Kripke Semantics for Basic Sequent Systems

Arnon Avron Ori Lahav

Tel Aviv University
Tableaux 2011

- A correspondence between a wide class of proof-systems (called basic systems) and Kripke semantics.
- More precisely, a general soundness and completeness result which uniformly provides Kripke semantics for each basic system.
- Extension of the previous result to obtain semantic characterizations of crucial syntactic properties of basic systems:
- Analyticity
- Cut-admissibility

Basic Systems: General Framework

(1) Propositional sequent systems
(2) Manipulate two-sided multiple-conclusion sequents
(3) Fully structural:

- Sequents are finite sets of signed formulas, e.g.

$$
\psi, \varphi \Rightarrow \varphi, \psi \wedge \varphi \equiv \quad\{f: \psi, f: \varphi, t: \varphi, t:(\psi \wedge \varphi)\}
$$

- Identity axioms, cut, weakening rules always present
(4) The logical rules are all basic rules

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \quad \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

- Introducing context-relations to handle the context part:

$$
\frac{\square \Gamma \Rightarrow}{\square \Gamma \Rightarrow} \rightsquigarrow \pi_{1}=\left\{\left\langle f: \square p_{1}, f: \square p_{1}\right\rangle\right\}
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \quad \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

- Introducing context-relations to handle the context part:

$$
\frac{\square \Gamma \Rightarrow}{\square \Gamma \Rightarrow} \rightsquigarrow \pi_{1}=\left\{\left\langle f: \square p_{1}, f: \square p_{1}\right\rangle\right\} \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

$$
\frac{\square \Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \square \psi \Rightarrow \Delta}
$$

- Distinction between active and context formulas
- The structure of the active part:

$$
\frac{\Rightarrow \psi}{\Rightarrow \square \psi} \quad \rightsquigarrow \quad \Rightarrow p_{1} / \Rightarrow \square p_{1} \quad \frac{\psi \Rightarrow}{\square \psi \Rightarrow} \quad \rightsquigarrow \quad p_{1} \Rightarrow / \square p_{1} \Rightarrow
$$

- Introducing context-relations to handle the context part:

$$
\frac{\square \Gamma \Rightarrow}{\square \Gamma \Rightarrow} \rightsquigarrow \pi_{1}=\left\{\left\langle f: \square p_{1}, f: \square p_{1}\right\rangle\right\} \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \rightsquigarrow \pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

- The final formulation:

$$
\left\langle\Rightarrow p_{1}, \pi_{1}\right\rangle / \Rightarrow \square p_{1}
$$

$$
\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle / \square p_{1} \Rightarrow
$$

- A basic rule:

$$
\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C
$$

- Premises: sequents s_{1}, \ldots, s_{n}
- Corresponding context-relations: π_{1}, \ldots, π_{n}
- Conclusion: sequent C
- A basic rule:

$$
\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C
$$

- Premises: sequents s_{1}, \ldots, s_{n}
- Corresponding context-relations: π_{1}, \ldots, π_{n}
- Conclusion: sequent C
- Its application:

$$
\frac{\sigma\left(s_{1}\right) \cup c_{1} \ldots \sigma\left(s_{n}\right) \cup c_{n}}{\sigma(C) \cup c_{1}^{\prime} \cup \ldots \cup c_{n}^{\prime}}
$$

where :

- σ is a substitution
- for every $1 \leq i \leq n,\left\langle c_{i}, c_{i}^{\prime}\right\rangle$ is a π_{i}-instance

Basic Rules - More Examples

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}$ $\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\Gamma, \varphi \Rightarrow \psi, \Delta$
$\left.p_{1} \Rightarrow p_{2}, \pi_{1}\right\rangle / p_{1} \quad p_{2}$	
$\left\langle\Rightarrow p_{1}, \pi_{2}\right\rangle / \Rightarrow \square p_{1}$	$\square \Gamma_{1}, \square \Gamma_{2} \Rightarrow \psi$

$$
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

Basic Rules - More Examples

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\frac{\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\left.p_{1} \Rightarrow p_{2}, \pi_{1}\right\rangle p_{1}$	
$\left\langle\Rightarrow p_{1}, \pi_{2}\right\rangle / \Rightarrow \square p_{1}$	$\square \Gamma_{1}, \square \Gamma_{2} \Rightarrow \square \psi$

$$
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

Basic Rules - More Examples

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\frac{\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{1}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\left\langle\Rightarrow p_{1}, \pi_{2}\right\rangle / \Rightarrow \square p_{1}$	$\frac{\Gamma, \square \Gamma_{2} \Rightarrow \psi}{\square \Gamma_{1}, \square \Gamma_{2} \Rightarrow \square \psi}$

$$
\begin{gathered}
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\} \\
\pi_{1}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle\right\}
\end{gathered}
$$

