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Abstract

Given a quasi-ordering of labels, a labelled ordered tree s is embedded with gaps
in another tree t if there is an injection from the nodes of s into those of t that
maps each edge in s to a unique disjoint path in t with greater-or-equivalent labels,
and which preserves the order of children. We show that finite trees are well-quasi-
ordered with respect to gap embedding when labels are taken from an arbitrary
well-quasi-ordering such that each tree path can be partitioned into a bounded
number of subpaths of comparable nodes. This extends Kř́ıž’s result [3] and is also
optimal in the sense that unbounded incomparability yields a counterexample.

1 Introduction

Kruskal’s Tree Theorem [4], stating that finite trees are well-quasi-ordered
under homeomorphic embedding, and its extensions, have played an important
rôle in both logic and computer science. In proof theory, it was shown to be
independent of certain logical systems by exploiting its close relationship with
ordinal notation systems [7], while in computer science it provides a common
tool for proving the termination of many rewrite-systems via the recursive
path and related orderings [1].

A term ordering is said to have the subterm property if terms are always big-
ger than all their subterms. Term orderings with the “replacement” property
(reducing subterms reduces the whole term) that also have the subterm prop-
erty are called simplification orderings [1]. Simplification orderings perforce
include the homeomorphic embedding relation. Nevertheless, it is sometimes
necessary to prove termination of rewrite systems that are not “simplifying”
in this sense. In term rewriting, the tree-label ordering corresponds to a prece-
dence ordering of the function symbols pertaining to a given signature. For
demonstrating termination of rewriting, it is beneficial to use a partial (or
quasi-) ordering on labels, rather than a total one.
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In [8], it was shown that many important order-theoretic properties of the
well-partial-ordered precedence relations on function symbols carry over to the
induced termination ordering. This is done by defining a general framework
for precedence-based termination orderings via (so-called) relativized ordinal
notations. Based on a few examples, it is further conjectured that every such
application of a partial-order to an ordinal notation system carries the order-
theoretic properties of the partial-order to the relativized notation system. An
example of such a construction, using Takeuti’s ordinal diagrams, is introduced
in [6] under the name quasi-ordinal-diagrams. The definition of these diagrams
is the only result we know of that deals with gap embedding of trees and quasi -
ordered labels.

Kř́ıž’s result in [3] is of a purely combinatorial nature. It verifies a con-
jecture of Harvey Friedman that states that finite trees labelled by ordinals
are well-quasi-ordered under gap embedding, which is a homeomorphic em-
bedding equipped with further stipulations regarding the labels of the path
pertaining to the embedding tree.

This work extends the result of Kř́ıž’s to finite trees with well-quasi-ordered
labels. Indeed, finite trees ordered by embeddability (without the gap condi-
tion) with well-quasi-ordered labels is the result proven originally by Kruskal
[4]. It shows that when each tree path contains only comparable labels, the
well-quasi-order property of the set of trees is preserved. By simple induc-
tion, our result extends also to the case where every path in the tree can be
partitioned into some bounded number of subpaths with comparable labels.
Moreover, since the absence of such a bound yields a bad sequence with re-
spect to gap-embedding, this is actually the canonical counterexample: every
bad sequence with respect to gap embedding must contain paths of unbounded
incomparability.

2 Preliminaries

A quasi-ordering is a set Q together with a reflexive and transitive binary
relation -. Given a quasi-ordering (Q,-) and two elements a, b ∈ Q, we say
that a and b are comparable if either a - b or b - a; otherwise we say that
they are incomparable. We denote by ≺ the strict part of -.

A quasi-ordering (Q,-) is a well-quasi-ordering (wqo) if for every infinite
sequence a1, a2, a3, . . . from Q there exist i < j ∈ N such that ai - aj. An
infinite sequence from Q is referred to as bad if for all i < j, ai 6- aj holds;
otherwise it is called good. If, for all i, j ∈ N, ai is incomparable to aj, the
sequence is an antichain.

For a pair of nodes u, v in a rooted tree, we denote by uu v the closest com-
mon ancestor of u and v; we write u @ v if u is to the left (descendent of elder
sibling of ancestor) of v. The following is the definition of the (homeomorphic)
tree embedding:
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Definition 2.1 [Tree embedding] For two labelled ordered trees s, t we say
that s is embedded in t (with respect to -) if there is an injection ι : s → t
such that:

• Label increasing: for all nodes x in s, x - ι(x);

• Ancestry preserving: for all nodes x, y in s, ι(y u x) = ι(y) u ι(x) ;

• Sibling order preserving: for all nodes x, y in s, x @ y implies ι(x) @ ι(y).

In the next section, we begin by dealing with an abstract embedding rela-
tion ↪→ on finite rooted trees T . Later (in Section 3.3), we deal explicitly with
the set of trees of interest, namely ordered (rooted, planted-plane) finite trees,
with nodes well-quasi-ordered by - , and such that every node is comparable
with all its ancestor nodes.

