An Algebraic Theory for Shared-State Concurrency

<u>Yotam Dvir</u>¹ Ohad Kammar² Ori Lahav¹

¹Tel Aviv University

²University of Edinburgh

The 20th Asian Symposium on Programming Languages and Systems

Goal

To fit [shared-state] concurrency semantics on equal footing with other semantic models of computational effects

Method

Using the standard algebraic effects approach, in which we

define a denotational semantics

over a monad

representing an equational theory

Virtues of Algebraic Effects

What's so good about this approach?

Compositionality As in any denotational semantics

Higher-orderThe language supports higher-order functions "out-of-the-box"UniformityGeneral results / similar proof techniquesModularityCombine equational theories, e.g. (global-state + yield) ⊕ non-determinismComparabilityEasy to compare different languages / semantics, e.g. Abadi & PlotkinAbstractionProgram behaviour analysis using the monad and the equationsImplementabilityMonads are ubiquitous in functional programming

Rundown

One slide summary of this talk
Programming Language – Standard operational-semantics
Higher-Order λx. M (Call-by-Value)
Shared-State: Assignment :=, Dereference ?, Interleaving concurrency ||

Denotational Semantics Standard Monadic [Moggi] $[NM]\gamma := [N]\gamma \gg \lambda f. [M]\gamma \gg f$ Based on Traces [Brookes] $\langle \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix} \rangle \langle \begin{pmatrix} a & b & c \\ 0 & 1 & 0 \end{pmatrix} \rangle 1 \in [a := c?; a?]$

 $\begin{array}{l} \mbox{Algebraic Effects [Plotkin, Power, Hyland, Levy]:} \\ \mbox{(global-state + yield)} \oplus \mbox{non-determinism} \quad \begin{bmatrix} a := 1 \end{bmatrix} = U_{a,1} \langle \rangle \lor U_{a,1} Y \langle \rangle \\ \mbox{Ordered by non-determinism} \quad t \leq t \lor s \end{array}$

Theorem (Adequacy for shared-state)

 $\llbracket M \rrbracket \leq \llbracket N \rrbracket \implies \forall C[-]. \ \sigma, C[M] \rightsquigarrow \rho, V \implies \sigma, C[N] \rightsquigarrow \rho, V$

Section 1

Story Time

Contextual Equivalence

Programs
$$a := b?; a := c?$$
 and $a := c?$ execute identically
Fact
 $\sigma, a := b?; a := c? \rightarrow * \rho, V$
 ϕ
 $\sigma, a := c? \rightarrow * \rho, V$
Example
 $\begin{pmatrix} a \ b \ c \\ 1 \ 0 \ 1 \end{pmatrix}, a := b?; a := c? \rightarrow * \begin{pmatrix} a \ b \ c \\ 1 \ 0 \ 1 \end{pmatrix}, \langle \rangle$

$$Locs = \{a, b, c\} \quad Vals = \{0, 1\} \qquad e.g. \quad \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix} : Locs \rightarrow Vals$$

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency

Contextual Equivalence

Does this mean they are interchangeable?

For all program contexts C[-]?

$$\begin{aligned} \sigma, \quad \pmb{C}[\mathsf{a:=b?;a:=c?}] & \rightsquigarrow * \quad \rho, \quad V \\ & & \uparrow \\ \sigma, & \quad \pmb{C}[\mathsf{a:=c?}] & \rightsquigarrow * \quad \rho, \quad V \end{aligned}$$

Example (Sequential Context)

$$\begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, a := b?; a := c?; a? \rightarrow * \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, 1 \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, a := c?; a? \rightarrow * \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, 1$$

e.g.

$$Locs = \{a, b, c\}$$
 $Vals = \{0, 1\}$

UoE) An Algebraic Theory for Shared-State Concurrency

 $\begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}$: Locs \rightarrow Vals

5 / 30

Contextual Equivalence

Does this mean they are interchangeable?

