An Algebraic Theory for Shared-State Concurrency

Yotam Dvir ${ }^{1}$ Ohad Kammar ${ }^{2}$ Ori Lahav ${ }^{1}$

${ }^{1}$ Tel Aviv University
${ }^{2}$ University of Edinburgh

The 20th Asian Symposium on Programming Languages and Systems

Goal

To fit [shared-state] concurrency semantics on equal footing with other semantic models of computational effects

Method

Using the standard algebraic effects approach, in which we
define a denotational semantics

> over a monad
representing an equational theory
Virtues of Algebraic Effects
What's so good about this approach?
Compositionality As in any denotational semantics
Higher-order

The language supports higher-order functions "out-of-the-box"

Uniformity
Modularity
Comparability
Abstraction

General results / similar proof techniques
Combine equational theories, e.g. (global-state + yield) \oplus non-determinism
Easy to compare different languages / semantics, e.g. Abadi \& Plotkin Program behaviour analysis using the monad and the equations

Implementability Monads are ubiquitous in functional programming

Rundown

One slide summary of this talk
Programming Language - Standard operational-semantics
Higher-Order $\lambda x . M$ (Call-by-Value)
Shared-State: Assignment :=, Dereference ?, Interleaving concurrency ||

Denotational Semantics

Standard Monadic [Moggi] $\llbracket N M \rrbracket \gamma:=\llbracket N \rrbracket \gamma\rangle=\lambda f . \llbracket M \rrbracket \gamma\rangle=f$
Based on Traces [Brookes] $\left\langle\left(\begin{array}{ccc}a & b \\ 1 & 0 & 1\end{array}\right),\left(\begin{array}{ccc}a & b & c \\ 1 & 0 & 1\end{array}\right)\right\rangle\left\langle\left(\begin{array}{lll}a & b & c \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{ccc}a & b & c \\ 1 & 1 & 0\end{array}\right)\right\rangle 1 \in \llbracket a:=c ? ; a ? \rrbracket$
Algebraic Effects [Plotkin, Power, Hyland, Levy]:
$($ global-state + yield $) \oplus$ non-determinism $\llbracket a:=1 \rrbracket=U_{a, 1}\langle \rangle \vee \mathrm{U}_{\mathrm{a}, 1} \mathrm{Y}\langle \rangle$
Ordered by non-determinism $t \leq t \vee s$
Theorem (Adequacy for shared-state)

$$
\llbracket M \rrbracket \leq \llbracket N \rrbracket \Longrightarrow \forall C[-] . \sigma, C[M] \leadsto * \rho, V \Longrightarrow \sigma, C[N] \leadsto * \rho, V
$$

Section 1

Story Time

Contextual Equivalence

Programs $a:=b ? ; a:=c$? and $a:=c$? execute identically

Fact

$$
\begin{aligned}
& \sigma, \quad \mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} \text { ? } \sim * \quad \rho, \quad V \\
& \Downarrow \\
& \sigma, \quad \mathrm{a}:=\mathrm{c} \text { ? } \sim * \quad \rho, \quad V
\end{aligned}
$$

Example

$$
\text { Locs }=\{a, b, c\} \quad \text { Vals }=\{0,1\} \quad \text { e.g. } \quad\left(\begin{array}{ccc}
a & b & c \\
1 & 0 & 1
\end{array}\right): \text { Locs } \rightarrow \text { Vals }
$$

Contextual Equivalence

Does this mean they are interchangeable?
For all program contexts $C[-]$?

$$
\begin{array}{rr}
\sigma, & C[\mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ?] \underset{ }{\substack{\leadsto *}} \begin{array}{r}
\underset{ }{\Downarrow} \\
\sigma, \\
C[\mathrm{a}:=\mathrm{c} ?]
\end{array} \underset{\sim *}{\leadsto *} \rho, \quad V
\end{array}
$$

Example (Sequential Context)

