
Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMSl

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: "If the initial values of the program variables satisfy the
relation Rit the final values on completion will satisfy the relation Rz."
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

1 This work was supported by the Advanced Resear~h Projects Agency of the Office of
the Secretary of Defense (SD-146).

19

programs in the language, appear to be novel, although McCarthy ll, 2]
has done similar work for programming languages based on evaluation of
recursive functions.

A semantic definition of a programming language, in our approach, is
founded on a syntactic definition. It must specify which of the phrases
in a syntactically correct program represent commands, and what conditions
must be imposed on an interpretation in the neighborhood of each command.

We will demonstrate these notions, first on a flowchart language, then
on fragments of ALGOL.

DEFINITIONS. A flowchart will be loosely defined as a directed graph
with a command at each vertex, connected by edges (arrows) representing
the possible passages of control between the commands. An edge is said
to be an entrance to (or an exit from) the command c at vertex v if its
destination (or origin) is v. An interpretation I of a flowchart is a mapping
of its edges on propositions. Some, but not necessarily all, of the free
variables of these propositions may be variables manipulated by the

- - - - - - - - n E J+ (J+ is the set of positive integers)

- - - - - - - - n E J+ /\ i = 1/\ S = 0
i-l

_____ - - - n E J+ /\ i E J+ /\ i ~ n + 1/\ S = 1: OJ
j-l

i-I n

- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l

i-l

- - - - - - - - n E J+ /\ i E J+ /\ i ~ n /\ S = 1: OJ
j-1

S-S+~ .
I

- - - - - - - - n E J+ /\ i E J+ /\ i ~ n /\ S = L. OJ
j-1

i - i + 1 i-l

- - - - - - - - n E J+ Ai € J+ 1\ 2 ~ i ~ n + 1/\ S = 1: OJ
j-l

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n ~ 0)

A:>:>luNINl:7 MtANINl:7:> I U t"t<Uut<AM:> .£ ,

program. Figure 1 gives an example of an interpretation. For any edge e,
the associated proposition I (e) will be called the tag of e. If e is an entrance
(or an exit) of a command c, I (e) is said to be an antecedent (or a conse­
quent) of c.

For any command c with k entrances and l exits, we will designate the
entrances to c by ah a2, •• " aJu and the exits by bh b2, •• " bl. We will
designate the tag of ai by Pi (1 ~ i ~ k), and that of bi by Qi (1 ~ i ~ l).
Boldface letters will designate vectors formed in the natural way from
the entities designated by the corresponding nonboldface letters: for
example, P represents (Ph P2 , •• " Pk).

A verification of an interpretation of a flowchart is a proof that for every
command c of the flowchart, if control should enter the command by an
entrance ai with Pi true, then control must leave the command, if at all,
by an exit bj with QJ true. A semantic definition of a particular set of command
types, then, is a rule for constructing, for any command c of one of these
types, a verification condition Vc{P; Q) on the antecedents and consequents
of c. This verification condition must be so constructed that a proof that
the verification condition is satisfied for the antecedents and consequents
of each command in a flowchart is a verification of the interpreted flowchart.
That is, if the verification condition is satisfied, and if the tag of the entrance
is true when the statement is entered, the tag of the exit selected will be
true after execution of the statement.

A counterexample to a particular interpretation of a single command is
an assignment of values (e.g., numbers in most programming languages)
to the free variables of the interpretation, and a choice of entrance, such
that on entry to the command, the tag of the entrance is true, but on exit,
the tag of the exit is false for the (possibly altered) values of the free
variables. A semantic definition is consistent if there is no counterexample
to any interpretation of any command which satisfies its verification
condition. A semantic definition is complete if there is a counterexample
to any interpretation of any command which does not satisfy its verification
condition. A semantic definition clearly must be consistent. Preferably, it
should also be complete; this, however, is not always possible.

