2.1 Example - Classifying Oranges

Suppose we are required to build a controller that removes bad oranges from a packaging line. Decisions are made based on a sensor that reports the overall color of the orange.

2.1.1 Prior Probabilities:

Let's assume we know all the aspects of the problem:
Probability of good (+1) and bad (-1) oranges -

- \(P(C = +1) \) = Probability of a good orange
- \(P(C = -1) \) = Probability of a bad orange

- Note: \(P(C = +1) + P(C = -1) = 1 \)

Assumption: The quality of the oranges on the packaging line is independent. I.e. - The occurrence of a bad orange does not depend on previous.

Given a sensor's measurement we would like to determine whether the orange is good or bad. The result of the measurement is inconclusive.

Sensor performance:

- Let \(X \) denote sensor measurements from each type of oranges -

\[
p(X / C = -1) \quad \text{and} \quad p(X / C = +1)
\]
2.1.2 Bayes Rule

Given this knowledge, we can compute the *posterior* probabilities.

- Bayes Rule:

\[
P(C|X = x) = \frac{P(C)P(X = x|C)}{P(X = x)}
\]

\[
P(X = x) = P(C = +1)P(X = x|C = +1) + P(C = -1)P(X = x|C = -1)
\]

2.1.3 Posterior of Oranges:

- Example - Classifying Oranges:

Data Likelihood: The probability graph for both cases -

1

\[
p(X | C = -1) \quad p(X | C = +1)
\]

Combined with prior knowledge of the distributions:

\[
P(X | C = -1) \quad P(C = -1)p(X | C = -1) \quad P(C = +1)p(X | C = +1)
\]

\[
P(X | C = +1) \quad P(C = +1)P(X | C = +1)
\]
2.1.4 Decision making:

Intuition:
- Predict "Good" if $P(C = +1|X) > P(C = -1|X)$
- Predict "Bad", otherwise

2.1.5 Loss function:

Until now, we didn't take into consideration the price of making a wrong decision. The loss function will tell us what will be the price we'll pay as a function of what we guessed.
Let's assume we have classes of good and bad oranges: +1, -1.
Suppose we can make predictions a_1, \ldots, a_k.
A **loss function** $L(a_i, c_j)$ describes the loss associated with making prediction a_i when the class real is c_j.
2.1.5 Expected Risk:

Given the estimates of $P(C \mid X)$, we can compute the expected conditional risk of each decision:

$$R(a \mid X) = \sum_c L(a, c) P(C = c \mid X)$$

2.1.6 The Risk in Oranges:

The probability graph of the two cases -

The Loss graph for two cases —

Note: If we say that the orange is good when actually it's not, we pay a very high price. Therefore the part of the graph which before was marked as "good", became smaller.
2.2 Optimal Decisions:

- Our goal is to minimize the risk. Optimal decision rule:

 "Given $X = x$, predict a_i if $R(a_i | X = x) = \min_a R(a | X = x)$"

 (Break ties arbitrarily)
- Meaning - choose the prediction which minimizes the risk.
- Note: randomized decisions do not help.

2.2.1 0-1 Loss:

If we don't have prior knowledge, it is common to use the 0-1 loss.

- $L(a, c) = 0$ if $a = c$ (If your prediction equals the real label, the cost is 0.)
- $L(a, c) = 1$ otherwise. (Your prediction differs from the real label thus there is a cost.)

- Consequence: $R(a | X) = P(a \neq c | X)$

 The risk of your prediction equals the probability that the real label differs from your prediction.

- Decision rule:

 "choose a_i if $P(C = a_i | X) = \max_a P(C = a | X)$"

 Meaning – Given a Sensor's measurement choose the prediction with the highest probability.

2.2.2 Bayesian Decision: Summary

Decisions are based on two components:

- Conditional distribution $P(C | X)$ - the probability of each decision given a sensor's measurement.
- Loss function $L(A, C)$ - the price we pay for our prediction.

