Semantic Investigation of Canonical Gödel Hypersequent Systems

Ori Lahav

Tel Aviv University

Logic: Between Semantics and Proof Theory A Workshop in Honor of Prof. Arnon Avron's 60th Birthday November 2012

Gödel Logic As a Fuzzy Logic

(1) $\langle U, \leq\rangle$ is a linearly ordered infinite set of truth values, with a minimum value 0 and a maximum value 1 .
(2) A valuation is a function $v:$ wff $\rightarrow U$ satisfying:

$$
\begin{aligned}
& v(A \wedge B)=\min \{v(A), v(B)\} \quad v(A \vee B)=\max \{v(A), v(B)\} \\
& v(\perp)=0 \quad v(A \supset B)=v(A) \rightarrow v(B)= \begin{cases}1 & v(A) \leq v(B) \\
v(B) & \text { otherwise }\end{cases}
\end{aligned}
$$

Definition

$\Gamma \vdash A$ if for every valuation v : if $v(B)=1$ for every $B \in \Gamma$ then $v(A)=1$.

The Proof-Theory of Gödel Logic

(Linearity) $\quad(A \supset B) \vee(B \supset A)$

- "Syntactically", Gödel logic is obtained by adding (Linearity) to an axiomatization of intuitionistic logic.
- Various sequent systems have been introduced (e.g., [Sonobe '75], [Corsi '86], [Avellone et al. '99], [Dyckhoff '99], [Avron and Konikowska '01], [Dyckhoff and Negri '06]).
- Each of them has some ad-hoc logical rules of a nonstandard form.

The Proof-Theory of Gödel Logic

(Linearity) $\quad(A \supset B) \vee(B \supset A)$

- "Syntactically", Gödel logic is obtained by adding (Linearity) to an axiomatization of intuitionistic logic.
- Various sequent systems have been introduced (e.g., [Sonobe '75], [Corsi '86], [Avellone et al. '99], [Dyckhoff '99], [Avron and Konikowska '01], [Dyckhoff and Negri '06]).
- Each of them has some ad-hoc logical rules of a nonstandard form.
- In contrast, standard logical rules are used in HG [Avron '91], the system obtained by "lifting" LJ to the hypersequent level, and adding the communication rule.

Hypersequents

A hypersequent is a finite set of sequents denoted by:

$$
\Gamma_{1} \Rightarrow E_{1}\left|\Gamma_{2} \Rightarrow E_{2}\right| \ldots \mid \Gamma_{n} \Rightarrow E_{n}
$$

The Communication Rule

$$
\frac{H\left|\Gamma, \Delta \Rightarrow E_{1} \quad H\right| \Gamma, \Delta \Rightarrow E_{2}}{H\left|\Gamma \Rightarrow E_{1}\right| \Delta \Rightarrow E_{2}}
$$

The System HG

Structural Rules:

$$
\begin{gathered}
(I W \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, A \Rightarrow E} \quad(\Rightarrow I W) \quad \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow A} \quad(E W) \quad \frac{H}{H \mid \Gamma \Rightarrow E} \\
(c o m) \frac{H\left|\Gamma, \Delta \Rightarrow E_{1} \quad H\right| \Gamma, \Delta \Rightarrow E_{2}}{H\left|\Gamma \Rightarrow E_{1}\right| \Delta \Rightarrow E_{2}}
\end{gathered}
$$

Identity Rules:

$$
\text { (id) } \overline{A \Rightarrow A} \quad \text { (cut) } \quad \frac{H|\Gamma \Rightarrow A \quad H| \Gamma, A \Rightarrow E}{H \mid \Gamma \Rightarrow E}
$$

Logical Rules:

$$
\begin{aligned}
& (\Rightarrow \supset) \quad \frac{H \mid \Gamma, A_{1} \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \supset A_{2}} \quad(\supset \Rightarrow) \quad \frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \supset A_{2} \Rightarrow E} \\
& (\Rightarrow \wedge) \quad \frac{H\left|\Gamma \Rightarrow A_{1} H\right| \Gamma \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \wedge A_{2}} \quad(\wedge \Rightarrow) \frac{H \mid \Gamma, A_{1}, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \wedge A_{2} \Rightarrow E}
\end{aligned}
$$

The System HG

Theorem
(1) $\Gamma \vdash A$ iff $\{\Rightarrow B \mid B \in \Gamma\} \vdash \mathbf{H G} \Rightarrow A$.
(2) (cut) is admissible in HG.