In what follows, we shall have in mind some particular deductive system
D, which includes the axioms and rules of inference of the first-order
predicate calculus, with equality. We shall write 4>1> 4>2, •• " 4>nr 'It to mean
that 'It is a proposition deducible from 4>1> 4>2, •• " 4>n and the axioms of D
by the rules of inference of D. We shall designate by

8tb~::::)~n{4» or, more briefly, 8;(4)),

the result of simultaneously substituting Ii -for each occurrence of Xi in
4>, after first systematically changing bound variables of 4> to avoid conflict
with free variables of any Ii.

1\. YY. rLUI U

Connectives will be assumed to distribute over the components of
vectors; for instance, X /\ Y means (X I /\ Y 17 X 2/\ Y 2, ••• , X n /\ Y n), and
X I- Y means (XII- YI) /\ (X2 1- Y2) /\ ••• /\ (Xn I- Yn).

General axioms. In order for a semantic definition to be satisfactory, it
must meet several requirements. These will be presented as axioms, although
they may also be deduced from the assumptions of completeness and
consistency, where these hold.

If Ve(P; Q) and Ve(P'; Q/), then:
AXIOM 1. Ve(P A P'; Q A Q');
AxIOM 2. Ve(P VP'; Q VQ/);

AXIOM 3. Ve«3x)(P); (3x)(Q».
Also,

AXIOM 4. If Ve{P; Q) and RI- P, QI- S, then Ve{R; S).

COROLLARY 1. If Ve(P; Q) and I- (P = R), I- (Q == S), then Ve(R; S).

Axiom 1, for example, essentially asserts that if whenever P is true on
entering command c, Q is true on exit, and whenever P' is true on entry,
Q' is true on exit, then whenever both P and P' are true on entrance, both
Q and Q' are true on exit. Thus Axiom 1 shows that if separate proofs exist
that a program has certain properties, then these proofs may be combined
into one by forming the conjunction of the several tags for each edge.
Axiom 2 is useful for combining the results of a case analysis, for instance,
treating several ranges of initial values of certain variables. Axiom 3 asserts
that if knowing that the value of the variable x has property P before
executing a command assures that the (possibly altered) value will have
property Q after executing the command, then knowing that a value
exists having property P before execution assures that a value exists having
property Q after execution. Axiom 4 asserts that if P and Q are verifiable as
antecedent and consequent for a command, then so are any stronger ante­
cedent and weaker consequent.

To indicate how these axioms are deducible from the hypotheses of
completeness and consistency for Ve, consider Axiom 1 as an example.
Suppose Vc{P; Q) and Ve(P'; Q/). Consider any assignment of initial values
V to the free variables X of the interpretation such that Pj is true (that
is, I- S: (PJ) and P[is true. Then, if the statement is entered by ai, the
exit chosen will be some bj such that Qj is true at that time (that is,
I-S~(Q), where W is the vector of final values of X after execution of c),
and QJ is also true, by the assumption of consistency. Thus, there can be
no counterexample to the interpretation J(a) = (P AP'), J(b) = (QAQ'),
and by the assumption of completeness, Ve(P A pI; Q A Q/).

A flowchart language. To make these notions more specific, consider a
particular flowchart language with five statement types, represented
pictorially as in Figure 2, having the usual interpretations as an assignment
operation, a conditional branch, a join of control, a starting point for the
program, and a halt for the program.

Take specifically the assignment operator x+- f(x, y), where x is a variable
and f is an expression which may contain occurrences of x and of the vector
y of other program variables. Considering the effect of the command, it
is clearly desirable that if P l is (x = xo/\ R), and Ql is (x = f(xo, y) /\ R),
where R contains no free occurrences of x, then VC(Pl ; Ql). Applying the
axioms, we shall establish a definition of V.I-f(.I.,) which is complete and
consistent if the underlying deductive system is, and which is, in that
sense, the most general semantic definition of the assignment operator.

(STAr)
bl

FIGURE 2

101

~

Designating the command x +-f(x, y) by c, we apply Axiom 3 to Vc(Ph QI),

to obtain

Vc« 3xo) PI; (3 xo) QJ.

Because [(3 x) (x = e /\ P(x»] == P(e) , provided x does not occur free
in e, we apply Corollary 1, to get Vc(R(x,y); (3 xo)(x = f(xo,y) /\R(xo,Y»).

