
Logical Debugging

YUH-JENG LEE

Computer Science Department
Naval Postgraduate School

Code CS/Le
Monterey, CA 93943

NACHUM DERSHOWITZ1

Department of Computer Science
University of Illinois

1304 W Spring�eld Ave.
Urbana, IL 61801

Logic programming o�ers a distinctive feature that is rarely met by other tradi-

tional programming languages: namely, one can use logic for both speci�cation

and computation. We present a methodology for reasoning about logic programs

and their speci�cations. This methodology can be applied to program debugging

as well as program synthesis. We focus on the use of executable speci�cations to

generate test cases for bug discovery, locate bugs when test data cause a program

to fail, and guide deductive and inductive bug correction. The behavior of the

automated debugger is demonstrated through several examples.

1 Introduction

Logic programs have relatively simple syntax and well-understood semantics. In addition,

logic programming o�ers an attractive feature rarely met in traditional programming lan-

guages, namely, the ability to use logic for both speci�cation and computation. We present

a methodology for reasoning about logic programs and their speci�cations. Debugging

a given program involves three steps: bug discovery, bug location, and bug correction.

We focus on the use of executable speci�cations to generate test cases for bug discovery,

locate bugs when test data cause a program to fail, and guide deductive and inductive

bug correction.

The typical process of debugging|designing a test case, detecting an error in the pro-

gram, locating the error, and �xing it|can also be applied in program synthesis. For

debugging, we use the given program as a starting point to search for a correct one. For

program synthesis, we start the search with an empty program. With the application of

executable speci�cations, an inductive search space for programs, and a deductive mech-

anism for synthesis, our system allows one to specify a program and give the skeleton of

the recursive structure, and the system tries to do the rest.

1Research supported in part by the U. S. National Science Foundation under Grants CCR-90-07195

and CCR-90-24271.

2

Section 2 reviews some of the related work. Section 3 examines the basic ideas of logic

programming and a Prolog meta interpreter on which our debugger is based. Section 4

discusses the use of executable speci�cations. Section 5 analyzes the algorithm for locating

program errors. Section 6 introduces the heuristics for correcting errors. Section 7 shows

a mechanism for automatic program synthesis, based on the results from sections 5 and

6. Section 8 presents the integrated automated debugger. Section 9 contains concluding

remarks.

2 Related Work

In Shapiro (1983) the Model Inference System (MIS) was designed for synthesizing Prolog

programs inductively. By querying an oracle (usually the user) to verify the results of

procedure calls, the system can diagnose an error by isolating an erroneous procedure,

and suggests a correction to produce the desired program. A similar diagnostic approach

was applied to Pascal programs in Renner (1991). A more e�cient algorithm to diagnose

an incorrect clause was suggested in Plaisted (1984). An improved re�nement operator

can be found in Huntbach (1986). Other work on declarative debugging can be found in

Pereira (1986) and Lloyd (1987).

In Katz & Manna (1975), Katz & Manna (1976), and Dershowitz (1983) it has been

shown that it is possible to use invariant assertions to diagnose and correct program errors,

by modifying programs so the necessary invariants can be obtained.

Another approach to automatic debugging uses a fairly intensive, complete description

of the algorithm to specify the intended behavior of the program to be debugged. It

can either be a model program (such as in Ruth (1976), Adam & Laurent (1980), and

Murray (1986)) or a program description (such as in Johnson & Soloway (1985)). Debug-

gers of this kind have to rely on heuristics to match between algorithms and programs. A

mismatch usually signals the existence and location of a bug, and the stored information

can then be used to correct the bug. A summary of knowledge based program debugging

systems can be found in Seviora (1987).

The deductive synthesis of logic programs starts with a goal representing the desirable

logic procedure and proceeds by applying repeatedly inference rules, until the original goal

becomes a set of atomic formula (cf. Hogger (1981) and Clark (1981)). Other approaches

using synthesis rules or transformation rules for program synthesis can be found, for

example, in Manna & Waldinger (1980) and Dershowitz (1985).

3 Logic Programming

Broadly de�ned, a logic programming language is a language that is based on a formal

logic system, with operational semantics de�ned by deduction in that system. Lisp (or pre-

3

cisely, pure Lisp), for example, is a logic programming language based on the �{calculus.

Languages based on equational logic, such as Eqlog by Goguen & Meseguer (1986) and

rewrite systems by Dershowitz & Jouannaud (1990), also fall into this category.

A more common de�nition of logic programming refers to the use of �rst-order pred-

icate logic, or a subset of it, as a programming language, with emphasis on using

predicates and deduction to describe computation. Based on the resolution principle

(Robinson (1965)) and its successive improvements, e�cient schemes for processing predi-

cate logic by computers have been developed. The principal idea is to represent programs

with the (de�nite) Horn clause subset of the �rst-order predicate logic (Kowalski (1974)

and Kowalski & van Emden (1976)). This breakthrough set the basis for procedural in-

terpretation to Horn clause logic and accelerated progress in the development of logic

programming languages. Prolog (Clocksin & Mellish (1987)), the prototypical logic pro-

gramming language, is nowadays a viable alternative to Lisp in symbolic processing and

Arti�cial Intelligence research.

3.1 Prolog

The operational semantics of Prolog is

based on SLD-resolution (Apt & van Emden (1982) and Lloyd (1984)). That is, Pro-

log's execution follows a sequential simulation of the nondeterministic computation, using

a depth-�rst search strategy with a backtracking mechanism incorporated. In the com-

putation process, Prolog will try all uni�able clauses sequentially, in the order they occur

in the program text, and subgoals are solved from left to right. When it fails to �nd a

clause whose head can be uni�ed with the current goal, it backtracks to the most recently

executed goal, undoes any substitutions made by the uni�cation, and tries to resatisfy

that goal with a di�erent solution. If none can be found, the entire computation fails.

The computation process can also be described as the traversal of a computation tree.

A computation tree T of a program P is a rooted, ordered tree. Each node in the tree has

the form p(x; y), where p is a procedure (predicate) name, and x and y represent input

and output vectors over some domain. For the clause

p(x; y) : � p1(x1; y1); p2(x2; y2); : : : ; pk(xk; yk)

involved in a computation, the corresponding part in T includes the internal node p(x; y)

and its sons p1(x1; y1), p2(x2; y2); : : : ; and pk(xk; yk). The meaning of this tree is as

follows: procedure p, on input x, calls p1 on x1, and if this call returns y1, then p calls p2
on x2, and if this call returns y2 then : : :, then p calls pk on xk, and if this call returns yk,

then p returns y as its output. If a node p(x; y) has no sons, then the procedure p has a

legal computation that returns y on input x without performing any procedure calls.

Programs, for our purposes, are presumed to obey their Horn clause declarative seman-

tics, i.e., those extra-logical features, such as cuts, clause order, and subgoal order, may

a�ect e�ciency and termination, but not correctness.

4

3.2 Meta Programming

One important feature of a programming language that has simple, well-de�ned semantics

(such as pure Prolog or pure Lisp) is that it can easily be used to build a system that

manipulates and executes other programs written in that language. As pointed out in

Fuchi & Furukawa (1986), meta programming can be characterized as programming that:

(1) handles programs as data; (2) handles data as programs and evaluates them; and (3)

handles a result (success or fail) of computation as data.

This meta programming capability is essential when implementing a system to reason

about programs. It provides a basis for building a powerful programming environment.

Prolog is especially attractive in this aspect, since one can easily write a meta interpreter

to execute pure Prolog programs in just three lines, as shown in Figure 1. The �rst clause

interpret((G1; G2)) : � interpret(G1);
interpret(G2)

interpret(Goal) : � system(Goal);
Goal

interpret(Goal) : � clause(Goal; SubGoals);
interpret(SubGoals)

Figure 1: A Prolog meta interpreter

solves a conjunctive goal by recursively solving its components. The second clause checks

if (a noncomposite) Goal is a system (built-in) predicate (system itself is a built-in

predicate that succeeds if Goal is a call to a built-in procedure) and, if it is, executes the

goal directly. The third clause uses a built-in predicate clause both to �nd a clause whose

head can be uni�ed with Goal and to reduce Goal to the list of subgoals in the body of

that clause. The interpreter then solves these subgoals recursively. As will be seen, our

debugging system, for pure Prolog programs, is based on the scheme of this interpreter.

4 Executable Speci�cations

In software development, a speci�cation may be regarded as an abstraction of a concrete

problem at hand, as the starting point for the subsequent program development, and as

the criterion for judging the correctness of a �nal software product. It is a precise and

independent description of the expected program behavior, a description of what is desired,

rather than how it is to be achieved or implemented.

As long as the speci�cation is formulated in a language which has operational seman-

tics, the speci�cation becomes a prototype (a partially complete functional model of the

target system), and the behavior of which may be scrutinized to determine if it is in

fact the behavior of the desired software product. A logic-based language would serve

5

this purpose well (cf. Clark (1981) and Kowalski (1985)), since it is a formal language

and has simple syntax, well-de�ned declarative semantics, and a well-understood deduc-

tive mechanism. Simple in syntax makes a speci�cation easier to understand. Having a

well-de�ned declarative semantics facilitates the construction of high-level speci�cations,

since a speci�cation language is to describe intended behavior (what) without prescribing

a particular algorithm (how). The deductive mechanism provides operational validation

of the speci�er's intentions.

4.1 Specifications in Prolog

First-order predicate calculus has long been used as a speci�cation language. The typi-

cal approach to program veri�cation (e.g., Hoare (1969) and Katz & Manna (1976)) ex-

presses speci�cations in �rst-order logic, and relates them to conventional programs by

de�ning the semantics of programs in a \programming" logic. As mentioned earlier, in

logic programming, one can use a single language for both speci�cation and computation.

Since Horn clauses are a powerful subset of �rst-order logic, Prolog can often be used

for speci�cations with the advantageous extra feature of executability: a program's spec-

i�cations can be written in Prolog itself and can be executed by the Prolog interpreter or

compiler directly.

For our debugging purpose, the speci�cations of a program describe the relationships

between program variables by giving input/output constraints. They de�ne the func-

tionalities of the program without imposing a restriction on how these functionalities

are to be achieved. The speci�cations can be viewed as procedural abstractions (cf.

Liskov & Berzins (1986)). A procedural abstraction performs a mapping from a set of

input values to a set of output values.

It may then be argued that speci�cations are no di�erent from programs. Indeed, in

logic programming, as Kowalski (1985) has contended, execution e�ciency is the main

criterion for distinguishing programs from complete speci�cations. Speci�cations empha-

size clarity and simplicity but not e�ciency, while in the implementation of programs,

e�ciency is the main consideration. In other words, speci�cations written in Prolog can

be considered to be nonalgorithmic, executable, and perhaps ine�cient programs.

Another aspect of speci�cations is that they provide information on the well-founded

ordering of input arguments for recursive procedures. A well-founded ordering � is a

binary relation on elements of a nonempty set S such that the relation is transitive,

asymmetric, and irreexive, and such that S has no in�nite descending sequences. The

ordering speci�es, for a particular recursive call, which arguments should be decreasing.

This is used for detecting looping.

In this research, we presume that speci�cations faithfully reect the intended require-

ments of a program (cf. Gerhart & Yelowitz (1976)). To obtain the desired e�ect, it is

sometimes necessary to use impure features, i.e., non-logical control structures, of Prolog.

6

More expressive languages, e.g., Eqlog (Goguen & Meseguer (1986)), Hope with uni�-

cation (Darlington et al. 1986), and Rite (Josephson & Dershowitz (1986)) may be even

more suitable for speci�cations.

4.2 Generation of Test Cases

Executable speci�cations of a program not only compute the desired output, but also

generate useful test cases for that program, provided that axioms for primitive predicates

are supplied. The information contained in speci�cations regarding the expected output

behavior is indispensable for checking the correctness of the results of program execution,

while test cases help reveal instances of incorrect output.

To generate test cases for a given goal, we �rst run the speci�cations of that goal to

obtain a pair consisting of an input along with its expected output. We then use only

the input value to run the goal on the program to be debugged. If the execution fails,

goes into a loop, or returns an incorrect output value, then this test case has shown us

that there is at least one bug in the program. In other words, a test case consisting of

a correct input/output pair can be used to discover bugs should they cause the program

to fail to compute the correct answer. If one of the predicates in the speci�cations of a

program is de�ned in the form of a \generator", then we can generate alternate test cases

by utilizing Prolog's built-in backtracking facility. If we use a breadth-�rst mechanism to

generate test cases, we can generate a complete (perhaps in�nite) set of test cases for that

program.

Example 1. Generating test cases from speci�cations

Suppose we have the following speci�cation for a sorting procedure:

spec(sort(In List; Out List)) : � ordered(Out List); perm(In List; Out List)

which says that feeding a list \In List" to the procedure sort, the list \Out List" is a

correct result if it is in order and is a permutation of \In List". Given that perm is de�ned

in a way that generates all possible permutations of a list (Figure 2), ordered accepts a

perm([]; [])
perm([X jXs]; Y s) : � del(X; Y s; Zs);

perm(Xs; Zs)
del(X; [X jXs];Xs)

del(X; [Y jXs]; [Y jY s]) : � del(X;Xs; Y s)

Figure 2: Procedure perm

list in ascending order (Figure 3), and the primitive predicate lt de�nes the basic less than

relation (Figure 4), then by executing spec(sort(In List; Out List)) with uninstantiated

7

ordered([])
ordered([X])

ordered([X1;X2jX]) : � lt(X1; X2);
ordered([X2jX])

Figure 3: Procedure ordered

lt(X; Y) : � is number(X);
is number(Y);
X < Y

is number(0)
is number(X) : � is number(Y);

X is Y + 1

Figure 4: Primitive predicate lt

variables we can generate a sequence of input/output pairs. The �rst value generated for

In List is an empty list (i.e., []), then a one-element list (i.e., [X]), then two-element

lists with all possible permutations (i.e., [0; 1] and [1; 0]), then three-element lists with all

possible permutations, etc. The variable Out List contains the expected result for each

given input, and can be used to verify the correctness of a program (see section 4.3).

4.3 Validation of Computation Results

When a program is to be debugged, we assume that the properties of each procedure

in the program can be described by the program's speci�cations. These nonalgorithmic

speci�cations detail the relationships between program variables as well as the well-founded

ordering under which successive input values to recursive procedures form a descending

sequence. In other words, they de�ne all legal input/output pairs for each procedure.

Unspeci�ed procedures are presumed correct.

Suppose we have a relation R that is de�ned by speci�cations S and is to be computed

by program P . If every instance of R computed by P can also be deduced from S, then

P is partially correct with respect to S, i.e.,

if P ` R then S ` R,

where X ` Y denotes that conclusion Y can be derived or proved from assumption X .

This actually means that the program P is consistent with the speci�cation S, or

S ` P .

If there is a computation result of P that cannot be deduced from S, then P is incorrect

with respect to S.

8

On the other hand, if every instance of R de�ned by S can be obtained by executing

P , then P is complete with respect to S, i.e.,

if S ` R then P ` R.

This means that the program P derives every instance of R that is de�ned by the speci-

�cation S, or

P ` S.

If there is an instance of R that is de�ned by S but cannot be the result of executing P ,

then that instance is \uncovered" and P is incomplete.

If during a computation, P generates an in�nite sequence of procedure calls, then P is

nonterminating. Otherwise, it terminates.

We test for partial correctness and completeness by checking the computation results

against a program's speci�cations. Termination is tested for by routines that compare the

inputs with respect to a speci�ed well-founded ordering whenever a procedure is invoked.

5 Automated Bug Location

When a Prolog program does not compute correct results, it may be that the program

contains incorrect clauses, is incomplete in de�ning certain relationships between program

variables, or has an in�nite procedure invocation sequence. We now discuss how each of

these three types of errors can be detected and located automatically, based on the meta

programming capability of Prolog and executable speci�cations.

5.1 Locating Incorrect Clause

Consider the computation of procedure p(x0; y0) of program P with input x0 and output y0,

with y0 being incorrect with respect to the speci�cations of p. We trace the computation

and check the result of each procedure call (by executing the speci�cations) as soon as it

is completed. Suppose

q(u0; v0) : � r1
0; :::; rn

0

is the �rst application (instance) of a clause to return an incorrect output v0 on input u0,

then the applied clause

q(u; v) : � r1; :::; rn

of procedure q is incorrect. This is explained by the fact that, if q(u0; v0) is the �rst

call returning an incorrect output, all the procedure calls r10; :::; rn
0 must have completed

earlier and returned correct results. Thus, the implication

q(u; v) : � r1; :::; rn

is false (for the instance u0, v0) with respect to the speci�cations.

The algorithm can be summarized as the pseudo-Prolog code in Figure 5. To compute

9

execute(Goal; Message) : �
clause(Goal; Subgoal)
execute(Subgoal; Message1)
diagnose(Goal; Subgoal; Message; Message1)

diagnose(Goal; Subgoal; ok(Goal); ok(Subgoal)) : �
spec(Goal)

diagnose(Goal; Subgoal; incorrect(Goal : �Subgoal); ok(Subgoal)) : �
not spec(Goal)

diagnose(Goal; Subgoal; Message1; Message1)

Figure 5: An algorithm for locating an incorrect clause

a goal, we �rst �nd a clause whose head can be uni�ed with Goal and recursively solve

the subgoals in the clause. If we can identi�ed an error in the subgoals, we return the

error message to the top level, using the third clause of diagnose. On the other hand,

if all the subgoals return correct results, then we check if Goal is satis�ed, by running

speci�cations on the instantiated Goal. If the result is consistent with the speci�cations

of Goal, then the clause is correct. The �rst clause of diagnose shows this result. If the

computed Goal is not consistent with its speci�cation, the second clause of diagnose will

return an instance of the incorrect clause.

Example 2. Locating an incorrect clause.

Consider the insertion sort program in Figure 6, adapted from Shapiro (1983), with spec-

i�cations for each of its procedures shown in Figure 7. The speci�cation for isort is the

isort([X jXs]; Y s) : � isort(Xs; Zs);
insert(X;Zs; Y s)

isort([]; [])
insert(X; [Y jY s]; [Y jZs]) : � Y > X;

insert(X; Y s; Zs)
insert(X; [Y jY s]; [X; Y jY s]) : � X <= Y

insert(X; []; [X])

Figure 6: An incorrect insertion sort

same as that for sort in section 4.2 (actually this de�nition can be used for any sorting

routines). For insert, the speci�cation means that insert(X; Y; Z) is correct if Z is in

order and is a permutation of the list consisting of the element X and list Y , provided

that Y is in order in the �rst place. Note that we use the if-then-else symbol \!" of

Prolog in the speci�cation of insert to have a precise de�nition. Without using \!", the

complete speci�cation for insert would require the following two clauses:

10

spec(isort(X; Y)) : � ordered(Y);
perm(X; Y)

spec(insert(X; Y; Z)) : � ordered(Y) !
ordered(Z);
perm([X jY]; Z)

Figure 7: Speci�cations for the insertion sort program

spec(insert(X; Y; Z)) : � ordered(Y); ordered(Z); perm([X jY]; Z)
and

spec(insert(X; Y; Z)) : � not ordered(Y).
We now run isort on input [2,1,3] (the user actually need not supply the input list [2,1,3],

since it can be generated by running the speci�cations of isort, as shown in section 4.2.

Here is the result (for the examples used in this paper, user input is shown in bold face

and system generated output is shown in typewriter type font):

| ?- execute(isort([2,1,3],Answer), Message).

Error detected. Debugging ...

The clause

insert(1,[3],[3,1]):-3>1,insert(1,[],[1])

is false!

Answer = X

Message = [wrong_clause,insert(1,[3],[3,1]),(3>1,insert(1,[],[1]))]

yes

We found a false instance of the �rst clause of insert. The error was due to the

arithmetic test. Since the positions of the two arguments are exchanged, it forces a smaller

element to be inserted after a larger element. The result is an unsorted list that fails on the

speci�cation check. Note that the variable Message is actually passed, in our debugging

system, to the bug �xing routine which is discussed in section 8.

The computation tree in Figure 8 shows how the diagnostic procedure works on isort

with input [2; 1; 3]. It traverses the computation tree in post-order and checks each pro-

cedure of its correctness. With reference to the tree, during the diagnostic process each

of the nodes marked with an asterisk has been veri�ed by the interpreter as correct with

respect to its speci�cations, while the node pointed by \ �" is the �rst node that con-

tains results inconsistent with its speci�cations. Therefore, the interpreter returns this

node along with its two sons (equivalent to an instantiated clause) as a counterexample.

5.2 Locating Incomplete Procedures

If P �nitely fails (cf. Lloyd (1984)) on a procedure call p(x0; y) with legal input x0

and uninstantiated output y (i.e., the speci�cation of p(x0; y) is satis�able), then P

11

isort([2; 1; 3]; [2; 3; 1])
isort([1; 3]; [3; 1])

isort([3]; [3]) �
isort([]; []) �
insert(3; []; [3]) �

insert(1; [3]; [3; 1]) �
3 > 1 �
insert(1; []; [1]) �

insert(2; [3; 1]; [2; 3; 1])
2 <= 3

Figure 8: The computation tree for isort([2; 1; 3]; [2; 3; 1])

must contain at least one incomplete procedure. This incompleteness corresponds to a

computation tree which is �nite but contains a node which represents an unsuccessful

branch. There are two possibilities: if p with input x0 invokes no other procedures, then

p is incomplete; if, on the other hand, p calls other procedures, then p or one of the

procedures invoked after p must be incomplete. Accordingly, we trace the execution of

p. If a satis�able call to a procedure q fails, while all procedures called by q return an

answer whenever the call is satis�able, then it is q that is deemed incomplete.

We summarize the above algorithm in Figure 9. In other words, the interpreter for

execute(Goal; Message) : �
clause(Goal; Subgoals)
satisfiable(Subgoals)
execute(Subgoals; Message)

execute(Goal; uncovered(Goal)) : �
satisfiable(Goals)

Figure 9: An algorithm for locating incomplete procedures

locating an incomplete procedure can be built in a way that it �rst tries to establish a

computation tree from the execution of the goal and recursively executes the new subgoals.

When a satis�able call Goal fails to �nd a clause that can complete the computation, one

can be sure that Goal is not covered.

Example 3. Locating an incomplete procedure.

Suppose we have an incomplete program as in Figure 10. With the same speci�cations in

Figure 7, we try isort on [3,2,1]:

| ?- execute(isort([3,2,1],Answer), Message).

12

isort([X jXs]; Y s) : � isort(Xs; Zs);
insert(X;Zs; Y s)

isort([]; [])
insert(X; [Y jY s]; [Y jZs]) : � X > Y;

insert(X; Y s; Zs)
insert(X; [Y jY s]; [X; Y jY s]) : � X <= Y

Figure 10: An incomplete insertion sort

Error detected. Debugging ...

The goal

insert(1,[],[1])

is not covered!

Answer = X

Message = [uncovered,insert(1,[],[1])]

yes

We now have an instance of the uncovered goal and the debugger detects that the in-

complete procedure is insert, which does not have a clause to cover the base case (when

inserting an element to an empty list).

The incomplete computation tree of isort on [3,2,1] is in Figure 11. In the computation

isort([3; 2; 1]; Answer)
isort([2; 1]; X1)

isort([1]; X2)
isort([]; [])
insert(1; []; X2) �

Figure 11: The computation tree for isort([3; 2; 1];Answer)

tree, insert(1; []; X2) is the �rst goal that cannot be uni�ed with any clause in the program.

The computation stops at this point because of the failure of this node.

5.3 Locating a Diverging Procedure

If P is partially correct, but nonterminating, then during the computation, some procedure

p must be invoked repeatedly (however, there may be calls to other procedures in between

the calls to p), with the sequence of input values to p not decreasing in the speci�ed well-

founded ordering � for p. In the computation tree, a diverging computation corresponds

to the in�nite growth on one branch of the tree. This nonterminating computation can be

13

detected by tracing P and checking that each call is smaller with respect to � than the

previous one.

Example 4. Locating a diverging procedure.

The program in Figure 12 contains a loop. Its well-founded ordering speci�cations are in

Figure 13. The predicate wfo speci�es the well-founded ordering for sequences of input

isort([X jXs]; Y s) : � isort(Xs; Zs);
insert(X;Zs; Y s)

isort([]; [])
insert(X; [Y jY s]; [Y jZs]) : � insert(X; Y s;Ws);

insert(Y;Ws; Zs)
insert(X; [Y jY s]; [X; Y jY s]) : � X <= Y

insert(X; []; [X])

Figure 12: A looping insertion sort

wfo(isort(X; Y); isort(U; V)) : � shorter(X;U)
wfo(insert(X; Y; Z); insert(U;V;W)) : � shorter(Y; V)

Figure 13: Well-founded ordering for recursive procedures

values. For both isort and insert, the number of elements in the input list should decrease

with each recursive call. As with the case for predicates perm and ordered, shorter can

be de�ned in Prolog in a straightforward, declarative manner.

Running isort on [2,1,3], we have

| ?- execute(isort([2,1,3],Answer), Message).

Error detected. Debugging ...

The goal "insert(3,[1],X)" in the clause

insert(1,[3],X):-insert(1,[],[1]),insert(3,[1],X)

is looping!

Answer = Y

Message = [looping,insert(1,[3],X), (insert(1,[],[1]), insert(3,[1],X)),

insert(3,[1],X)]

yes

As can be seen from the in�nite computation tree (Figure 14) for this goal, the second

argument (i.e., [1]) of the goal insert(3; [1]; X) has the same length as the second argument

14

(i.e., [3]) of the head (i.e., insert(1; [3]; X)) of the invoked clause. This clearly violates the

relationship de�ned in wfo(insert) which says that the length of lists should get shorter

with each recursive call.

isort([2; 1; 3]; Answer)
isort([1; 3]; X1)

isort([3]; X2)
isort([]; [])
insert(3; []; [3])

insert(1; [3]; X)
insert(1; []; [1])
insert(3; [1]; X) �

insert(3; []; [3])
insert(1; [3]; X)

. ..

Figure 14: An in�nite computation tree

5.4 A Meta Interpreter for Automatic Bug Location

Given the above analysis, we can construct a meta interpreter which executes programs,

diagnoses errors according to the speci�cations of programs, and locates and reports bugs

once they are identi�ed. This meta interpreter is summarized in Figure 15. The procedure

execute(Goal; Message) serves two functions: goal reduction and bug location. The �rst

clause deals with conjunctive goals. If the �rst conjunct executes correctly, the remaining

conjuncts will be tried in order; otherwise, it just returns the error found to the top level.

The second clause executes built-in primitives directly. The next three clauses detect bugs

of nontermination, incorrect clauses, and uncovered goals, respectively. It �rst checks if

the input variables violate the well-founded ordering de�ned in the speci�cation of the

procedure that covers the goal. If such is the case, we have an instance of a looping

goal. If the input cannot cause an in�nite sequence of procedure calls, the interpreter will

proceed to check if the program can actually complete the computation on the given input.

It �rst �nds a clause whose head can be uni�ed with Goal and then recursively executes

(and debugs) the subgoals in the body of that clause. If a bug is found in the body of

a clause, it will be returned to the top level for correction. If all the subgoals complete

successfully, then all the output variables in Goal will be instantiated. The interpreter

then checks if the output value is correct with respect to the speci�cations of Goal. If not,

then we have found an incorrect clause. On the other hand, if there is no clause in the

program that covers the goal for the input data (i.e., no unifying clause or a subgoal fails

in every unifying clause), then, since Goal is satis�able according to the speci�cations, the

program must be incomplete and we have an instance of an uncovered goal.

15

execute((Goal1; Goal2); Message) : �
execute(Goal1; Msg Goal1),
if Msg Goal1 = ok(Goal1)

then execute(Goal2; Message)
else Message = Msg Goal1

execute(Goal; ok(Goal)) : �
system(Goal); Goal

execute(Goal; looping(Goal)) : �
not decreasing(Goal)

execute(Goal; Message) : �
clause(Goal; Subgoals),
execute(Subgoals; Msg Subgoal),
if Msg Subgoal = ok(Subgoals)

then if spec(Goal)
then Message = ok(Goal)
else Message = incorrect((Goal : � Subgoals))

else Message = Msg Subgoal

execute(Goal; uncovered(Goal))

Figure 15: An automatic meta interpreter for bug location

6 Heuristic Bug Correction

Just as knowing that a program is incorrect does not mean that one knows where the bug

is, knowing the location of a bug does not imply that one knows how to correct it. Although

Myers (1979) has claimed that that bug correction is a much easier task than bug location,

we believe that correcting a bug after it is identi�ed is generally a more di�cult task than

locating the bug, especially when it is to be performed by a machine. This is because

bug location only requires tracing the execution of procedures and checking the results of

computation. Bug correction, on the other hand, requires reasoning with knowledge of

the domain and intended algorithm, the semantics of the programming language and the

input/output speci�cations.

In the automation process, it is intricate to formalize the complex knowledge involved

in bug correction and represent it in a form that can be utilized by the debugger. Some

automatic debugging system (e.g., Murray (1986)) uses the stored information in their

system's knowledge base for bug correction by matching (maybe partially) and replacing

the buggy program with the established code fragments. In our case, we have only the

knowledge contained in the speci�cations of the individual procedures and the operational

semantics of pure Prolog. In addition, we have devised some heuristics|based on a classi-

�cation of Prolog bugs|that suggest a possible cause for the error. Deductive or inductive

corrective measures or both are then employed in an attempt to bring the program in line

with the given speci�cations.

16

6.1 Fixing an Incorrect Clause

A clause

p(x; y) : � p1; :::; pn

is incorrect if there is an instance of that clause, say,

p(x0; y0) : � p1
0; :::;pn

0

such that all the pi
0's are true (i.e., their speci�cations hold), but p(x0; y0) is false. (Here

x0 denotes the test input value(s) to p and y0 is the output after the call p(x0; y) returns.)

To �x this incorrect clause, we �rst rerun the speci�cation of p to get a correct output,

say y00, for the given input x0. How the program behaves with the goal p(x0; y00) will help

guide the debugger.

If the solved goal p(x0; y00) is covered by another clause in the program (i.e., there

exists at least one clause in the procedure that computes this goal correctly), then the

incorrect clause should not have completed and returned a wrong result. Instead, the

clause should presumably have failed for this input. We can, therefore, attempt to include

extra conditions that prevent computation for the improper input x0. To add subgoals to

the clause, we try to construct a proof that the right hand side of the clause implies the

left hand side. If the proof fails because of some missing conditions, we can add them as

subgoals to the clause (detail below). Alternatively, we can use the o�ending clause as

a starting point for an inductive synthesis of a correct clause (see below). In the worst

case, we can always add the subgoal fail to the clause. Although this might be too strong

a �x and might result in some other goals becoming uncovered, adding fail as a subgoal

does make the clause (vacuously) correct. We will discuss below how to deal with any

uncovered goals.

If the solved goal p(x0; y00) is only covered by the incorrect clause, then we proceed

to add conditions that preclude computation of the wrong answer y0, with input x0, as

above. A su�cient condition (viz. if x = x0 then y = y00) can be deduced from the

variable bindings obtained when unifying p(x0; y00) with the clause head p(x; y) and may

be added to the clause as subgoals. Or, an inductive approach may be taken.

If the solved goal p(x0; y00) is not covered by any clause, then the �x proceeds in di�erent

directions, depending on whether p(x0; y00) can be uni�ed with the head of the incorrect

clause. If the head does unify, but some of the subgoals fail for y00, then we presume

that the incorrect clause should cover the goal p(x0; y) and compute y00 instead of y0. In

this case, we can combine �xes for the uncovered goal, p(x0; y00), and the incorrect clause

that computes the erroneous solution p(x0; y0). We check, for p(x0; y00) (i.e., under the

current input and correct output), which of the subgoals in the clause fail with the output

constrained to be y00. After identifying any such incorrect subgoals, we try to �x them by

either applying a heuristic rule or an inductive method. We rearrange, replace, delete, or

add new variables within subgoals until the original incorrect clause computes p(x0; y00)

correctly. The induction method that we use to correct incorrect subgoals is a modi�cation

of the re�nement method in Shapiro (1983).

17

The last possibility is that p(x0; y00) cannot be uni�ed with the head of the incorrect

clause, nor is it covered by other clauses in the program. In this case, we assume that

the incorrect clause we have identi�ed should cover this goal. Accordingly, the only way

to correct the bug is to �rst �x (i.e., weaken) the clause head so that it is uni�able with

p(x0; y00). The methods described above can then be used to �x any incorrect subgoals.

We summarize the strategies for correcting an incorrect clause as the following heuristic

rules:

� If the solved goal is covered by a clause in the program, then deduce missing subgoals

and add them to the incorrect clause to preclude the wrong answer.

� If the solved goal can be uni�ed with the head of the incorrect clause but is not

covered by any clause in the program, then �x the subgoals that fail for the correct

answer and continue debugging the clause.

� If the solved goal cannot be uni�ed with the head of the incorrect clause and is

not covered by any clause in the program, then �x the clause head and continue

debugging the clause.

Example 5. Fixing an incorrect clause.

We demonstrate this process with insertion sort program in Figure 16.

isort([X jXs]; Y s) : � isort(Xs; Zs);
insert(X;Zs; Y s)

isort([]; [])
insert(X; [Y jY s]; [Y jZs]) : � insert(X; Y s; Zs)

insert(X; [Y jY s]; [X; Y jY s]) : � X � Y

insert(X; []; [X])

Figure 16: An incorrect insertion sort

We now test the program on input list [0,1]:

| ?- debug(isort([0,1],Answer)).

Error detected. Debugging ...

The clause

insert(0,[1],[1,0]):-insert(0,[],[0])

is false!

The goal "insert(0,[1],[0,1])" is covered

There are missing subgoals in the clause:

insert(X,[Y|Z],[Y|V]):-insert(X,Z,V)

Retract erroneous clause:

18

insert(X,[Y|Z],[Y|V]):-insert(X,Z,V)

Generating missing subgoals ...

Assert clause:

insert(X,[Y|Z],[Y|V]):-Y<X,insert(X,Z,V)

The debugger detected an incorrect clause in procedure insert when trying to solve the

goal isort([0; 1]; Answer). After some analysis, it determined that the clause

insert(X; [Y jZ]; [Y jV]) : � insert(X;Z; V)

is false for X = 0; Y = 1; Z = []; V = [0] (note that the debugger occasionally renames

variables); furthermore, it need not be covering the subgoal insert(0; [1]; Z), since the

solved subgoal insert(0; [1]; [0; 1]) is in fact covered by another clause,

insert(X; [Y jZ]; [X; Y jZ]) : � X <= Y ,

in the program. The debugger then tried to deduce a missing subgoal by constructing a

proof. It tried to prove that insert(X;Z; V) implies insert(X; [Y jZ]; [Y jV]), and concluded

that, by adding Y < X to the right-hand side of the clause, the implication will hold.

Therefore, the debugger removed the incorrect clause and asserted the synthesized clause

to the program. This proof process requires the theorem prover for Horn clauses described

in section 6.4.

6.2 Fixing an Incomplete Program

To remedy the problem of an uncovered goal, we �rst check if the goal can be uni�ed with

the head of a clause. If indeed such a clause exists, then we presume that it should cover

this goal. Since the original clause might be useful for other goals, instead of modifying

the clause directly, we make local changes on a copy. We locate the subgoal that causes

this clause to fail and either try to �x it inductively (by rearranging, replacing, deleting,

or adding variable within the subgoal) or eliminate the o�ending subgoal entirely and use

deductive means to correct it, if necessary.

When there is no clause whose head uni�es with the uncovered goal, we use the speci-

�cations to synthesize a new clause. This can be done by using the uninstantiated goal as

the clause head and the speci�cations as the clause body, simplifying the resulting clause

as much as possible, or by an inductive method, using the speci�cations to guide the

search. We can also �x a clause head so that it can be uni�ed with the uncovered goal,

and then debug the subgoals in the clause.

The above strategies for dealing with uncovered goals can be summarized as follows:

� If the uncovered goal can be uni�ed with the head of a clause, then duplicate the

clause, and locate and �x its unsatis�able subgoals.

� If the uncovered goal cannot be uni�ed with the head of a clause, then use the

speci�cations for that goal to synthesize a new clause.

19

6.3 Fixing a Looping Procedure

When the input to a procedure call violates the well-founded ordering de�ned for that

procedure, a likely cause is that the input argument of the call is too general. For example,

it may contain an irrelevant variable that does not appear in either the clause head or

other subgoals of the same clause. Other possibilities are that some variables are missing

or that the order of arguments is wrong. In any of these cases, what we have is a clause that

contains a looping call caused by incorrect arguments. We try to �x the o�ending subgoal,

using the same inductive method as for �xing incorrect subgoals. Alternatively, we can

weaken it and employ deductive techniques to ensure that the well-founded condition is

met.

It is also possible that a subgoal that would preclude the looping case is missing (and

that the goal is covered by another clause). This can be treated in the same way as an

incorrect clause.

6.4 Deducing Missing Subgoals

According to the deductive semantics of Prolog, the right hand side (the body) of a clause

should imply the left hand side (the head). Therefore, in proving the correctness of a

correct clause, the implication should be found to hold. On the other hand, trying to

prove the implication for an incorrect clause must result in failure. The basic idea is to

try to prove the head of the clause, given the subgoals in the body as hypotheses, and

in the process identify and derive those su�cient conditions that will allow a proof to go

through. (Unlike some method such as that in Katz & Manna (1975), a correct clause

would never be \debugged"; only a clause found faulty by testing is subjected to formal

veri�cation.)

This approach is inspired by the work of Smith (1982) in which a deductive theorem

prover was used to derive a su�cient precondition such that a goal can be shown to

logically follow from the conjunction of the precondition and a hypothesis. In other words,

the precondition provides any additional conditions under which a goal can be proved from

a hypothesis. We adopted and modi�ed this method and constructed a theorem prover

for Horn clauses.

The deductive proof proceeds by reducing both sides of the clause to simpler forms,

by replacing each goal (or subgoal) with its de�nitions or with something that implies it,

and each hypothesis with its de�nition or something that it implies, until a termination

condition is met.

It employs the following rules which, for the most part, are modi�cations of typical

rules for deductive proof (cf. Loveland (1978)). In the rules we use G (possibly with a

subscript) to represent a goal, H (possibly with a subscript) for a hypothesis, ^, _, and

: for logical \and", \or", and \not", \H ! G" for \if H then G", and \lhs) rhs"

20

for \given lhs (left hand side), it is su�cient to prove rhs (right hand side)".

Rule 1. H ! G1 ^ G2) (H ! G1) ^ (H ! G2)

Reduction of a conjunctive goal: To prove a conjunctive goal, prove each conjunct

separately.

Rule 2. H ! G1 _ G2) (H ! G1) _ (H ! G2)

Reduction of a disjunctive goal: To prove a disjunctive goal, prove one of the dis-

juncts.

Rule 3. (H1 _ H2) ! G) (H1 ! G) ^ (H2 ! G)

Reduction of a disjunctive hypothesis: To prove a goal with disjunctive hypotheses,

one can prove that the goal can be proved from each disjunct.

Rule 4. H ! (G1 ! G2)) (H ^ G1) ! G2

Reduction of an implicative goal: To prove a goal which is an implication itself,

include the precondition of the implication as part of the hypothesis and prove the

postcondition of the implication.

Rule 5. (H1 ! H2) ! G) (:H1 ! G) ^ (H2 ! G)

Reduction of an implicative hypothesis: To prove a goal with an implicative hypoth-

esis, �rst prove the goal with the negation of the precondition of the implication,

then prove the goal with the postcondition of the implication.

Rule 6. :H ! :G) G ! H

Contraposition: If both the hypothesis and the goal are in negation form, then one

can drop both negations and reverse the hypothesis and the goal for the proof.

Rule 7. :H1 ^ H2 ! :G) G ^ H2 ! H1

Generalized contraposition: If the goal and one part of the hypothesis are in negation

form, then the proof can be established if one can show that the negation part of

the hypothesis can be derived from the negation of the goal and the non-negation

part of the hypothesis combined.

In addition to these proof rules, there are three ways of reducing a goal or subgoal.

First, we can replace the goal with its de�nition as described in the goal's speci�cation.

This is substitution of equivalent terms:

H ! G) H ! G
0

; if G = G
0

.

It is obvious that, if one substitutes the goal with equal terms, the proof condition will

remain the same. Second, if there is a correct program clause whose head matches the

goal, we can replace the goal with the subgoals in that clause. Note that this is just like the

goal reduction in normal Prolog computation. It can also be regarded as the application

of implicative terms:

H ! G) H ! G
0

; if G ! G
0

.

21

Third, if a speci�c domain fact is known, it can be used to weaken a goal or replace it

with something equivalent (e.g., replacing a list with one of its permutations when the

order does not a�ect the truth value of the predicate). This is an e�ort to build into the

debugger a knowledge handling capability such that it can have some common sense when

reasoning about programs. Similar methods also apply to hypothesis reduction.

The proof process terminates when one of the following conditions is met: (1) the

original goal is reduced to true, in which case the clause is proved correct; (2) the original

set of hypothesis is reduced to false, meaning that there are conicting subgoals in the

clause, and that the clause is vacuously correct; (3) the goal is reduced to a subset of

the hypotheses, in which case the implication is also established; and (4) the original

goal is reduced to primitives and hypotheses, in which case those goals not appearing as

hypotheses are added as subgoals to the original clause. If the proof ends in condition (4),

then we have identi�ed those missing subgoals that will make the clause correct.

A logical simpli�er (cf. Waldinger & Levitt (1974)) is built to aid goal reduction. It is

invoked after each reduction step and performs tasks such as removing nested conjunctions,

duplicate goals, and tautologies (i.e., the goal true). It also simpli�es the goal structures

according to the logical rules governing and, or, not, and implication. For example, if a

conjunctive goal contains the subgoal false, then the whole goal will be reduced to false.

6.5 Fixing Incorrect Subgoals

Once we identify an incorrect subgoal, we can correct it using either a heuristic rule or an

inductive method, besides using the deductive methods outlined in the previous sections.

We have developed heuristics that are meant to correct an incorrect subgoal quickly

when a certain pattern of subgoals is encountered. For example, one of the rules is to

swap the variables if there are only two variables in the subgoal. Other rules include

moving a simple variable to a di�erent position, replacing simple variables with more

complicated terms, deleting seemingly redundant variables, and adding free variables that

have appeared elsewhere in the same clause. The purpose of this kind of heuristic rules is

to attempt to �x some commonly made, yet easily corrected, errors.

When our heuristic rules cannot correct the errors in a subgoal, a general inductive

strategy will be employed with the hope of �xing the bugs. This is done by applying some

re�nement operations on terms within the subgoals. For example, we can try to unify two

free variables, or unify a compound term with variables appearing elsewhere in the same

clause.

It should be noted that all heuristic �xes will be tested immediately after the changes

are made; and if the �xes cannot correct the errors, all the changes will be undone.

22

7 Automated Program Synthesis

A major use of software speci�cations is to provide a very high level descriptive tool so

one can build a large system in top-down fashion. If the speci�cation truly embodies what

one needs, then one should be able to provide that abstract speci�cation as input to an

automatic programming system and be able to receive, as a result, a low level program that

can be executed on the target machine more e�ciently. Ideally, this practice would salvage

much of the grievance in current software development processes. Given the current state

of technology, however, such an automatic programming system is still remote for general

software production.

Nontheless, by restricting the problem domain of such a system, it is possible to apply

such technology and build systems for practical applications. The system described in

(Barstow et al. 1982) deals with a class of numerical software for scienti�c processing and

has allowed the client scientists both greater exibility in their ability to specify program

behavior and much more rapid program development to establish the validity of that

behavior.

The Model Inference System (Shapiro (1983)) can generate Prolog programs from ex-

amples. We now show how executable speci�cations can be incorporated into the this

system. The major bene�t of using speci�cations is to replace the oracle, usually played

by the user, and, therefore, automate the synthesis process. We �rst modify the querying

process of the diagnosis routine in a way that whenever the user is to be queried to con-

�rm or supply a computation result, the system instead executes the speci�cations for an

answer. We also need to add procedures for goal generation and goal rechecking.

Example 6. Program synthesis using executable speci�cations

This example shows the synthesis of an insertion sort program. With all the modi�cations

discussed above, the synthesis proceeds with very little user involvement. In fact, the user

only needs to type in the initial request to start the system, and answer \yes" or \no"

when the system prompts for instruction on whether to continue with the generation of

new goals. This example starts with an empty isort program and the speci�cations of

isort in Figure 7 is given to the system. The process is summarized below:

1. Test goal generated: isort([]; X)

Error: missing solution isort([]; [])

Diagnosis: isort([]; []) is uncovered

Action: Add clause isort(X;X) : �true

Note: The system quickly �nds a clause to cover the �rst goal.

2. Test goal generated: isort([x]; Y)

Error: None

23

3. Test goal generated: isort([0; 1]; X)

Error: None

4. Test goal generated: isort([1; 0]; X)

� Error: wrong solution isort([1; 0]; [1; 0])

Diagnosis: isort([1; 0]; [1; 0]) : �true is false

Action: Remove clause isort(X;X) : �true

Note: An incorrect clause is identi�ed and deleted (the program is now empty

again). The system then checks to make sure that all the goals are still covered.

� Error: missing solution isort([]; [])

Diagnosis: isort([]; []) is uncovered

Action: add clause isort(X; []) : �true

� Error: missing solution isort([x]; [x])

Diagnosis: isort([x]; [x]) is uncovered

Action: add clause isort([X jY]; Z) : �insert(X; Y; Z)

� Error: missing solution isort([x]; [x])

Diagnosis: insert(x; []; [x]) is uncovered

Action: add clause insert(X; Y; [X jY]) : �true

� Error: missing solution isort([1; 0]; [0; 1])

Diagnosis: insert(1; [0]; [0; 1]) is uncovered

Action: add clause insert(X; [Y jZ]; [Y;XjZ]) : �true

� Error: wrong solution isort([1; 0]; [1; 0])

Diagnosis: insert(1; [0]; [1; 0]) : �true is false

Action: remove clause insert(X; Y; [X jY]) : �true

Note: This clause is incorrect, since according to the speci�cation of insert,

inserting the element 1 into the list [0] should result in the output [0; 1] instead

of [1; 0]. It is being replaced.

� Error: missing solution isort([x]; [x])

Diagnosis: insert(x; []; [x]) is uncovered

Action: add clause insert(X; Y; [X]) : �true

Note: This clause does not solve the problem.

� Error: missing solution isort([0; 1]; [0; 1])

Diagnosis: insert(0; [1]; [0; 1]) is uncovered

Action: add clause insert(X; [Y jZ]; [X; Y jZ]) : �X < Y

Note: The program is now correct with respect to all the known facts to the

system. (A fact is de�ned as a ground term with a value of true or false; it may

be supplied by the user, or generated by the system when solving goals. For ex-

ample, < isort([1; 0]; [0; 1]); true > is a fact, so is < isort([1; 0]; [1; 0]); false >.

A correct program should succeed on a true fact, and fail on a false fact.) The

system proceeds to check if the program satis�es the goals generated so far.

24

� Error: wrong solution isort([x]; [])

Diagnosis: isort([x]; []) : �trueisfalse

Action: remove clause isort(X; []) : �true

Note: Removing a clause usually causes problems. The system has to recheck

all the facts and goals.

� Error: missing solution isort([]; [])

Diagnosis: isort([]; []) is uncovered

Action: add clause isort([]; []) : �true

� Error: wrong solution isort([0; 1]; [1; 0])

Diagnosis: insert(0; [1]; [1; 0]) : �true is false

Action: remove clause insert(X; [Y jZ]; [Y;XjZ]) : �true

Note: Search continues ...

� Error: missing solution isort([1; 0]; [0; 1])

Diagnosis: insert(1; [0]; [0; 1]) is uncovered

Action: add clause insert(X; [Y jZ]; [Y;XjZ]) : �Y < X

Note: Found the right clause, but a base clause is still incorrect.

� Error: wrong solution isort([0; 1]; [0])

Diagnosis: insert(0; [1]; [0]) : �true is false

Action: remove clause insert(X; Y; [X]) : �true

� Error: missing solution isort([x]; [x])

Diagnosis: insert(x; []; [x]) is uncovered

Action: add clause insert(X; []; [X]) : �true

Note: Up to this point, the synthesized program solves all the generated goals

(isort([]; []), isort([x]; [x]), isort([0; 1]; [0; 1]), and isort([1; 0]; [0; 1])) success-

fully.

Also, all the operations within this step are done with NO user involvement.

5. Test goal generated: isort([0; 1; 2];X)

Error: None

6. Test goal generated: isort([0; 2; 1];X)

� Error: wrong solution isort([0; 2; 1]; [0; 2; 1])

Diagnosis: isort([0; 2; 1]; [0; 2; 1]) : �insert(0; [2; 1]; [0; 2; 1]) is false

Action: remove clause isort([X jY]; Z) : �insert(X; Y; Z)

� Error: missing solution isort([x]; [x])

Diagnosis: isort([x]; [x]) is uncovered

Action: add clause isort([X jY]; Z) : �isort(Y; V); insert(X; V;Z)

7. Test goal generated: isort([1; 0; 2];X)

Error: None

25

8. Test goal generated: isort([1; 2; 0];X)

Error: None

9. Test goal generated: isort([2; 0; 1];X)

� Error: wrong solution isort([2; 0; 1]; [0; 2; 1])

Diagnosis: insert(2; [0; 1]; [0; 2; 1]) : �0 < 2 is false

Action: remove clause insert(X; [Y jZ]; [Y;XjZ]) : �Y < X

� Error: missing solution isort([1; 0]; [0; 1])

Diagnosis: insert(1; [0]; [0; 1]) is uncovered

Action: add clause insert(X; [Y jZ]; [Y jV]) : �insert(X;Z; V); Y < X

Note: Finally, a clause for the recursive case of insert is found.

10. Test goal generated: isort([2; 1; 0];X)

Error: None

The last permutation of the three-element list now executes correctly on the synthesized

program which is shown in Figure 17.

isort([]; [])
isort([X jY]; Z) : � isort(Y; V);

insert(X; V; Z)
insert(X; [Y jZ]; [X; Y jZ]) : � X < Y

insert(X; []; [X])
insert(X; [Y jZ]; [Y jV]) : � insert(X;Z; V);

Y < X

Figure 17: A synthesized program of insertion sort

8 The Constructive Interpreter

Based on the analyses in previous sections, we can integrate the functions of test case

generation, bug discovery, bug location, and bug correction into an automated debugging

environment. The realization of this framework is the Constructive Interpreter. The struc-

ture of this interpreter is described in Figure 18 in pseudo-Prolog code. Upon receiving

a goal, the interpreter �rst examines the input variables. If the input is symbolic, then

by executing the speci�cations of the procedure, the interpreter will generate test cases.

If the input variables are instantiated, then running the speci�cations on the given input

checks if the input values are satis�able. Once the legality of the input is established or

a legal test input generated, the interpreter proceeds to execute the program on skolem-

ized input. (Skolemization forces the program to �nd one symbolic output for all inputs

with the same given structure.) If execution completes successfully, the interpreter returns

26

interpret(Goal(Input; Output)) : �
spec(Goal(Input; Output)),
skolemize(Input; Skolem),
execute(Goal(Skolem;Output); Message),
fix bug(Message)

Figure 18: The Constructive Interpreter

correct output values. In the case of symbolic input, the user can continue to generate

alternate test cases and execute the program on di�erent inputs. If ever the execution

fails, i.e., if the program contains an incorrect, incomplete, or nonterminating procedure,

then the interpreter will locate a bug and return a diagnostic message. Bug-�xing routines

will then be invoked to correct the bug that have been identi�ed and located.

The procedure execute does goal reduction and bug location, and has been discussed

in section 5.4. The procedure fix bug(Message) implements the bug correction heuristics

discussed in sections 6.1 through 6.3.

This interpreter is constructive in the sense that it assumes an active role during the

debugging process and actually tries to complete the construction of the program being

debugged, all with very little user involvement. It is based on the meta interpreter in-

troduced in Figure 1 and consists of the three major components: test case generator,

bug locator, and bug corrector. The test case generator executes speci�cations to either

generate test input or verify the satis�ability of user-supplied input. The bug locator

also carries out the computation. It has a run-time stack that records all the procedure

invocations. This information and the speci�ed well-founded ordering are used to check

against looping. The execution is simulated to perform depth-�rst search and backtrack-

ing upon failure. A message stack is maintained during execution, and an error message

is recorded whenever an error occurs. The bug corrector contains three main procedures,

dealing with three di�erent kind of errors respectively. In addition to performing error

analysis and suggesting �xes, they all have access to the deductive theorem prover and

inductive subgoal re�ner.

In the remainder of this section, we illustrate the integrated functions, including test

case generation, bug location, and correction, of the Constructive Interpreter. Our exper-

imental implementation is able to generate test cases that reveal errors and locate bugs

for all the sorting examples in Shapiro (1983).

Example 7. Debugging a Quicksort program.

We show an annotated script of the Constructive Interpreter debugging the Quicksort

program in Figure 19, with the speci�cations in Figure 20. The speci�cations say that

qsort(X; Y) holds if Y is sorted and Y is a permutation of X , that part(L;E;X;Y)

27

qsort([X jL]; L0) : � part(L;X; L1; L2);
qsort(L1; L3);
qsort(L2; L4);
append([X jL3]; L4; L0)

part([X jL]; Y;L1; [XjL2]) : � part(L; Y; L1; L2)
part([X jL]; Y; [X jL1]; L2) : � X � Y;

part(L; Y; L1; L2)
part([]; X; [X]; [])

append([X jL1]; L2; [XjL3]) : � append(L1; L2; L3)
append([]; L; L)

Figure 19: A buggy Quicksort program

spec(qsort(X; Y)) : � ordered(Y);
perm(X; Y)

spec(part(L;E;X;Y)) : � rm list(X;L; Y);
gt all(E;X);
lt all(E; Y)

spec(append(X; Y; Z)) : � length(X;N);
front(N;Z;X);
rm list(X;Z; Y)

wfo(qsort(X; Y); qsort(U; V)) : � shorter(X;U)
wfo(part(X;A;B;C); part(Y;D;E; F)) : � shorter(X; Y)
wfo(append(X;A;B); append(Y; C;D)) : � shorter(X; Y)

Figure 20: Speci�cations for the Quicksort program

holds if Y is the list obtained by removing elements of X from L (in other words, L is a

permutation ofX and Y combined) and E is greater than all the elements in X and smaller

then all the elements in Y , and that append(X; Y; Z) is true if Z is the combination of lists

X and Y , in their original order. The predicate wfo speci�es the well-founded ordering

for sequences of input values. For all procedures qsort, part, and append the number of

elements in the input list should decrease with each recursive call. As is also the case

for the insertion sort program, the predicates perm, ordered, rm list, gt all, lt all, and

shorter can be de�ned as usual Prolog procedures. (These procedures should be regarded

as standard building blocks for speci�cation, available in the debugger's library, since they

all apply across a whole gamut of speci�c programs. For example, lt all would play a

role in virtually all sorting and most searching programs and rm list in practically all

programs with destructive list manipulation.)

We now show how the Constructive Interpreter analyzes the above insertion sort pro-

gram. The top level command is apd (for automated program debugger); it prompts with

an asterisk. User input is shown in boldface.

28

Invoking the debugger, we proceed as follows:

| ?- apd.

* qsort(U,V).

Solving goal: qsort([],X) ...

Error detected. Debugging ...

The goal

qsort([],[])

is not covered!

Since qsort(U,V) is symbolic, the debugger �rst generated a test case qsort([]; X) and

tried to satisfy it. It discovered that qsort([]; X) should have a solution qsort([]; [])

according to the speci�cation of qsort, but cannot get it from the program we supplied.

The debugger therefore reported a bug and tried to �x it.

Synthesizing a clause to cover qsort([],[]) ...

Assert clause:

qsort([],[]) :- true

Listing of qsort(X,Y):

qsort([],[]) :- true.

qsort([X|Y],Z) :- part(Y,X,W,X1), qsort(W,Z1), qsort(X1,V1), append([X|Z1],V1,Z).

Since no clause head in the original program uni�ed with qsort([]; []), the debugger used

the speci�cation for qsort and synthesized the clause

qsort([]; []) : � ordered([]); perm([]; [])

to cover that goal. Since the body of this clause can be reduced to true, the debugger

added a unit clause to the program (by asserting it to the database). The goal qsort([]; [])

is now satis�able. Since we initially supplied a symbolic input, we now try for another

test case:

* Try another test case? y.

Solving goal: qsort([x],X) ...

Error detected. Debugging ...

The clause

part([],x,[x],[]) :- true

is false!

The debugger now generated a one element list as test input: qsort([x]; X). (Note that

the input generated, [x], contains a skolem constant x.) This time, it found an incorrect

clause in the procedure part, because partitioning an empty list should result in two

empty sublist, so the result of parti([]; x;X; Y) should be part([]; x; []; []) instead of

part([]; x; [x]; []). After further analysis, the debugger concludes that:

29

The head of the clause

part([],X,[X],[]) :- true

is incorrect. Fixing ...

Cannot fix clause head!

Retract clause:

part([],X,[X],[]) :- true

Synthesizing a clause to cover part([],x,[],[]) ...

Assert clause:

part([],X,[],[]) :- true

Listing of part(X,Y,Z,U):

part([],X,[],[]) :- true.

part([X|Y],Z,U,[X|W]) :- part(Y,Z,U,W).

part([X|Y],Z,[X|V],W) :- X <= Z, part(Y,Z,V,W).

Since the unit clause in the procedure part was incorrect, and the debugger could not �x

the head, it retracted the clause. After synthesizing a clause that covers part([]; x; []; []),

the debugger reexecuted all the test goals generated so far to make sure the changes do

not destroy anything. (Note that there is no way a correctly synthesized clause can cause

a problem; retracting an incorrect clause, however, could conceivably cause some goals to

become uncovered.)

Checking previous goal qsort([],X) ...

Found solution: qsort([],[])

Checking previous goal qsort([x],X) ...

Found solution: qsort([x],[x])

Since every goal generated so far can be satis�ed, the debugger prompts the user:

* Try another test case? y.

Solving goal: qsort([0,1],X) ...

Found solution: qsort([0,1],[0,1])

The next test case generated is qsort([0; 1]; X). Unlike the previous two test cases, the

goal qsort([0; 1]; X) is solved directly by the clauses currently in the program.

* Try another test case? y.

Solving goal: qsort([1,0],X) ...

Error detected. Debugging ...

The clause

part([0],1,[],[0]) :- part([],1,[],[])

is false!

The next test goal qsort([1; 0]; X) resulted in the location of an incorrect clause in the pro-

cedure part. A trace of the procedures shows that the correct solution to part([0]; 1; X; Y),

viz. part([0]; 1; [0]; []), can be obtained from the other clause of part. Thus, this incorrect

clause should have failed, but did not because of a missing subgoal. Our debugger is able

to deduce this missing subgoal:

30

There are missing subgoals in the clause:

part([X|Y],Z,U,[X|W]) :- part(Y,Z,U,W)

Retract erroneous clause:

part([X|Y],Z,U,[X|W]) :- part(Y,Z,U,W)

Generating missing subgoals ...

Assert clause:

part([X|Y],Z,U,[X|W]) :- Z <= X, part(Y,Z,U,W)

Listing of part(X,Y,Z,U):

part([X|Y],Z,U,[X|W]) :- Z <= X, part(Y,Z,U,W).

part([],X,[],[]) :- true.

part([X|Y],Z,[X|V],W) :- X <= Z, part(Y,Z,V,W).

After correcting for the missing subgoal (by retracting an incorrect clause and asserting a

correct one), the debugger reexecuted all the test goals again.

Checking previous goal qsort([],X) ...

Found solution: qsort([],[])

Checking previous goal qsort([x],X) ...

Found solution: qsort([x],[x])

Checking previous goal qsort([0,1],X) ...

Found solution: qsort([0,1],[0,1])

Checking previous goal qsort([1,0],X) ...

Error detected. Debugging ...

The clause

qsort([1,0],[1,0]) :- part([0],1,[0],[]), qsort([0],[0]),

qsort([],[]), append([1,0],[],[1,0])

is false!

As shown above, the debugger caught another bug when trying to resatisfy the current

test goal. Further diagnosis narrows down the bug's location:

The clause

qsort([X|Y],Z) :- part(Y,X,W,X1), qsort(W,Z1), qsort(X1,V1), append([X|Z1],V1,Z)

contains incorrect subgoals. Fixing ...

Subgoal "append([X|Y],Z,U)" in clause

qsort([X|W],U) :- part(W,X,U1,V1), qsort(U1,Y), qsort(V1,Z), append([X|Y],Z,U)

is incorrect

Trying a local fix ...

Retract clause:

qsort([X|Y],Z) :- part(Y,X,W,X1), qsort(W,Z1), qsort(X1,V1), append([X|Z1],V1,Z)

Assert clause:

qsort([X|Y],Z) :- part(Y,X,W,X1), qsort(W,Z1), qsort(X1,V1), append(Z1,[X|V1],Z)

Listing of qsort(X,Y):

31

qsort([X|Y],Z) :- part(Y,X,W,X1), qsort(W,Z1), qsort(X1,V1), append(Z1,[X|V1],Z).

qsort([],[]) :- true.

Up to this point, all the bugs in the original program have been detected and corrected. If

we now continue to debug the program, the debugger will keep on generating arbitrarily

long lists as test input without reporting an error. We would be led to believe, in this

case, that the program is correct with respect to its speci�cations. (Formal veri�cation of

its correctness would require greater theorem proving capabilities.)

Example 8. Debugging a merge sort program.

We now demonstrate how the debugger deals with a looping error in the merge sort

program in Figure 21. Figure 22 is the speci�cations.

msort([]; [])
msort(X;Z) : � length(X;L);

L1 is L==2;
break(X;L1; X1;X2);
msort(X1; Z1);
msort(X2; Z2);
merge(Z1; Z2; Z)

break(X; 0; []; X)
break([AjX]; L; [AjY]; Z) : � L1 is L� 1;

break(X;L1; Y;Z)
merge([]; X;X)
merge(X; []; X)

merge([AjX]; [BjY]; [AjZ]) : � A � B;
merge(X; [BjY]; Z)

merge([AjX]; [BjY]; [BjZ]) : � A > B;
merge([AjX]; Y;Z)

Figure 21: A buggy merge sort program

Just as Quicksort, merge sort is another example of solving a problem by divide and

conquer. The program accepts a list, breaks it into roughly equivalent halves, recursively

merge sorts the sublists, then merges the sorted halves. Note that the predicates used in

the above speci�cations are the same ones used in the speci�cations for Quicksort.

The following is a debugging script:

| ?- apd.

* msort(U,V).

Solving goal: msort([],X) ...

Found solution: msort([],[])

32

spec(msort(X; Y)) : � ordered(Y);
perm(X; Y)

spec(break(X;N; Y;Z)) : � append(Y; Z;X);
length(Y;N)

spec(merge(X; Y; Z)) : � rm list(X;Z; Y);
ordered(Z)

wfo(msort(X; Y); msort(U; V)) : � shorter(X;U)
wfo(break(X;A;B;C); break(Y;D;E;F)) : � shorter(X; Y)

wfo(merge(X; Y;A); merge(U; V; B)) : � shorter(X;U)
wfo(merge(X; Y;A); merge(U; V; B)) : � shorter(Y; V)

Figure 22: Speci�cations for the merge sort program

The program has no problem solving the empty list. However, it gets into trouble quickly

with the one-element list.

* Try another test case? y.

Solving goal: msort([x],X) ...

Error detected. Debugging ...

The goal "msort([x],Y)" in the clause

msort([x],X) :- length([x],1), 0 is 1//2, break([x],0,[],[x]),

msort([],[]), msort([x],Y), merge([],Y,X)

is looping!

The debugger found that the procedure call msort([x]; Y) to the second clause of msort

violated the well-founded ordering de�ned for that recursive procedure.

Adding subgoals for well-founded ordering in clause:

msort(X,Y) :- length(X,U), V is U//2, break(X,V,Z1,U1),

msort(Z1,W1), msort(U1,Y2), merge(W1,Y2,Y)

Listing of msort(X,Y):

msort([],[]):-true.

msort(X,Y) :- shorter(U1,X), length(X,U), V is U//2,

break(X,V,Z1,U1), msort(Z1,W1), msort(U1,Y2), merge(W1,Y2,Y)

Continue debugging ...

Not being able to �x the o�ending subgoal directly, the debugger added the well-founded

condition as a subgoal to the clause and continues with the analysis.

Error detected. Debugging ...

The goal

msort([x],[x])

is not covered!

33

Synthesizing a clause to cover msort([x],[x]) ...

Assert clause:

msort([X],[X]) :- true

Listing of msort(X,Y):

msort([X],[X]) :- true.

msort([],[]) :- true.

msort(X,Y) :- shorter(U1,X), length(X,U), V is U//2,

break(X,V,Z1,U1), msort(Z1,W1), msort(U1,Y2), merge(W1,Y2,Y)

After enforcing the well-founded ordering on recursive calls, the debugger detected that

the program is incomplete, since the goal msort([x]; [x]) is not covered. Therefore, it

invoked the synthesis routine and found a clause for the goal.

Restoring original clause ...

Listing of msort(X,Y):

msort([X],[X]) :- true.

msort([],[]) :- true.

msort(X,Y) :- length(X,U), V is U//2, break(X,V,Z1,U1),

msort(Z1,W1), msort(U1,Y2), merge(W1,Y2,Y)

Since the error was due to a missing case, the debugger restored the original, correct

clause.

It turned out that the looping bug was due to the behavior of procedure break. A

one-element list to the procedure is always broken into sublists of zero- and one-element.

This one-element list is never reduced in the recursive call, and, therefore, need to be

treated as a special case. Adding a unit clause for it resolve the problem completely.

Note that, in running the debugger, the user only needs to supply top level goals (in our

examples, qsort(U,V) and msort(U,V)), and types in a yes answer for the debugger

to continue debugging with alternative test cases. Since the knowledge necessary for the

discovery, location, and correction of bugs is either built into the debugger or furnished

as program speci�cations, user intervention during a debugging session is reduced to a

minimal level.

9 CONCLUSION

In this research, we have explored a distinctive feature of logic programming: using logic

for both speci�cation and computation. We have shown that user-supplied program spec-

i�cations can be utilized in many di�erent ways.

We use executable input/output speci�cations to de�ne the intended behavior of a

program and to generate test cases for bug discovery. We employ the execution mechanism

of a Prolog machine to locate bugs, using speci�cations to validate computation results.

We also have heuristics to analyze bugs and suggest �xes, and use techniques in deductive

34

theorem proving and inductive synthesis to mechanize the bug correction process, also

with the help of speci�cations.

With the target language being pure Prolog, we have formulated a computer model

to encode the knowledge necessary for automating the debugging process. It includes a

classi�cation scheme of program bugs, heuristics that analyze and repair program errors,

operational semantics of the language, intended behavior of a program, and deductive and

inductive inference strategies to reason with programs and their speci�cations.

The realization of our methodology is the Constructive Interpreter. It contains three

major components: test case generator, bug locator, and bug corrector. When supplied

with a program and its executable speci�cations, the test case generator can generate

test data systematically by executing speci�cations. The Constructive Interpreter then

executes the program on the test data. Should the execution fail to return an answer

that agrees with the speci�cations, the bug locator will automatically locate a bug that

is causing the failure. The bug corrector then analyzes the nature of the bug and utilizes

correction heuristics which guide the use of the speci�cations and which attempt to repair

the bug. This bug �xing process might involve the use of (1) a deductive theorem prover

which will try to construct a proof and deduce su�cient conditions to amend the program,

and (2) an inductive program generator which will synthesize the missing part of the

program.

The Constructive Interpreter performs much as a active human expert does during a

typical debugging session. When given a program and its speci�cations, it can (1) execute

a goal as a regular interpreter does, (2) generate test cases systematically when symbolic

input data are supplied, (3) verify the results of a computation, (4) trace the execution of

the program, and (5) locate and �x a bug when a goal does not compute correctly.

The traditional testing approach is only concerned with designing test cases that might

show a program to be incorrect; it does not deal directly with the problem of locating and

correcting bugs. Since knowing that a program is incorrect does not imply knowing the

cause, research in testing provides, at most, methods to disclose the existence of bugs in

a program. Our methodology, on the other hand, is intended to combine the functions of

testing and debugging, for logic programs, under one uniform framework.

Deduction and Induction are two di�erent inference mechanisms. Although they seem

to be opposite of each other, we have shown that they can complement each other. Logical

deduction is a powerful technique in the sense that the result from deductive inference is

guaranteed correct (or consistent with the axioms). In the context of logic programming,

deduction can be used to execute, derive, transform, or verify programs. We have applied

this procedure to check the inconsistency between a program and its speci�cations. In-

ductive inference is employed to generate programs whenever incompleteness is identi�ed.

In conclusion, we have demonstrated that, in the realm of logic programming, the

tedious problem of program debugging and synthesis is perhaps amenable to automation.

35

References

Adam, A., Laurent, J.-P. (1980). Laura, a system to debug student programs. Arti�cial

Intelligence, 15:75{122.

Apt, K. R., van Emden, M. H. (1982). Contributions to the theory of logic programming.

J. of the Association for Computing Machinery, 29:841{862.

Barstow, D., Du�ey, R., Smoliar, S., Vestal, S. (1982). An automatic programming system

to support an experimental science. In Sixth International Conference on Software

Engineering, pages 360{366.

Clark, K. L. (1981). The synthesis and veri�cation of logic programs. Research Report

DOC 81/36, Department of Computing, Imperial College, London, England.

Clocksin, W. F., Mellish, C. S. (1987). Programming in Prolog. Springer-Verlag, New

York, third edition.

Darlington, J., Field, A. J., Pull, H. (1986). The uni�cation of functional and logic

languages. In DeGroot, D., Lindstrom, G., editors, Logic Programming: Functions,

Relations, and Equations, pages 37{70. Prentice-Hall, Englewood Cli�s, NJ.

Dershowitz, N., Jouannaud, J.-P. (1990). Rewrite systems. In van Leeuwen, J., edi-

tor, Handbook of Theoretical Computer Science B: Formal Methods and Semantics,

chapter 6, pages 243{320. North-Holland, Amsterdam.

Dershowitz, N. (1983). The Evolution of Programs. Birkh�auser, Boston, MA.

Dershowitz, N. (1985). Synthetic programming. Arti�cial Intelligence, 25:323{373.

Fuchi, K., Furukawa, K. (1986). The role of logic programming in the �fth generation

computer project. In Third International Conference on Logic Programming, pages

1{24, London, United Kingdom.

Gerhart, S. L., Yelowitz, L. (1976). Observations of fallibility in applications of mod-

ern programming methodologies. IEEE Transactions on Software Engineering, SE-

2(3):195{207.

Goguen, J. A., Meseguer, J. (1986). EQLOG: Equality, types, and generic modules for

logic programming. In Lindstrom, D. D. G., editor, Logic Programming: Relations,

Functions, and Equations. Prentice Hall, Englewood Cli�s, NJ.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576{583.

Hogger, C. J. (1981). Derivation of logic programs. J. of the Association for Computing

Machinery, 28(2):372{392.

Huntbach, M. M. (1986). An improved version of shapiro's Model Inference System.

In Shapiro, E., editor, Proceedings of the Third International Conference on Logic

Programming, pages 180{187, London, UK. Springer-Verlag. available as Vol. 225,

Lecture Notes in Computer Science, Springer-Verlag.

36

Johnson, W. L., Soloway, E. (1985). PROUST: Knowledge-based program understanding.

IEEE Transactions on Software Engineering, SE-11(3):267{275.

Josephson, N. A., Dershowitz, N. (1986). An implementation of narrowing: The rite

way. In Proceedings of the IEEE Symposium on Logic Programming, pages 187{197,

Salt Lake City, UT.

Katz, S. M., Manna, Z. (1975). Towards automatic debugging of programs. In Pro-

ceedings of the International Conference on Reliable Software, pages 143{155, Los

Angeles, CA.

Katz, S., Manna, Z. (1976). Logical analysis of programs. Communications of the ACM,

19(4):188{206.

Kowalski, R. A., van Emden, M. H. (1976). The semantics of predicate logic as a pro-

gramming language. J. of the Association for Computing Machinery, 23:733{742.

Kowalski, R. A. (1974). Predicate logic as programming language. In Proceedings of the

IFIP Congress, pages 569{574, Amsterdam, The Netherlands.

Kowalski, R. (1985). The relation between logic programming and logic speci�cation. In

Hoare, C. A. R., Shepherdson, editors, Mathematical Logic and Programming Lan-

guages. Prentice/Hall International, Englewood Cli�s, NJ.

Liskov, B. H., Berzins, V. (1986). An appraisal of program speci�cations. In Gehani,

N., McGettrick, A., editors, Software Speci�cation Techniques, pages 3{23. Addison-

Wesley.

Lloyd, J. W. (1984). Foundations of Logic Programming. Springer-Verlag, New York.

Lloyd, J. W. (1987). Declarative error diagnosis. New Generation Computing, 5:133{154.

Loveland, D. W. (1978). Automated Theorem Proving: A Logical Basis. North-Holland,

New York.

Manna, Z., Waldinger, R. J. (1980). A deductive approach to program synthesis. ACM

Transactions on Programming Languages and Systems, 2(1):90{121.

Murray, W. R. (1986). Automatic Program Debugging for Intelligent Tutoring Systems.

PhD thesis, The University of Texas at Austin, Austin, Texas.

Myers, G. J. (1979). The Art of Software Testing. Wiley, New York.

Pereira, L. M. (1986). Rational debugging in logic programming. In Proceedings of

the Third International Conference on Logic Programming, pages 203{210, London,

United Kingdom. available as Vol. 225, Lecture Notes in Computer Science, Springer-

Verlag.

Plaisted, D. A. (1984). An e�cient bug location algorithm. In Proceedings of the Second

International Logic Programming Conference, pages 151{157, Uppsala, Sweden.

Renner, S. A. (1991). Logical Error Diagnosis. PhD thesis, University of Illinois, Urbana.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. J.

of the Association for Computing Machinery, 12(1):23{41.

37

Ruth, G. (1976). Intelligent program analysis. Arti�cial Intelligence, 7:65{85.

Seviora, R. E. (1987). Knowledge-based program debugging systems. IEEE Software,

pages 20{32.

Shapiro, E. Y. (1983). Algorithmic Program Debugging. MIT Press, Cambridge, MA.

Smith, D. R. (1982). Derived preconditions and their use in program synthesis. In

Proceedings of the Sixth Conference on Automated Deduction, pages 172{193, New

York, NY.

Waldinger, R. J., Levitt, K. N. (1974). Reasoning about programs. Arti�cial Intelligence,

5(3):235{316.