The System HG

Theorem
(1) $\Gamma \vdash A$ iff $\{\Rightarrow B \mid B \in \Gamma\} \vdash \mathbf{H G} \Rightarrow A$.
(2) (cut) is admissible in HG.

Proof
By authority. Arnon says it's true. :)

Question

What happens if we "play" a bit with the logical rules of HG?

- Semantics
- Cut-admissibility

Question

What happens if we "play" a bit with the logical rules of HG?

- Semantics
- Cut-admissibility

Canonical Logical Rules

Right Rules: $\quad \Pi_{1}, \Sigma_{1}, \ldots, \Pi_{m}, \Sigma_{m} \subseteq\{1, \ldots, n\} \quad\left|\Sigma_{1}\right|=\ldots=\left|\Sigma_{m}\right| \leq 1$

$$
\frac{H \mid\left\ulcorner,\left\{A_{j} \mid j \in \Pi_{1}\right\} \Rightarrow\left\{A_{j} \mid j \in \Sigma_{1}\right\} \quad \ldots \quad H \mid\left\ulcorner,\left\{A_{j} \mid j \in \Pi_{m}\right\} \Rightarrow\left\{A_{j} \mid j \in \Sigma_{m}\right\}\right.\right.}{H \mid \Gamma \Rightarrow \diamond\left(A_{1}, \ldots, A_{n}\right)}
$$

Left Rules:

$$
\begin{aligned}
& \Pi_{1}, \Sigma_{1}, \ldots, \Pi_{m}, \Sigma_{m} \subseteq\{1, \ldots, n\} \quad\left|\Sigma_{1}\right|=\ldots=\left|\Sigma_{m}\right| \leq 1 \\
& \Theta_{1}, \ldots, \Theta_{k} \subseteq\{1, \ldots, n\}
\end{aligned}
$$

$$
\begin{gathered}
H\left|\Gamma,\left\{A_{j} \mid j \in \Pi_{1}\right\} \Rightarrow\left\{A_{j} \mid j \in \Sigma_{1}\right\} \quad \ldots \quad H\right| \Gamma,\left\{A_{j} \mid j \in \Pi_{m}\right\} \Rightarrow\left\{A_{j} \mid j \in \Sigma_{m}\right\} \\
H \mid \Gamma,\left\{A_{j} \mid j \in \Theta_{1}\right\} \Rightarrow E \\
H \mid \Gamma, \diamond\left(A_{1}, \ldots, A_{n}\right) \Rightarrow E
\end{gathered}
$$

Examples

- All logical rules of HG are canonical. E.g.,

$$
\frac{H \mid \Gamma, A_{1} \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \supset A_{2}} \quad \frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \supset A_{2} \Rightarrow E}
$$

- And/Or Connective

$$
\frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} X A_{2}} \quad \frac{H\left|\Gamma, A_{1} \Rightarrow E \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} X A_{2} \Rightarrow E}
$$

- Primal Implication [Gurevich, Neeman '09]

$$
\frac{H \mid \Gamma \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \leadsto A_{2}} \quad \frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \leadsto A_{2} \Rightarrow E}
$$

Canonical Gödel Systems

A Canonical Gödel System =

The structural rules of HG

$$
+
$$

The two identity rules

$$
+
$$

A (finite) set of canonical logical rules

Semantics of Canonical Gödel Systems

Let \mathbf{G} be a canonical Gödel system.

- The rules in G for each connective \diamond impose restrictions on the values assigned to \diamond-formulas.
- These restrictions are given by intervals whose lower and upper bounds are determined according to the right and left rules of \mathbf{G} for \diamond (resp.).

Semantics of Canonical Gödel Systems

Let \mathbf{G} be a canonical Gödel system.