Pros:

- Specifies optimal actions in presence of noisy signals
- Can deal with skewed loss functions

Cons:

- Requires $P(C | X)$

2.3 Simple Statistics: Binomial Experiments

Suppose we toss thumbtack. When tossed, it can land in one of two positions: Head or Tail:
When tossed, it can land in one of two positions: **Head** or **Tail**
We denote by \(\theta \) the (unknown) probability \(P(H) \).

Estimation task:
Given a sequence of toss samples \(x[1], x[2], \ldots, x[M] \) we want to estimate the probabilities \(P(H) = \theta \) and \(P(T) = 1 - \theta \).

2.3.1 Why Learning is Possible?

Suppose we perform \(M \) independent flips of the thumbtack
The number of head we see is a **binomial** distribution -
\[
P(\# Heads = k) = \binom{M}{k} \theta^k (1 - \theta)^{M-k}
\]
And thus \(E[\# Heads] = M \theta \) - is the Expectancy of the head number.

This suggests, that we can estimate \(\theta \) by \(\frac{\# Heads}{M} \)

2.3.2 Maximum Likelihood Estimation

MLE Principle:
Learn parameters that maximize the likelihood function.

MLE is one of the most commonly used estimators in statistics. The reason for this is that it's intuitively appealing, and has well studied properties.

2.3.3 Computing the Likelihood Functions

Given a series of tosses \(D \): To compute the likelihood in the thumbtack example we only require \(N_H \) and \(N_T \) (the number of heads and the number of tails), we'll compute the likelihood of \(\theta \) given the data \(D \):
\[
L(\theta : D) = \theta^{N_H} \cdot (1 - \theta)^{N_T}
\]
- In order to get the maximal likelihood we need to solve the derived equation.
Applying the MLE principle we’ll get -
\[\hat{\theta} = \frac{N_H}{N_H + N_T} \]

\(\hat{\theta} \) Will converge to \(\theta \) as the tosses count will grow. (Under the assumption that \(\theta \) stays fix)

\(N_H \) and \(N_T \) are **sufficient** statistics for the binomial distribution.

2.4 Sufficient Statistics

A sufficient statistic is a real function of the data that summarizes the relevant information for the likelihood.

Definition - Function \(T : R^n \rightarrow R \) is a sufficient statistic for parameter \(\theta \) if:
\[
P(\theta | T(X^n), X^n) = P(\theta | T(X^n))
\]

If we have two data sets \(X^n, Y^n \) this definition equivalent to:
\[
T(X^n) = T(Y^n) \Rightarrow L(\theta | X^n) = L(\theta | Y^n)
\]

For example: We are not interesting in all the sequence \(X_1, ..., X_n \) in our binomial experiment, but just the number of instances with H and the number of instances with T .

\[
X^{(4)} = H, H, T, T \quad \#H = \#T = 2 \\
\hat{X}^{(4)} = H, T, H, T \quad \#H = \#T = 2
\]

We will try to reduce the samples needed for calculating \(\hat{\theta} \) without changing the likelihood.

2.5 Maximum A Posterior (MAP)

Suppose we flip a coin \(n \) times and end up with \(k \) heads and \(n-k \) tails. We would like to estimate the probability that the next flip will come up head. The probability that out of \(n \) flips of a coin there are exactly \(k \) heads is :
\[
P(k | \theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}
\]

With the Maximum Likelihood approach, one would choose \(\theta \) as to maximize \(P(k | \theta) \). This yield:
\[
P(H) = \frac{k}{n} \quad P(T) = 1 - \theta = \frac{n - k}{n}
\]
Yet this result seems unreasonable when n is small. For example if you flip the coin only twice and observe the sequence:

H, H

MLE estimates the probabilities as \(P(H) = 1, P(T) = 0 \). Should we believe that it is impossible to get tail as the outcome of the next toss? Such an estimate can have disastrous effects. If we assume that \(P(T) = 0 \), then we are willing to act as though this outcome is impossible.