Finally, by Corollary 1, we have

The verification condition for assignment operators.

If P l has the form R(x, y) and if (3 xo)(x = f(xo, y) /\ R(xo, y» I- Qh
(1)

then V.I-f(.I,J)(Ph QI).

Taking this as the semantic definition of x.- i(x, y), and assuming the
completeness and consistency of the deductive system D, we show that the
semantic definition is complete and consistent.

To show consistency, assume that Xl and Yl are initial values of x and y

such that r R(x lo Yl). Then after execution of x+- f(x, y), the values X2 and
Y2 are such that x = X2 = f(Xlo Yl), Y = Y2 = Yl; thus X2 = f(Xlo yJ !\ R(xlo yJ,
or (3XO)(X2 = f(XO,Y2) !\R(xo,yJ). Designating (3xo)(x = f(xo,y) !\R(xo,y»
as Tc(R(x,y», we have shown that upon exit from c, S:JJ2(Tc(R(x,y»)
is true. Now since Tc(R(x,y»rQ, we find rS:IJ2(Q), by the assumption
of the consistency of D, so that Vc is consistent.

To show completeness, assume it false that Tc(R (x, y» r Q. Then,
by the completeness of D, there is a set of values X2 and Y2 for x and
Y such that S:JJ2(Te(R(x,y») is true, but S:IJ2(Q) is false. Thus,
(3XO)(X2 = f(~'Y2) !\R(xo,yJ). Let Xl be a particular value of Xo for which
X2 = f(Xlo yJ !\ R (Xlo yJ. Now using Xl and Y2 as initial values for x and
y, we may generate a counterexample to the interpretation l(al) = R(x, y),
I(b l) = Q.

Thus we have shown that Vc is complete (consistent) if D is complete
(consistent). By consideration of vacuous statements such as X+-X, we
could change each "if" to "if and only if." Thus, the semantic definition
(1) we have given is the natural generalization of the original sufficient
condition for verification; Ve is both necessary and sufficient.

The other command types of Figure 2 are more easily dealt with. For
the branch command, VC(Pl ; Qlo QJ is (Pl !\ 4>r QI) !\ (P1 !\ --, 4>r QJ.
For the join command, Vc(P h P2; QI) is (PI V P2r QI). For the start com­
mand the condition Vc(Ql), and for the halt command the condition Ve(Pl)
are identically true. All of these semantic definitions accord with the usual
understanding of the meanings of these commands, and in each case Ve is
complete and consistent if Dis.

Using these semantic definitions, it is not hard to show that Figure 1
is a verifiable interpretation of its flowchart provided D contains a suitable
set of axioms for the real numbers, summation, the integers, inequalities,
and so forth. Thus, if the flowchart is entered with n a positive integer, the
value of i on completion will be n + 1 (assuming that the program terminates)
and the value of S will be LJ-l aj. Presumably, the final value of i is of no
interest, but the value of S is the desired result of the program, and the
verification proves that the program does in fact compute the desired result
if it terminates at all. Another section of this paper deals with proofs of
termination.

Each of the given semantic definitions of the flowchart commands takes
the form that Vc(P, Q) if and only if (Tl(P) r Ql)!\ ... !\(Tj(P) r Qj),
where Tj is of the form Tj1(P1) V Tj2 (P2)-V ... V TjdPk). In particular
there is the following:

24

(1) F or an assignment operator x +- f

TI (PI) is (3 xo)(x = S;o(f) A S:o(P1».
(2) For a branch command

TI(P1) IS PIA 4>,

T 2(P1) IS PIA --, 4>.

(3) For a join command

(4) For a start command, Tl () is false.
Thus, Vc(Ql) is identically true.

(5) For a halt command, the set of T/s and Q/s is empty.
Thus Vc(P1) is identically true.

For any set of semantic definitions such that

in any verifiable interpretation, it is possible to substitute Tj(P) for Qj
as a tag for any particular exit of a command without loss of verifiability.
It is obvious that this substitution satisfies the semantic definition of the
command whose exit is bj ; since r- (Tj(P) ::) Qj), by Axiom 4 the substitution
satisfies the semantic definition of the command whose entrance is bjo and
there are no other commands whose verification condition involves I (bj).