- The rules in G for each connective \diamond impose restrictions on the values assigned to \diamond-formulas.
- These restrictions are given by intervals whose lower and upper bounds are determined according to the right and left rules of \mathbf{G} for \diamond (resp.).

$$
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right) \in\left[\mathbf{G}_{\text {right }}^{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right), \mathbf{G}_{\text {left }}^{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)\right]
$$

Semantics of Canonical Gödel Systems

Let \mathbf{G} be a canonical Gödel system.

- The rules in \mathbf{G} for each connective \diamond impose restrictions on the values assigned to \diamond-formulas.
- These restrictions are given by intervals whose lower and upper bounds are determined according to the right and left rules of \mathbf{G} for \diamond (resp.).

$$
v\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right) \in\left[\mathbf{G}_{\text {right }}^{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right), \mathbf{G}_{\text {left }}^{\diamond}\left(v\left(A_{1}\right), \ldots, v\left(A_{n}\right)\right)\right]
$$

$$
\mathbf{G}_{\text {right }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\max _{\substack{n_{1}, \Sigma_{1}, \dot{1}, \mathrm{n}_{m}, \Sigma_{m} \\ \text { is arght } \\ \text { of G for } r e}}\left(\min _{1 \leq i \leq m}\left(\min _{j \in \Pi_{i}} x_{j} \rightarrow \max _{j \in \Sigma_{i}} x_{j}\right)\right)
$$

$\mathbf{G}_{\text {left }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right)=\min _{\substack{\Pi_{1}, \Sigma_{1}, \ldots, n_{m}, \Sigma_{m} \\ \text { is a left rule of G of or }}} \Theta_{1}, \ldots, \Theta_{k}\left(\min _{1 \leq i \leq m}\left(\min _{j \in \Pi_{i}} x_{j} \rightarrow \max _{j \in \Sigma_{i}} x_{j}\right) \rightarrow \max _{1 \leq i \leq k}\left(\min _{j \in \Theta_{i}} x_{j}\right)\right)$

Examples

- For all usual connectives, we obtain a degenerate interval. E.g.,

$$
\begin{gathered}
\frac{H \mid \Gamma, A_{1} \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \supset A_{2}} \quad \frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \supset A_{2} \Rightarrow E} \\
v\left(A_{1} \supset A_{2}\right) \in\left[v\left(A_{1}\right) \rightarrow v\left(A_{2}\right), v\left(A_{1}\right) \rightarrow v\left(A_{2}\right)\right]
\end{gathered}
$$

Examples

- For all usual connectives, we obtain a degenerate interval. E.g.,

$$
\begin{gathered}
\frac{H \mid \Gamma, A_{1} \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \supset A_{2}} \quad \frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \supset A_{2} \Rightarrow E} \\
v\left(A_{1} \supset A_{2}\right) \in\left[v\left(A_{1}\right) \rightarrow v\left(A_{2}\right), v\left(A_{1}\right) \rightarrow v\left(A_{2}\right)\right]
\end{gathered}
$$

- And/Or

$$
\begin{gathered}
\frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \times A_{2}} \quad \frac{H\left|\Gamma, A_{1} \Rightarrow E \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \times A_{2} \Rightarrow E} \\
v\left(A_{1} \times A_{2}\right) \in\left[\min \left(v\left(A_{1}\right), v\left(A_{2}\right)\right), \max \left(v\left(A_{1}\right), v\left(A_{2}\right)\right)\right]
\end{gathered}
$$

- Primal Implication

$$
\begin{gathered}
\frac{H \mid \Gamma \Rightarrow A_{2}}{H \mid \Gamma \Rightarrow A_{1} \sim A_{2}} \quad \frac{H\left|\Gamma \Rightarrow A_{1} \quad H\right| \Gamma, A_{2} \Rightarrow E}{H \mid \Gamma, A_{1} \sim A_{2} \Rightarrow E} \\
v\left(A_{1} \leadsto A_{2}\right) \in\left[v\left(A_{2}\right), v\left(A_{1}\right) \rightarrow v\left(A_{2}\right)\right]
\end{gathered}
$$

Semantics of Identity Rules

Identity Rules:

$$
\text { (id) } \frac{}{A \Rightarrow A} \quad(c u t) \frac{H|\Gamma \Rightarrow A \quad H| \Gamma, A \Rightarrow E}{H \mid \Gamma \Rightarrow E}
$$

- Question: What is the semantic effect of the two identity rules?
- Motivation: Semantics for cut-free systems are useful in proofs of cut-admissibility.