2.5.1 Laplace Correction

We will use the Laplace correction when we want to simulate a multi sample case when actually we have few samples. Instead of Maximum Likelihood estimation probabilities to head and tail:

\[
P(H) = \frac{k}{n} \quad P(T) = 1 - \theta = \frac{n - k}{n}
\]

We can use the Laplace correction to estimate the probabilities to head and tail:

\[
P(H) = \theta = \frac{k + 1}{n + 2} \quad P(T) = 1 - \theta = \frac{n - k + 1}{n + 2}
\]

As though we observed one additional H and one T.

What we actually did here is "fix" the given data according to our assumptions that the probability of a coin to fall on its head is 1/2. Had we assumed that this probability was 1/4, we would have needed to add 4 coin tosses, and the impact of our correction on the data, our bias, would have been much greater.

Can we justify this estimate? Yes, let us suppose a uniform prior distribution of \(\theta \). That is, the prior distribution on all the possible coins is uniform, i.e.

\[
P(\theta \leq x) = \int_0^x d\theta = x
\]

2.5.2 Bayesian Reasoning

- A model where we represent our prior probability by distribution.
- In Bayesian reasoning we represent our uncertainty about the unknown parameter \(\theta \) by a probability distribution
- This probability distribution can be viewed as subjective probability. This is a personal judgment of uncertainty.

2.5.3 Bayesian Interface

- Instead of "hard" prior probability, we assume a distribution of the prior probability and calculation are done accordingly.

We start with:

- \(P(\theta) \) - prior distribution about the values of \(\theta \)
- \(P(x_1, \ldots, x_n \mid \theta) \)
• We can compute posterior distribution on \(\theta \)

\[
P(\theta | x_1, \ldots, x_n) = \frac{P(x_1, \ldots, x_n | \theta)P(\theta)}{P(x_1, \ldots, x_n)}
\]

• Where the marginal likelihood is:

\[
P(x_1, \ldots, x_n) = \int \phi(x_1, \ldots, x_n | \theta)P(\theta)d\theta
\]

The sum of all the probabilities over all the possible \(\theta \) values.

2.5.4 Binomial Distribution: Laplace Estimation

In this case:

• The unknown parameter is \(\theta = P(H) \)
• Simplest prior \(P(\theta) = 1 \) for \(0 < \theta < 1 \)
• Likelihood (k - number of heads in the sequence)

\[
P(x_1, \ldots, x_n | \theta) = \theta^k(1-\theta)^{n-k}
\]

• Marginal likelihood

\[
P(x_1, \ldots, x_n) = \int_0^1 \theta^k(1-\theta)^{n-k}d\theta
\]

Using integration by parts we have:

\[
P(x_1, \ldots, x_n) = \int_0^1 \theta^k(1-\theta)^{n-k}d\theta
\]

\[
= \frac{1}{k+1} \theta^{k+1}(1-\theta)^{n-k+1} \bigg|_0^1 + \frac{n-k}{k+1} \int_0^1 \theta^{k+1}(1-\theta)^{n-k-1}d\theta
\]

\[
= \frac{n-k}{k+1} \int_0^1 \theta^{k+1}(1-\theta)^{n-k-1}d\theta
\]

Multiply both side by \(n \) choose \(k \), we have

\[
\binom{n}{k} \int_0^1 \theta^k(1-\theta)^{n-k}d\theta = \binom{n}{k+1} \int_0^1 \theta^{k+1}(1-\theta)^{n-k-1}d\theta
\]

The recursion terminates when \(k = n \)

\[
\binom{n}{n} \int_0^1 \theta^n(1-\theta)^{n-n}d\theta = \int_0^1 \theta^n d\theta = \frac{1}{n+1}
\]

Thus

\[
P(x_1, \ldots, x_n) = \int_0^1 \theta^k(1-\theta)^{n-k}d\theta = \frac{n+1}{1} \binom{n}{k}^{-1}
\]

We conclude that the posterior is

\[
P(\theta | x_1, \ldots, x_n) = (n+1) \binom{n}{k} \theta^k(1-\theta)^{n-k}
\]
Even though we received a different result than the maximal likelihood one, the maximization of θ will yield the same results because we only multiplied with a constant.

