Kripke Semantics for Basic Sequent Systems

Arnon Avron Ori Lahav

Tel Aviv University

Tableaux 2011

- A correspondence between a wide class of proof-systems (called basic systems) and Kripke semantics.
- More precisely, a general soundness and completeness result which uniformly provides Kripke semantics for each basic system.
- Extension of the previous result to obtain semantic characterizations of crucial syntactic properties of basic systems:
 - Analyticity
 - Cut-admissibility

Basic Systems: General Framework

- Propositional sequent systems
- Ø Manipulate two-sided multiple-conclusion sequents
- Sully structural :
 - Sequents are finite sets of signed formulas, e.g.

 $\psi, \varphi \Rightarrow \varphi, \psi \land \varphi \quad \equiv \quad \{f:\psi, f:\varphi, t:\varphi, t:(\psi \land \varphi)\}$

- Identity axioms, cut, weakening rules always present
- The logical rules are all basic rules

$$\frac{\Box \Gamma \Rightarrow \psi}{\Box \Gamma \Rightarrow \Box \psi}$$

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \hline \Box \Gamma \Rightarrow \Box \psi \end{array} \end{array} \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

Distinction between active and context formulas

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \hline \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \qquad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \qquad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

• Introducing context-relations to handle the context part:

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \qquad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

• Introducing context-relations to handle the context part:

$$\frac{\Box \Gamma \Rightarrow}{\Box \Gamma \Rightarrow} \rightsquigarrow \pi_{1} = \{ \langle f:\Box p_{1}, f:\Box p_{1} \rangle \} \qquad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0} = \{ \langle f:p_{1}, f:p_{1} \rangle, \langle t:p_{1}, t:p_{1} \rangle \}$$

$$\begin{array}{c} \Box \Gamma \Rightarrow \psi \\ \hline \Box \Gamma \Rightarrow \Box \psi \end{array} \qquad \qquad \begin{array}{c} \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \Box \psi \Rightarrow \Delta \end{array}$$

- Distinction between active and context formulas
- The structure of the active part:

$$\frac{\Rightarrow \psi}{\Rightarrow \Box \psi} \quad \rightsquigarrow \quad \Rightarrow p_1 / \Rightarrow \Box p_1 \qquad \quad \frac{\psi \Rightarrow}{\Box \psi \Rightarrow} \quad \rightsquigarrow \quad p_1 \Rightarrow /\Box p_1 \Rightarrow$$

Introducing context-relations to handle the context part:

$$\frac{\Box \Gamma \Rightarrow}{\Box \Gamma \Rightarrow} \rightsquigarrow \pi_{1} = \{ \langle f:\Box p_{1}, f:\Box p_{1} \rangle \} \qquad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0} = \{ \langle f:p_{1}, f:p_{1} \rangle, \langle t:p_{1}, t:p_{1} \rangle \}$$

- The final formulation:
 - $\langle \Rightarrow p_1, \pi_1 \rangle / \Rightarrow \Box p_1 \qquad \langle p_1 \Rightarrow, \pi_0 \rangle / \Box p_1 \Rightarrow$

• A basic rule:

$$\langle \boldsymbol{s}_1, \pi_1 \rangle, \ldots, \langle \boldsymbol{s}_n, \pi_n \rangle / \boldsymbol{C}$$

- Premises: sequents *s*₁,...,*s*_n
- Corresponding context-relations: π_1, \ldots, π_n
- Conclusion: sequent C

• A basic rule:

$$\langle \boldsymbol{s}_1, \pi_1 \rangle, \ldots, \langle \boldsymbol{s}_n, \pi_n \rangle / \boldsymbol{C}$$

- Premises: sequents *s*₁,...,*s*_n
- Corresponding context-relations: π₁,..., π_n
- Conclusion: sequent C
- Its application:

$$\frac{\sigma(s_1)\cup c_1 \quad \dots \quad \sigma(s_n)\cup c_n}{\sigma(C)\cup c'_1\cup\ldots\cup c'_n}$$

where :