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a & b \\
1 & 0 & 1
\end{array}\right), \quad a:=b ? ; a:=c ? ; a ? \\
& \leadsto *\left(\begin{array}{ccc}
a & b & c \\
1 & 0 & 1
\end{array}\right), 1 \\
& \left(\begin{array}{ccc}
a & b & c \\
1 & 0 & 1
\end{array}\right), \quad a:=c ? ; a ? \\
& \leadsto *\left(\begin{array}{lll}
a & b & c \\
1 & 0 & 1
\end{array}\right), 1
\end{aligned}
$$

$$
\text { Locs }=\{a, b, c\} \quad \text { Vals }=\{0,1\} \quad \text { e.g. } \quad\left(\begin{array}{cc}
\text { a } & b \\
1 & c \\
1 & 1
\end{array}\right): \text { Locs } \rightarrow \text { Vals }
$$

Contextual Equivalence

Does this mean they are interchangeable?
For all program contexts $C[-]$?

$$
\begin{aligned}
\sigma, & C[\mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ?] \\
& \underset{\sim}{\leadsto *} \rho, \quad V \\
\sigma, & C[\mathrm{a}:=\mathrm{c} ?]
\end{aligned} \underset{\sim *}{\Downarrow} \rho, \quad V
$$

Example (Concurrent Context)

$$
\begin{array}{rlll}
\left(\begin{array}{ll}
a & b \\
1 & c
\end{array}\right), & a:=b ? ; a:=c ? \| a ? & \sim *\left(\begin{array}{lll}
a & b & c \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right), & \langle\rangle, 0\rangle \\
\left(\begin{array}{lll}
a & b & c
\end{array}\right), & a:=c ? \| a ? & \sim *\left(\begin{array}{lll}
a & b & c \\
1 & 0 & 1
\end{array}\right), & \langle\rangle, 0\rangle
\end{array}
$$

$$
\text { Locs }=\{a, b, c\} \quad \text { Vals }=\{0,1\} \quad \text { e.g. } \quad\left(\begin{array}{cc}
a & b \\
1 & c \\
1 & 1
\end{array}\right): \text { Locs } \rightarrow \text { Vals }
$$

Global-State (Sequential) Denotational Semantics

[Plotkin, Power]

$$
\begin{aligned}
& \text { (LU-comm) } \quad \mathrm{L}_{\ell}\left(v \cdot \mathrm{U}_{\ell^{\prime}, w} x_{v}\right)=\mathrm{U}_{\ell^{\prime}, w} \mathrm{~L}_{\ell}\left(v \cdot x_{v}\right) \quad \ell \neq \ell^{\prime} \\
& \llbracket \mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ? \rrbracket=\mathrm{L}_{\mathrm{b}}\left(v \cdot \mathrm{U}_{\mathrm{a}, v} \mathrm{~L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right)\right) \\
&(\mathrm{LU}-\text { comm }) \longrightarrow=\mathrm{L}_{\mathrm{b}}\left(v \cdot \mathrm{~L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, v} \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right)\right) \\
&(\text { UU-last }) \longrightarrow=\mathrm{L}_{\mathrm{b}}\left(v \cdot \mathrm{~L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right)\right) \\
&(\mathrm{L}-\text { noop }) \longrightarrow=\mathrm{L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right)=\llbracket \mathrm{a}:=\mathrm{c} ? \rrbracket
\end{aligned}
$$

Fact (Adequacy for global-state [folklore])

$$
\llbracket M \rrbracket=\llbracket N \rrbracket \Longrightarrow \forall C[-] . \sigma, C[M] \leadsto * \rho, V \Longleftrightarrow \sigma, C[N] \leadsto * \rho, V
$$

Thus $\mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c}$? and $\mathrm{a}:=\mathrm{c}$? are interchangeable
Compiler can optimize $a:=b ? ; a:=c ? \rightarrow a:=c$? (or the other direction too)

Extends to Shared-State (Concurrency)?