2.5.5 Bayesian Prediction

How do we predict using the posterior? We can think of this as computing the probability of the next element in the sequence. We will calculate the probability of X_{n+1} using the calculated probabilities of X_1, \ldots, X_n.

$$
P(x_{n+1} \mid x_1, \ldots, x_n) = \int_\Theta P(x_{n+1} \mid \theta, x_1, \ldots, x_n) d\theta
$$

$$
= \int_\Theta P(x_{n+1} \mid \theta) P(\theta \mid x_1, \ldots, x_n) d\theta
$$

We will now exclude X_1, \ldots, X_n from the first part, this is based on the assumption that $X_{n+1} \mid \theta$ is independent of X_1, \ldots, X_n. Means that under θ, the possible dependence of X_{n+1} with X_1, \ldots, X_n is canceled.

$$
= \int_\Theta P(x_{n+1} \mid \theta) P(\theta \mid x_1, \ldots, x_n) d\theta
$$

Assumption: If we know θ, the probability of x_{n+1} is independent of x_1, \ldots, x_n

$$
P(x_{n+1} \mid \theta, x_1, \ldots, x_n) = P(x_{n+1} \mid \theta)
$$

Thus, we conclude that:

$$
P(x_{n+1} = H \mid x_1, \ldots, x_n) = \int_\Theta P(x_{n+1} \mid \theta) P(\theta \mid x_1, \ldots, x_n) d\theta
$$

$$
= \int_\Theta \theta^k (1 - \theta)^{n-k} d\theta
$$

$$
= \binom{n}{k} \frac{(n+1)}{n+2}\left(\frac{n+1}{k+1}\right)^{-1}
$$

$$
= \frac{k+1}{n+2}
$$
2.6 Naïve Bayes

2.6.1 Bayesian Classification: Binary Domain
Consider the following situation: We have two classes +1, -1 and each example is described by \(N \) attributes. \(X_n \) is a binary variable with values 0, 1. Example dataset:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\cdots)</th>
<th>(x_n)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

How do we estimate \(P(C) \)? We can use Simple Binomial estimation. Count number of instances with \(C = -1 \) and with \(C = +1 \):

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\cdots)</th>
<th>(x_n)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

How do we estimate \(P(x_1, \ldots, x_n | C) \)?
We can think on two sub-problems:
- Training set for \(P(x_1, \ldots, x_n | C = +1) \)
- Training set for \(P(x_1, \ldots, x_n | C = -1) \)

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\cdots)</th>
<th>(x_n)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

In Naïve Bayes we calculate on the basis of the *independence assumption*:

\[
P(x_1, \ldots, x_n | C) = P(x_1 | C) \cdot P(x_2 | C) \cdots P(x_n | C)
\]

Each attribute \(x_i \) is independent on the other attributes once we know the value of \(C \). For each \(1 \leq i \leq n \) we have two parameters:

\[
\theta_{i+1} = P(x_i = 1 | C = +1)
\]

\[
\theta_{i-1} = P(x_i = 1 | C = -1)
\]

How do we estimate \(\theta_{i+1} \) or \(\theta_{i-1} \)? We use again Simple Binomial estimation. Count the number of instances with \(x_i = 1 \) and with \(x_i = 0 \) among instances where \(C = +1 \) or \(C = -1 \) respectively.
2.6.2 Interpretation of Naïve Bayes

According to Bayesian and MAP we need to compare two values:

\[P(+1 | x_1, \ldots, x_n) \text{ and } P(-1 | x_1, \ldots, x_n) \]

We choose the most reasonable probability (maximum). By taking a Log of the fraction and comparing to 0. Using the log operator enables us simpler calculations; it doesn't change the result because log is a monotonic function that reserves maximum.

