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Main Contributions

A correspondence between a wide class of proof-systems (called
basic systems) and Kripke semantics.
More precisely, a general soundness and completeness result
which uniformly provides Kripke semantics for each basic system.

Extension of the previous result to obtain semantic
characterizations of crucial syntactic properties of basic systems:

Analyticity
Cut-admissibility



Basic Systems: General Framework

1 Propositional sequent systems

2 Manipulate two-sided multiple-conclusion sequents

3 Fully structural :
Sequents are finite sets of signed formulas, e.g.

ψ,ϕ⇒ ϕ,ψ ∧ ϕ ≡ {f:ψ, f:ϕ, t:ϕ, t:(ψ ∧ ϕ)}

Identity axioms, cut, weakening rules always present

4 The logical rules are all basic rules



Basic Rules - Examples

�Γ⇒ ψ

�Γ⇒ �ψ
Γ, ψ ⇒ ∆

Γ,�ψ ⇒ ∆

Distinction between active and context formulas

The structure of the active part:

⇒ ψ

⇒ �ψ  ⇒ p1/⇒ �p1
ψ ⇒
�ψ ⇒  p1 ⇒ /�p1 ⇒

Introducing context-relations to handle the context part:

�Γ⇒
�Γ⇒  π1 = {〈f:�p1, f:�p1〉}

Γ⇒ ∆
Γ⇒ ∆

 π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}

The final formulation:
〈⇒ p1, π1〉/⇒ �p1 〈p1 ⇒, π0〉/�p1 ⇒
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Basic Rules

A basic rule:
〈s1, π1〉, . . . , 〈sn, πn〉/C

Premises: sequents s1, . . . , sn
Corresponding context-relations: π1, . . . , πn
Conclusion: sequent C

Its application:
σ(s1) ∪ c1 . . . σ(sn) ∪ cn

σ(C) ∪ c′
1 ∪ . . . ∪ c′

n

where :
σ is a substitution
for every 1 ≤ i ≤ n, 〈ci , c′

i 〉 is a πi -instance
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Basic Rules - More Examples

Basic Rule Application

〈p1 ⇒, π0〉, 〈 ⇒ p1, π0〉/⇒
Γ1, ψ ⇒ ∆1 Γ2 ⇒ ψ,∆2

Γ1, Γ2 ⇒ ∆1,∆2

〈p1 ⇒ p2, π0〉/ ⇒ p1 ⊃ p2
Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ ⊃ ψ,∆

〈p1 ⇒ p2, π1〉/ ⇒ p1 ⊃ p2
Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ

〈⇒ p1, π2〉/⇒ �p1
Γ1,�Γ2 ⇒ ψ

�Γ1,�Γ2 ⇒ �ψ

π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}

π1 = {〈f:p1, f:p1〉}
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Basic Systems

Many sequent systems are basic.

This includes systems for (the propositional fragments of):

Classical logic
Intuitionistic logic, its dual, and bi-intuitionistic logic
Variety of modal logics
Intuitionistic modal logics
Many-valued logics
Variety of paraconsistent logics



Kripke Semantics in General

Definition
A Kripke frame consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W × FrmL → {T, F}

A signed formula x:ψ is true in a world w if v(w , ψ) = X

A sequent s is true in a world w if it contains at least one signed
formula which is true in w
Accordingly, a sequent Γ⇒ ∆ is true in w iff v(w , ψ) = F for some
ψ ∈ Γ or v(w , ψ) = T for some ψ ∈ ∆

A frame is a model of a sequent s if it is true in every world
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Kripke Semantics for Basic Systems

To obtain Kripke semantics for a proof system G, we identify a set
of G-legal frames for which G is sound and complete, i.e.
C `G s iff every G-legal frame which is a model of C is also a

model of s.

For a basic system G:
Each context-relation in G and each basic rule of G imposes a
constraint on the set of frames.
Joining all of these constraints, we obtain the set of G-legal frames.

It might produce non-deterministic semantics.