For all program contexts C[-]?

$$\sigma, \quad \mathbf{C}[a:=b?;a:=c?] \quad \rightsquigarrow * \quad \rho, \quad V$$

$$\Leftrightarrow \quad \mathbf{C}[a:=c?] \quad \rightsquigarrow * \quad \rho, \quad V$$

Example (Concurrent Context)

$$\begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, \quad a := b?; a := c? \parallel a? \qquad \rightsquigarrow * \qquad \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, \quad \langle \langle \rangle, 0 \rangle$$
$$\begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, \qquad a := c? \parallel a? \qquad \checkmark * \qquad \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, \quad \langle \langle \rangle, 0 \rangle$$

$$Locs = \{a, b, c\} \quad Vals = \{0, 1\} \qquad e.g. \quad \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix} : Locs \rightarrow Vals$$

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency

Global-State (Sequential) Denotational Semantics [Plotkin, Power]

$$(\mathsf{LU-comm}) \qquad \mathrm{L}_{\ell}\left(v. \, \mathrm{U}_{\ell',w} x_{v}\right) = \mathrm{U}_{\ell',w} \mathrm{L}_{\ell}\left(v. \, x_{v}\right) \quad \ell \neq \ell'$$

$$\begin{bmatrix} a := b? ; a := c? \end{bmatrix} = L_b (v. U_{a,v}L_c (w. U_{a,w} \langle \rangle)) (LU-comm) \longrightarrow = L_b (v. L_c (w. U_{a,v}U_{a,w} \langle \rangle)) (UU-last) \longrightarrow = L_b (v. L_c (w. U_{a,w} \langle \rangle)) (L-noop) \longrightarrow = L_c (w. U_{a,w} \langle \rangle) = [a := c?]$$

Fact (Adequacy for global-state [folklore]) $\llbracket M \rrbracket = \llbracket N \rrbracket \implies \forall C[-]. \ \sigma, C[M] \rightsquigarrow \rho, V \iff \sigma, C[N] \rightsquigarrow \rho, V$

Thus a := b?; a := c? and a := c? are interchangeable Compiler can optimize a := b?; a := c? $\rightarrow a := c$? (or the other direction too)

Extends to Shared-State (Concurrency)?

[Hyland, Levy, Plotkin, Power]

Add an operator (choice): \lor Add axioms: $U_{a,v}(t \lor s) = U_{a,v}t \lor U_{a,v}s$; $t \lor s = s \lor t$... Define partial-order: $t \le t \lor s$

Desired (Adequacy for shared-state) $\llbracket M \rrbracket \leq \llbracket N \rrbracket \implies \forall C[-], \sigma, C[M] \rightsquigarrow \rho, V \implies \sigma, C[N] \rightsquigarrow \rho, V$ Justifies the opposite $N \rightarrow M$ (no new results = no bugs) Example (from before) $\begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}$, $a := b?; a := c? \parallel a? \implies \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}$, $\langle \langle \rangle, 0 \rangle$ $\begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}$, $a := c? \parallel a? \qquad (a & b & c \\ 1 & 0 & 1 \end{pmatrix}$, $\langle \langle \rangle, 0 \rangle$ **Contradicts** $[a := b?; a := c?] \leq [a := c?] - Not adequate$

What Should Change to Fix This?

Invalidate equations

OR

Change denotations

$$\begin{bmatrix} a := b? ; a := c? \end{bmatrix} \neq L_b (v. U_{a,v}L_c (w. U_{a,w} \langle \rangle)) \\ = L_c (w. U_{a,w} \langle \rangle) \neq \llbracket a := c? \rrbracket$$

get to keep global-state

Theory of Resumptions [Hyland, Levy, Plotkin, Power]

$$\begin{bmatrix} a := b?; a := c? \end{bmatrix} \neq L_b (v. U_{a,v}L_c (w. U_{a,w} \langle \rangle)) \\ = L_c (w. U_{a,w} \langle \rangle) \neq \begin{bmatrix} a := c? \end{bmatrix}$$

Add an operator yield: Y Add an axiom: $Y(t \lor s) = Yt \lor Ys$

Define possible yield: $Y^{?}t \coloneqq t \lor Yt$ ($Y^{?}t \ge t$)

$$\begin{bmatrix} a := b?; a := c? \end{bmatrix} = L_b \left(v. Y^{?} U_{a,v} Y^{?} L_c \left(w. Y^{?} U_{a,w} Y^{?} \langle \rangle \right) \right) \\ \ge L_b \left(v. Y^{?} U_{a,v} \quad L_c \left(w. \quad U_{a,w} Y^{?} \langle \rangle \right) \right) \\ \dots (\text{like before}) \dots = L_c \left(w. Y^{?} U_{a,w} Y^{?} \langle \rangle \right) = \llbracket a := c? \rrbracket$$

a := b?; a := c? \rightarrow a := c? justified by Adequacy

Lingering Questions

We should have $[a := b?; a := c?] \neq [a := c?]$ for adequacy

Still undefined: $[M \parallel N] = ?$

What about "pure" fragment, e.g. **[if** M then N else N] $\stackrel{?}{=}$ [M; N]