[Hyland, Levy, Plotkin, Power]

$$
\llbracket M \| N \rrbracket=?
$$

Add an operator (choice): \vee
Add axioms: $\mathrm{U}_{\mathrm{a}, v}(t \vee s)=\mathrm{U}_{\mathrm{a}, v} t \vee \mathrm{U}_{\mathrm{a}, v} s ; t \vee s=s \vee t \ldots$
Define partial-order: $t \leq t \vee s$
Desired (Adequacy for shared-state)

$$
\llbracket M \rrbracket \leq \llbracket N \rrbracket \Longrightarrow \forall C[-] . \sigma, C[M] \leadsto * \rho, V \Longrightarrow \sigma, C[N] \leadsto * \rho, V
$$

Justifies the opposite $N \rightarrow M \quad$ (no new results $=$ no bugs)

Example (from before)

$$
\left.\begin{array}{rr}
\left(\begin{array}{lll}
a & b & c
\end{array}\right), & a:=b ? ; a:=c ? \| a ? \\
1 & 0
\end{array}\right) \sim *\left(\begin{array}{ccc}
a & b & c \\
1 & 0 & 1
\end{array}\right), \quad\langle\langle \rangle, 0\rangle
$$

Contradicts $[\mathrm{a}:=\mathrm{b}$? ; $\mathrm{a}:=\mathrm{c}$? $\rrbracket \leq \llbracket \mathrm{a}:=\mathrm{c}$? \rrbracket - Not adequate

What Should Change to Fix This?

$$
\llbracket \mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ?]^{\prime} \neq \llbracket \mathrm{a}:=\mathrm{c} ? \rrbracket
$$

Invalidate equations

$$
\begin{aligned}
\llbracket \mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ? \rrbracket & \neq \mathrm{L}_{\mathrm{b}}\left(v \cdot \mathrm{U}_{\mathrm{a}, \mathrm{v}} \mathrm{~L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right)\right) \\
& =\mathrm{L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right) \neq \llbracket \mathrm{a}:=\mathrm{c} ? \rrbracket
\end{aligned}
$$

get to keep global-state

Theory of Resumptions

[Hyland, Levy, Plotkin, Power]

$$
\begin{aligned}
\llbracket \mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ? \rrbracket & \neq \mathrm{L}_{\mathrm{b}}\left(v \cdot \mathrm{U}_{\mathrm{a}, v} \mathrm{~L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right)\right) \\
& =\mathrm{L}_{\mathrm{c}}\left(w \cdot \mathrm{U}_{\mathrm{a}, w}\langle \rangle\right) \neq \llbracket \mathrm{a}:=\mathrm{c} ? \rrbracket
\end{aligned}
$$

Add an operator yield: Y
Add an axiom: $\mathrm{Y}(t \vee s)=\mathrm{Y} t \vee \mathrm{Y} s$
Define possible yield: $\mathrm{Y}^{?} t:=t \vee \mathrm{Y} t \quad\left(\mathrm{Y}^{?} t \geq t\right)$

$$
\begin{aligned}
\llbracket \mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ? \rrbracket & =\mathrm{L}_{\mathrm{b}}\left(v . \mathrm{Y}^{?} \mathrm{U}_{\mathrm{a}, v} \mathrm{Y}^{?} \mathrm{~L}_{\mathrm{c}}\left(w . \mathrm{Y}^{?} \mathrm{U}_{\mathrm{a}, w} \mathrm{Y}^{?}\langle \rangle\right)\right) \\
& \geq \mathrm{L}_{\mathrm{b}}\left(v . \mathrm{Y}^{?} \mathrm{U}_{\mathrm{a}, v} \mathrm{~L}_{\mathrm{c}}\left(w . \mathrm{U}_{\mathrm{a}, w} \mathrm{Y}^{?}\langle \rangle\right)\right) \\
\ldots \text { (like before) } \ldots & =\mathrm{L}_{\mathrm{c}}\left(w \cdot \mathrm{Y}^{?} \mathrm{U}_{\mathrm{a}, w} \mathrm{Y}^{?}\langle \rangle\right)=\llbracket \mathrm{a}:=\mathrm{c} ? \rrbracket \\
\mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ? & \rightarrow \mathrm{a}:=\mathrm{c} ? \quad \text { justified by Adequacy }
\end{aligned}
$$

Lingering Questions

Still undefined: $[M \| N \rrbracket=$?

What about "pure" fragment, e.g. $\llbracket i f M$ then N else $N \rrbracket \stackrel{?}{=} \llbracket M ; N \rrbracket$

Section 2

The Algebraic-Effects Roadmap

(2) The Algebraic-Effects Roadmap

- Equational Theory
- Monadic Model
- Denotations
- Adequacy
(3) Final Words..

