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Gödel Logic
As a Fuzzy Logic

1 〈U,≤〉 is a linearly ordered infinite set of truth values, with a minimum
value 0 and a maximum value 1.

2 A valuation is a function v : wff → U satisfying:

v(A ∧ B) = min{v(A), v(B)} v(A ∨ B) = max{v(A), v(B)}

v(⊥) = 0 v(A ⊃ B) = v(A)→ v(B) =

{
1 v(A) ≤ v(B)

v(B) otherwise

Definition

Γ ` A if for every valuation v : if v(B) = 1 for every B ∈ Γ then v(A) = 1.
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The Proof-Theory of Gödel Logic

(Linearity) (A ⊃ B) ∨ (B ⊃ A)

“Syntactically”, Gödel logic is obtained by adding (Linearity) to an
axiomatization of intuitionistic logic.

Various sequent systems have been introduced (e.g., [Sonobe ’75],
[Corsi ’86], [Avellone et al. ’99], [Dyckhoff ’99], [Avron and
Konikowska ’01], [Dyckhoff and Negri ’06]).

Each of them has some ad-hoc logical rules of a nonstandard form.

In contrast, standard logical rules are used in HG [Avron ’91], the
system obtained by “lifting” LJ to the hypersequent level, and adding
the communication rule.
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Hypersequents

A hypersequent is a finite set of sequents denoted by:

Γ1 ⇒ E1 | Γ2 ⇒ E2 | . . . | Γn ⇒ En

The Communication Rule

H | Γ,∆⇒ E1 H | Γ,∆⇒ E2

H | Γ⇒ E1 | ∆⇒ E2
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The System HG

Structural Rules:

(IW ⇒)
H | Γ⇒ E

H | Γ,A⇒ E
(⇒ IW )

H | Γ⇒
H | Γ⇒ A

(EW )
H

H | Γ⇒ E

(com)
H | Γ,∆⇒ E1 H | Γ,∆⇒ E2

H | Γ⇒ E1 | ∆⇒ E2

Identity Rules:

(id)
A⇒ A

(cut)
H | Γ⇒ A H | Γ,A⇒ E

H | Γ⇒ E

Logical Rules:

(⇒⊃)
H | Γ,A1 ⇒ A2

H | Γ⇒ A1 ⊃ A2
(⊃⇒)

H | Γ⇒ A1 H | Γ,A2 ⇒ E

H | Γ,A1 ⊃ A2 ⇒ E

(⇒ ∧)
H | Γ⇒ A1 H | Γ⇒ A2

H | Γ⇒ A1 ∧ A2
(∧ ⇒)

H | Γ,A1,A2 ⇒ E

H | Γ,A1 ∧ A2 ⇒ E
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The System HG

Theorem

1 Γ ` A iff { ⇒ B | B ∈ Γ} `HG ⇒ A.

2 (cut) is admissible in HG.

Proof

By authority. Arnon says it’s true. :)

6/19



The System HG

Theorem

1 Γ ` A iff { ⇒ B | B ∈ Γ} `HG ⇒ A.

2 (cut) is admissible in HG.

Proof

By authority. Arnon says it’s true. :)

6/19



Question

What happens if we “play” a bit with the logical rules of HG?

Semantics

Cut-admissibility

Canonical Logical Rules

Right Rules: Π1,Σ1, . . . ,Πm,Σm ⊆ {1, . . . , n} |Σ1| = . . . = |Σm| ≤ 1

H | Γ, {Aj | j ∈ Π1} ⇒ {Aj | j ∈ Σ1} . . . H | Γ, {Aj | j ∈ Πm} ⇒ {Aj | j ∈ Σm}
H | Γ⇒ �(A1, . . . ,An)

Left Rules: Π1,Σ1, . . . ,Πm,Σm ⊆ {1, . . . , n} |Σ1| = . . . = |Σm| ≤ 1
Θ1, . . . ,Θk ⊆ {1, . . . , n}

H | Γ, {Aj | j ∈ Π1} ⇒ {Aj | j ∈ Σ1} . . . H | Γ, {Aj | j ∈ Πm} ⇒ {Aj | j ∈ Σm}
H | Γ, {Aj | j ∈ Θ1} ⇒ E . . . H | Γ, {Aj | j ∈ Θk} ⇒ E

H | Γ, �(A1, . . . ,An)⇒ E
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Examples

All logical rules of HG are canonical. E.g.,

H | Γ,A1 ⇒ A2

H | Γ⇒ A1 ⊃ A2

H | Γ⇒ A1 H | Γ,A2 ⇒ E

H | Γ,A1 ⊃ A2 ⇒ E

And/Or Connective

H | Γ⇒ A1 H | Γ⇒ A2

H | Γ⇒ A1∧∨A2

H | Γ,A1 ⇒ E H | Γ,A2 ⇒ E

H | Γ,A1∧∨A2 ⇒ E

Primal Implication [Gurevich, Neeman ’09]

H | Γ⇒ A2

H | Γ⇒ A1 ; A2

H | Γ⇒ A1 H | Γ,A2 ⇒ E

H | Γ,A1 ; A2 ⇒ E
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Canonical Gödel Systems

A Canonical Gödel System =

The structural rules of HG
+

The two identity rules
+

A (finite) set of canonical logical rules
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Semantics of Canonical Gödel Systems

Let G be a canonical Gödel system.

The rules in G for each connective � impose restrictions on the values
assigned to �-formulas.