Section 2

The Algebraic-Effects Roadmap

2 The Algebraic-Effects Roadmap

- Equational Theory
- Monadic Model
- Denotations
- Adequacy

Subsection 1

Equational Theory

Axioms – Global-State [Plotkin, Power]

UL-det	$\mathrm{U}_{\ell,w}\mathrm{L}_{\ell}\left(\mathbf{v}.\ \mathbf{x}_{\mathbf{v}} ight)=\mathrm{U}_{\ell,w}\mathbf{x}_{\mathbf{w}}$		
UU-last	$\mathbf{U}_{\ell,\boldsymbol{v}}\mathbf{U}_{\ell,\boldsymbol{w}}\boldsymbol{x}=\mathbf{U}_{\ell,\boldsymbol{w}}\boldsymbol{x}$		
LU-noop	$L_{\ell}(v. U_{\ell,v}x) = x$		
LL-diag	$\mathrm{L}_{\ell}\left(v. \ \mathrm{L}_{\ell}\left(w. \ x_{v,w}\right)\right) = \mathrm{L}_{\ell}\left(v. \ x_{v,v}\right)$		
UU-comm	$\mathbf{U}_{\ell,\mathbf{v}}\mathbf{U}_{\ell',\mathbf{w}}\mathbf{x}=\mathbf{U}_{\ell',\mathbf{w}}\mathbf{U}_{\ell,\mathbf{v}}\mathbf{x}$	$\ell \neq \ell'$	
LU-comm	$\mathbf{L}_{\ell}\left(\boldsymbol{v}.\;\mathbf{U}_{\ell',w}\boldsymbol{x}_{v}\right)=\mathbf{U}_{\ell',w}\mathbf{L}_{\ell}\left(\boldsymbol{v}.\;\boldsymbol{x}_{v}\right)$	$\ell \neq \ell'$	
LL-comm	$L_{\ell}\left(v. L_{\ell'}\left(w. x_{v,w}\right)\right) = L_{\ell'}\left(w. L_{\ell}\left(v. x_{v,w}\right)\right)$	$\ell \neq \ell'$	

Axioms – Non-Determinism and Yield [Hyland, Levy, Plotkin, Power]

ND-return
$$\bigvee_{i<1} x = x$$
ND-epi $\bigvee_{j<\beta} x_j = \bigvee_{i<\alpha} x_{\varphi_i}$ $\varphi : \alpha \twoheadrightarrow \beta$ ND-join $\bigvee_{i<\alpha} \bigvee_{j<\beta_i} x_{i,j} = \bigvee_{j<\sum_{i<\alpha}\beta_i} x_{\varphi_j}$ $\varphi : \sum_{i<\alpha}\beta_i \leftrightarrow \coprod_{i<\alpha}\beta_i$ ND-L $\bigvee_{i<\alpha} L_\ell (v. x_{v,i}) = L_\ell (v. \bigvee_{i<\alpha} x_{v,i})$ ND-UND-U $\bigvee_{i<\alpha} U_{\ell,v} x_i = U_{\ell,v} \bigvee_{i<\alpha} x_i$ ND-Y $\bigvee_{i<\alpha} Y x_i = Y \bigvee_{i<\alpha} x_i$

Subsection 2

Monadic Model

Traces – Interrupted Execution

[Brookes, Benton, Hoffman, Nigam]