Subsection 1

Equational Theory

Axioms - Global-State

[Plotkin, Power]

$$
\begin{array}{rlrl}
\text { UL-det } & \mathrm{U}_{\ell, w} \mathrm{~L}_{\ell}\left(v, x_{v}\right) & =\mathrm{U}_{\ell, w} x_{w} \\
\text { UU-last } & \mathrm{U}_{\ell, v} \mathrm{U}_{\ell, w} x & =\mathrm{U}_{\ell, w} x \\
\text { LU-noop } & \mathrm{L}_{\ell}\left(v . \mathrm{U}_{\ell, v} x\right) & =x & \\
\text { LL-diag } & \mathrm{L}_{\ell}\left(v . \mathrm{L}_{\ell}\left(w, x_{v, w}\right)\right) & =\mathrm{L}_{\ell}\left(v, x_{v, v}\right) & \\
& \text { UU-comm } & \mathrm{U}_{\ell, v} \mathrm{U}_{\ell^{\prime}, w} x & =\mathrm{U}_{\ell^{\prime}, w} \mathrm{U}_{\ell, v} x
\end{array}
$$

Axioms - Non-Determinism and Yield

[Hyland, Levy, Plotkin, Power]

$$
\begin{array}{lcl}
\text { ND-return } & \bigvee_{\imath<1} x=x & \\
\text { ND-epi } & \bigvee_{\jmath<\beta} x_{\jmath}=\bigvee_{\imath<\alpha} x_{\varphi \imath} & \varphi: \alpha \rightarrow \beta \\
\text { ND-join } & \bigvee_{\imath<\alpha} \bigvee_{\jmath<\beta_{\imath}} x_{\imath, \jmath}=\bigvee_{\imath<\sum_{\imath<\alpha} \beta_{\imath}} x_{\varphi \jmath} & \varphi: \sum_{\imath<\alpha} \beta_{\imath} \leftrightarrow \coprod_{\imath<\alpha} \beta_{\imath} \\
\text { ND-L } & \bigvee_{\imath<\alpha} \mathrm{L}_{\ell}\left(v . x_{V, l}\right)=\mathrm{L}_{\ell}\left(v . \bigvee_{\imath<\alpha} x_{v, \imath}\right) & \\
\text { ND-U } & \mathrm{V}_{\imath<\alpha} \mathrm{U}_{\ell, v} x_{\imath}=\mathrm{U}_{\ell, v} \bigvee_{\imath<\alpha} x_{\imath} & \\
\text { ND-Y } & \mathrm{V}_{\imath<\alpha} \mathrm{Y} x_{\imath}=\mathrm{Y}_{\imath \imath \alpha} \mathrm{V}_{\imath} &
\end{array}
$$

Subsection 2

Monadic Model

Traces - Interrupted Execution

[Brookes, Benton, Hoffman, Nigam]

$$
\begin{aligned}
& a:=c ? \| b:=0 ; a ? \xrightarrow{\left\langle\left(\begin{array}{lll}
a & b & c \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
1 & 0 & 1
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{lll}
a & b & c \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
0 & 1 & 1
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{lll}
a & b & c \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
a & b & c \\
1 & 1 & 1
\end{array}\right)\right\rangle}\langle\langle \rangle, 0\rangle \\
& \left(\begin{array}{lll}
a & b & c \\
1 & 0 & 1
\end{array}\right), \quad a:=c ?\left\|b:=0 ; a ? \quad \leadsto * \quad\left(\begin{array}{lll}
a & b & c \\
1 & 0 & 1
\end{array}\right), \quad a:=1\right\| a ? \\
& \gamma \\
& \left(\begin{array}{lll}
a & b & c \\
0 & 1 & 1
\end{array}\right), \quad a:=1\left\|a ? \leadsto *\left(\begin{array}{lll}
a & b & c \\
0 & 1 & 1
\end{array}\right), \quad a:=1\right\| 0 \\
& \gamma \\
& \left(\begin{array}{lll}
a & b & c \\
0 & 1 & 1
\end{array}\right), \quad a:=1 \| 0 \quad \leadsto * \quad\left(\begin{array}{lll}
a & b & c \\
1 & 1 & 1
\end{array}\right), \quad\langle\langle \rangle, 0\rangle \\
& \text { Traces } X:=\left(\text { Vals }^{\text {Locs }} \times \text { Vals }^{\text {Locs }}\right)^{+} \cdot X
\end{aligned}
$$