It is, therefore, possible to extend a partially specified interpretation
to a complete interpretation, without loss of verifiability, provided that
initially there is no closed loop in the flowchart all of whose edges are not
tagged and that there is no entrance which is not tagged. This fact offers
the possibility of automatic verification of programs, the programmer
merely tagging entrances and one edge in each innermost loop; the verifying
program would extend the interpretation and verify it, if possible, by
mechanical theorem-proving techniques.

We shall refer to Tc(P) as the strongest verifiable consequent of the command
c, given an antecedent P. It seems likely that most semantic definitions
in programming languages can be cast into the form Vc(P, Q) == (Tc(P) r- Q),
where T c has several obvious properties:

(1) If P::) Ph Tc(P):) Tc(P1).

(2) If upon entry by entrance aj with initial values V, a command is
executed and left by exit bj with final values W, then Tc(P) == Q, where
Pa is defined as false for a ¢ i, X = V for a = i, and Q~ is defined as false
for {j ¢ j, X = W if {j = j.

~G 1\ 1\ 0<.. (3) If P = P1 P2, Tc(P) = Tc(P1) Tc(P~.

If P = PI VP2, Tc{P) = Tc(P1) VTC(P2).

If P = (3x)(P1), Tc(P) == (3x)(Tc(P1)).

That is, the transformation T c distributes over conjunction, disjunction,
and existential quantification. A semantic definition having these properties
satisfies Axioms 1-4.

An ALGOL subset. To apply the same notions to a conventional pro­
gramming language on the order of ALGOL, one might adopt a formal
syntax for the language, such as the existing syntactic definition of ALGOL;
designate certain phrase types as semantic units, such as the statements
in ALGOL; and provide semantic definitions for these semantic units.
Let us say that each statement 1: in an ALGOLic language is tagged with
an antecedent and a consequent proposition (Px and Qx respectively),
said to hold whenever control enters and leaves the statement in the normal
sequential mode of control.

N ow we may readily set up a verification condition for each common
statement type.

(1) If 1: is an assignment statement, x: = I, then

Vx(Px; Qx) is (3xo)(S:o(Px) Ax = S:o(f)) f-Qx.

This assumes for simplicity that I is a true function of its free variables
and has no side effects.

(2) If 1: is a conditional statement of the form if ~ then 1: 1 else 1:2,

Vx(Px, QX1' QX2; P X1 ' P X2 ' Qx) is (Px A ~ f- P X1)

A (Px A -, ~f- P X2) A (Qxl V QX2 f- Qx)·

Observe that here the exits of 1:1 and 1:2 become entrances to 1:, and so on.

FIGURE 3

ASSIGNING MEANINGS TO PROGRAMS 27

Consideration of the equivalent flowchart (Figure 3) indicates why this
is true.

(3) If}:1 is a go-to statement of the form go to l, then V!(P!; Q!) IS

the identically true condition (false r- Q!), because the sequential exit IS

never taken.
(4) If ~ is a labeled statement of the form l: ~ 1)' then

V!(P!, PI, Q!l; Q!, P!1)

is (P! V Plr- P!l) 1\ (Q!1r- Q!), where PI is the disjunction of the antecedents
of all statements of the form go to l.

(5) If ~ is a for-statement of the form for x: = a step b until c do ~h
where x is a variable and a, b, c are expressions, the verification rule is
most easily seen by constructing the equivalent flowchart (Figure 4).

(x - c) X sign(b) > O?

FIGURE 4

The strongest verifiable proposition Pa on edge a IS

(3 xo)(S:o(p!) 1\ x = S:o(a».

The strongest verifiable proposition Pp on edge 13 is

(3xo)(S:O(Q!1) 1\ x = Xo + (S:o(b»,

which, if b contains no free occurrences of x, can be simplified to S:-b(Q!1).
The strongest verifiable proposition P.., on edge l' is Pet V Pp. Now the
condition of verification is

(P.., 1\ (x - c) X sign (b) > 0 r- Q!) 1\ (P.., 1\ (x - c) X sign (b) ;£ 0 r- P!1).