$$\begin{aligned} \mathbf{a} &:= \mathbf{c?} \parallel \mathbf{b} := \mathbf{0} \text{; a?} \xrightarrow{\left\langle \begin{pmatrix} a \ b \ c \ 1 \ 0 \ 1 \end{pmatrix}, \begin{pmatrix} a \ b \ c \ 1 \ 0 \ 1 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} a \ b \ c \ 0 \ 1 \ 1 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} a \ b \ c \ 0 \ 1 \ 1 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} a \ b \ c \ 0 \ 1 \ 1 \end{pmatrix} \right\rangle} \langle \langle \rangle, \mathbf{0} \rangle \\ & \begin{pmatrix} a \ b \ c \ 1 \ 0 \ 1 \end{pmatrix}, \quad \mathbf{a} := \mathbf{c?} \parallel \mathbf{b} := \mathbf{0} \text{; a?} \xrightarrow{\sim} \left\langle \begin{pmatrix} a \ b \ c \ 1 \ 0 \ 1 \end{pmatrix} \right\rangle, \quad \mathbf{a} := \mathbf{1} \parallel \mathbf{a?} \\ & \swarrow \\ & \begin{pmatrix} a \ b \ c \ 0 \ 1 \ 1 \end{pmatrix}, \quad \mathbf{a} := \mathbf{1} \parallel \mathbf{a?} \xrightarrow{} \left\langle \begin{pmatrix} a \ b \ c \ 0 \ 1 \ 1 \end{pmatrix} \right\rangle, \quad \mathbf{a} := \mathbf{1} \parallel \mathbf{0} \\ & \swarrow \\ & \begin{pmatrix} a \ b \ c \ 0 \ 1 \ 1 \end{pmatrix}, \quad \mathbf{a} := \mathbf{1} \parallel \mathbf{0} \\ & \swarrow \\ & \begin{pmatrix} a \ b \ c \ 0 \ 1 \ 1 \end{pmatrix}, \quad \mathbf{a} := \mathbf{1} \parallel \mathbf{0} \end{aligned}$$

 $\operatorname{Traces} X \coloneqq \left(\operatorname{Vals}^{\operatorname{Locs}} \times \operatorname{Vals}^{\operatorname{Locs}} \right)^+ \cdot X$

Example

 $\left\langle \left(\begin{smallmatrix} a & b & c \\ 1 & 0 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle \left\langle \left(\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}\right) \right\rangle$

Yotam Dvir, Ohad Kammar, Ori Lahav (TAU, UoE) An Algebraic Theory for Shared-State Concurrency

Model Definition

 $\mathcal{T}X := \mathcal{P}_{\text{fm}} (\text{Traces}X) \qquad \text{Traces}X := (\text{Vals}^{\text{Locs}} \times \text{Vals}^{\text{Locs}})^+ \cdot X$ $\tilde{x} := \{ \langle \sigma, \sigma \rangle x \}$ $\tilde{\bigvee}_{i \leq \alpha} P_i := \bigcup_{i \leq \alpha} P_i$ $\tilde{\mathbf{Y}}P := \{\langle \sigma, \sigma \rangle \tau \mid \tau \in P\}$ $\tilde{\mathbf{L}}_{\ell}(\mathbf{v}, \mathbf{P}_{\mathbf{v}}) := \{ \langle \sigma, \rho \rangle \tau \mid \langle \sigma, \rho \rangle \tau \in \mathbf{P}_{\mathbf{v}}, \sigma_{\ell} = \mathbf{v} \}$ $\tilde{\mathbf{U}}_{\ell,\mathbf{v}}P := \{ \langle \sigma, \rho \rangle \tau \mid \langle \sigma \left[\ell \mapsto \mathbf{v} \right], \rho \rangle \tau \in P \}$ Theory of Resumptions axioms all hold, e.g. (UU-last): $\tilde{U}_{\ell,v}\tilde{U}_{\ell,w}\tilde{x} = \cdots = \tilde{U}_{\ell,w}\tilde{x}$

Monad Definition

$$\mathcal{T}X \coloneqq \langle \underline{\mathcal{T}}X, \mathsf{return}, \rangle = \rangle \qquad \underline{\mathcal{T}}X \coloneqq \mathcal{P}_{\mathrm{fin}}(\mathrm{Traces}X)$$

Theorem (Representation for shared-state)

The monad \mathcal{T} is equivalent to the monad induced by Res.