Example

$$
\left\langle\left(\begin{array}{cc}
a & b \\
1 & 0 \\
1
\end{array}\right),\left(\begin{array}{ccc}
a & b & c \\
1 & 0 & 1
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{ccc}
a & b & c \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{ccc}
a & b & c \\
0 & 1 & 1
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{ccc}
a & b & c \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{cc}
a & b \\
1 & c \\
1 & 1
\end{array}\right)\right\rangle\langle\rangle, 0\rangle \in \operatorname{Traces}(\mathbf{1} \times \operatorname{Vals})
$$

Model Definition

$$
\begin{aligned}
\underline{\mathcal{T} X}:=\mathcal{P}_{\text {fin }}(\text { Traces } X) & \text { Traces } X:=\left(\text { Vals }^{\text {Locs }} \times \text { Vals }^{\text {Locs }}\right)^{+} \cdot X \\
\tilde{x} & :=\{\langle\sigma, \sigma\rangle \times\} \\
\tilde{V}_{\iota<\alpha} P_{\imath} & :=\bigcup_{\imath<\alpha} P_{\imath} \\
\tilde{Y} P & :=\{\langle\sigma, \sigma\rangle \tau \mid \tau \in P\} \\
\tilde{\mathrm{L}}_{\ell}\left(v, P_{v}\right) & :=\left\{\langle\sigma, \rho\rangle \tau \mid\langle\sigma, \rho\rangle \tau \in P_{v}, \sigma_{\ell}=v\right\} \\
\tilde{\mathrm{U}}_{\ell, v} P & :=\{\langle\sigma, \rho\rangle \tau \mid\langle\sigma[\ell \mapsto v], \rho\rangle \tau \in P\}
\end{aligned}
$$

Theory of Resumptions axioms all hold, e.g.
(UU-last):

$$
\tilde{\mathrm{U}}_{\ell, V} \tilde{\mathrm{U}}_{\ell, w} \tilde{x}=\cdots=\tilde{\mathrm{U}}_{\ell, w} \tilde{x}
$$

Monad Definition

$$
\mathcal{T} X:=\langle\mathcal{T} X, \text { return },\rangle=\rangle \quad \mathcal{I} X:=\mathcal{P}_{\text {fin }}(\operatorname{Traces} X)
$$

$$
\begin{aligned}
\text { return } x & :=\tilde{x} \\
P\rangle\rangle=f & :=\left\{\alpha\langle\sigma, \varsigma\rangle \tau \mid \exists \rho \cdot \alpha\langle\sigma, \rho\rangle x \in P \wedge\langle\rho, \varsigma\rangle \tau \in f_{x}\right\}
\end{aligned}
$$

Theorem (Representation for shared-state)
The monad \mathcal{T} is equivalent to the monad induced by Res.
Corollary (Soundness \& Completeness)

$$
t=s(\text { in Res. }) \Longleftrightarrow \tilde{t}=\tilde{s}(\text { in Model })
$$

Subsection 3

Denotations

Denotation

$$
\Gamma \vdash M: A \quad \quad M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \mathcal{I} \llbracket A \rrbracket
$$

Example

$$
\begin{array}{ll}
\vdash a:=c ?:() & x: \text { Loc } \vdash \mathrm{x} ?: \text { Val } \\
\llbracket \mathrm{a}:=\mathrm{c} ? \rrbracket:\{ \} \rightarrow \underline{\mathcal{T} 1} & \llbracket \mathrm{x} ? \rrbracket]:\{\mathrm{x} \in \operatorname{Locs}\} \rightarrow \text { 疋Vals }
\end{array}
$$

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts

Denotation

$$
\Gamma \vdash M: A \quad \llbracket M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \mathcal{I} \llbracket A \rrbracket
$$