- σ is a substitution
- for every $1 \le i \le n$, $\langle c_i, c'_i \rangle$ is a π_i -instance

Basic Rule	Application
$\langle p_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow p_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} \hline \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline \hline \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle p_1 \Rightarrow p_2, \pi_0 \rangle / \Rightarrow p_1 \supset p_2$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\langle p_1 \Rightarrow p_2, \pi_1 \rangle / \Rightarrow p_1 \supset p_2$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\langle \Rightarrow p_1, \pi_2 \rangle / \Rightarrow \Box p_1$	$\frac{\Gamma_1, \Box \Gamma_2 \Rightarrow \psi}{\Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi}$

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_1 = \{ \langle f:p_1, f:p_1 \rangle \}$

 $\pi_2 = \{ \langle f: p_1, f: \Box p_1 \rangle, \langle f: \Box p_1, f: \Box p_1 \rangle \}$

Basic Rule	Application
$\langle p_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow p_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} & \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline & & \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle \boldsymbol{\rho}_1 \Rightarrow \boldsymbol{\rho}_2, \pi_0 \rangle / \Rightarrow \boldsymbol{\rho}_1 \supset \boldsymbol{\rho}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\langle \boldsymbol{p}_1 \Rightarrow \boldsymbol{p}_2, \pi_1 \rangle / \Rightarrow \boldsymbol{p}_1 \supset \boldsymbol{p}_2$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\langle \Rightarrow p_1, \pi_2 \rangle / \Rightarrow \Box p_1$	$ \begin{array}{c} \Gamma_1, \Box \Gamma_2 \Rightarrow \psi \\ \hline \Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi \end{array} $

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_1 = \{ \langle f:p_1, f:p_1 \rangle \}$

 $\pi_2 = \{ \langle f: p_1, f: \Box p_1 \rangle, \langle f: \Box p_1, f: \Box p_1 \rangle \}$

Basic Rule	Application
$\langle p_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow p_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} & \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline & & \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle \boldsymbol{\rho}_1 \Rightarrow \boldsymbol{\rho}_2, \pi_0 \rangle / \Rightarrow \boldsymbol{\rho}_1 \supset \boldsymbol{\rho}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\langle p_1 \Rightarrow p_2, \pi_1 \rangle / \Rightarrow p_1 \supset p_2$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\langle \Rightarrow p_1, \pi_2 \rangle / \Rightarrow \Box p_1$	$ \begin{array}{c} \Gamma_1, \Box \Gamma_2 \Rightarrow \psi \\ \hline \Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi \end{array} $

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_1 = \{ \langle f:p_1, f:p_1 \rangle \}$

 $\pi_2 = \{ \langle f: p_1, f: \Box p_1 \rangle, \langle f: \Box p_1, f: \Box p_1 \rangle \}$

Basic Rule	Application
$\langle p_1 \Rightarrow, \pi_0 \rangle, \langle \Rightarrow p_1, \pi_0 \rangle / \Rightarrow$	$ \begin{array}{c c} & \Gamma_1, \psi \Rightarrow \Delta_1 & \Gamma_2 \Rightarrow \psi, \Delta_2 \\ \hline & & \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2 \end{array} $
$\langle \boldsymbol{\rho}_1 \Rightarrow \boldsymbol{\rho}_2, \pi_0 \rangle / \Rightarrow \boldsymbol{\rho}_1 \supset \boldsymbol{\rho}_2$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\langle p_1 \Rightarrow p_2, \pi_1 \rangle / \Rightarrow p_1 \supset p_2$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\langle \Rightarrow \boldsymbol{p}_1, \pi_2 \rangle / \Rightarrow \Box \boldsymbol{p}_1$	$ \begin{array}{c} \Gamma_1, \Box \Gamma_2 \Rightarrow \psi \\ \hline \Box \Gamma_1, \Box \Gamma_2 \Rightarrow \Box \psi \end{array} $

 $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

 $\pi_1 = \{ \langle f:p_1, f:p_1 \rangle \}$

 $\pi_{2} = \{ \langle f:p_{1}, f:\Box p_{1} \rangle, \langle f:\Box p_{1}, f:\Box p_{1} \rangle \}$

Many sequent systems are basic.