Basic Rule	Application
$\left\langle p_{1} \Rightarrow, \pi_{0}\right\rangle,\left\langle\Rightarrow p_{1}, \pi_{0}\right\rangle / \Rightarrow$	$\frac{\Gamma_{1}, \psi \Rightarrow \Delta_{1} \Gamma_{2} \Rightarrow \psi, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{0}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \supset \psi, \Delta}$
$\left\langle p_{1} \Rightarrow p_{2}, \pi_{1}\right\rangle / \Rightarrow p_{1} \supset p_{2}$	$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \supset \psi}$
$\left\langle\Rightarrow p_{1}, \pi_{2}\right\rangle / \Rightarrow \square p_{1}$	$\frac{\Gamma_{1}, \square \Gamma_{2} \Rightarrow \psi}{\square \Gamma_{1}, \square \Gamma_{2} \Rightarrow \square \psi}$

$$
\pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

$$
\pi_{1}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle\right\}
$$

$$
\pi_{2}=\left\{\left\langle f: p_{1}, f: \square p_{1}\right\rangle,\left\langle f: \square p_{1}, f: \square p_{1}\right\rangle\right\}
$$

Basic Systems

Many sequent systems are basic.
This includes systems for (the propositional fragments of):

- Classical logic
- Intuitionistic logic, its dual, and bi-intuitionistic logic
- Variety of modal logics
- Intuitionistic modal logics
- Many-valued logics
- Variety of paraconsistent logics

Kripke Semantics in General

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times \operatorname{Frm}_{\mathcal{L}} \rightarrow\{\mathrm{T}, \mathrm{F}\}$

Definition

A Kripke frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times \operatorname{Frm}_{\mathcal{L}} \rightarrow\{T, F\}$
- A signed formula $x: \psi$ is true in a world w if $v(w, \psi)=X$
- A sequent s is true in a world w if it contains at least one signed formula which is true in w
- Accordingly, a sequent $\Gamma \Rightarrow \Delta$ is true in w iff $v(w, \psi)=\mathrm{F}$ for some $\psi \in \Gamma$ or $v(w, \psi)=\mathrm{T}$ for some $\psi \in \Delta$
- A frame is a model of a sequent s if it is true in every world

Kripke Semantics for Basic Systems

- To obtain Kripke semantics for a proof system G, we identify a set of G-legal frames for which \mathbf{G} is sound and complete, i.e. $\mathcal{C} \vdash_{\mathbf{G}} s$ iff every \mathbf{G}-legal frame which is a model of \mathcal{C} is also a model of s.
- For a basic system G:
- Each context-relation in \mathbf{G} and each basic rule of \mathbf{G} imposes a constraint on the set of frames.
- Joining all of these constraints, we obtain the set of G-legal frames.
- It might produce non-deterministic semantics.
- For every context-relation π in \mathbf{G} there is a corresponding accessibility relation R_{π}, where $R_{\pi_{0}}$ is the identity relation.
- The constraint imposed by the context-relation π : if $w R_{\pi} u$ then for every π-instance $\langle x: \psi, y: \varphi\rangle$, either $v(u, \psi) \neq \mathrm{x}$ or $v(w, \varphi)=\mathrm{Y}$.
- The constraint imposed by the basic rule $\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C$: For every world w, substitution σ, if for every $1 \leq i \leq n, \sigma\left(s_{i}\right)$ is true in every u such that $w R_{\pi_{i}} u$, then $\sigma(C)$ is true in w.

$$
\text { Reminder: } \pi_{0}=\left\{\left\langle f: p_{1}, f: p_{1}\right\rangle,\left\langle t: p_{1}, t: p_{1}\right\rangle\right\}
$$

- For every context-relation π in \mathbf{G} there is a corresponding accessibility relation R_{π}, where $R_{\pi_{0}}$ is the identity relation.
- The constraint imposed by the context-relation π : if $w R_{\pi} u$ then for every π-instance $\langle x: \psi, y: \varphi\rangle$, either $v(u, \psi) \neq \mathrm{x}$ or $v(w, \varphi)=\mathrm{Y}$.
- The constraint imposed by the basic rule $\left\langle s_{1}, \pi_{1}\right\rangle, \ldots,\left\langle s_{n}, \pi_{n}\right\rangle / C$: For every world w, substitution σ, if for every $1 \leq i \leq n, \sigma\left(s_{i}\right)$ is true in every u such that $w R_{\pi_{i}} u$, then $\sigma(C)$ is true in w.

$$
\begin{aligned}
& \left\langle\Rightarrow p_{1}, \pi_{K}\right\rangle / \Rightarrow \square p_{1} \\
& \pi_{K}=\left\{\left\langle f: p_{1}, f: \square p_{1}\right\rangle\right\}
\end{aligned}
$$

$$
\frac{\Gamma \Rightarrow \psi}{\square \Gamma \Rightarrow \square \psi}
$$

- A relation $R_{\pi_{K}} \in \mathcal{R}$.
- If $w R_{\pi_{K}} u$ then for every ψ, either $v(w, \square \psi)=\mathrm{F}$ or $v(u, \psi) \neq \mathrm{F}$, i.e. if $v(w, \square \psi)=\mathrm{T}$, then $v(u, \psi)=\mathrm{T}$ for every u such that $w R_{\pi_{k}} u$.
- If $v(u, \psi)=T$ for every u such that $w R_{\pi_{K}} u$, then $v(w, \square \psi)=T$.