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts
(1/3) Standard part, including higher-order (based on [Moggi]):

$$
\begin{aligned}
\llbracket \mathrm{x} \rrbracket \gamma & :=\text { return } \gamma \mathrm{x} \\
\llbracket \operatorname{let} \mathrm{x}=M \operatorname{in} N \rrbracket \gamma & :=[M] \gamma\rangle=\lambda y . \llbracket N](\gamma[\mathbf{x} \mapsto y]) \\
\llbracket\langle M, N\rangle \rrbracket \gamma & :=[M \rrbracket \gamma\rangle=\lambda x . \llbracket N \rrbracket \gamma\rangle=\lambda y . \text { return }\langle x, y\rangle
\end{aligned}
$$

[if M then N else $N \rrbracket=\llbracket M ; N \rrbracket$

Denotation

$$
\Gamma \vdash M: A \quad \quad M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \mathcal{I} \llbracket A \rrbracket
$$

Definition is entirely compositional: denotation of prog. depends only on denotations of subparts
(2/3) State access part:

$$
\begin{gathered}
[M ?] \gamma:=\mathbb{M}] \gamma\rangle=\lambda \ell \cdot \tilde{\mathrm{L}}_{\ell}\left(v . \tilde{\mathrm{Y}}^{?} \text { return } v\right) \\
[M:=N] \gamma:=\llbracket M \rrbracket \gamma\rangle=\lambda \ell \cdot[N \rrbracket \gamma\rangle=\lambda v \cdot \tilde{\mathrm{U}}_{\ell, \mathrm{V}} \tilde{Y}^{?} \text { return }\rangle
\end{gathered}
$$

$$
\llbracket \mathrm{a}:=\mathrm{b} ? ; \mathrm{a}:=\mathrm{c} ?] \neq \llbracket \mathrm{a}:=\mathrm{c} ? \rrbracket
$$

Denotation

$$
\Gamma \vdash M: A \quad \quad[M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \mathcal{I} \llbracket A \rrbracket
$$

Definition is entirely compositional:
denotation of prog. depends only on denotations of subparts
(3/3) Concurrency part (based on [Brookes]):

$$
\llbracket M\|N \rrbracket \gamma:=\llbracket M \rrbracket \gamma\| \llbracket[N \rrbracket \gamma
$$

$$
\begin{gathered}
(\|\|): \underline{\mathcal{T}} X \times \underline{\mathcal{T}} Y \rightarrow \underline{\mathcal{T}}(X \times Y) \\
P\|\| Q:=\{\omega \mid \exists \tau \in P, \pi \in Q . \tau \| \pi \Rightarrow \omega\}
\end{gathered}
$$

Here ω is obtained by Interleaving transitions from τ and π and sometimes Mumbling them: $\langle\sigma, \rho\rangle\langle\rho, \varsigma\rangle \mapsto\langle\sigma, \varsigma\rangle$

Formally $\tau \| \pi \Longrightarrow \omega$ is defined by...

Syntactic Synchronization

$$
\tau \| \pi \Rightarrow \omega
$$

$$
P \mid \| Q:=\{\omega \mid \exists \tau \in P, \pi \in Q \cdot \tau \| \pi \Longrightarrow \omega\}
$$

$$
\overline{\langle\sigma, \rho\rangle x \|\langle\rho, \varsigma\rangle \beta y \Longrightarrow\langle\sigma, \varsigma\rangle \beta\langle x, y\rangle}(\text { VAR-LEFT })
$$

$$
\begin{aligned}
& \tau \| \pi \Longrightarrow \omega \\
&\langle\sigma, \rho\rangle \tau \| \pi \Longrightarrow\langle\sigma, \rho\rangle \omega \\
& \tau \| \pi \Longrightarrow\langle\rho, \varsigma\rangle \omega \\
& \frac{\text { BRK-LEFT })}{\langle\sigma, \rho\rangle \tau \| \pi}(\mathrm{SEQ} \|\langle\sigma, \varsigma\rangle \omega
\end{aligned}
$$

VAR Interleave no more

BRK Interleave without mumbling

SEQ Interleave with mumbling

Subsection 4

Adequacy

Adequacy

For $\quad \Gamma \vdash M: A \quad$ and $\quad \Gamma \vdash N: A$

$$
\text { Let } \llbracket M \rrbracket \leq \llbracket N \rrbracket \text { denote } \forall \gamma \in \llbracket \Gamma \rrbracket . \llbracket M \rrbracket \gamma \subseteq \llbracket N \rrbracket \gamma
$$