More precisely, since the definition of ALGOL 60 states that x is un­
defined after exhaustion of the for statement, the first half of the verification
condition should be (3x) (P.., 1\ (x - c) X sign (b) > 0) r- Q!. In typical cases,
these conditions may be greatly simplified, since normally a, b, and c do
not contain x, ~ 1 does not alter x, sign (b) is a constant, etc.

.Q.B (6) Compound statements. A compound statement ~ is of the form
begin ~l end, where ~l is a statement list. Then VJP~, Q~l; P~l' Q:;)
== (PJ- P!:I) 1\ (Q!:If- QJ. Alternatively, one might identify P!: with P!:l
and Q!: with Q!:I. A statement list 2: is either a statement, or is of the form
2: I; 2:2 where 2: 1 is a statement list and 2:2 is a statement. In the latter case,

V!:(P!:, Q!:p Q!:2; P!:I' P!:2' QJ 1S (P:; f- P~I) 1\ (Q:;If- P~2) 1\ (Q!:2f- Q:;) . .
Alternately, identify P!: with P~p Q:;I with P~2' and Q~2 with Q:;.

(7) A null statement 2: is represented by the empty string. V~(P:;; QI)
is P ~ f- Q~. Verification conditions are very similar to relations of deducibility,
and in this case the verification condition reduces to precisely a relation
of deducibility. One might say facetiously that the subject matter of
formal logic is the study of the verifiable interpretations of the program
consisting of the null statement.

Blocks (compound statements with bound local variables) cause some
difficulties. If we treat occurrences of the same identifier within the scopes
of distinct declarations as distinct, essentially renaming identifiers so that
all variables have distinct names, the only effect of blocks is to cause their
local variables to become undefined on exit. The effect of the undefining
of a variable can be achieved by existential quantification of that variable.
For instance, if a statement could have the form "undefine x," and the
antecedent were w < x 1\ x < y, the strongest verifiable consequent would
be (3x) (w < x 1\ x < y), which is simplified to w < y.

One may then treat a block 2: as being of the form begin 2: 1; 2:2 end
where 2:1 is a declaration list, where

VI(PI , QIl' QI2; PIP PI2 , QI) 1S (PI f- P:;2) 1\ (QI2 f- P I1) 1\ (QIl f- QI).

A declaration 2: of the form (say) real x is treated as undefining x when
executed at the end of the execution of a block. Thus VI(PI ; QI) is
(3x) PIf-QI.

A declaration list 2: is either a declaration, or is of the form 2: 1; 2:2 where
2:1 is a declaration list and 2:2 is a declaration;

VI(PI , QI1' QI2; PIl' PI2 , QI) 1S (PI f- PI1) 1\ (QIl f- PI2) 1\ (QI2 f- QI)·

The above is a poor approximation to the actual complexities of ALGOL
block structure; for example, it does not reflect the fact that transfers
out of a block by go-to statements cause local variables of the block to
become undefined. It may serve, however, to indicate how a complete
treatment could be carried out. Note that it does not say that local variables
lose their values upon leaving a block, but that preservation of their values
may not be assumed in proofs of programs.

· .2.9 The ALGOL procedure statement offers even more complexities, with
its several types of parameters, the dynamic-own feature, the possibility
of recursive call, side effects, etc. We will not consider procedure statements
in detail, but will illustrate the treatment of side effects by analyzing ex­
tended assignment statements allowing embedded assignments as sub­
expressions. For example, consider the statement a: = c + (c: = c + 1) + c,
which has the effect of assigning 3co + 2 to a, where Co is the initial value
of c, and assigning Co + 1 to c. Such a treatment requires saving the value
of the leftmost c before executing the embedded assignment. Let us re­
luctantly postulate a processor, with a pushdown accumulator stack S.
Introducing appropriate stacking and unstacking operators, we say that
8 h (the head of 8) is the contents of the top cell of 8; that 8 , (the tail of 8)
is the remainder of 8, the value 8 would have if the stack were popped;
and x: 8 is the value 8 would have if x were stacked on 8. These three
operators are recognizable as the CAR, CDR, and CONS operators of
LISP. The axioms governing them are (x: 8)h = x and (x: 8)t = S. Now
we may say that if an assignment statement has the form x: = I, the proces­
sor should perform begin STACK (f); UNSTACK (x) end. If I is of the
form g + h, STACK (f) is begin STACK (g); STACK (h); ADD end, where
ADD pops the two top stack cells, adds their contents, and stacks the
result; ADD is 8: = (8h + (8,h) : «8,),), If x is a variable, STACK (x)

