows from Theorems 4.5, 5.17 and 6.2. □

Corollary 6.4 (RA race-free reachability). Given a program
𝑃 that is write/write-race-free under SRA (see Def. 3.13) and a
state 𝑝 ∈ 𝑃 .Q, it is decidable to check whether 𝑝 is reachable
under RA.

Proof. Directly follows fromThm. 3.14 and Corollary 6.3. □

7 Conclusion and Future Work
We established the decidability of reachability under SRA,
a fundamental causal consistency memory model. For that

matter, we developed a novel operational semantics for SRA
and showed that it meets the requirements for decidability of

the framework of well-structured transition systems. Besides

the theoretical interest, Abdulla et al. [4] demonstrate that

similar verification procedures (also of non-primitive recur-

sive complexity) may be actually practical for challenging

(even though naturally quite small) algorithms and synchro-

nization mechanisms. We plan to explore this in the future.

Reachability is undecidable under C/C++11’s causal consis-

tency model, RA [3]. Intuitively, this stems from the fact that

RA requires to maintain mo separately from the execution

order, while SRA allows the execution of writes following

hb ∪ mo. (We note that the existing undecidability result cru-

cially employs RMWs, and the decidability of RA without

RMW operations is still open.) Since RA and SRA coincide on

write/write-race-free programs, and write/write-race free-

dom can be checked under SRA (Thm. 3.14), our result allows

the verification of safety properties under RA for this large

and widely used class of programs. Concurrent separation

logics [25, 48, 49], designed for verification under RA, are
also essentially limited to reason only about write/write-race-

free programs and stateless model checking is significantly

simpler with this assumption (see [27, §5]). We also note

that it is straightforward to support C/C++11’s non-atomics,

with “catch-fire” semantics (i.e., data races are errors) in addi-

tion to release/acquire accesses and sequentially consistent

fences (which are modeled as RMWs as in Ex. 3.10). Indeed,

as demonstrated in [25], it suffices to check for data races

assuming RA semantics. The extension to other fragments

of C/C++11, such as relaxed and sequentially consistent ac-

cesses, is left to future work.

We believe that the potential-based semantics (both specif-

ically for SRA and as a general idea) may be of independent

interest in the development of verification techniques for pro-

grams running under weak consistency, including, but not

limited to, program logics and model-checking techniques.

In particular, we are interested in developing abstraction

techniques, as was done for TSO and similar buffer-based

models (see, e.g., [28, 46]). Other directions for future work

include handling other variants of causally consistent shared-

memory (see, e.g., [16]), supporting transactions (to enable,

e.g., full verification of client programs under PSI, see §3.1)

and studying verification of parametrized programs under

causal consistency (which is decidable for TSO [4, 6]).

Acknowledgments
We thank the PLDI’20 reviewers for their helpful feedback.

This research was supported by the Israel Science Founda-

tion (grants 5166651 and 1373/16), and by Len Blavatnik and

the Blavatnik Family foundation. The first author was also

supported by the Alon Young Faculty Fellowship.

References
[1] Ori Lahav and Udi Boker. 2020. Supplementary material for this paper.

https://www.cs.tau.ac.il/~orilahav/papers/pldi20full.pdf
[2] Parosh Aziz Abdulla. 2010. Well (and better) quasi-ordered transition

systems. The Bulletin of Symbolic Logic 16, 4 (2010), 457–515. http:
//www.jstor.org/stable/40961367

[3] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankara-

narayanan Krishna. 2019. Verification of programs under the release-

acquire semantics. In PLDI. ACM, New York, NY, USA, 1117–1132.

https://doi.org/10.1145/3314221.3314649
[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and

Tuan Phong Ngo. 2018. A load-buffer semantics for total store ordering.

Logical Methods in Computer Science Volume 14, Issue 1 (Jan. 2018).

https://doi.org/10.23638/LMCS-14(1:9)2018
[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and

Tuan Phong Ngo. 2018. Optimal stateless model checking under the

release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA,
Article 135 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276505

[6] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2019.

Parameterized verification under TSO is PSPACE-complete. Proc.
ACM Program. Lang. 4, POPL, Article 26 (Dec. 2019), 29 pages. https:
//doi.org/10.1145/3371094

[7] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen

Tsay. 2000. Algorithmic analysis of programs with well quasi-ordered

domains. Information and Computation 160, 1 (2000), 109 – 127. https:
//doi.org/10.1006/inco.1999.2843

[8] Sarita V. Adve andMark D. Hill. 1990. Weak ordering—a new definition.

In ISCA. ACM, New York, NY, USA, 2–14. https://doi.org/10.1145/
325164.325100

[9] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding

cats: modelling, simulation, testing, and data mining for weak memory.

ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages.

https://doi.org/10.1145/2627752
[10] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2013. Non-

monotonic snapshot isolation: Scalable and strong consistency for

geo-replicated transactional systems. In SRDS. IEEE Computer Society,

Washington, DC, USA, 163–172. https://doi.org/10.1109/SRDS.2013.25
[11] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and

Madanlal Musuvathi. 2010. On the verification problem for weak

https://www.cs.tau.ac.il/~orilahav/papers/pldi20full.pdf
http://www.jstor.org/stable/40961367
http://www.jstor.org/stable/40961367
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/2627752
https://doi.org/10.1109/SRDS.2013.25

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

memory models. In POPL. ACM, New York, NY, USA, 7–18. https:
//doi.org/10.1145/1706299.1706303

[12] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and

Madanlal Musuvathi. 2012. What’s decidable about weak memory

models?. In ESOP. Springer-Verlag, Berlin, Heidelberg, 26–46. https:
//doi.org/10.1007/978-3-642-28869-2_2

[13] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-

Pharabod, and Peter Sewell. 2015. The problem of programming

language concurrency semantics. In ESOP. Springer, Berlin, Heidel-
berg, 283–307. https://doi.org/10.1007/978-3-662-46669-8_12

[14] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ concurrency. In POPL. ACM, New York, NY,

USA, 55–66. https://doi.org/10.1145/1925844.1926394
[15] Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against con-

sistency models with atomic visibility. In CONCUR. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:15. https:
//doi.org/10.4230/LIPIcs.CONCUR.2016.7

[16] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza.

2017. On verifying causal consistency. In POPL. ACM, New York, NY,

USA, 626–638. https://doi.org/10.1145/3009837.3009888
[17] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev.

2018. Static serializability analysis for causal consistency. In PLDI.
ACM, New York, NY, USA, 90–104. https://doi.org/10.1145/3192366.
3192415

[18] Sebastian Burckhardt. 2014. Principles of eventual consistency. Found.
Trends Program. Lang. 1, 1-2 (Oct. 2014), 1–150. https://doi.org/10.
1561/2500000011

[19] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2015. Transac-

tion chopping for parallel snapshot isolation. In DISC. Springer-Verlag,
Berlin, Heidelberg, 388–404. https://doi.org/10.1007/978-3-662-48653-
5_26

[20] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2017. Algebraic

laws for weak consistency. In CONCUR, Vol. 85. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 26:1–26:18.

https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
[21] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick.

2019. Verifying C11 programs operationally. In PPoPP. ACM, New

York, NY, USA, 355–365. https://doi.org/10.1145/3293883.3295702
[22] Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transi-

tion systems everywhere! Theoretical Computer Science 256, 1 (2001),
63 – 92. https://doi.org/10.1016/S0304-3975(00)00102-X

[23] ISO/IEC 14882:2011. 2011. Programming language C++.

[24] ISO/IEC 9899:2011. 2011. Programming language C.

[25] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and

Viktor Vafeiadis. 2017. Strong logic for weak memory: Reasoning

about release-acquire consistency in Iris. In ECOOP. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 17:1–17:29.

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
[26] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A Promising Semantics for Relaxed-Memory Con-

currency. In POPL. ACM, New York, NY, USA, 175–189. https:
//doi.org/10.1145/3009837.3009850

[27] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-

tor Vafeiadis. 2017. Effective stateless model checking for C/C++ con-

currency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017),
32 pages. https://doi.org/10.1145/3158105

[28] Michael Kuperstein, Martin Vechev, and Eran Yahav. 2011. Partial-

coherence abstractions for relaxed memory models. In PLDI. ACM,

New York, NY, USA, 187–198. https://doi.org/10.1145/1993498.1993521
[29] Ori Lahav. 2019. Verification under causally consistent shared memory.

ACM SIGLOG News 6, 2 (April 2019), 43–56. https://doi.org/10.1145/
3326938.3326942

[30] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming

release-acquire consistency. In POPL. ACM, New York, NY, USA, 649–

662. https://doi.org/10.1145/2837614.2837643

[31] Ori Lahav and Roy Margalit. 2019. Robustness against release/acquire

semantics. In PLDI. ACM, New York, NY, USA, 126–141. https://doi.
org/10.1145/3314221.3314604

[32] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries reasoning for

weak memory models. In ICALP. Springer-Verlag, Berlin, Heidelberg,
311–323. https://doi.org/10.1007/978-3-662-47666-6_25

[33] Ori Lahav and Viktor Vafeiadis. 2016. Explaining relaxed memory

models with program transformations. In FM. Springer, Cham, 479–495.

https://doi.org/10.1007/978-3-319-48989-6_29
[34] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI.
ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.
3062352

[35] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar:

Certified causally consistent distributed key-value stores. In POPL.
ACM, New York, NY, USA, 357–370. https://doi.org/10.1145/2837614.
2837622

[36] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno

Preguiça, and Rodrigo Rodrigues. 2012. Making geo-replicated sys-

tems fast as possible, consistent when necessary. In OSDI. USENIX
Association, Berkeley, CA, USA, 265–278. http://dl.acm.org/citation.
cfm?id=2387880.2387906

[37] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.

Andersen. 2011. Don’t settle for eventual: Scalable causal consistency

for wide-area storage with COPS. In SOSP. ACM, New York, NY, USA,

401–416. https://doi.org/10.1145/2043556.2043593
[38] Mapping 2019. C/C++11 mappings to processors. Retrieved July 3,

2019 from http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
[39] Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A tutorial

introduction to the ARM and POWER relaxed memory models.

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

[40] MongoDB Manual 4.2 2019. Causal consistency and read and write

concerns. Retrieved November 19, 2019 from https://docs.mongodb.
com/manual/core/causal-consistency-read-write-concerns

[41] Kartik Nagar and Suresh Jagannathan. 2018. Automated detection of

serializability violations under weak consistency. In CONCUR, Vol. 118.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many, 41:1–41:18. https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
[42] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86

memory model: x86-TSO. In TPHOLs. Springer, Heidelberg, 391–407.
https://doi.org/10.1007/978-3-642-03359-9_27

[43] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On parallel

snapshot isolation and release/acquire consistency. In ESOP. Springer,
Berlin, Heidelberg, 940–967. https://doi.org/10.1007/978-3-319-89884-
1_33

[44] Sylvain Schmitz and Philippe Schnoebelen. 2012. Algorithmic as-

pects of WQO theory. (Aug. 2012). https://cel.archives-ouvertes.fr/cel-
00727025 Lecture notes.

[45] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011.

Transactional storage for geo-replicated systems. In SOSP. ACM, New

York, NY, USA, 385–400. https://doi.org/10.1145/2043556.2043592
[46] Thibault Suzanne and Antoine Miné. 2016. From array domains to

abstract interpretation under store-buffer-based memory models. In

SAS. Springer, Berlin, Heidelberg, 469–488.
[47] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer,

Marvin Theimer, and Brent W. Welch. 1994. Session guarantees for

weakly consistent replicated data. In PDIS. IEEE Computer Society,

Washington, DC, USA, 140–149. http://dl.acm.org/citation.cfm?id=
645792.668302

[48] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigat-

ing weak memory with ghosts, protocols, and separation. In OOPSLA.
ACM, New York, NY, USA, 691–707. https://doi.org/10.1145/2660193.
2660243

https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1007/978-3-662-48653-5_26
https://doi.org/10.1007/978-3-662-48653-5_26
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3158105
https://doi.org/10.1145/1993498.1993521
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2837614.2837622
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/2043556.2043593
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns
https://docs.mongodb.com/manual/core/causal-consistency-read-write-concerns
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-319-89884-1_33
https://doi.org/10.1007/978-3-319-89884-1_33
https://cel.archives-ouvertes.fr/cel-00727025
https://cel.archives-ouvertes.fr/cel-00727025
https://doi.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=645792.668302
http://dl.acm.org/citation.cfm?id=645792.668302
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2660193.2660243

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

[49] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation

logic: A program logic for C11 concurrency. In OOPSLA. ACM, New

York, NY, USA, 867–884. https://doi.org/10.1145/2509136.2509532

[50] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constan-

tinides. 2017. Automatically comparing memory consistency models.

In POPL. ACM, New York, NY, USA, 190–204. https://doi.org/10.1145/
3009837.3009838

https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

A Equivalence of loSRA and opSRA – Full Proofs
The following alternative formulation of the write step will be convenient to use in our proofs. This

formulation “works backwards”—choosing read options to omit from the target state for reaching the

source state. Each such possibility is an “index choice”:

Definition A.1. An index choice for a state B ′ ∈ loSRA.Q is a function P assigning a set P(𝜋, 𝐿′) ⊆
{1, ... ,|𝐿′ |} to every 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋). An index choice P for B ′ justifies a ⟨𝜏, W(𝑥, 𝑣W)⟩-step, denoted
by P |= ⟨𝜏, W(𝑥, 𝑣W)⟩, if the following hold for every 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋):
• For every 𝑘 ∈ P(𝜋, 𝐿′), we have 𝐿′(𝑘) = ⟨𝜏, 𝑥, 𝑣W, R⟩ or 𝐿′(𝑘) = ⟨𝜏, 𝑥, 𝑣W, RMW⟩.
• For every 𝑘 ∈ {1, ... ,|𝐿′ |} \ P(𝜋, 𝐿′):
– If loc(𝐿′(𝑘)) = 𝑥 , then rmw(𝐿′(𝑘)) = R.
– If 𝑘 > minP(𝜋, 𝐿′) or 𝜋 = 𝜏 , then loc(𝐿′(𝑘)) ≠ 𝑥 .

Now, a predecessor of B ′
with respect to awrite step intuitively satisfies two constraints: 1. For each list

𝐿′
of B ′

, there is a corresponding list 𝐿 in B that possibly lack some read options of the form ⟨𝜏, 𝑥, 𝑣W, 𝑢⟩,
corresponding to the new read options of B ′

; and 2. If a list 𝐿′
is different from the corresponding list 𝐿

then there is a list of 𝜏 in B that justifies this difference. Notice that B may have arbitrary additional lists

in addition to the above mandatory lists.

Notation A.2 (List operations). For a list 𝐿 and a set 𝑃 ⊆ {1, ... ,|𝐿 |} of positions in 𝐿, we define:

• 𝐿 \ 𝑃 is the list derived from 𝐿 by removing from it the positions in 𝑃 . The mapping of the positions of 𝐿

that are not in 𝑃 to their matching positions in 𝐿 \ 𝑃 is denoted by Map⟨𝐿,𝑃 ⟩ (formally, Map⟨𝐿,𝑃 ⟩ ≜ 𝜆𝑘 ∈
{1, ... ,|𝐿 |} \ 𝑃 . 𝑘 − |{ 𝑗 ∈ 𝑃 | 𝑗 < 𝑘}|).

• 𝐿 \\ 𝑃 further removes from 𝐿 the positions before the first position in 𝑃 , namely returns the list

𝐿 \ (𝑃 ∪ {1, ... ,min(𝑃) − 1}) (undefined if 𝑃 = ∅). The mapping of the positions of 𝐿 that are not in 𝑃

and not before the first position in 𝑃 to their matching positions in 𝐿 \\ 𝑃 is denoted by MMap⟨𝐿,𝑃 ⟩
(formally,MMap⟨𝐿,𝑃 ⟩ ≜ 𝜆𝑘 ∈ {min(𝑃), ... ,|𝐿 |} \ 𝑃 . Map⟨𝐿,𝑃 ⟩ (𝑘) −min(𝑃) + 1).

Definition A.3. The source of B ′
w.r.t. a thread 𝜏 and an index choice P for B ′

, denoted by src(B ′, 𝜏,P),
is given by:

src(B ′, 𝜏,P) ≜ 𝜆𝜋 ∈ Tid.

{𝐿′ \ P(𝜋, 𝐿′) | 𝐿′ ∈ B ′(𝜋)} 𝜋 ≠ 𝜏

{𝐿′ \ P(𝜏, 𝐿′) | 𝐿′ ∈ B ′(𝜏)} ∪ 𝜋 = 𝜏

{𝐿′ \\ P(𝜂, 𝐿′) | P(𝜂, 𝐿′) ≠ ∅, 𝜂 ∈ Tid and 𝐿′ ∈ B ′(𝜂)}

The following proposition follows directly from our definitions.

Proposition A.4. B 𝜏,W (𝑥,𝑣W)−−−−−−−→loSRA B ′ iff there exists an index choice P for B ′ such that P |= ⟨𝜏, W(𝑥, 𝑣W)⟩
and src(B ′, 𝜏,P)(𝜋) ⊆ B(𝜋) for every 𝜋 ∈ Tid.

Lemma 5.15. For every trace of loSRA there is an equivalent trace of opSRA.

Proof. We show that ⋎ constitutes a forward simulation relation from loSRA to opSRA. First, the initial

states clearly match: we have 𝜆𝜏 . {𝜖} ⋎ 𝐺0. Now, suppose that B ⋎ 𝐺 and B 𝜏,𝑙−−→loSRA B ′
. We show that

there exists 𝐺 ′
such that B ′ ⋎ 𝐺 ′

and 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

. Consider the possible cases:

• 𝑙 = W(𝑥, 𝑣W): Let 𝑤 = NextEvent(𝐺.E, 𝜏, 𝑙). Let 𝐺 ′
be the execution graph defined by 𝐺 ′.E = 𝐺.E ∪ {𝑤},

𝐺 ′.rf = 𝐺.rf and 𝐺 ′.mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}). By definition, we have 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

. We show that

B ′⋎𝐺 ′
. By Prop. A.4, since B 𝜏,𝑙−−→loSRA B ′

, there exists an index choice P for B ′
that justifies a ⟨𝜏, 𝑙⟩-step,

such that src(B ′, 𝜏,P)(𝜋) ⊆ B(𝜋) for every 𝜋 ∈ Tid. Let 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋). We construct a

⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
. Let 𝑃 ≜ P(𝜋, 𝐿′), 𝐿 ≜ 𝐿′ \ 𝑃 , 𝑓 ≜ Map⟨𝐿′,𝑃 ⟩ , 𝐿𝜏 ≜ 𝐿′ \\ 𝑃 and

𝑓𝜏 ≜ MMap⟨𝐿′,𝑃 ⟩ (the last two are only defined if 𝑃 ≠ ∅).

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

Since B ⋎𝐺 , there exist a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list𝑊 , and a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿𝜏 ⟩-write-list
𝑊𝜏 . We define𝑊 ′

as follows:

𝑊 ′ ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}.

𝑤 𝑘 ∈ 𝑃

𝑊 (𝑓 (𝑘)) 𝑘 < min(𝑃)
max𝐺.mo{𝑊 (𝑓 (𝑘)),𝑊𝜏 (𝑓𝜏 (𝑘))} otherwise

It is easy to see that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list. In particular, to show that rmw(𝐿′(𝑘)) = RMW implies

𝑊 ′(𝑘) ∉ dom(𝐺 ′.mo), we use the fact that P justifies a ⟨𝜏, 𝑙⟩-step, and so for every 𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 ,
we have that rmw(𝐿′(𝑘)) = RMW implies loc(𝐿′(𝑘)) ≠ 𝑥 .

We show that𝑊 ′
is ⟨𝐺 ′, 𝜋⟩-consistent.

Let 1 ≤ 𝑘 ≤ |𝐿′ |. We prove that𝑊 ′(𝑘) ∉ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋 ∪ {𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑘}]). Suppose
otherwise. First, note that we cannot have𝑘 ∈ 𝑃 , since𝑤 is amaximal element in𝐺 ′.mo. Let𝑤𝜋 =𝑊 (𝑓 (𝑘))
and𝑤𝜏 =𝑊𝜏 (𝑓𝜏 (𝑘)) (the latter is only defined if 𝑘 > min(𝑃)). Consider the two possible cases:

– 𝑊 ′(𝑘) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋]): The definition of𝑊 ′
ensures that ⟨𝑤𝜋 ,𝑊

′(𝑘)⟩ ∈ 𝐺 ′.mo?, and so

𝑤𝜋 ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋]). Since𝑊 is ⟨𝐺, 𝜋⟩-consistent, we have𝑤𝜋 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜋]),
and therefore it must be the case that 𝜋 = 𝜏 and ⟨𝑤𝜋 ,𝑤⟩ ∈ 𝐺 ′.mo. Hence, loc(𝑤𝜋) = 𝑥 , and so

loc(𝐿′(𝑘)) = 𝑥 , which contradicts the fact that P justifies a ⟨𝜏, 𝑙⟩-step.
– ⟨𝑊 ′(𝑘),𝑊 ′(𝑗)⟩ ∈ 𝐺 ′.mo ;𝐺 ′.hb? for some 1 ≤ 𝑗 < 𝑘 . Consider the two possible cases:

∗ 𝑊 ′(𝑗) = 𝑤 : In this case we must have 𝑘 > min(𝑃), and so𝑊 ′(𝑘) = max𝐺.mo{𝑤𝜋 ,𝑤𝜏 }. Hence, we
have ⟨𝑤𝜏 ,𝑊

′(𝑘)⟩ ∈ 𝐺.mo?, and so ⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′.mo ; 𝐺 ′.hb?. Now, if ⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′.mo ; 𝐺 ′.hb, then
we also have𝑤𝜏 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), which contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.
Therefore, we have ⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′.mo. Hence, loc(𝑤𝜏) = 𝑥 , and so loc(𝐿′(𝑘)) = 𝑥 , which contradicts

the fact that P justifies a ⟨𝜏, 𝑙⟩-step.
∗ 𝑊 ′(𝑗) ≠ 𝑤 : In this case, we must have ⟨𝑊 ′(𝑘),𝑊 ′(𝑗)⟩ ∈ 𝐺.mo ;𝐺.hb?. The definition of𝑊 ′

ensures

that ⟨𝑤𝜋 ,𝑊
′(𝑘)⟩ ∈ 𝐺.mo?, and so ⟨𝑤𝜋 ,𝑊

′(𝑗)⟩ ∈ 𝐺.mo ;𝐺.hb?. Now, since𝑊 is ⟨𝐺, 𝜋⟩-consistent, we
cannot have𝑊 ′(𝑗) =𝑊 (𝑓 (𝑗)). Hence, 𝑗 > min(𝑃) and𝑊 ′(𝑗) =𝑊𝜏 (𝑓𝜏 (𝑗)). Let 𝑤 ′

𝜏 =𝑊𝜏 (𝑓𝜏 (𝑗)). It
follows that 𝑘 > min(𝑃), and so ⟨𝑤𝜏 ,𝑊

′(𝑘)⟩ ∈ 𝐺.mo?. Hence, we have ⟨𝑤𝜏 ,𝑤
′
𝜏 ⟩ ∈ 𝐺.mo ;𝐺.hb?. This

contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.
• 𝑙 = R(𝑥, 𝑣R): By definition, since B 𝜏,𝑙−−→loSRA B ′

, there exists a read option 𝑜 with loc(𝑜) = 𝑥 and

val(𝑜) = 𝑣R such that B(𝜏) = 𝑜 · B ′(𝜏). Since B ⋎ 𝐺 , for every 𝐿 ∈ B(𝜏) there exists a ⟨𝐺, 𝜏⟩-consistent
⟨𝐺, 𝐿⟩-write-list𝑊𝐿 . Let𝐴 = {𝑊𝐿 (1) | 𝐿 ∈ B(𝜏)}. Since B(𝜏) is non-empty, we know that𝐴 is not empty.

Since each𝑊𝐿 is a ⟨𝐺, 𝐿⟩-write-list, we have that tid(𝑤) = tid(𝑜) for every𝑤 ∈ 𝐴. Hence, 𝐺.po totally

orders 𝐴. Let 𝑤 = min𝐺.po𝐴 and let 𝐿min ∈ B(𝜏) such that 𝑤 = 𝑊𝐿min
(1). Let 𝑟 = NextEvent(𝐺.E, 𝜏, 𝑙)

and let 𝐺 ′
be the execution graph given by 𝐺 ′.E = 𝐺.E ∪ {𝑟 }, 𝐺 ′.rf = 𝐺.rf ∪ {⟨𝑤, 𝑟 ⟩} and 𝐺 ′.mo = 𝐺.mo.

We show that 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

. By definition, it suffices to show the following:

– 𝑤 ∈ 𝐺.W𝑥 and valW(𝑤) = 𝑣R: We have 𝑤 = 𝑊𝐿min
(1), and since 𝑊𝐿min

is a ⟨𝐺, 𝐿min⟩-write-list,
we have that 𝑤 ∈ 𝐺.W, loc(𝑤) = loc(𝑊𝐿min

(1)) = loc(𝐿min(1)) = loc(𝑜) = 𝑥 and valW(𝑤) =

valW(𝑊𝐿min
(1)) = val(𝐿min(1)) = val(𝑜) = 𝑣R.

– 𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]): Since 𝑊𝐿min
is ⟨𝐺, 𝜏⟩-consistent and 𝑤 = 𝑊𝐿min

(1), we cannot have

𝑤 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]).
It remains to show that B ′ ⋎ 𝐺 ′

. Let 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋). We define a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-
write-list. Consider two cases:

– 𝜋 ≠ 𝜏 : By definition, since B 𝜏,𝑙−−→loSRA B ′
, we have 𝐿′ ∈ B(𝜋). Since B ⋎ 𝐺 , there exists a ⟨𝐺, 𝜋⟩-

consistent ⟨𝐺, 𝐿′⟩-write-list𝑊 . It is easy to see that𝑊 is a ⟨𝐺 ′, 𝐿′⟩-write-list. We show that𝑊 is also

⟨𝐺 ′, 𝜋⟩-consistent. Let 1 ≤ 𝑘 ≤ |𝐿′ |.
Suppose by contradiction that𝑊 (𝑘) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). It follows that

𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜋 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]) .
This contradicts the fact that𝑊 is ⟨𝐺, 𝜋⟩-consistent.

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

– 𝜋 = 𝜏 : Let 𝐿 = 𝑜 · 𝐿′
. Then, 𝐿 ∈ B(𝜏). Let 𝑊 ′ = 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}. 𝑊𝐿 (1 + 𝑘). It is easy to see

that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list. We show that𝑊 ′

is ⟨𝐺 ′, 𝜏⟩-consistent. Suppose by contradiction that

𝑊 ′(𝑘) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜏 ∪ {𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑘}]).
Now, if𝑊 ′(𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑘}]), it follows that

𝑊𝐿 (1 + 𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊𝐿 (1 + 𝑗) | 1 ≤ 𝑗 < 𝑘}]),
which contradicts the fact that𝑊𝐿 is ⟨𝐺, 𝜏⟩-consistent. Hence, we must have ⟨𝑊 ′(𝑘),𝑤⟩ ∈ 𝐺.mo ;𝐺.hb?.
Since 𝐿(1) = 𝑜 , the definition of𝑤 ensures that ⟨𝑤,𝑊𝐿 (1)⟩ ∈ 𝐺.po?. It follows that ⟨𝑊𝐿 (1 + 𝑘),𝑊𝐿 (1)⟩ ∈
𝐺.mo ;𝐺.hb?, which again contradicts the fact that𝑊𝐿 is ⟨𝐺, 𝜏⟩-consistent.

• 𝑙 = RMW(𝑥, 𝑣R, 𝑣W):
By definition, since B 𝜏,𝑙−−→loSRA B ′

, there exists a read option 𝑜 with loc(𝑜) = 𝑥 , val(𝑜) = 𝑣R and

rmw(𝑜) = RMW such that 𝐿(1) = 𝑜 for every 𝐿 ∈ B(𝜏). Since B ⋎ 𝐺 , for every 𝐿 ∈ B(𝜏) there exists a
⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿⟩-write-list𝑊𝐿 . Moreover, since rmw(𝑜) = RMW, we have𝑊𝐿 (1) = max𝐺.mo𝐺.W𝑥

for every 𝐿 ∈ B(𝜏).
Let𝑤 = max𝐺.mo𝐺.W𝑥 , 𝑒 = NextEvent(𝐺.E, 𝜏, 𝑙) and𝐺 ′

be the execution graph given by𝐺 ′.E = 𝐺.E∪{𝑒},
𝐺 ′.rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩} and 𝐺 ′.mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑒}).
For showing that 𝐺

𝜏,𝑙−−→opSRA 𝐺 ′
, it suffices, by definition, to show that valW(𝑤) = 𝑣R. Indeed, since

B(𝜏) is (by definition) non-empty, we can take some 𝐿 ∈ B(𝜏). We have𝑤 =𝑊𝐿 (1), and since𝑊𝐿 is a

⟨𝐺, 𝐿⟩-write-list, we have that valW(𝑤) = valW(𝑊𝐿 (1)) = val(𝐿(1)) = val(𝑜) = 𝑣R.

It remains to show that B ′ ⋎ 𝐺 ′
. Using Prop. A.4, since B 𝜏,𝑙−−→loSRA B ′

, we know that there exists an

index choice P for B ′
that justifies a ⟨𝜏, W(𝑥, 𝑣W)⟩-step, such that src(B ′, 𝜏,P)(𝜋) ⊆ B(𝜋) for every

𝜋 ∈ Tid \ {𝜏} and 𝑜 · src(B ′, 𝜏,P)(𝜏) ⊆ B(𝜏).
Let 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋). We construct a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′

. Let 𝑃 ≜ P(𝜋, 𝐿′)
and (the last two are only defined if 𝑃 ≠ ∅):

𝐿 ≜

{
𝐿′ \ 𝑃 𝜋 ≠ 𝜏

𝑜 · (𝐿′ \ 𝑃) 𝜋 = 𝜏
𝑓 ≜

{
Map⟨𝐿′,𝑃 ⟩ 𝜋 ≠ 𝜏

𝜆𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 . Map⟨𝐿′,𝑃 ⟩ (𝑘) + 1 𝜋 = 𝜏

𝐿𝜏 ≜ 𝑜 · 𝐿′ \\ 𝑃 𝑓𝜏 ≜ 𝜆𝑘 ∈ {min(𝑃), ... ,|𝐿′ |} \ 𝑃 . MMap⟨𝐿′,𝑃 ⟩ (𝑘) + 1

Since B ⋎𝐺 , there exist a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list𝑊 , and a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿𝜏 ⟩-write-list
𝑊𝜏 . We define𝑊 ′

as follows:

𝑊 ′ ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}.

𝑒 𝑘 ∈ 𝑃

𝑊 (𝑓 (𝑘)) 𝑘 < min(𝑃)
max𝐺.mo{𝑊 (𝑓 (𝑘)),𝑊𝜏 (𝑓𝜏 (𝑘))} otherwise

It is easy to see that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list. In particular, to show that rmw(𝐿′(𝑘)) = RMW implies

𝑊 ′(𝑘) ∉ dom(𝐺 ′.mo), we use the fact that P justifies a ⟨𝜏, W(𝑥, 𝑣W)⟩-step, and so for every 𝑘 ∈ {1, ... ,|𝐿′ |}\
𝑃 , we have that rmw(𝐿′(𝑘)) = RMW implies loc(𝐿′(𝑘)) ≠ 𝑥 .

We show that𝑊 ′
is ⟨𝐺 ′, 𝜋⟩-consistent.

Let 1 ≤ 𝑘 ≤ |𝐿′ |. We prove that𝑊 ′(𝑘) ∉ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋 ∪ {𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑘}]). Suppose
otherwise. First, note that we cannot have 𝑘 ∈ 𝑃 , since 𝑒 is a maximal element in𝐺 ′.mo. Let𝑤𝜋 =𝑊 (𝑓 (𝑘))
and𝑤𝜏 =𝑊𝜏 (𝑓𝜏 (𝑘)) (the latter is only defined if 𝑘 > min(𝑃)). Consider the two possible cases:

– 𝑊 ′(𝑘) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋]): The definition of𝑊 ′
ensures that ⟨𝑤𝜋 ,𝑊

′(𝑘)⟩ ∈ 𝐺 ′.mo?, and so

𝑤𝜋 ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋]). Since𝑊 is ⟨𝐺, 𝜋⟩-consistent, we have𝑤𝜋 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜋]),
and therefore it must be the case that ⟨𝑤𝜋 , 𝑒⟩ ∈ 𝐺 ′.mo ; (𝐺.hb ; 𝐺 ′.rf)? and 𝜋 = 𝜏 . Since P justifies

a ⟨𝜏, W(𝑥, 𝑣W)⟩-step, we have loc(𝐿′(𝑘)) ≠ 𝑥 and so loc(𝑤𝜋) ≠ 𝑥 . Hence, ⟨𝑤𝜋 , 𝑒⟩ ∉ 𝐺 ′.mo, and so we

have ⟨𝑤𝜋 , 𝑒⟩ ∈ 𝐺.mo ;𝐺.hb ;𝐺 ′.rf, namely ⟨𝑤𝜋 ,𝑤⟩ ∈ 𝐺.mo ;𝐺.hb. However,𝑊 (1) = 𝑤 , contradicting

the ⟨𝐺, 𝜋⟩-consistency of𝑊 .

– ⟨𝑊 ′(𝑘),𝑊 ′(𝑗)⟩ ∈ 𝐺 ′.mo ;𝐺 ′.hb? for some 1 ≤ 𝑗 < 𝑘 . Consider the two possible cases:

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

∗ 𝑊 ′(𝑗) = 𝑒 : In this case we must have 𝑘 > min(𝑃), and so𝑊 ′(𝑘) = max𝐺.mo{𝑤𝜋 ,𝑤𝜏 }. There are three
possibilities:

· 𝑊 ′(𝑘) = 𝑤 : Then loc(𝑤𝜏) = loc(𝐿′(𝑘)) = 𝑥 , which contradicts the fact that P justifies a

⟨𝜏, W(𝑥, 𝑣W)⟩-step.
· ⟨𝑊 ′(𝑘),𝑤⟩ ∈ 𝐺 ′.mo ; 𝐺 ′.hb?: This contradicts the ⟨𝐺, 𝜏⟩-consistency of𝑊𝜏 , as𝑊𝜏 (1) = 𝑤 and

⟨𝑤𝜏 ,𝑊
′(𝑘)⟩ ∈ 𝐺 ′.mo?, implying that ⟨𝑤𝜏 ,𝑊𝜏 (1)⟩ ∈ 𝐺.mo ;𝐺.hb?.

· ⟨𝑊 ′(𝑘), 𝑒⟩ ∈ 𝐺 ′.mo ;𝐺 ′.hb? ;𝐺 ′.po: This also contradicts the ⟨𝐺, 𝜏⟩-consistency of𝑊𝜏 , as we get

that𝑤𝜏 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]).
∗ 𝑊 ′(𝑗) ≠ 𝑒: In this case, we must have ⟨𝑊 ′(𝑘),𝑊 ′(𝑗)⟩ ∈ 𝐺.mo ;𝐺.hb?. The definition of𝑊 ′

ensures

that ⟨𝑤𝜋 ,𝑊
′(𝑘)⟩ ∈ 𝐺.mo?, and so ⟨𝑤𝜋 ,𝑊

′(𝑗)⟩ ∈ 𝐺.mo ; 𝐺.hb?. Now, since𝑊 is ⟨𝐺, 𝜋⟩-consistent,
we cannot have𝑊 ′(𝑗) = 𝑊 (𝑓 (𝑗)). Let 𝑤 ′

𝜏 = 𝑊𝜏 (𝑓𝜏 (𝑗)). Hence, 𝑗 > min(𝑃) and𝑊 ′(𝑗) = 𝑤 ′
𝜏 . It

follows that 𝑘 > min(𝑃), and so ⟨𝑤𝜏 ,𝑊
′(𝑘)⟩ ∈ 𝐺.mo?. Hence, we have ⟨𝑤𝜏 ,𝑤

′
𝜏 ⟩ ∈ 𝐺.mo ;𝐺.hb?. This

contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.
Finally, suppose thatB⋎𝐺 andB 𝜀−→loSRA B ′

(using the lower step).We show thatB ′⋎𝐺 . Let 𝜏 ∈ Tid and
𝐿′ ∈ B ′(𝜏). We define a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿′⟩-write-list𝑊 ′

. By definition, since B 𝜀−→loSRA B ′
, there ex-

ists 𝐿 ∈ B(𝜏) such that 𝐿′ ⊑ 𝐿. Let 𝑓 : {1, ... ,|𝐿′ |} → N be an increasing function such that 𝐿′(𝑘) = 𝐿(𝑓 (𝑘))
for every 𝑘 ∈ dom(𝑓). Since B ⋎ 𝐺 , there exists a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿⟩-write-list𝑊 . Let𝑊 ′ = 𝜆𝑘 ∈
{1, ... ,|𝐿′ |}. 𝑊 (𝑓 (𝑘)). It is easy to see that𝑊 ′

is a ⟨𝐺, 𝐿′⟩-write-list. We show that𝑊 ′
is ⟨𝐺, 𝜏⟩-consistent.

Let 1 ≤ 𝑘 ≤ |𝐿′ |. Suppose by contradiction that𝑊 ′(𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑘}]).
It follows that𝑊 (𝑓 (𝑘)) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑓 (𝑗)) | 1 ≤ 𝑗 < 𝑘})). This contradicts the fact that
𝑊 is ⟨𝐺, 𝜏⟩-consistent. □

Lemma 5.16. For every trace of opSRA there is an equivalent trace of loSRA.

Proof. We show that ⋎−1 constitutes a backward simulation from opSRA to loSRA.4

The two first requirements of a backward simulation clearly hold for ⋎: 1. ⋎−1 is total, as for every
state 𝐺 of opSRA, we have (𝜆𝜏 ∈ Tid. {𝜖}) ⋎ 𝐺 . 2. Consider a state B of loSRA, such that B ⋎ 𝐺0. By the

definition of ⋎, it should be possible to link every read option of B to some write event of 𝐺0. Since there

are no write events in 𝐺0, there cannot be read options in B, having B = 𝜆𝜏 ∈ Tid. {𝜖} ∈ loSRA.Q0.

We move to the third requirement. Suppose that 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

and B ′ ⋎ 𝐺 ′
. We construct a state B

such that B 𝜏,𝑙−−→loSRA B ′
and B ⋎ 𝐺 . Consider the possible cases:

• 𝑙 = W(𝑥, 𝑣W):
Let 𝑤 = NextEvent(𝐺.E, 𝜏, 𝑙). Since 𝐺

𝜏,𝑙−−→opSRA 𝐺 ′
, we have 𝐺 ′.E = 𝐺.E ∪ {𝑤}, 𝐺 ′.rf = 𝐺.rf and

𝐺 ′.mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}). Since B ′ ⋎ 𝐺 ′
, for every 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋) there exists a ⟨𝐺 ′, 𝜋⟩-

consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
⟨𝜋,𝐿′⟩ . Let P be the index choice for B ′

that assigns the set of “new”

positions in B ′
:

P ≜ 𝜆𝜋 ∈ Tid, 𝐿′ ∈ B ′(𝜋) . {1 ≤ 𝑘 ≤ |𝐿′ | |𝑊 ′
⟨𝜋,𝐿′⟩ (𝑘) = 𝑤}.

Then, we define B ≜ src(B ′, 𝜏,P).
By Prop. A.4, to show that B 𝜏,𝑙−−→loSRA B ′

, it suffices to prove that P justifies a ⟨𝜏, W(𝑥, 𝑣W)⟩-step. Thus, we
show that the following hold for every 𝜋 ∈ Tid and 𝐿′ ∈ B ′(𝜋), where 𝑃 = P(𝜋, 𝐿′) and𝑊 ′ =𝑊 ′

⟨𝜏,𝐿′⟩ :

– Let 𝑘 ∈ 𝑃 . To see that 𝐿′(𝑘) ∈ {⟨𝜏, 𝑥, 𝑣W, R⟩, ⟨𝜏, 𝑥, 𝑣W, RMW⟩}, note that since 𝑘 ∈ 𝑃 , we have𝑊 ′(𝑘) =

𝑤 , and since 𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list, we must have 𝜏 = tid(𝑤) = tid(𝐿′(𝑘)), 𝑥 = loc(𝑤) =

loc(𝐿′(𝑘)) = 𝑥 and 𝑣W = valW(𝑤) = valW(𝐿′(𝑘)).
– Let 𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 , such that loc(𝐿′(𝑘)) = 𝑥 . We show that rmw(𝐿′(𝑘)) = R. Let𝑤 ′ =𝑊 ′(𝑘). Since
𝑘 ∉ 𝑃 , we have𝑤 ′ ≠ 𝑤 . Since𝐺 ′.mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}), it follows that ⟨𝑤 ′,𝑤⟩ ∈ 𝐺 ′.mo. However,
since𝑊 ′

is a ⟨𝐺 ′, 𝐿′⟩-write-list, if rmw(𝐿′(𝑘)) = RMW, then we must have𝑤 ′ = max𝐺′.mo𝐺
′.W𝑥 , reaching

a contradiction.

4
Recall that a backward simulation from an LTS 𝐴 to an LTS 𝐵 is a relation 𝑅 ⊆ 𝐴.Q × 𝐵.Q such that 1. 𝑅 is total (for every 𝑞 ∈ 𝐴.Q we have ⟨𝑞, 𝑝 ⟩ ∈ 𝑅 for

some 𝑝 ∈ 𝐵.Q); 2. if ⟨𝑞, 𝑝 ⟩ ∈ 𝑅 and 𝑞 ∈ 𝐴.Q0, then 𝑝 ∈ 𝐵.Q0; and 3. if 𝑞
𝜎−→𝐴 𝑞′ and ⟨𝑞′, 𝑝′⟩ ∈ 𝑅, then there exists 𝑝 ∈ 𝐵.Q such that 𝑝

𝜎−→𝐵 𝑝′ and ⟨𝑞, 𝑝 ⟩ ∈ 𝑅.

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

– Let 𝑘 ∈ {𝑚 + 1, ... ,|𝐿′ |} \ 𝑃 where 𝑚 = min(𝑃). We show that loc(𝐿′(𝑘)) ≠ 𝑥 . Suppose otherwise.

Let 𝑤 ′ =𝑊 ′(𝑘). Since 𝑘 ∉ 𝑃 , we have 𝑤 ′ ≠ 𝑤 . Hence, since 𝐺 ′.mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}), we have
⟨𝑤 ′,𝑤⟩ ∈ 𝐺 ′.mo. Thus, ⟨𝑤 ′,𝑊 ′(𝑚)⟩ ∈ 𝐺 ′.mo ;𝐺 ′.hb?. Since 𝑘 > 𝑚, this contradicts the fact that𝑊 ′

is

⟨𝐺 ′, 𝜋⟩-consistent.
– Suppose that 𝜋 = 𝜏 and let 𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 . We show that loc(𝐿′(𝑘)) ≠ 𝑥 . Suppose otherwise.

Let 𝑤 ′ =𝑊 ′(𝑘). Since 𝑘 ∉ 𝑃 , we have 𝑤 ′ ≠ 𝑤 . Hence, since 𝐺 ′.mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}), we have
⟨𝑤 ′,𝑤⟩ ∈ 𝐺 ′.mo. Thus, we have𝑤 ′ ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜏]), which contradicts the fact that𝑊 ′

is

⟨𝐺 ′, 𝜏⟩-consistent.
It remains to show that B ⋎ 𝐺 . Let 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋). We show that there exists a ⟨𝐺, 𝜋⟩-consistent
⟨𝐺, 𝐿⟩-write-list𝑊 . Following the construction of B, one of the following holds:

– 𝐿 = 𝐿′ \ P(𝜋, 𝐿′) for some 𝐿′ ∈ B ′(𝜋). Let 𝑃 = P(𝜋, 𝐿′),𝑊 ′ =𝑊 ′
⟨𝜋,𝐿′⟩ and 𝑓 = Map−1⟨𝐿′,𝑃 ⟩ . We define

𝑊 = 𝜆𝑘 ∈ {1, ... ,|𝐿 |}. 𝑊 ′(𝑓 (𝑘)). Using the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list, it is easy to see that𝑊

is a ⟨𝐺, 𝐿⟩-write-list. (In particular, note that rmw(𝐿(𝑘)) ≠ RMW whenever loc(𝐿(𝑘)) = 𝑥 .)

It remains to show that𝑊 is ⟨𝐺, 𝜋⟩-consistent, namely to prove that for every 𝑘 , we have𝑊 (𝑘) ∉
dom(𝐺.mo ;𝐺.hb? ; [E𝜋 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). Indeed, if𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜋]) then since

𝐺.mo ⊆ 𝐺 ′.mo and 𝐺.hb ⊆ 𝐺 ′.hb, it follows that𝑊 ′(𝑓 (𝑘)) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜋]), which contra-

dicts the ⟨𝐺 ′, 𝜋⟩-consistency of𝑊 ′
. Analogously, if𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘})

then since 𝑓 is an increasing function, we have𝑊 ′(𝑓 (𝑘)) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; {𝑊 ′(𝑓 (𝑗)) | 1 ≤ 𝑗 < 𝑘}),
which contradicts the ⟨𝐺 ′, 𝜋⟩-consistency of𝑊 ′

.

– 𝜋 = 𝜏 and 𝐿 = 𝐿′ \\ P(𝜂, 𝐿′) for some 𝜂 ∈ Tid and 𝐿′ ∈ B ′(𝜂). Let 𝑃 = P(𝜂, 𝐿′), 𝑚 = min(𝑃),
𝑊 ′ = 𝑊 ′

⟨𝜂,𝐿′⟩ and 𝑓 = MMap−1⟨𝐿′,𝑃 ⟩ . We define 𝑊 = 𝜆𝑘 ∈ {1, ... ,|𝐿 |}. 𝑊 ′(𝑓 (𝑘)). Using the fact

that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list, it is easy to see that𝑊 is a ⟨𝐺, 𝐿⟩-write-list. (In particular, note that

rmw(𝐿(𝑘)) ≠ RMW whenever loc(𝐿(𝑘)) = 𝑥 .) It remains to show that𝑊 is ⟨𝐺, 𝜏⟩-consistent, namely

to prove that𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]) for every 𝑘 . Indeed, if𝑊 (𝑘) ∈
dom(𝐺.mo ;𝐺.hb? ; [{𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]) then since 𝑓 is an increasing function, we have𝑊 ′(𝑓 (𝑘)) ∈
dom(𝐺 ′.mo ;𝐺 ′.hb? ; [{𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), which contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′

. Now,

if𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), then since 𝑤 = max𝐺′.po𝐺
′.E𝜏 , we have that ⟨𝑊 ′(𝑓 (𝑘)),𝑤⟩ ∈

𝐺 ′.mo ; 𝐺 ′.hb?. However, we have that 𝑊 ′(𝑚) = 𝑤 and 𝑓 (𝑘) > 𝑚, implying that 𝑊 ′(𝑓 (𝑘)) ∈
dom(𝐺 ′.mo ;𝐺 ′.hb? ; [{𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), which contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′

.

• 𝑙 = R(𝑥, 𝑣R):
Let 𝑟 = NextEvent(𝐺.E, 𝜏, 𝑙). Since𝐺 𝜏,𝑙−−→opSRA 𝐺 ′

, we have𝐺 ′.E = 𝐺.E∪ {𝑟 },𝐺 ′.rf = 𝐺.rf∪ {⟨𝑤, 𝑟 ⟩} and
𝐺 ′.mo = 𝐺.mo, for some write event𝑤 ∈ 𝐺.W𝑥 such that valW(𝑤) = 𝑣R and𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]).
Let 𝑜 be the read option given by 𝑜 ≜ ⟨tid(𝑤), 𝑥, 𝑣R, R⟩. We define B by:

B ≜ 𝜆𝜋 ∈ Tid.

{
𝑜 · B ′(𝜏) 𝜋 = 𝜏

B ′(𝜋) 𝜋 ≠ 𝜏

By definition, B 𝜏,𝑙−−→loSRA B ′
.

We show next thatB⋎𝐺 . For a thread 𝜋 ≠ 𝜏 and a read-option list 𝐿 ∈ B(𝜋), observe that 𝐿 ∈ B ′(𝜋), and
since B ′ ⋎ 𝐺 ′

, there is a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿⟩-write-list𝑊 ′
. Since 𝐺.mo ⊆ 𝐺 ′.mo and 𝐺.hb ⊆ 𝐺 ′.hb,

𝑊 ′
is also ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list.

Consider a read-option list 𝐿 ∈ B(𝜏). Let 𝐿′ ∈ B ′(𝜏) such that 𝐿 = 𝑜 · 𝐿′
. Since B ′ ⋎ 𝐺 ′

, there is a

⟨𝐺 ′, 𝜏⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
. Define𝑊 ≜ 𝑤 ·𝑊 ′

. Using the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list,

it is easy to see that𝑊 is a ⟨𝐺, 𝐿⟩-write-list.
It is left to show that𝑊 is ⟨𝐺, 𝜏⟩-consistent. Let 1 ≤ 𝑘 ≤ |𝐿 |. We prove that

𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]).

Suppose otherwise. Consider the two possible cases:

– 𝑘 = 1. Then𝑤 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), which contradicts the properties of𝑤 as stated above.

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

– 𝑘 > 1. Observe that𝑊 (𝑘) = 𝑊 ′(𝑘 − 1). If𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 2 ≤ 𝑗 < 𝑘}])
then 𝑊 ′(𝑘 − 1) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜏 ∪ {𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑘 − 1}]), contradicting the ⟨𝐺 ′, 𝜏⟩-
consistency of𝑊 ′

. Thus, ⟨𝑊 (𝑘),𝑊 (1)⟩ ∈ 𝐺.mo ; 𝐺.hb?. Yet,𝑊 (1) = 𝑤 , 𝑟 ∈ E𝜏 and ⟨𝑤, 𝑟 ⟩ ∈ 𝐺 ′.rf.
Hence,𝑊 ′(𝑘 − 1) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜏]), contradicting the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′

.

• 𝑙 = RMW(𝑥, 𝑣R, 𝑣W): This case combines the proofs given for the read and write cases.

Let 𝑒 = NextEvent(𝐺.E, 𝜏, 𝑙). Since𝐺 𝜏,𝑙−−→opSRA 𝐺 ′
, we have𝐺 ′.E = 𝐺.E∪{𝑒},𝐺 ′.mo = 𝐺.mo∪(𝐺.W𝑥×{𝑒}),

𝐺 ′.rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩} and valW(𝑤) = 𝑣R, where 𝑤 = max𝐺.moW𝑥 . Since B ′ ⋎ 𝐺 ′
, for every 𝜋 ∈ Tid

and 𝐿′ ∈ B ′(𝜋) there exists a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
⟨𝜋,𝐿′⟩ .

Let P be the index choice for B ′
that assigns the set of “new” positions in B ′

:

P ≜ 𝜆𝜋 ∈ Tid, 𝐿′ ∈ B ′(𝜋) . {1 ≤ 𝑘 ≤ |𝐿′ | |𝑊 ′
⟨𝜋,𝐿′⟩ (𝑘) = 𝑒}.

Then, we define:

B ≜ 𝜆𝜋 ∈ Tid.

{
𝑜 · src(B ′, 𝜏,P)(𝜏) 𝜋 = 𝜏

src(B ′, 𝜏,P)(𝜋) 𝜋 ≠ 𝜏

where 𝑜 is the read option given by 𝑜 ≜ ⟨tid(𝑤), 𝑥, 𝑣R, RMW⟩.
The arguments for why B 𝜏,𝑙−−→loSRA B ′

are analogous to those of the write case. Using Prop. A.4, to show

that B 𝜏,𝑙−−→loSRA B ′
, it suffices to prove that P justifies a ⟨𝜏, W(𝑥, 𝑣W)⟩-step. This is done exactly as in the

write case.

It remains to show that B ⋎ 𝐺 . Let 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋). We show that there exists a ⟨𝐺, 𝜋⟩-consistent
⟨𝐺, 𝐿⟩-write-list𝑊 . Following the construction of B, one of the following holds:

– 𝐿 = 𝐿′ \P(𝜋, 𝐿′) for some 𝐿′ ∈ B ′(𝜋). This case is exactly the same as the analogous case in thewrite

step.

– 𝜋 = 𝜏 and 𝐿 = 𝑜 · (𝐿′ \ P(𝜏, 𝐿′)) for some 𝐿′ ∈ B ′(𝜏). Let 𝑃 = P(𝜏, 𝐿′),𝑊 ′ = 𝑊 ′
⟨𝜏,𝐿′⟩ and 𝑓 = 𝜆𝑘 ∈

{2, ... ,|𝐿 |}. Map−1⟨𝐿′,𝑃 ⟩ (𝑘 − 1). We define

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.
{
𝑤 𝑘 = 1

𝑊 ′(𝑓 (𝑘)) 𝑘 > 1

Using the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list and that𝑤 = max𝐺.moW𝑥 , it is easy to see that𝑊 is a ⟨𝐺, 𝐿⟩-

write-list. (In particular, note that for 𝑘 > 1, rmw(𝐿(𝑘)) ≠ RMW whenever loc(𝐿(𝑘)) = 𝑥 .) It remains

to show that𝑊 is ⟨𝐺, 𝜏⟩-consistent, namely to prove that for every 𝑘 ∈ {1, ... ,|𝐿 |}, we have𝑊 (𝑘) ∉
dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). For 𝑘 = 1, this is trivial since𝑊 (1) = 𝑤 = max𝐺.moW𝑥 .

Let 𝑘 ∈ {2, ... ,|𝐿 |}. If𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]) then since 𝐺.mo ⊆ 𝐺 ′.mo and 𝐺.hb ⊆ 𝐺 ′.hb,
we have 𝑊 ′(𝑓 (𝑘)) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [E𝜏]), which contradicts the ⟨𝐺 ′, 𝜏⟩-consistency of 𝑊 ′

.

Analogously, if ⟨𝑊 (𝑘),𝑊 (𝑗)⟩ ∈ 𝐺.mo ; 𝐺.hb? for 2 ≤ 𝑗 < 𝑘 then ⟨𝑊 ′(𝑓 (𝑘)),𝑊 ′(𝑓 (𝑗))⟩ ∈ 𝐺 ′.mo ;

𝐺 ′.hb?, and since 𝑓 is an increasing function this contradicts the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
. Now, if

⟨𝑊 (𝑘),𝑊 (1)⟩ ∈ 𝐺.mo ;𝐺.hb?, then since𝑊 (1) = 𝑤 ,𝐺 ′.E = 𝐺.E∪ {𝑒} and𝐺 ′.rf = 𝐺.rf∪ {⟨𝑤, 𝑒⟩}, we
have𝑊 ′(𝑓 (𝑘)) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [𝐺 ′.E𝜏]), which contradicts the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′

.

– 𝜋 = 𝜏 and 𝐿 = 𝑜 · (𝐿′ \\ P(𝜂, 𝐿′)) for some 𝜂 ∈ Tid and 𝐿′ ∈ B ′(𝜂). Let 𝑃 = P(𝜂, 𝐿′),𝑚 = min(𝑃),
𝑊 ′ =𝑊 ′

⟨𝜂,𝐿′⟩ and 𝑓 = 𝜆𝑘 ∈ {2, ... ,|𝐿 |}. MMap−1⟨𝐿′,𝑃 ⟩ (𝑘 − 1).
We define

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.
{
𝑤 𝑘 = 1

𝑊 ′(𝑓 (𝑘)) 𝑘 > 1

As above,𝑊 is a ⟨𝐺, 𝐿⟩-write-list, and we show that it is ⟨𝐺, 𝜏⟩-consistent. Namely, we prove that for

every 𝑘 ∈ {1, ... ,|𝐿 |}, we have that𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). Again, for
𝑘 = 1, this is trivial since𝑊 (1) = 𝑤 = max𝐺.moW𝑥 . Let 𝑘 ∈ {2, ... ,|𝐿 |}. If ⟨𝑊 (𝑘),𝑊 (𝑗)⟩ ∈ 𝐺.mo ;𝐺.hb?

for 2 ≤ 𝑗 < 𝑘 , then ⟨𝑊 ′(𝑓 (𝑘)),𝑊 ′(𝑓 (𝑗))⟩ ∈ 𝐺 ′.mo ;𝐺 ′.hb?, and since 𝑓 is an increasing function this

contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′
. Now, if ⟨𝑊 (𝑘),𝑊 (1)⟩ ∈ 𝐺.mo ;𝐺.hb?, then since𝑊 (1) = 𝑤

Decidable Verification under a Causally Consistent Shared Memory PLDI ’20, June 15–20, 2020, London, United Kingdom

and ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′.rf, we have ⟨𝑊 ′(𝑓 (𝑘)), 𝑒⟩ ∈ 𝐺 ′.mo ; 𝐺 ′.hb?. However, 𝑊 ′(𝑚) = 𝑒 and 𝑓 (𝑘) >

𝑚, implying that𝑊 ′(𝑓 (𝑘)) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [{𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), which contradicts the

⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′
.

Lastly, if𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), then ⟨𝑊 ′(𝑓 (𝑘)), 𝑒⟩ ∈ 𝐺 ′.mo;𝐺 ′.hb? (since 𝑒 = max𝐺′.po𝐺
′.E𝜏).

However,𝑊 ′(𝑚) = 𝑒 and 𝑓 (𝑘) > 𝑚, implying that

𝑊 ′(𝑓 (𝑘)) ∈ dom(𝐺 ′.mo ;𝐺 ′.hb? ; [{𝑊 ′(𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]),
which contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′

. □

B Effective Pred-Basis
We show that 𝑃loSRA admits effective pred-basis. For this matter, we demonstrate how to calculate a finite

basis𝑄𝛼
of ↑pred𝛼loSRA(↑{B ′}) for each 𝛼 of the form ⟨𝜏, W(𝑥, 𝑣W)⟩, ⟨𝜏, R(𝑥, 𝑣R)⟩, ⟨𝜏, RMW(𝑥, 𝑣R, 𝑣W)⟩ or 𝜀. Then,

a finite basis of ↑pred𝛼𝑃loSRA (↑{⟨𝑝
′
,B ′⟩}) is given by pred𝛼𝑃 ({𝑝

′}) ×𝑄𝛼
for 𝛼 ≠ 𝜀; and by {𝑝 ′} ×𝑄𝛼

for 𝛼 = 𝜀

(silent memory step). In addition, for a silent program step, a finite basis of ↑pred⟨𝜏,𝜀 ⟩
𝑃loSRA

(↑{⟨𝑝 ′
,B ′⟩}) is given

by pred⟨𝜏,𝜀 ⟩
𝑃

({𝑝 ′}) × {B ′}.
Silent memory step The set of predecessors of B ′

with respect to a silent memory step (i.e., using lower)

is very simple—it contains any stateB such thatB ′ ⊑ B. Thus, {B ′} is a finite basis of ↑pred𝜀loSRA({B ′}),
as well as of ↑pred𝜀loSRA(↑{B ′}).

Read A predecessor B of B ′
with respect to a read step B is similar to B ′

, except for having in each

read-option list of 𝜏 an additional first read option of the form ⟨𝜏W, 𝑥, 𝑣R, R⟩. Hence, for 𝛼 = ⟨𝜏, R(𝑥, 𝑣R)⟩,
the set {B ′[𝜏 ↦→ ⟨𝜏W, 𝑥, 𝑣R, 𝑢⟩ · B ′(𝜏)] | 𝜏W ∈ Tid, 𝑢 ∈ {R, RMW}} is a finite basis of ↑pred𝛼loSRA({B ′}). It
is also a basis of ↑pred𝛼loSRA(↑{B ′}): For a state B ′′

with B ′ ⊑ B ′′
, a corresponding read option

⟨𝜏W, 𝑥, 𝑣R, 𝑢⟩ appears in the lists of 𝜏 in pred𝛼loSRA({B ′′}) before some additional read options, ensuring

that pred𝛼loSRA({B ′}) ⊑ pred𝛼loSRA({B ′′}).
Write We construct the basis of the predecessors w.r.t. a write step by considering all (finitely many)

possibilities of omitting read options from lists of B ′
, using Prop. A.4 and the following technical

lemma:

Lemma B.1. Let P be an index choice for B ′ ∈ loSRA.Q such that P |= ⟨𝜏, W(𝑥, 𝑣W)⟩. If B ′
0
⊑ B ′, then

src(B ′
0
, 𝜏,P0) ⊑ src(B, 𝜏,P) for some index choice P0 for B ′

0
such that P0 |= ⟨𝜏, W(𝑥, 𝑣W)⟩.

Proof. Since B ′
0
⊑ B ′

, for every 𝜋 ∈ Tid, there exists a function 𝐹𝜋 : B ′
0
(𝜋) → B ′(𝜋) such that for every

𝐿′
0
∈ B ′

0
(𝜋), we have 𝐿′

0
⊑ 𝐹𝜋 (𝐿′

0
), witnessed by a strictly increasing function 𝑓⟨𝜋,𝐿′

0
⟩ : {1, ... ,|𝐿′

0
|} →

{1, ... ,|𝐹𝜋 (𝐿′
0
) |}, such that 𝐿′

0
(𝑘) = (𝐹𝜋 (𝐿′

0
)) (𝑓⟨𝜋,𝐿′

0
⟩ (𝑘)) for every 𝑘 ∈ {1, ... ,|𝐿′

0
|}.

We define P0 to be the positions in P that originated in B ′
0
, according to the 𝑓⟨𝜋,𝐿′

0
⟩ functions. That is,

P0 ≜ 𝜆𝜋 ∈ Tid, 𝐿′
0
∈ B ′

0
(𝜋). {𝑘 ∈ {1, ... ,|𝐿′

0
|} | 𝑓⟨𝜋,𝐿′

0
⟩ (𝑘) ∈ P(𝜋, 𝐹𝜋 (𝐿′

0
))}.

It is easy to verify that P0 justifies a ⟨𝜏, W(𝑥, 𝑣W)⟩-step. Let B0 = src(B ′
0
, 𝜏,P0). We show that B0 ⊑

src(B ′, 𝜏,P).
Recall that for every thread 𝜋 ∈ Tid, we have that every list 𝐿0 ∈ B0(𝜋) is equal to 𝐿′

0
\ P0(𝜋, 𝐿′

0
) (or

resp. to 𝐿′
0
\\ P0(𝜂, 𝐿′

0
)) for some list 𝐿′

0
of B ′

0
(𝜋) (resp. for some list 𝐿′

0
of B ′

0
(𝜂) for some 𝜂 ∈ Tid).

Hence, we can define a function 𝐻𝜋 : B0(𝜋) → src(B ′, 𝜏,P)(𝜋), by setting 𝐻𝜋 (𝐿0) = 𝐹𝜋 (𝐿′
0
) \

P(𝜋, 𝐹𝜋 (𝐿′
0
)). Observe that for every 𝐿0 ∈ B0(𝜋), we have 𝐿0 ⊑ 𝐻𝜋 (𝐿0), witnessed by the function

ℎ ⟨𝜋,𝐿0 ⟩ : {1, ... ,|𝐿0 |} → {1, ... ,|𝐻𝜋 (𝐿0) |}, defined by

ℎ ⟨𝜋,𝐿0 ⟩ (𝑘) ≜ Map⟨𝐹𝜋 (𝐿′
0
),P(𝜋,𝐹𝜋 (𝐿′

0
)) ⟩ (𝑓⟨𝜋,𝐿′

0
⟩ (Map−1⟨𝐿′

0
,P0 (𝜋,𝐿′

0
) ⟩ (𝑘))),

for every 𝑘 ∈ {1, ... ,|𝐿0 |}. (Respectively, we define 𝐻𝜋 (𝐿0) = 𝐹𝜂 (𝐿′
0
) \\ P(𝜂, 𝐹𝜂 (𝐿′

0
))), witnessed analo-

gously.) □

By Prop. A.4 and Lemma B.1, we get a finite basis of ↑pred⟨𝜏,W (𝑥,𝑣W) ⟩
loSRA (↑{B ′}), given by:

{src(B ′, 𝜏,P) | P is an index choice for B ′
such that P |= ⟨𝜏, W(𝑥, 𝑣W)⟩}.

PLDI ’20, June 15–20, 2020, London, United Kingdom Ori Lahav and Udi Boker

RMW The predecessor with respect to an RMW step intuitively combines the predecessors with respect

to the read and write steps. By Prop. A.4 and Lemma B.1, we get that the set

{src(B ′, 𝜏,P)[𝜏 ↦→ ⟨𝜏W, 𝑥, 𝑣R, RMW⟩ · src(B ′, 𝜏,P)(𝜏)] | 𝜏W ∈ Tid and

P is an index choice for B ′
such that P |= ⟨𝜏, W(𝑥, 𝑣W)⟩}

is a finite basis of ↑pred⟨𝜏,RMW (𝑥,𝑣R,𝑣W) ⟩
loSRA (↑{B ′}).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Programming Language
	2.2 From Programs to Labeled Transition Systems
	2.3 From LTSs to Execution Graphs

	3 The Strong Release/Acquire Model
	3.1 Other Formulations of SRA
	3.2 Examples
	3.3 Relation to the RA Model

	4 Operationalizing the SRA Model
	5 Making Strong Release/Acquire Lossy
	6 Decidability of the Reachability Problem
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Equivalence of loSRA and opSRA– Full Proofs
	B Effective Pred-Basis