This includes systems for (the propositional fragments of):

- Classical logic
- Intuitionistic logic, its dual, and bi-intuitionistic logic
- Variety of modal logics
- Intuitionistic modal logics
- Many-valued logics
- Variety of paraconsistent logics

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- $\bullet\,$ A set of accessibility relations ${\cal R}$
- A valuation $v : W \times \textit{Frm}_{\mathcal{L}} \rightarrow \{T, F\}$

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations ${\mathcal R}$
- A valuation $v : W \times Frm_{\mathcal{L}} \rightarrow \{T, F\}$
- A signed formula $x:\psi$ is true in a world w if $v(w, \psi) = x$
- A sequent *s* is true in a world *w* if it contains at least one signed formula which is true in *w*
- Accordingly, a sequent Γ ⇒ Δ is true in w iff v(w, ψ) = F for some ψ ∈ Γ or v(w, ψ) = T for some ψ ∈ Δ
- A frame is a model of a sequent s if it is true in every world

Kripke Semantics for Basic Systems

- To obtain Kripke semantics for a proof system G, we identify a set of G-legal frames for which G is sound and complete, i.e.
 C ⊢_G s iff every G-legal frame which is a model of C is also a model of s.
- For a basic system G:
 - Each context-relation in **G** and each basic rule of **G** imposes a constraint on the set of frames.
 - Joining all of these constraints, we obtain the set of G-legal frames.
- It might produce non-deterministic semantics.

- For every context-relation π in **G** there is a corresponding accessibility relation R_{π} , where R_{π_0} is the identity relation.
- The constraint imposed by the context-relation π : if $wR_{\pi}u$ then for every π -instance $\langle x:\psi, y:\varphi \rangle$, either $v(u,\psi) \neq x$ or $v(w,\varphi) = Y$.
- The constraint imposed by the basic rule ⟨s₁, π₁⟩,..., ⟨s_n, π_n⟩/C: For every world *w*, substitution σ, if for every 1 ≤ *i* ≤ *n*, σ(s_i) is true in every *u* such that *wR*_{πi}*u*, then σ(C) is true in *w*.

Reminder: $\pi_0 = \{ \langle f:p_1, f:p_1 \rangle, \langle t:p_1, t:p_1 \rangle \}$

- For every context-relation π in **G** there is a corresponding accessibility relation R_{π} , where R_{π_0} is the identity relation.
- The constraint imposed by the context-relation π : if $wR_{\pi}u$ then for every π -instance $\langle x:\psi, y:\varphi \rangle$, either $v(u,\psi) \neq x$ or $v(w,\varphi) = Y$.
- The constraint imposed by the basic rule ⟨s₁, π₁⟩,..., ⟨s_n, π_n⟩/C: For every world *w*, substitution σ, if for every 1 ≤ *i* ≤ *n*, σ(s_i) is true in every *u* such that *wR*_{πi}*u*, then σ(C) is true in *w*.

$$\langle \Rightarrow \boldsymbol{\rho}_{1}, \pi_{K} \rangle / \Rightarrow \Box \boldsymbol{\rho}_{1}$$

$$\pi_{K} = \{ \langle f: \boldsymbol{\rho}_{1}, f: \Box \boldsymbol{\rho}_{1} \rangle \}$$

$$\Gamma \Rightarrow \psi$$

$$\Box \Gamma \Rightarrow \Box \psi$$

- A relation $R_{\pi_K} \in \mathcal{R}$.
- If $wR_{\pi_{K}}u$ then for every ψ , either $v(w, \Box\psi) = F$ or $v(u, \psi) \neq F$, i.e. if $v(w, \Box\psi) = T$, then $v(u, \psi) = T$ for every u such that $wR_{\pi_{K}}u$.
- If $v(u, \psi) = T$ for every u such that $wR_{\pi_K}u$, then $v(w, \Box \psi) = T$.