Semantics of Identity Rules

Identity Rules:

$$
\text { (id) } \overline{A \Rightarrow A} \quad(c u t) \quad \frac{H|\Gamma \Rightarrow A \quad H| \Gamma, A \Rightarrow E}{H \mid \Gamma \Rightarrow E}
$$

- Question: What is the semantic effect of the two identity rules?
- Motivation: Semantics for cut-free systems are useful in proofs of cut-admissibility.
- Intuition: The identity rules bind together the two sides of the sequent. Without them each formula can have different values when it occurs on the left side, and on the right side.

Semantics of Identity Rules

Identity Rules:

$$
\text { (id) } \frac{}{A \Rightarrow A} \quad(c u t) \quad \frac{H|\Gamma \Rightarrow A \quad H| \Gamma, A \Rightarrow E}{H \mid \Gamma \Rightarrow E}
$$

- Question: What is the semantic effect of the two identity rules?
- Motivation: Semantics for cut-free systems are useful in proofs of cut-admissibility.
- Intuition: The identity rules bind together the two sides of the sequent. Without them each formula can have different values when it occurs on the left side, and on the right side.

$$
\text { (id) left side } \leq \text { right side } \quad \text { (cut) } \quad \text { right side } \leq \text { left side }
$$

Semantics of HG without Identity Rules

(1) $\langle U, \leq\rangle$ is a linearly ordered infinite set of truth values, with a minimum value 0 and a maximum value 1 .
(2) A quasi-valuation is a function $q: w f f \rightarrow U \times U$ satisfying:

$$
\begin{gathered}
q(A \wedge B) \in\left[0, \min \left(q^{\prime}(A), q^{\prime}(B)\right)\right] \times\left[\min \left(q^{r}(A), q^{r}(B)\right), 1\right] \\
q(A \supset B) \in\left[0,\left\{\begin{array}{ll}
1 & q^{r}(A) \leq q^{\prime}(B) \\
q^{\prime}(B) & \text { otherwise }
\end{array}\right] \times\left[\left\{\begin{array}{ll}
1 & q^{\prime}(A) \leq q^{r}(B) \\
q^{r}(B) & \text { otherwise }
\end{array}\right]\right.\right.
\end{gathered}
$$

(3) q is a model of a hypersequent H if

$$
\min _{A \in \Gamma} q^{\prime}(A) \leq \max _{A \in E} q^{r}(A)
$$

for some $\Gamma \Rightarrow E \in H$.

Semantics of HG without Identity Rules

Soundness and Completeness

$\Omega \vdash_{\mathrm{HG}-(i d)-(c u t)} H$ iff every quasi-valuation which is a model of Ω is also a model of H.

Variations

- For (id), use q : wff $\rightarrow\{\langle x, y\rangle \in U \times U \mid x \leq y\}$.
- For (cut), use q : wff $\rightarrow\{\langle x, y\rangle \in U \times U \mid y \leq x\}$.

Extension for Canonical Gödel Systems

$$
q\left(\diamond\left(A_{1}, \ldots, A_{n}\right)\right) \in\left[0, \mathbf{G}_{\text {left }}^{\ominus}\left(q\left(A_{1}\right), \ldots, q\left(A_{n}\right)\right)\right] \times\left[\mathbf{G}_{\text {right }}^{\diamond}\left(q\left(A_{1}\right), \ldots, q\left(A_{n}\right)\right), 1\right]
$$

$\mathbf{G}_{\text {left }}^{\diamond}\left(\left\langle x_{1}, y_{1}\right\rangle, \ldots,\left\langle x_{n}, y_{n}\right\rangle\right)=$

$$
\min _{\substack{\Pi_{1}, \Sigma_{1}, \ldots, \cap_{m}, \Sigma_{m} \\ \text { is a left wule of Gor for }}} \Theta_{1}, \Theta_{k}\left(\min _{1 \leq i \leq m}\left(\min _{j \in \Pi_{i}} x_{j} \rightarrow \max _{j \in \Sigma_{i}} y_{j}\right) \rightarrow \max _{1 \leq i \leq k}\left(\min _{j \in \Theta_{i}} x_{j}\right)\right)
$$

Cut-Admissibility

Proving cut-admissibility reduces to proving that for every quasi-valuation which is not a model of some hypersequent H, there exists a valuation which is not a model of H.