is S: = x: 8. If I is of the form x: = g, STACK (f) is begin STACK (g);
STORE (x) end, where STORE (x) is x: = 8 h• UNSTACK (x) is begin x: = 8,,;
8: = 8 , end.

On this basis, any assignment statement is equivalent to a sequence
of simple assignments without side effects; for instance,

a : = c + (c : = c + 1) + c

is equivalent to

begin8: = c:S; 8: = c:8; 8: = 1 :S; 8: = «St)h+ 8 h): «8,),);

C:=Sh; S:= «SI)h+Sh):«8,)/); S:=c:S; S:= «Sth+Sh):«St)t);

a: = Sh; S: = 8t end.

If the antecedent of the original statement is P(a, c, 8), the strongest
verifiable consequents of the successive statements in the equivalent
compound statement are:

(1) (S:=c:S):(38')(8=c:S'I\P(a,c,8'».
(2) (S: = c:S): (38")(38')(8 = c:S" 1\8" = c:S' I\P(a,c,S'», or

(3S')(8 = c: (c:8') I\P(a,c,8'».
(3) (8:= 1:8):(38')(8= 1: (c:(c:S'»I\P(a,c,S'».

30 (4) (5: = «51)h + Sh) : «0/)1»: (3S")(38')(5 = «8",)h+8"h):
«S"I)I) 1\ 8" = 1: (c: (c: 8'» 1\ P(a,c, S'»

which simplifies, by application of the equation S" = 1 : (c: (c: S'», to
(3S')(S = (c+ 1): (c:S') I\P(a,c,S'».

(5) (c: = Sh): (3c')(3S')(c = Shl\S = (c' + 1): (c':S') I\P(a,c',S'».
Noting that Sh = C' + 1, or c' = Sh - 1 = c - 1, this becomes
(3S')(S=c:(c-1:S')I\P(a,c-1,S'».

(6) (S: = «SI)h + Sh) : «SI),» : (3 S')(S = 2c - 1: S' 1\ P(a,c - I,S'».
(7) (S:=c:S):(3S')(S=c:(2c-1:S')I\P(a,c-l,S'».
(8) (S: = «SI)h + Sh): «SI)I» : (3S') (S = 3c - 1: S' 1\ P(a,c - I,S'».
(9) (a: = Sh): (3a')(3S')(a = SIII\S = 3c - 1 :S' I\P(a',c - I,S'», or

(3a')(3S')(a = 3c - 11\S = 3c - 1 :S' I\P(a',c -1,S'»
(10) (S -SI) : (3S")(3a')(3S')(S = Sf'1\ a = 3c - 11\S" = 3c - 1: S'

I\P(a',c - I,S'», or
(3a')(3S')(S = S' I\a = 3c - 1I\P(a',c - 1,S'», or
(3a')(a = 3c - 1I\P(a,c - I,S».

For this statement, then, the condition of verification V2; (P(a, c, S); Q)
is «3a')(a = 3c - 1I\P(a',c - 1,S») ~Q, which is exactly the verification
condition for either of

Begin c : = c + 1; a : = 3c - 1 end

and

Begin a: = 3c + 2; c: = c + 1 end.

Thus, the three statements are shown to be precisely equivalent, at least
under the axioms (of exact arithmetic, etc.) used in the proof.