Corollary (Soundness & Completeness)

$$t = s \ (in \ Res.) \iff \tilde{t} = \tilde{s} \ (in \ Model)$$

Subsection 3

Denotations

	$\Gamma \vdash M : A$	$\llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to \underline{\mathcal{T}}\llbracket A \rrbracket$	
Example			
	⊢ a := c ? : ()	$x: Loc \vdash x$? : Val	
	$\llbracket a:=c? \rrbracket: \{\} \to \underline{\mathcal{T}}1$	$\llbracket x? \rrbracket : \{x \in \operatorname{Locs}\} \to \underline{\mathcal{T}} \text{Vals}$	

Definition is entirely compositional: denotation of prog. depends only on *denotations* of subparts

$\Gamma \vdash M : A \qquad \llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to \underline{\mathcal{T}}\llbracket A \rrbracket$

Definition is entirely compositional: denotation of prog. depends only on *denotations* of subparts

(1/3) Standard part, including higher-order (based on [Moggi]):

$$\llbracket x \rrbracket \gamma := \operatorname{return} \gamma x$$

$$\llbracket \operatorname{let} x = M \operatorname{in} N \rrbracket \gamma := \llbracket M \rrbracket \gamma \gg \lambda y. \llbracket N \rrbracket (\gamma \llbracket x \mapsto y \rrbracket)$$

$$\llbracket \langle M, N \rangle \rrbracket \gamma := \llbracket M \rrbracket \gamma \gg \lambda x. \llbracket N \rrbracket \gamma \gg \lambda y. \operatorname{return} \langle x, y \rangle$$

$$\vdots$$

 $\llbracket \mathbf{if} M \mathbf{then} N \mathbf{else} N \rrbracket = \llbracket M ; N \rrbracket$

$\Gamma \vdash M : A \qquad \llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to \underline{\mathcal{T}}\llbracket A \rrbracket$

Definition is entirely compositional: denotation of prog. depends only on *denotations* of subparts

(2/3) State access part:

$$\llbracket M? \rrbracket \gamma := \llbracket M \rrbracket \gamma \rangle = \lambda \ell. \tilde{\mathcal{L}}_{\ell} \left(v. \tilde{\mathcal{Y}}^{?} \operatorname{return} v \right)$$
$$\llbracket M := N \rrbracket \gamma := \llbracket M \rrbracket \gamma \rangle = \lambda \ell. \llbracket N \rrbracket \gamma \rangle = \lambda v. \tilde{\mathcal{U}}_{\ell,v} \tilde{\mathcal{Y}}^{?} \operatorname{return} \langle \rangle$$

[[a := b? ; a := c?]] ≠ [[a := c?]]

$\Gamma \vdash M : A \qquad \llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to \underline{\mathcal{T}}\llbracket A \rrbracket$

Definition is entirely compositional: denotation of prog. depends only on *denotations* of subparts

(3/3) Concurrency part (based on [Brookes]):

 $\llbracket M \parallel N \rrbracket \gamma := \llbracket M \rrbracket \gamma \parallel \parallel \llbracket N \rrbracket \gamma$

$$(|||): \underline{\mathcal{T}}X \times \underline{\mathcal{T}}Y \to \underline{\mathcal{T}}(X \times Y)$$
$$P ||| Q \coloneqq \left\{ \omega \mid \exists \tau \in P, \pi \in Q. \ \tau \mid| \pi \Longrightarrow \omega \right\}$$

Here ω is obtained by Interleaving transitions from τ and π and sometimes Mumbling them: $\langle \sigma, \rho \rangle \langle \rho, \varsigma \rangle \mapsto \langle \sigma, \varsigma \rangle$

Formally $\tau \parallel \pi \Longrightarrow \omega$ is defined by...

Syntactic Synchronization

 $\tau \parallel \pi \Longrightarrow \omega$

$$P \parallel \mid Q \coloneqq \left\{ \omega \mid \exists \tau \in P, \pi \in Q. \ \tau \parallel \pi \Longrightarrow \omega \right\}$$

$$\overline{\langle \sigma, \rho \rangle x \| \langle \rho, \varsigma \rangle \beta y \Longrightarrow \langle \sigma, \varsigma \rangle \beta \langle x, y \rangle}$$
(VAR-LEFT)

VAR Interleave no more

$$\frac{\tau \parallel \pi \Longrightarrow \omega}{\langle \sigma, \rho \rangle \tau \parallel \pi \Longrightarrow \langle \sigma, \rho \rangle \omega} \text{ (Brk-Left)}$$

 ${\rm B}_{\rm RK}$ $% \left({{\rm Interleave \ without \ mumbling}} \right)$

$$\frac{\tau \parallel \pi \Longrightarrow \langle \rho, \varsigma \rangle \omega}{\langle \sigma, \rho \rangle \tau \parallel \pi \Longrightarrow \langle \sigma, \varsigma \rangle \omega}$$
(SEQ-LEFT)