Theorem

Every basic system **G** is sound and complete with respect to the semantics of **G**-legal frames.

Theorem

Every basic system **G** is sound and complete with respect to the semantics of **G**-legal frames.

• General and uniform:

- Various known soundness and completeness results are specific cases of this general theorem
- There are some known systems for which it provides Kripke semantics for the first time, e.g. systems for weak modal logics
- Modular

- A basic system is (strongly) analytic iff it has the subformula property, i.e. C ⊢_G s implies that there exists a proof of s from C in G that contains only subformulas of the formulas in C ∪ {s}.
- Analyticity implies decidability and consistency.
- Q: semantic meaning of analyticity?

- A basic system is (strongly) analytic iff it has the subformula property, i.e. C ⊢_G s implies that there exists a proof of s from C in G that contains only subformulas of the formulas in C ∪ {s}.
- Analyticity implies decidability and consistency.
- Q: semantic meaning of analyticity?

Next, we strengthen the soundness and completeness theorem to characterize proofs containing only formulas from a given set \mathcal{E} .

For this we introduce \mathcal{E} -semiframes.

Definition

A frame consists of:

- A set of worlds W
- A set of accessibility relations ${\cal R}$
- A valuation $v : W \times Frm_{\mathcal{L}} \rightarrow \{T, F\}$

Theorem

There exists a proof in ${\boldsymbol{G}}$ of s from ${\mathcal{C}}$

if and only if

every G-legal

frame which is a model of C is also a model of s.

Definition

A *E*-semiframe consists of:

- A set of worlds W
- A set of accessibility relations ${\mathcal R}$
- A valuation $v : W \times \mathcal{E} \to \{T, F\}$

Theorem

There exists a proof in **G** of s from C containing only formulas from \mathcal{E}

if and only if

every **G**-legal \mathcal{E} -semiframe which is a model of \mathcal{C} is also a model of s.

- The last theorem leads to a semantic decision procedure for analytic basic systems (just check all possible semiframes).
- Semantic sufficient condition for analyticity: If every G-legal
 E-semiframe can be extended to a G-legal frame for every set *E* of formulas closed under subformulas, then G is analytic.
- Both the procedure and the criterion are applicable for many interesting basic systems.

- A basic system enjoys strong cut-admissibility if whenever C ⊢_G s, then there exists a proof of s from C in which all cuts are on formulas from C.
- In particular, if C is empty, then no cuts are allowed (usual cut-admissibility).
- We strengthen the soundness and completeness theorem to handle proofs in which cut is only allowed on formulas from a given set \mathcal{E} .

Intuition

An application of cut:

$$\frac{\psi \Rightarrow \Rightarrow \psi}{\Rightarrow}$$

If cut on ψ is forbidden, we need a frame which is a model of both $\psi \Rightarrow$ and $\Rightarrow \psi.$

Intuition

An application of cut:

$$\frac{\psi \Rightarrow \Rightarrow \psi}{\Rightarrow}$$

If cut on ψ is forbidden, we need a frame which is a model of both $\psi \Rightarrow$ and $\Rightarrow \psi.$

Definition

- A *E*-quasiframe consists of:
 - A set of worlds W
 - A set of accessibility relations R
 - A valuation $v : W \times Frm_{\mathcal{L}} \to \{T, F, I\}$ such that $v(w, \psi) \neq I$ for every $w \in W$ and $\psi \in \mathcal{E}$

A sequent Γ ⇒ Δ is *true* in some w ∈ W if v(w, ψ)∈ {F,I} for some ψ ∈ Γ or v(w, ψ)∈ {T,I} for some ψ ∈ Δ.

Semantic Characterization of Cut-Admissibility

- Semantic sufficient condition for strong cut-admissibility: If every G-legal *E*-quasiframe can be refined into a G-legal frame for every set *E* of formulas, then G enjoys strong cut-admissibility (by refinement, we mean changing all I's to T's or F's).
- Provides a uniform basis for semantic proofs of strong cut-admissibility in basic systems.

Thank you!