Cut-Admissibility

Proving cut-admissibility reduces to proving that for every quasi-valuation which is not a model of some hypersequent H, there exists a valuation which is not a model of H.

Definition

A valuation v is a refinement of a quasi-valuation q, if for every $A \in$ wff: $q^{\prime}(A) \leq v(A) \leq q^{r}(A)$.

Cut-Admissibility

Proving cut-admissibility reduces to proving that for every quasi-valuation which is not a model of some hypersequent H, there exists a valuation which is not a model of H.

Definition

A valuation v is a refinement of a quasi-valuation q, if for every $A \in w f f$: $q^{\prime}(A) \leq v(A) \leq q^{r}(A)$.

Corollary

A canonical Gödel system enjoys cut-admissibility if every quasi-valuation has a refinement.

Cut-Admissibility

Proving cut-admissibility reduces to proving that for every quasi-valuation which is not a model of some hypersequent H, there exists a valuation which is not a model of H.

Definition

A valuation v is a refinement of a quasi-valuation q, if for every $A \in$ wff: $q^{\prime}(A) \leq v(A) \leq q^{r}(A)$.

Corollary

A canonical Gödel system enjoys cut-admissibility if every quasi-valuation has a refinement.

For HG, this is straightforward. The refinement is obtained by recursion on the build-up of formulas.

Cut-Admissibility in Canonical Gödel Systems

Refinement is possible only in coherent canonical Gödel systems:

Definition

A canonical Gödel system \mathbf{G} is called coherent if

$$
\mathbf{G}_{\text {right }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right) \leq \mathbf{G}_{\text {left }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right)
$$

for every n-ary connective \diamond and $x_{1}, \ldots, x_{n} \in U$.

Cut-Admissibility in Canonical Gödel Systems

Refinement is possible only in coherent canonical Gödel systems:

Definition

A canonical Gödel system \mathbf{G} is called coherent if

$$
\mathbf{G}_{\text {right }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right) \leq \mathbf{G}_{\text {left }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right)
$$

for every n-ary connective \diamond and $x_{1}, \ldots, x_{n} \in U$.

Theorem

A canonical Gödel system enjoys cut-admissibility iff it is coherent.

Cut-Admissibility in Canonical Gödel Systems

Refinement is possible only in coherent canonical Gödel systems:

Definition

A canonical Gödel system \mathbf{G} is called coherent if

$$
\mathbf{G}_{\text {right }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right) \leq \mathbf{G}_{\text {left }}^{\diamond}\left(x_{1}, \ldots, x_{n}\right)
$$

for every n-ary connective \diamond and $x_{1}, \ldots, x_{n} \in U$.

Theorem

A canonical Gödel system enjoys cut-admissibility iff it is coherent.

Syntactic Characterization of Coherence

A canonical Gödel system \mathbf{G} is coherent iff for every right rule R_{1} and left rule R_{2} of \mathbf{G} for some connective \diamond, the empty sequent is derivable from the premises of R_{1} and R_{2} using only cuts.

Further Work

- Extensions for higher-order logics. In particular, does the extension of HG with usual rules for first and second order quantifiers enjoy cut-admissibility?
- Is this approach applicable in substructural hypersequent calculi?

Further Work

- Extensions for higher-order logics.

In particular, does the extension of HG with usual rules for first and second order quantifiers enjoy cut-admissibility?

- Is this approach applicable in substructural hypersequent calculi?

Thank you!
"The mediocre teacher tells.
The good teacher explains.
The superior teacher demonstrates.
The great teacher inspires."
(William Arthur Ward)