SEQ Interleave with mumbling

Symmetrically: (VAR-RIGHT) (BRK-RIGHT) (SEQ-RIGHT)

Subsection 4

Adequacy

Adequacy

For $\Gamma \vdash M : A$ and $\Gamma \vdash N : A$

Let $\llbracket M \rrbracket \leq \llbracket N \rrbracket$ denote $\forall \gamma \in \llbracket \Gamma \rrbracket$. $\llbracket M \rrbracket \gamma \subseteq \llbracket N \rrbracket \gamma$

Theorem (Adequacy for shared-state) $\llbracket M \rrbracket \leq \llbracket N \rrbracket \implies \forall C[-]. \ \sigma, C[M] \rightsquigarrow * \rho, V \implies \sigma, C[N] \rightsquigarrow * \rho, V$

Proof via standard logical relations (higher-order "out-of-the-box")

Reward

Justify transformation $N \rightarrow M$ without simulation $(\forall C[-])$

Transformations

Standard transformations

e.g. if M_1 then $(M_2; N)$ else $(M_3; N) \cong (if M_1$ then M_2 else $M_3)$; N

Proof by monad laws (same proof as with other effects!)

```
Redundant Access Eliminations
e.g. l := v ; l? \rightarrow l := v ; v
```

Proof by mundane algebra:

 $U_{\ell,v}Y^{?}L_{\ell}(w, Y^{?}w) \geq U_{\ell,v}Y^{?}v$

Laws of parallelism e.g. $M \parallel N \twoheadrightarrow \langle M, N \rangle$

Proof by analysis of interleaving:

 $P \mid\mid\mid Q \supseteq P \rangle \models \lambda x. \ Q \rangle \models \lambda y. \ \mathsf{return} \langle x, y \rangle$

Redundant Read Introduction is **not** supported (don't have full abstraction) e.g. $\langle \rangle \twoheadrightarrow \ell$?; $\langle \rangle$ not a consequence: $\langle \tilde{\rangle} \not\cong \tilde{L}_{\ell} \left(v. \tilde{Y}^{?} \langle \tilde{\rangle} \right)$ ("counting issue")

Section 3

Final Words...

Very Partial Related Work Timeline

1996 Brookes

Imperative Language
Denotation: Set of Traces

2002 Plotkin, Power

Alg. Effects & Global-State

2006 Hyland, Levy, Plotkin, Power

Non-Determinism & Resumptions (Yield)

2010 Abadi, Plotkin Imperative Language Cooperative Async. Threads Algebraic Effects (different semantics)
2016 Benton, Hofmann, Nigam Functional Language Monad (specified directly)

2022: Our contribution

Standard approach, definitions and proofs

Transformations justified algebraically

Finite model

Extensions / Features?

Weak Memory

Type-and-Effect System

Atomic Constructs

Recursion

• • •

Rundown

One slide summary of this talk Programming Language – Standard operational-semantics Higher-Order $\lambda x. M$ (Call-by-Value)

Shared-State: Assignment :=, Dereference ?, Interleaving concurrency

Denotational Semantics Standard Monadic [Moggi] $[NM]\gamma := [N]\gamma \gg \lambda f. [M]\gamma \gg f$ Based on Traces [Brookes] $\langle \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \end{pmatrix} \rangle \langle \begin{pmatrix} a & b & c \\ 0 & 1 & 0 \end{pmatrix} \rangle 1 \in [a := c?; a?]$

 $\begin{array}{l} \mbox{Algebraic Effects [Plotkin, Power, Hyland, Levy]:} \\ \mbox{(global-state + yield)} \oplus \mbox{non-determinism} \quad \begin{bmatrix} a := 1 \end{bmatrix} = U_{a,1} \langle \rangle \lor U_{a,1} Y \langle \rangle \\ \mbox{Ordered by non-determinism} \quad t \leq t \lor s \end{array}$

Theorem (Adequacy for shared-state)

 $\llbracket M \rrbracket \leq \llbracket N \rrbracket \implies \forall C[-]. \ \sigma, C[M] \rightsquigarrow \phi, V \implies \sigma, C[N] \rightsquigarrow \phi, V$