Theorem (Adequacy for shared-state)

$$
\llbracket M \rrbracket \leq \llbracket N \rrbracket \Longrightarrow \forall C[-] . \sigma, C[M] \leadsto * \rho, V \Longrightarrow \sigma, C[N] \leadsto * \rho, V
$$

Proof via standard logical relations (higher-order "out-of-the-box")
Reward Justify transformation $N \rightarrow M$ without simulation $(\forall C[-]$)

Transformations

Standard transformations

e.g. if M_{1} then $\left(M_{2} ; N\right)$ else $\left(M_{3} ; N\right) \cong\left(\right.$ if M_{1} then M_{2} else $\left.M_{3}\right) ; N$

Proof by monad laws (same proof as with other effects!)

Redundant Access Eliminations

e.g. $\ell:=v ; \ell ? \rightarrow \ell:=v$; v

Proof by mundane algebra:

$$
\mathrm{U}_{\ell, v} \mathrm{Y}^{?} \mathrm{~L}_{\ell}\left(w . \mathrm{Y}^{?} w\right) \geq \mathrm{U}_{\ell, v} \mathrm{Y}^{?} v
$$

Laws of parallelism

$$
\text { e.g. } M \| N \rightarrow\langle M, N\rangle
$$

Proof by analysis of interleaving:

$$
P|\| Q \supseteq P\rangle=\lambda x . Q\rangle=\lambda y . \text { return }\langle x, y\rangle
$$

Redundant Read Introduction is not supported (don't have full abstraction) e.g. $\left\rangle \rightarrow \ell\right.$? ; \rangle not a consequence: $\left.\quad \tilde{\langle }\rangle \not \equiv \tilde{\mathrm{L}}_{\ell}\left(v . \tilde{\mathrm{Y}}^{?} \tilde{\lambda}\right\rangle\right) \quad$ ("counting issue")

Section 3

Final Words...

Very Partial Related Work Timeline

1996 Brookes
Imperative Language
Denotation: Set of Traces
2002 Plotkin, Power
Alg. Effects \& Global-State
2006 Hyland, Levy, Plotkin, Power
Non-Determinism \& Resumptions (Yield)

2010 Abadi, Plotkin
Imperative Language
Cooperative Async. Threads
Algebraic Effects (different semantics)
2016 Benton, Hofmann, Nigam
Functional Language
Monad (specified directly)

2022: Our contribution

Standard approach, definitions and proofs
Transformations justified algebraically
Finite model

Extensions / Features?

Weak Memory

Type-and-Effect System

Atomic Constructs

Recursion

Rundown

One slide summary of this talk
Programming Language - Standard operational-semantics
Higher-Order $\lambda x . M$ (Call-by-Value)
Shared-State: Assignment :=, Dereference ?, Interleaving concurrency ||

Denotational Semantics
Standard Monadic [Moggi] $\llbracket N M \rrbracket \gamma:=\llbracket N \rrbracket \gamma\rangle=\lambda f . \llbracket M \rrbracket \gamma\rangle=f$
Based on Traces [Brookes] $\left\langle\left(\begin{array}{lll}a & b & c \\ 1 & 0 & 1\end{array}\right),\left(\begin{array}{ccc}a & b & c \\ 1 & 0 & 1\end{array}\right)\right\rangle\left\langle\left(\begin{array}{ccc}a & b & c \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{ccc}a & b & c \\ 1 & 1 & 0\end{array}\right)\right\rangle 1 \in \llbracket a:=c ? ; a ? \rrbracket$
Algebraic Effects [Plotkin, Power, Hyland, Levy]:
(global-state + yield) \oplus non-determinism $\llbracket a:=1 \rrbracket=U_{a, 1}\langle \rangle \vee \mathrm{U}_{\mathrm{a}, 1} \mathrm{Y}\langle \rangle$
Ordered by non-determinism $t \leq t \vee s$
Theorem (Adequacy for shared-state)

$$
\llbracket M \rrbracket \leq \llbracket N \rrbracket \Longrightarrow \forall C[-] \cdot \sigma, C[M] \sim * \rho, V \Longrightarrow \sigma, C[N] \leadsto * \rho, V
$$