Proofs of termination. If a verified program is entered by a path whose
tag is then true, then at every subsequent time that a path in the program
is traversed, the corresponding proposition will be true, and in particular
if the program ever halts, the proposition on the path leading to the selected
exit will be true. Thus, we have a basis for proofs of relations between
input and output in a program. The attentive reader, however, will have
observed that we have not proved that an exit will ever be reached; the
methods so far described offer no security against nonterminating loops.
To some extent, this is intrinsic; such a program as, for example, a me­
chanical proof procedure, designed to recognize the elements of a recursively
enumerable but not recursive set, cannot be guaranteed to terminate without
a fundamental loss of power. Most correct programs, however, can be
proved to terminate. The most general method appears to use the properties
of well-ordered sets. A well-ordered set W is an ordered set in which each

nonempty subset has a Jeast member; equivalently, in which there are no
infinite decreasing sequences.

Suppose, for example, that an interpretation of a flowchart is supple­
mented by associating with each edge in the flowchart an expression for
a function, which we shall call a W-function, of the free variables of the
interpretation, taking its values in a well-ordered set W. If we can show
that after each execution of a command the current value of the W-function
associated with the exit is less than the prior value of the W-function asso­
ciated with the entrance, the value of the function must steadily decrease.
Because no infinite decreasing sequence is possible in a well-ordered set,
the program must sooner or later terminate. Thus, we prove termination,
a global property of a flowchart, by local arguments, just as we prove the
correctness of an algorithm.

To set more precisely the standard for proofs of termination, let us in­
troduce a new variable 0, not used otherwise in an interpreted program.
Letting W designate the well-ordered set in which the W-functions are
to be shown decreasing, and letting © be the ordering relation of W, it
is necessary to prove for a command c whose entrance is tagged with
proposition P and W-function t/J, and whose exit is tagged with proposition
Q and W-function 1/; that

Vc(P 1\ 0 = t/J 1\ tP E W; Q 1\ 1/; © 0 1\ 1/; E W).

Carrying out this proof for each command in the program, with obvious
generalizations for commands having multiple entrances and exits, suffices
not only to verify the interpretation, but also to show that the program
must terminate, if entered with initial values satisfying the tag of the
entrance.

The best-known well-ordered set is the set of positive integers, and the
most obvious application of well-orderings to proofs of termination is to
use as the W-function on each edge a formula for the number of program
steps until termination, or some well-chosen upper bound on this number.
Experience suggests, however, that it is sometimes much more convenient
to use other well-orderings, and it may even be necessary in some cases.
Frequently, an appropriate well-ordered set is the set of n-tuples of positive
(or nonnegative) integers, for some fixed n, ordered by the assumption
that (ih i2, .. " in) © (jhi2, ... ,in) if, for some k, i l = ih i2 = i2, .. " i.- l
= i.-h i k < i., 1 ~ k ~ n. The flowchart of Figure 5 shows an interpreta­
tion using this well-ordering, for n = 2, to prove termination. It is assumed
in the interpretation that the variables range over the integers; that is,
the deductive system used in verifying the interpretation must include
a set of axioms for the integers.

~\

START

_____ {X ~ 0, Y> 0, Q = °
r-----lI=----, (X - Q, 5)

R-X
_____ {X~~Y>~Q=~R=X

(X-Q,4)
_____ {R ~ 0, X ~ 0, Y > 0, Q ~ 0, X = R + QY

(X - Q,3) __ _

---"'-- ,C HALT)

I_tO ~ R < Y,X ~ O,X = R + QY
No (X - Q,2)

_____ {R ~ Y> 0, X ~ 0, Q ~ 0, X = R + QY

,_----'1""-_--, (X - Q, 2)

_____ {R ~ 0, Y > 0, X ~ 0, Q > 0, X = R + QY
(X - Q,4)

FIGURE 5. Algorithm to compute quotient Q and remainder R of
X.;- y, for integers X ~ 0, Y > °

REFERENCES

1. J. McCarthy, "A basis for a mathematical theory of computation" in Computer pro­
gramming and formal systems, North-Holland, Amsterdam, 1963, pp. 33-70.

2. , Towards a mathematical science of computation, Proc. IFIP Congr. 62, North-
Holland, Amsterdam, 1962, pp. 21-28.

CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA

