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ASSIGNING MEANINGS TO PROGRAMSl 

Introduction. This paper attempts to provide an adequate basis for 
formal definitions of the meanings of programs in appropriately defined 
programming languages, in such a way that a rigorous standard is established 
for proofs about computer programs, including proofs of correctness, 
equivalence, and termination. The basis of our approach is the notion of 
an interpretation of a program: that is, an association of a proposition 
with each connection in the flow of control through a program, where the 
proposition is asserted to hold whenever that connection is taken. To prevent 
an interpretation from being chosen arbitrarily, a condition is imposed on 
each command of the program. This condition guarantees that whenever 
a command is reached by way of a connection whose associated proposition 
is then true, it will be left (if at all) by a connection whose associated 
proposition will be true at that time. Then by induction on the number of 
commands executed, one sees that if a program is entered by a connection 
whose associated proposition is then true, it will be left (if at all) by a 
connection whose associated proposition will be true at that time. By this 
means, we may prove certain properties of programs, particularly properties 
of the form: "If the initial values of the program variables satisfy the 
relation Rit the final values on completion will satisfy the relation Rz." 
Proofs of termination are dealt with by showing that each step of a program 
decreases some entity which cannot decrease indefinitely. 

These modes of proof of correctness and termination are not original; 
they are based on ideas of Perlis and Gorn, and may have made their 
earliest appearance in an unpublished paper by Gorn. The establishment 
of formal standards for proofs about programs in languages which admit 
assignments, transfer of control, etc., and the proposal that the semantics 
of a programming language may be defined independently of all processors 
for that language, by establishing standards of rigor for proofs about 

1 This work was supported by the Advanced Resear~h Projects Agency of the Office of 
the Secretary of Defense (SD-146). 
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programs in the language, appear to be novel, although McCarthy ll, 2] 
has done similar work for programming languages based on evaluation of 
recursive functions. 

A semantic definition of a programming language, in our approach, is 
founded on a syntactic definition. It must specify which of the phrases 
in a syntactically correct program represent commands, and what conditions 
must be imposed on an interpretation in the neighborhood of each command. 

We will demonstrate these notions, first on a flowchart language, then 
on fragments of ALGOL. 

DEFINITIONS. A flowchart will be loosely defined as a directed graph 
with a command at each vertex, connected by edges (arrows) representing 
the possible passages of control between the commands. An edge is said 
to be an entrance to (or an exit from) the command c at vertex v if its 
destination (or origin) is v. An interpretation I of a flowchart is a mapping 
of its edges on propositions. Some, but not necessarily all, of the free 
variables of these propositions may be variables manipulated by the 
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program. Figure 1 gives an example of an interpretation. For any edge e, 
the associated proposition I (e) will be called the tag of e. If e is an entrance 
(or an exit) of a command c, I (e) is said to be an antecedent (or a conse­
quent) of c. 

For any command c with k entrances and l exits, we will designate the 
entrances to c by ah a2, •• " aJu and the exits by bh b2, •• " bl. We will 
designate the tag of ai by Pi (1 ~ i ~ k), and that of bi by Qi (1 ~ i ~ l). 
Boldface letters will designate vectors formed in the natural way from 
the entities designated by the corresponding nonboldface letters: for 
example, P represents (Ph P2 , •• " Pk). 

A verification of an interpretation of a flowchart is a proof that for every 
command c of the flowchart, if control should enter the command by an 
entrance ai with Pi true, then control must leave the command, if at all, 
by an exit bj with QJ true. A semantic definition of a particular set of command 
types, then, is a rule for constructing, for any command c of one of these 
types, a verification condition Vc{P; Q) on the antecedents and consequents 
of c. This verification condition must be so constructed that a proof that 
the verification condition is satisfied for the antecedents and consequents 
of each command in a flowchart is a verification of the interpreted flowchart. 
That is, if the verification condition is satisfied, and if the tag of the entrance 
is true when the statement is entered, the tag of the exit selected will be 
true after execution of the statement. 

A counterexample to a particular interpretation of a single command is 
an assignment of values (e.g., numbers in most programming languages) 
to the free variables of the interpretation, and a choice of entrance, such 
that on entry to the command, the tag of the entrance is true, but on exit, 
the tag of the exit is false for the (possibly altered) values of the free 
variables. A semantic definition is consistent if there is no counterexample 
to any interpretation of any command which satisfies its verification 
condition. A semantic definition is complete if there is a counterexample 
to any interpretation of any command which does not satisfy its verification 
condition. A semantic definition clearly must be consistent. Preferably, it 
should also be complete; this, however, is not always possible. 

In what follows, we shall have in mind some particular deductive system 
D, which includes the axioms and rules of inference of the first-order 
predicate calculus, with equality. We shall write 4>1> 4>2, •• " 4>nr 'It to mean 
that 'It is a proposition deducible from 4>1> 4>2, •• " 4>n and the axioms of D 
by the rules of inference of D. We shall designate by 

8tb~::::)~n{4» or, more briefly, 8;(4)), 

the result of simultaneously substituting Ii -for each occurrence of Xi in 
4>, after first systematically changing bound variables of 4> to avoid conflict 
with free variables of any Ii. 
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Connectives will be assumed to distribute over the components of 
vectors; for instance, X /\ Y means (X I /\ Y 17 X 2/\ Y 2, ••• , X n /\ Y n), and 
X I- Y means (XII- YI) /\ (X2 1- Y2) /\ ••• /\ (Xn I- Yn). 

General axioms. In order for a semantic definition to be satisfactory, it 
must meet several requirements. These will be presented as axioms, although 
they may also be deduced from the assumptions of completeness and 
consistency, where these hold. 

If Ve(P; Q) and Ve(P'; Q/), then: 
AXIOM 1. Ve(P A P'; Q A Q'); 
AxIOM 2. Ve(P VP'; Q VQ/); 

AXIOM 3. Ve«3x)(P); (3x)(Q». 
Also, 

AXIOM 4. If Ve{P; Q) and RI- P, QI- S, then Ve{R; S). 

COROLLARY 1. If Ve(P; Q) and I- (P = R), I- (Q == S), then Ve(R; S). 

Axiom 1, for example, essentially asserts that if whenever P is true on 
entering command c, Q is true on exit, and whenever P' is true on entry, 
Q' is true on exit, then whenever both P and P' are true on entrance, both 
Q and Q' are true on exit. Thus Axiom 1 shows that if separate proofs exist 
that a program has certain properties, then these proofs may be combined 
into one by forming the conjunction of the several tags for each edge. 
Axiom 2 is useful for combining the results of a case analysis, for instance, 
treating several ranges of initial values of certain variables. Axiom 3 asserts 
that if knowing that the value of the variable x has property P before 
executing a command assures that the (possibly altered) value will have 
property Q after executing the command, then knowing that a value 
exists having property P before execution assures that a value exists having 
property Q after execution. Axiom 4 asserts that if P and Q are verifiable as 
antecedent and consequent for a command, then so are any stronger ante­
cedent and weaker consequent. 

To indicate how these axioms are deducible from the hypotheses of 
completeness and consistency for Ve, consider Axiom 1 as an example. 
Suppose Vc{P; Q) and Ve(P'; Q/). Consider any assignment of initial values 
V to the free variables X of the interpretation such that Pj is true (that 
is, I- S: (PJ) and P[ is true. Then, if the statement is entered by ai, the 
exit chosen will be some bj such that Qj is true at that time (that is, 
I-S~(Q), where W is the vector of final values of X after execution of c), 
and QJ is also true, by the assumption of consistency. Thus, there can be 
no counterexample to the interpretation J(a) = (P AP'), J(b) = (QAQ'), 
and by the assumption of completeness, Ve(P A pI; Q A Q/). 



A flowchart language. To make these notions more specific, consider a 
particular flowchart language with five statement types, represented 
pictorially as in Figure 2, having the usual interpretations as an assignment 
operation, a conditional branch, a join of control, a starting point for the 
program, and a halt for the program. 

Take specifically the assignment operator x+- f(x, y), where x is a variable 
and f is an expression which may contain occurrences of x and of the vector 
y of other program variables. Considering the effect of the command, it 
is clearly desirable that if P l is (x = xo/\ R), and Ql is (x = f(xo, y) /\ R), 
where R contains no free occurrences of x, then VC(Pl ; Ql). Applying the 
axioms, we shall establish a definition of V.I-f(.I.,) which is complete and 
consistent if the underlying deductive system is, and which is, in that 
sense, the most general semantic definition of the assignment operator. 
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Designating the command x +-f(x, y) by c, we apply Axiom 3 to Vc(Ph QI), 

to obtain 

Vc« 3xo) PI; (3 xo) QJ. 