Theorem

Every basic system \mathbf{G} is sound and complete with respect to the semantics of G-legal frames.

Kripke Semantics for Basic Systems

Theorem

Every basic system \mathbf{G} is sound and complete with respect to the semantics of G-legal frames.

- General and uniform:
- Various known soundness and completeness results are specific cases of this general theorem
- There are some known systems for which it provides Kripke semantics for the first time, e.g. systems for weak modal logics
- Modular

Analyticity

- A basic system is (strongly) analytic iff it has the subformula property, i.e. $\mathcal{C} \vdash_{\mathrm{G}} s$ implies that there exists a proof of s from \mathcal{C} in G that contains only subformulas of the formulas in $\mathcal{C} \cup\{s\}$.
- Analyticity implies decidability and consistency.
- Q: semantic meaning of analyticity?

Analyticity

- A basic system is (strongly) analytic iff it has the subformula property, i.e. $\mathcal{C} \vdash_{\mathrm{G}} s$ implies that there exists a proof of s from \mathcal{C} in G that contains only subformulas of the formulas in $\mathcal{C} \cup\{s\}$.
- Analyticity implies decidability and consistency.
- Q: semantic meaning of analyticity?

Next, we strengthen the soundness and completeness theorem to characterize proofs containing only formulas from a given set \mathcal{E}.

For this we introduce \mathcal{E}-semiframes.

Frames

Definition

A frame consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times \operatorname{Frm}_{\mathcal{L}} \rightarrow\{\mathrm{T}, \mathrm{F}\}$

Theorem

There exists a proof in \mathbf{G} of s from \mathcal{C}
if and only if
every G-legal frame which is a model of \mathcal{C} is also a model of s.

Definition

A \mathcal{E}-semiframe consists of:

- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times \mathcal{E} \rightarrow\{T, F\}$

Theorem

There exists a proof in \mathbf{G} of s from \mathcal{C} containing only formulas from \mathcal{E}
if and only if
every G-legal \mathcal{E}-semiframe which is a model of \mathcal{C} is also a model of s.

- The last theorem leads to a semantic decision procedure for analytic basic systems (just check all possible semiframes).
- Semantic sufficient condition for analyticity: If every G-legal \mathcal{E}-semiframe can be extended to a G-legal frame for every set \mathcal{E} of formulas closed under subformulas, then \mathbf{G} is analytic.
- Both the procedure and the criterion are applicable for many interesting basic systems.
- A basic system enjoys strong cut-admissibility if whenever $\mathcal{C} \vdash_{\mathrm{G}} s$, then there exists a proof of s from \mathcal{C} in which all cuts are on formulas from \mathcal{C}.
- In particular, if \mathcal{C} is empty, then no cuts are allowed (usual cut-admissibility).

We strengthen the soundness and completeness theorem to handle proofs in which cut is only allowed on formulas from a given set \mathcal{E}.

Quasiframes

Intuition

An application of cut: $\quad \begin{aligned} & \psi \Rightarrow\end{aligned}$
If cut on ψ is forbidden, we need a frame which is a model of both $\psi \Rightarrow$ and $\Rightarrow \psi$.

Quasiframes

Intuition

An application of cut: $\quad \begin{aligned} & \psi \Rightarrow \Rightarrow \psi \\ & \Rightarrow\end{aligned}$
If cut on ψ is forbidden, we need a frame which is a model of both $\psi \Rightarrow$ and $\Rightarrow \psi$.

Definition

- A \mathcal{E}-quasiframe consists of:
- A set of worlds W
- A set of accessibility relations \mathcal{R}
- A valuation $v: W \times \operatorname{Frm}_{\mathcal{L}} \rightarrow\{\mathrm{T}, \mathrm{F}, \mathrm{I}\}$ such that $v(w, \psi) \neq \mathrm{I}$ for every $\boldsymbol{w} \in W$ and $\psi \in \mathcal{E}$
- A sequent $\Gamma \Rightarrow \Delta$ is true in some $w \in W$ if $v(w, \psi) \in\{\mathrm{F}, \mathrm{I}\}$ for some $\psi \in \Gamma$ or $v(w, \psi) \in\{T, I\}$ for some $\psi \in \Delta$.
- Semantic sufficient condition for strong cut-admissibility: If every G-legal \mathcal{E}-quasiframe can be refined into a G-legal frame for every set \mathcal{E} of formulas, then \mathbf{G} enjoys strong cut-admissibility (by refinement, we mean changing all I's to T's or F's).
- Provides a uniform basis for semantic proofs of strong cut-admissibility in basic systems.

Thank you!