These restrictions are given by intervals whose lower and upper bounds
are determined according to the right and left rules of G for � (resp.).

v(�(A1, . . . ,An)) ∈
[
G�right(v(A1), . . . , v(An)) , G�left(v(A1), . . . , v(An))

]
G�right(x1, . . . , xn) = max

Π1,Σ1,...,Πm,Σm
is a right rule

of G for �

(
min

1≤i≤m

(
min
j∈Πi

xj → max
j∈Σi

xj

))

G�left(x1, . . . , xn) = min
Π1,Σ1,...,Πm,Σm Θ1,...,Θk

is a left rule of G for �

(
min

1≤i≤m

(
min
j∈Πi

xj → max
j∈Σi

xj

)
→ max

1≤i≤k

(
min
j∈Θi

xj

))
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Examples

For all usual connectives, we obtain a degenerate interval. E.g.,

H | Γ,A1 ⇒ A2

H | Γ⇒ A1 ⊃ A2

H | Γ⇒ A1 H | Γ,A2 ⇒ E

H | Γ,A1 ⊃ A2 ⇒ E

v(A1 ⊃ A2) ∈ [v(A1)→ v(A2), v(A1)→ v(A2)]

And/Or

H | Γ⇒ A1 H | Γ⇒ A2

H | Γ⇒ A1∧∨A2

H | Γ,A1 ⇒ E H | Γ,A2 ⇒ E

H | Γ,A1∧∨A2 ⇒ E

v(A1∧∨A2) ∈ [min(v(A1), v(A2)),max(v(A1), v(A2))]

Primal Implication
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Semantics of Identity Rules

Identity Rules:

(id)
A⇒ A

(cut)
H | Γ⇒ A H | Γ,A⇒ E

H | Γ⇒ E

Question: What is the semantic effect of the two identity rules?

Motivation: Semantics for cut-free systems are useful in proofs of
cut-admissibility.

Intuition: The identity rules bind together the two sides of the
sequent. Without them each formula can have different values when it
occurs on the left side, and on the right side.

(id) left side ≤ right side (cut) right side ≤ left side
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Semantics of HG without Identity Rules

1 〈U,≤〉 is a linearly ordered infinite set of truth values, with a minimum
value 0 and a maximum value 1.

2 A quasi-valuation is a function q : wff → U × U satisfying:

q(A ∧ B) ∈ [0,min(ql(A), ql(B))]× [min(qr (A), qr (B)), 1]

q(A ⊃ B) ∈

[
0,

{
1 qr (A) ≤ ql(B)

ql(B) otherwise

]
×

[{
1 ql(A) ≤ qr (B)

qr (B) otherwise
, 1

]
3 q is a model of a hypersequent H if

min
A∈Γ

ql(A) ≤ max
A∈E

qr (A)

for some Γ⇒ E ∈ H.
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Semantics of HG without Identity Rules

Soundness and Completeness

Ω `HG−(id)−(cut) H iff every quasi-valuation which is a model of Ω is also a
model of H.

Variations

For (id), use q : wff → {〈x , y〉 ∈ U × U | x ≤ y}.
For (cut), use q : wff → {〈x , y〉 ∈ U × U | y ≤ x}.
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Extension for Canonical Gödel Systems

q(�(A1, . . . ,An)) ∈ [0,G�left(q(A1), . . . , q(An))]×
[
G�right(q(A1), . . . , q(An)), 1

]

G�right(〈x1, y1〉, . . . , 〈xn, yn〉) = max
Π1,Σ1,...,Πm,Σm

is a right rule
of G for �

(
min

1≤i≤m

(
min
j∈Πi

xj → max
j∈Σi

yj

))

G�left(〈x1, y1〉, . . . , 〈xn, yn〉) =

min
Π1,Σ1,...,Πm,Σm Θ1,...,Θk

is a left rule of G for �

(
min

1≤i≤m

(
min
j∈Πi

xj → max
j∈Σi

yj

)
→ max

1≤i≤k

(
min
j∈Θi

xj

))
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Cut-Admissibility

Proving cut-admissibility reduces to proving that for every quasi-valuation
which is not a model of some hypersequent H, there exists a valuation
which is not a model of H.

Definition

A valuation v is a refinement of a quasi-valuation q, if for every A ∈ wff :
ql(A) ≤ v(A) ≤ qr (A).

Corollary

A canonical Gödel system enjoys cut-admissibility if every quasi-valuation
has a refinement.

For HG, this is straightforward. The refinement is obtained by recursion on
the build-up of formulas.
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Cut-Admissibility in Canonical Gödel Systems

Refinement is possible only in coherent canonical Gödel systems:

Definition

A canonical Gödel system G is called coherent if

G�right(x1, . . . , xn) ≤ G�left(x1, . . . , xn)

for every n-ary connective � and x1, . . . , xn ∈ U.

Theorem

A canonical Gödel system enjoys cut-admissibility iff it is coherent.

Syntactic Characterization of Coherence

A canonical Gödel system G is coherent iff for every right rule R1 and left
rule R2 of G for some connective �, the empty sequent is derivable from the
premises of R1 and R2 using only cuts.
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Further Work

Extensions for higher-order logics.
In particular, does the extension of HG with usual rules for first and
second order quantifiers enjoy cut-admissibility?

Is this approach applicable in substructural hypersequent calculi?

Thank you!
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“The mediocre teacher tells.
The good teacher explains.
The superior teacher demonstrates.
The great teacher inspires.”

(William Arthur Ward)
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