Because [( 3 x) (x = e /\ P(x» ] == P(e) , provided x does not occur free 
in e, we apply Corollary 1, to get Vc(R(x,y); (3 xo)(x = f(xo,y) /\R(xo,Y»). 

Finally, by Corollary 1, we have 

The verification condition for assignment operators. 

If P l has the form R(x, y) and if (3 xo)(x = f(xo, y) /\ R(xo, y» I- Qh 
(1) 

then V.I-f(.I,J)(Ph QI). 



Taking this as the semantic definition of x.- i(x, y), and assuming the 
completeness and consistency of the deductive system D, we show that the 
semantic definition is complete and consistent. 

To show consistency, assume that Xl and Yl are initial values of x and y 

such that r R(x lo Yl). Then after execution of x+- f(x, y), the values X2 and 
Y2 are such that x = X2 = f(Xlo Yl), Y = Y2 = Yl; thus X2 = f(Xlo yJ !\ R(xlo yJ, 
or (3XO)(X2 = f(XO,Y2) !\R(xo,yJ). Designating (3xo)(x = f(xo,y) !\R(xo,y» 
as Tc(R(x,y», we have shown that upon exit from c, S:JJ2(Tc(R(x,y») 
is true. Now since Tc(R(x,y»rQ, we find rS:IJ2(Q), by the assumption 
of the consistency of D, so that Vc is consistent. 

To show completeness, assume it false that Tc(R (x, y» r Q. Then, 
by the completeness of D, there is a set of values X2 and Y2 for x and 
Y such that S:JJ2(Te(R(x,y») is true, but S:IJ2(Q) is false. Thus, 
(3XO)(X2 = f(~'Y2) !\R(xo,yJ). Let Xl be a particular value of Xo for which 
X2 = f(Xlo yJ !\ R (Xlo yJ. Now using Xl and Y2 as initial values for x and 
y, we may generate a counterexample to the interpretation l(al) = R(x, y), 
I(b l ) = Q. 

Thus we have shown that Vc is complete (consistent) if D is complete 
(consistent). By consideration of vacuous statements such as X+-X, we 
could change each "if" to "if and only if." Thus, the semantic definition 
(1) we have given is the natural generalization of the original sufficient 
condition for verification; Ve is both necessary and sufficient. 

The other command types of Figure 2 are more easily dealt with. For 
the branch command, VC(Pl ; Qlo QJ is (Pl !\ 4>r QI) !\ (P1 !\ --, 4>r QJ. 
For the join command, Vc(P h P2; QI) is (PI V P2r QI). For the start com­
mand the condition Vc(Ql), and for the halt command the condition Ve(Pl) 
are identically true. All of these semantic definitions accord with the usual 
understanding of the meanings of these commands, and in each case Ve is 
complete and consistent if Dis. 

Using these semantic definitions, it is not hard to show that Figure 1 
is a verifiable interpretation of its flowchart provided D contains a suitable 
set of axioms for the real numbers, summation, the integers, inequalities, 
and so forth. Thus, if the flowchart is entered with n a positive integer, the 
value of i on completion will be n + 1 (assuming that the program terminates) 
and the value of S will be LJ-l aj. Presumably, the final value of i is of no 
interest, but the value of S is the desired result of the program, and the 
verification proves that the program does in fact compute the desired result 
if it terminates at all. Another section of this paper deals with proofs of 
termination. 

Each of the given semantic definitions of the flowchart commands takes 
the form that Vc(P, Q) if and only if (Tl(P) r Ql)!\ ... !\(Tj(P) r Qj), 
where Tj is of the form Tj1(P1) V Tj2 (P2)-V ... V TjdPk ). In particular 
there is the following: 
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(1) F or an assignment operator x +- f 

TI (PI) is (3 xo)(x = S;o(f) A S:o(P1». 
(2) For a branch command 

TI(P1) IS PIA 4>, 

T 2(P1) IS PIA --, 4>. 

(3) For a join command 

(4) For a start command, Tl ( ) is false. 
Thus, Vc(Ql) is identically true. 

(5) For a halt command, the set of T/s and Q/s is empty. 
Thus Vc(P1) is identically true. 

For any set of semantic definitions such that 

in any verifiable interpretation, it is possible to substitute Tj(P) for Qj 
as a tag for any particular exit of a command without loss of verifiability. 
It is obvious that this substitution satisfies the semantic definition of the 
command whose exit is bj ; since r- (Tj(P) ::) Qj), by Axiom 4 the substitution 
satisfies the semantic definition of the command whose entrance is bjo and 
there are no other commands whose verification condition involves I (bj ). 

It is, therefore, possible to extend a partially specified interpretation 
to a complete interpretation, without loss of verifiability, provided that 
initially there is no closed loop in the flowchart all of whose edges are not 
tagged and that there is no entrance which is not tagged. This fact offers 
the possibility of automatic verification of programs, the programmer 
merely tagging entrances and one edge in each innermost loop; the verifying 
program would extend the interpretation and verify it, if possible, by 
mechanical theorem-proving techniques. 

We shall refer to Tc(P) as the strongest verifiable consequent of the command 
c, given an antecedent P. It seems likely that most semantic definitions 
in programming languages can be cast into the form Vc(P, Q) == (Tc(P) r- Q), 
where T c has several obvious properties: 

(1) If P::) Ph Tc(P):) Tc(P1). 

(2) If upon entry by entrance aj with initial values V, a command is 
executed and left by exit bj with final values W, then Tc(P) == Q, where 
Pa is defined as false for a ¢ i, X = V for a = i, and Q~ is defined as false 
for {j ¢ j, X = W if {j = j. 



~G 1\ 1\ 0<.. (3) If P = P1 P2, Tc(P) = Tc(P1) Tc(P~. 

If P = PI VP2, Tc{P) = Tc(P1) VTC(P2). 

If P = (3x)(P1), Tc(P) == (3x)(Tc(P1)). 

That is, the transformation T c distributes over conjunction, disjunction, 
and existential quantification. A semantic definition having these properties 
satisfies Axioms 1-4. 

An ALGOL subset. To apply the same notions to a conventional pro­
gramming language on the order of ALGOL, one might adopt a formal 
syntax for the language, such as the existing syntactic definition of ALGOL; 
designate certain phrase types as semantic units, such as the statements 
in ALGOL; and provide semantic definitions for these semantic units. 
Let us say that each statement 1: in an ALGOLic language is tagged with 
an antecedent and a consequent proposition (Px and Qx respectively), 
said to hold whenever control enters and leaves the statement in the normal 
sequential mode of control. 

N ow we may readily set up a verification condition for each common 
statement type. 

(1) If 1: is an assignment statement, x: = I, then 

Vx(Px; Qx) is ( 3xo)(S:o(Px) Ax = S:o(f)) f-Qx. 

This assumes for simplicity that I is a true function of its free variables 
and has no side effects. 

(2) If 1: is a conditional statement of the form if ~ then 1: 1 else 1:2, 

Vx(Px, QX1' QX2; P X1 ' P X2 ' Qx) is (Px A ~ f- P X1 ) 

A (Px A -, ~f- P X2 ) A (Qxl V QX2 f- Qx)· 

Observe that here the exits of 1:1 and 1:2 become entrances to 1:, and so on. 

FIGURE 3 
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Consideration of the equivalent flowchart (Figure 3) indicates why this 
is true. 

(3) If}:1 is a go-to statement of the form go to l, then V!(P!; Q!) IS 

the identically true condition (false r- Q!), because the sequential exit IS 

never taken. 
(4) If ~ is a labeled statement of the form l: ~ 1)' then 

V!(P!, PI, Q!l; Q!, P!1) 

is (P! V Plr- P!l) 1\ (Q!1r- Q!), where PI is the disjunction of the antecedents 
of all statements of the form go to l. 

(5) If ~ is a for-statement of the form for x: = a step b until c do ~h 
where x is a variable and a, b, c are expressions, the verification rule is 
most easily seen by constructing the equivalent flowchart (Figure 4). 

(x - c) X sign(b) > O? 

FIGURE 4 

The strongest verifiable proposition Pa on edge a IS 

(3 xo)(S:o(p!) 1\ x = S:o(a». 

The strongest verifiable proposition Pp on edge 13 is 

(3xo)(S:O(Q!1) 1\ x = Xo + (S:o(b», 

which, if b contains no free occurrences of x, can be simplified to S:-b(Q!1). 
The strongest verifiable proposition P.., on edge l' is Pet V Pp. Now the 
condition of verification is 

(P.., 1\ (x - c) X sign (b) > 0 r- Q!) 1\ (P.., 1\ (x - c) X sign (b) ;£ 0 r- P!1). 

More precisely, since the definition of ALGOL 60 states that x is un­
defined after exhaustion of the for statement, the first half of the verification 
condition should be (3x) (P.., 1\ (x - c) X sign (b) > 0) r- Q!. In typical cases, 
these conditions may be greatly simplified, since normally a, b, and c do 
not contain x, ~ 1 does not alter x, sign (b) is a constant, etc. 



.Q.B (6) Compound statements. A compound statement ~ is of the form 
begin ~l end, where ~l is a statement list. Then VJP~, Q~l; P~l' Q:;) 
== (PJ- P!:I) 1\ (Q!:If- QJ. Alternatively, one might identify P!: with P!:l 
and Q!: with Q!:I. A statement list 2: is either a statement, or is of the form 
2: I; 2:2 where 2: 1 is a statement list and 2:2 is a statement. In the latter case, 

V!:(P!:, Q!:p Q!:2; P!:I' P!:2' QJ 1S (P:; f- P~I) 1\ (Q:;If- P~2) 1\ (Q!:2f- Q:;) . . 
Alternately, identify P!: with P~p Q:;I with P~2' and Q~2 with Q:;. 

(7) A null statement 2: is represented by the empty string. V~(P:;; QI) 
is P ~ f- Q~. Verification conditions are very similar to relations of deducibility, 
and in this case the verification condition reduces to precisely a relation 
of deducibility. One might say facetiously that the subject matter of 
formal logic is the study of the verifiable interpretations of the program 
consisting of the null statement. 

Blocks (compound statements with bound local variables) cause some 
difficulties. If we treat occurrences of the same identifier within the scopes 
of distinct declarations as distinct, essentially renaming identifiers so that 
all variables have distinct names, the only effect of blocks is to cause their 
local variables to become undefined on exit. The effect of the undefining 
of a variable can be achieved by existential quantification of that variable. 
For instance, if a statement could have the form "undefine x," and the 
antecedent were w < x 1\ x < y, the strongest verifiable consequent would 
be (3x) (w < x 1\ x < y), which is simplified to w < y. 

One may then treat a block 2: as being of the form begin 2: 1; 2:2 end 
where 2:1 is a declaration list, where 

VI(PI , QIl' QI2; PIP PI2 , QI) 1S (PI f- P:;2) 1\ (QI2 f- P I1 ) 1\ (QIl f- QI). 

A declaration 2: of the form (say) real x is treated as undefining x when 
executed at the end of the execution of a block. Thus VI(PI ; QI) is 
(3x) PIf-QI. 

A declaration list 2: is either a declaration, or is of the form 2: 1; 2:2 where 
2:1 is a declaration list and 2:2 is a declaration; 

VI(PI , QI1' QI2; PIl' PI2 , QI) 1S (PI f- PI1 ) 1\ (QIl f- PI2) 1\ (QI2 f- QI)· 

The above is a poor approximation to the actual complexities of ALGOL 
block structure; for example, it does not reflect the fact that transfers 
out of a block by go-to statements cause local variables of the block to 
become undefined. It may serve, however, to indicate how a complete 
treatment could be carried out. Note that it does not say that local variables 
lose their values upon leaving a block, but that preservation of their values 
may not be assumed in proofs of programs. 



· .2.9 The ALGOL procedure statement offers even more complexities, with 
its several types of parameters, the dynamic-own feature, the possibility 
of recursive call, side effects, etc. We will not consider procedure statements 
in detail, but will illustrate the treatment of side effects by analyzing ex­
tended assignment statements allowing embedded assignments as sub­
expressions. For example, consider the statement a: = c + (c: = c + 1) + c, 
which has the effect of assigning 3co + 2 to a, where Co is the initial value 
of c, and assigning Co + 1 to c. Such a treatment requires saving the value 
of the leftmost c before executing the embedded assignment. Let us re­
luctantly postulate a processor, with a pushdown accumulator stack S. 
Introducing appropriate stacking and unstacking operators, we say that 
8 h (the head of 8) is the contents of the top cell of 8; that 8 , (the tail of 8) 
is the remainder of 8, the value 8 would have if the stack were popped; 
and x: 8 is the value 8 would have if x were stacked on 8. These three 
operators are recognizable as the CAR, CDR, and CONS operators of 
LISP. The axioms governing them are (x: 8)h = x and (x: 8)t = S. Now 
we may say that if an assignment statement has the form x: = I, the proces­
sor should perform begin STACK (f); UNSTACK (x) end. If I is of the 
form g + h, STACK (f) is begin STACK (g); STACK (h); ADD end, where 
ADD pops the two top stack cells, adds their contents, and stacks the 
result; ADD is 8: = (8h + (8,h) : «8,),), If x is a variable, STACK (x) 

is S: = x: 8. If I is of the form x: = g, STACK (f) is begin STACK (g); 
STORE (x) end, where STORE (x) is x: = 8 h• UNSTACK (x) is begin x: = 8,,; 
8: = 8 , end. 

On this basis, any assignment statement is equivalent to a sequence 
of simple assignments without side effects; for instance, 

a : = c + (c : = c + 1) + c 

is equivalent to 

begin8: = c:S; 8: = c:8; 8: = 1 :S; 8: = «St)h+ 8 h): «8,),); 

C:=Sh; S:= «SI)h+Sh):«8,)/); S:=c:S; S:= «Sth+Sh):«St)t); 

a: = Sh; S: = 8t end. 

If the antecedent of the original statement is P(a, c, 8), the strongest 
verifiable consequents of the successive statements in the equivalent 
compound statement are: 

(1) (S:=c:S):(38')(8=c:S'I\P(a,c,8'». 
(2) (S: = c:S): (38")(38')(8 = c:S" 1\8" = c:S' I\P(a,c,S'», or 

(3S')(8 = c: (c:8') I\P(a,c,8'». 
(3) (8:= 1:8):(38')(8= 1: (c:(c:S'»I\P(a,c,S'». 



30 (4) (5: = «51)h + Sh) : «0/)1»: (3S")(38')(5 = «8",)h+8"h): 
«S"I)I) 1\ 8" = 1: (c: (c: 8'» 1\ P(a,c, S'» 

which simplifies, by application of the equation S" = 1 : (c: (c: S'», to 
(3S')(S = (c+ 1): (c:S') I\P(a,c,S'». 

(5) (c: = Sh): (3c')(3S')(c = Shl\S = (c' + 1): (c':S') I\P(a,c',S'». 
Noting that Sh = C' + 1, or c' = Sh - 1 = c - 1, this becomes 
(3S')(S=c:(c-1:S')I\P(a,c-1,S'». 

(6) (S: = «SI)h + Sh) : «SI),» : (3 S')(S = 2c - 1: S' 1\ P(a,c - I,S'». 
(7) (S:=c:S):(3S')(S=c:(2c-1:S')I\P(a,c-l,S'». 
(8) (S: = «SI)h + Sh): «SI)I» : (3S') (S = 3c - 1: S' 1\ P(a,c - I,S'». 
(9) (a: = Sh): (3a')(3S')(a = SIII\S = 3c - 1 :S' I\P(a',c - I,S'», or 

(3a')(3S')(a = 3c - 11\S = 3c - 1 :S' I\P(a',c -1,S'» 
(10) (S -SI) : (3S")( 3a')( 3S')(S = Sf'1\ a = 3c - 11\S" = 3c - 1: S' 

I\P(a',c - I,S'», or 
(3a')(3S')(S = S' I\a = 3c - 1I\P(a',c - 1,S'», or 
(3a')(a = 3c - 1I\P(a,c - I,S». 

For this statement, then, the condition of verification V2; (P(a, c, S); Q) 
is «3a')(a = 3c - 1I\P(a',c - 1,S») ~Q, which is exactly the verification 
condition for either of 

Begin c : = c + 1; a : = 3c - 1 end 

and 

Begin a: = 3c + 2; c: = c + 1 end. 

Thus, the three statements are shown to be precisely equivalent, at least 
under the axioms (of exact arithmetic, etc.) used in the proof. 

Proofs of termination. If a verified program is entered by a path whose 
tag is then true, then at every subsequent time that a path in the program 
is traversed, the corresponding proposition will be true, and in particular 
if the program ever halts, the proposition on the path leading to the selected 
exit will be true. Thus, we have a basis for proofs of relations between 
input and output in a program. The attentive reader, however, will have 
observed that we have not proved that an exit will ever be reached; the 
methods so far described offer no security against nonterminating loops. 
To some extent, this is intrinsic; such a program as, for example, a me­
chanical proof procedure, designed to recognize the elements of a recursively 
enumerable but not recursive set, cannot be guaranteed to terminate without 
a fundamental loss of power. Most correct programs, however, can be 
proved to terminate. The most general method appears to use the properties 
of well-ordered sets. A well-ordered set W is an ordered set in which each 



nonempty subset has a Jeast member; equivalently, in which there are no 
infinite decreasing sequences. 

Suppose, for example, that an interpretation of a flowchart is supple­
mented by associating with each edge in the flowchart an expression for 
a function, which we shall call a W-function, of the free variables of the 
interpretation, taking its values in a well-ordered set W. If we can show 
that after each execution of a command the current value of the W-function 
associated with the exit is less than the prior value of the W-function asso­
ciated with the entrance, the value of the function must steadily decrease. 
Because no infinite decreasing sequence is possible in a well-ordered set, 
the program must sooner or later terminate. Thus, we prove termination, 
a global property of a flowchart, by local arguments, just as we prove the 
correctness of an algorithm. 

To set more precisely the standard for proofs of termination, let us in­
troduce a new variable 0, not used otherwise in an interpreted program. 
Letting W designate the well-ordered set in which the W-functions are 
to be shown decreasing, and letting © be the ordering relation of W, it 
is necessary to prove for a command c whose entrance is tagged with 
proposition P and W-function t/J, and whose exit is tagged with proposition 
Q and W-function 1/; that 

Vc(P 1\ 0 = t/J 1\ tP E W; Q 1\ 1/; © 0 1\ 1/; E W). 

Carrying out this proof for each command in the program, with obvious 
generalizations for commands having multiple entrances and exits, suffices 
not only to verify the interpretation, but also to show that the program 
must terminate, if entered with initial values satisfying the tag of the 
entrance. 

The best-known well-ordered set is the set of positive integers, and the 
most obvious application of well-orderings to proofs of termination is to 
use as the W-function on each edge a formula for the number of program 
steps until termination, or some well-chosen upper bound on this number. 
Experience suggests, however, that it is sometimes much more convenient 
to use other well-orderings, and it may even be necessary in some cases. 
Frequently, an appropriate well-ordered set is the set of n-tuples of positive 
(or nonnegative) integers, for some fixed n, ordered by the assumption 
that (ih i2, .. " in) © (jhi2, ... ,in) if, for some k, i l = ih i2 = i2, .. " i.- l 
= i.-h i k < i., 1 ~ k ~ n. The flowchart of Figure 5 shows an interpreta­
tion using this well-ordering, for n = 2, to prove termination. It is assumed 
in the interpretation that the variables range over the integers; that is, 
the deductive system used in verifying the interpretation must include 
a set of axioms for the integers. 

~\ 



START 

_____ {X ~ 0, Y> 0, Q = ° 
r-----lI=----, (X - Q, 5) 

R-X 
_____ {X~~Y>~Q=~R=X 

(X-Q,4) 
_____ {R ~ 0, X ~ 0, Y > 0, Q ~ 0, X = R + QY 

(X - Q,3) __ _ 

---"'-- ,C HALT) 

I_tO ~ R < Y,X ~ O,X = R + QY 
No (X - Q,2) 

_____ {R ~ Y> 0, X ~ 0, Q ~ 0, X = R + QY 

,_----'1""-_--, (X - Q, 2) 

_____ {R ~ 0, Y > 0, X ~ 0, Q > 0, X = R + QY 
(X - Q,4) 

FIGURE 5. Algorithm to compute quotient Q and remainder R of 
X.;- y, for integers X ~ 0, Y > ° 
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