G-legal Frames

Reminder: π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}

For every context-relation π in G there is a corresponding
accessibility relation Rπ, where Rπ0 is the identity relation.
The constraint imposed by the context-relation π:
if wRπu then for every π-instance 〈x:ψ, y:ϕ〉, either v(u, ψ) 6= X or
v(w , ϕ) = Y.
The constraint imposed by the basic rule 〈s1, π1〉, . . . , 〈sn, πn〉/C:
For every world w , substitution σ, if for every 1 ≤ i ≤ n, σ(si) is true
in every u such that wRπi u, then σ(C) is true in w .
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Example

〈⇒ p1, πK 〉/⇒ �p1

πK = {〈f:p1, f:�p1〉}

Γ⇒ ψ

�Γ⇒ �ψ

A relation RπK ∈ R.

If wRπK u then for every ψ, either v(w ,�ψ) = F or v(u, ψ) 6= F,
i.e. if v(w ,�ψ) = T, then v(u, ψ) = T for every u such that wRπK u.

If v(u, ψ) = T for every u such that wRπK u, then v(w ,�ψ) = T.



Kripke Semantics for Basic Systems

Theorem
Every basic system G is sound and complete with respect to the
semantics of G-legal frames.

General and uniform:
Various known soundness and completeness results are specific
cases of this general theorem
There are some known systems for which it provides Kripke
semantics for the first time, e.g. systems for weak modal logics

Modular
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Analyticity

A basic system is (strongly) analytic iff it has the subformula
property, i.e. C `G s implies that there exists a proof of s from C in
G that contains only subformulas of the formulas in C ∪ {s}.

Analyticity implies decidability and consistency.

Q: semantic meaning of analyticity?

Next, we strengthen the soundness and completeness theorem to
characterize proofs containing only formulas from a given set E .

For this we introduce E-semiframes.
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Frames

Definition
A frame consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W × FrmL → {T, F}

Theorem
There exists a proof in G of s from C

if and only if

every G-legal

E-semi

frame which is a model of C is also a model of s.



Semiframes

Definition
A E-semiframe consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W × E → {T, F}

Theorem
There exists a proof in G of s from C containing only formulas from E

if and only if

every G-legal E-semiframe which is a model of C is also a model of s.



Semantic Characterization of Analyticity

The last theorem leads to a semantic decision procedure for
analytic basic systems (just check all possible semiframes).
Semantic sufficient condition for analyticity: If every G-legal
E-semiframe can be extended to a G-legal frame for every set E of
formulas closed under subformulas, then G is analytic.

Both the procedure and the criterion are applicable for many
interesting basic systems.



Strong Cut-Admissibility

A basic system enjoys strong cut-admissibility if whenever C `G s,
then there exists a proof of s from C in which all cuts are on
formulas from C.
In particular, if C is empty, then no cuts are allowed (usual
cut-admissibility).

We strengthen the soundness and completeness theorem to handle
proofs in which cut is only allowed on formulas from a given set E .



Quasiframes

Intuition

An application of cut:
ψ ⇒ ⇒ ψ

⇒
If cut on ψ is forbidden, we need a frame which is a model of both ψ ⇒
and⇒ ψ.

Definition
A E-quasiframe consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W × FrmL → {T, F} such that v(w , ψ) 6= I for every
w ∈W and ψ ∈ E

A sequent Γ⇒ ∆ is true in some w ∈W if v(w , ψ)∈ {F, I} for some
ψ ∈ Γ or v(w , ψ)∈ {T, I} for some ψ ∈ ∆.
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Semantic Characterization of Cut-Admissibility

Semantic sufficient condition for strong cut-admissibility:
If every G-legal E-quasiframe can be refined into a G-legal frame
for every set E of formulas, then G enjoys strong cut-admissibility
(by refinement, we mean changing all I’s to T’s or F’s).

Provides a uniform basis for semantic proofs of strong
cut-admissibility in basic systems.



Thank you!