\[
\log \frac{P(+1 | x_1, \ldots, x_n)}{P(-1 | x_1, \ldots, x_n)} = \log \frac{P(x_1, \ldots, x_n | +1)P(+1)}{P(x_1, \ldots, x_n | -1)P(-1)} - \log \frac{P(+1)}{P(-1)} + \log \prod_i \frac{P(x_i | +1)}{P(x_i | -1)}
\]

\[
= \log \frac{P(+1)}{P(-1)} + \sum_i \log \frac{P(x_i | +1)}{P(x_i | -1)}
\]

Thus, we conclude that

\[
\log \frac{P(+1 | x_1, \ldots, x_n)}{P(-1 | x_1, \ldots, x_n)} = \log \frac{P(+1)}{P(-1)} + \sum_i \log \frac{P(x_i | +1)}{P(x_i | -1)}
\]

Each \(x_i\) "votes" about the prediction

- If \(P(x_i | C = -1) = P(x_i | C = +1)\) then \(x_i\) has no say in classification
- If \(P(x_i | C = -1) = 0\) then \(x_i\) overrides all other votes (”veto”)

Let us denote:

\[
w_i = \log \frac{P(x_i = 1 | C = +1)}{P(x_i = 1 | C = -1)} - \log \frac{P(x_i = 0 | C = +1)}{P(x_i = 0 | C = -1)}
\]

\[
b = \log \frac{P(+1)}{P(-1)} + \sum_i \log \frac{P(x_i = 0 | C = +1)}{P(x_i = 0 | C = -1)}
\]

The classification rule thus becomes:

\[
\text{sign}(b + \sum_i w_i x_i) \quad \text{if} \quad \begin{cases} < 0 & \text{say -1 class} \\ = 0 & \text{say +1 or -1 class} \\ > 0 & \text{say +1 class} \end{cases}
\]
2.7 Normal Distribution

Usually we also say Gaussian distribution.

2.7.1 Short reminder

\[X \sim N(\mu, \sigma^2) \text{ if } p(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2} \]

\[Pr[a \leq X \leq b] = \int_a^b p(x) \, dx \]

\[E[x] = \mu \]

\[Var[x] = E[(x - E[x])^2] = E[x^2] - E^2[x] = \sigma^2 \]

2.7.2 Maximum Likelihood Estimate

Suppose we observe the sequence \(x_1, \ldots, x_m \). Simple calculations show that the MLE is:

\[\mu = \frac{1}{m} \sum_{i} x_i \]

\[\sigma^2 = \frac{1}{m} \sum_{i} (x_i - \mu)^2 = \frac{1}{m} \sum_{i} x_i^2 - \frac{2}{m} \mu \sum_{i} x_i + \mu^2 \]

(Note that this is true if \(\mu \) is real and not estimated)

Sufficient statistics will be:

\[\frac{1}{m} \sum_{i} x_i \quad \frac{1}{m} \sum_{i} x_i^2 \]
2.7.3 Naïve Bayes with Gaussian Distributions

Using this model we assume that the data distributes as one of the Gaussian, we will try to find which of the Gaussians distributes the same.

We recall the independence assumption:

\[P(x_1, \ldots, x_n \mid C) = P(x_1 \mid C) \cdot P(x_2 \mid C) \cdots P(x_n \mid C) \]

In addition, we make the following assumptions:

- \(P(x_i \mid C) \sim N(\mu, \sigma^2) \)
- Mean of \(x_i \) depends on class
- Variance of \(x_i \) does not depend on class

Recall:

\[
\log \frac{P(+1 \mid x_1, \ldots, x_n)}{P(-1 \mid x_1, \ldots, x_n)} = \log \frac{P(+1)}{P(-1)} + \sum_i \log \frac{P(x_i \mid +1)}{P(x_i \mid -1)} = \frac{\mu_{i+1} - \mu_{i-1}}{\sigma_i} \frac{1}{\sigma_i} \left(\frac{\mu_{i+1} + \mu_{i-1}}{2} - x_i \right)
\]

Distance between means

Distance of \(x_i \) to midway point
• If we allow different variances, the classification rule is more complex.
• The term \(\log \frac{P(x_i | +1)}{P(x_i | -1)} \) is quadratic in \(x_i \).