Remark. A more intuitive definition of gap embedding can be given for trees
with labels on edges instead of nodes. Denote by s ↪→′ t an embedding of an
edge-labelled tree s in a likewise labelled tree t, such that each edge of s is
mapped to a path in t all labels of which are greater than or equivalent to
(with respect to the node ordering -) the label of the edge in s. It is not
hard to show that, if ordered rooted trees with labels on nodes is wqo under
the gap embedding of Definition 2.1, then also the set of edge labelled trees is
wqo under this edge-based embedding (cf. [3] Section 1.3).

3 The Main Theorem

We first introduce two abstract relations over finite rooted trees T : A “gap-
embedding” relation and a “gap-subtree” relation. These relations are ab-
stract for now, as we only stipulate the existence of a tree embedding relation
and a subtree relation equipped with five additional (gap) conditions (see
Definition 3.2, 3.3 for the explicit relations). We then show the main con-
struction of the minimal bad sequence, required in order to apply the usual
Nash-Williams [5] method.

Let t• denote the root of tree t. There is a gap subtree relation � which is
included in the regular subtree relation on trees with the following additional
requirements:

s � t � u ∧ t• % u• ⇒ s � u(A)

s � t � u ∧ s• - t• ⇒ s � u(B)

s � t ⇒ s• - t• ∨ t• - s•(C)

We denote by � the proper gap subtree relation. There is also a gap embedding
quasi-ordering ↪→ on trees with the following additional properties:

s ↪→ t � u ∧ t• - u• ⇒ s ↪→ u(D)

s ↪→ t � u ∧ s• - u• ⇒ s ↪→ u(E)

A set of trees is well-quasi-ordered under the gap embedding relation ↪→ if
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every infinite sequence of trees contains a pair of trees s, t one preceding the
other, such that s ↪→ t.

A sequence s is a partial function s : N → T . If s(i) is not defined we
shall write s(i) = ⊥. It is very convenient to extend the subtree relation and
node ordering to empty positions of a sequence, so that: t � ⊥ and t• - ⊥•

for all t ∈ T .

Let Seq be the set of ω-sequences of trees from T . Define:

Ds := {i ∈ N | s(i) 6= ⊥}
Bad := {s ∈ Seq | ∀i < j ∈ Ds. s(i) 6↪→ s(j)}

Sub h := {s ∈ Seq | ∀i ∈ Ds. h(i) � s(i)}

Inc k := {s
∞
⊆ k | ∀i < j ∈ Ds. s•(i) - s•(j)}

where s
∞
⊆ k denotes that s is an infinite subset of k. A sequence s is infinite

when its domain of definition, Ds, is. Thus, Bad is the set of infinite bad
sequences; Sub h is the set of all infinite subsequences of gap subtrees of h.

Since % is a well-quasi-ordering, Inc k (the set of infinite increasing sub-
sequences of k) is nonempty, as long as k is infinite, by the infinite version of
Ramsey’s Theorem.

Our goal then, is to prove the following:

Theorem 3.1 (Main Theorem) Bad = ∅.

This means that the set of trees T is wqo under ↪→. In other words, for every
s ∈ Seq there exist i < j ∈ Ds such that s(i) ↪→ s(j). This extends the result
of Kř́ıž [3] for well-orderings to quasi-ordered labels.

3.1 The Construction

Assuming the above theorem is false, and there are bad sequences of trees, the
proof constructs a minimal counterexample, that is, a bad sequence h ∈ Bad,
which is minimal in the sense that no infinite sequence of proper gap subtrees
of its elements is also bad:

Bad ∩ Sub h = ∅

This, in turn, leads to a contradiction—as in the original proof by Nash-
Williams [5] (see Section 3.3).

The construction of such a minimal bad sequence proceeds by ordinal in-
duction as follows (λ is a limit ordinal):

H(0) : h :∈ Bad

if Bad ∩ Sub h = ∅ then return h

h0 :∈ Inc lex(h)
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H(α + 1) : if Bad ∩ Sub hα = ∅ then return hα

k := lex(hα)

∀i ∈ N. f(i) :=

 k(i) if h•α(i) - k•(i)

⊥ otherwise

g :∈ Inc f

∀i ∈ N. hα+1(i) :=

 hα(i) if i < min Dg

g(i) otherwise

H(λ) : ∀i ∈ N. `(i) := limγ→λ hγ(i)

if Bad ∩ Sub ` = ∅ then return `

hλ :∈ Inc lex(`)

where the construct s :∈ S chooses an arbitrary s from S (and s = ⊥ if S = ∅).
The function lex : Bad → Bad chooses a bad sequence of subtrees (that is,
lex(h) ∈ Bad ∩ Sub(h)) with (lexicographically) minimal labels:

lex(h) : K := Bad ∩ Sub h

for i := 1 to ∞ do

t :∈ argmin{s•(i) | s ∈ K}

K := {s ∈ K | s(i) = t(i)}

k :∈ K

return k

where argmin{s•(i) | s ∈ K} denotes the set of those s ∈ K for which s•(i) is
minimal.

3.2 Correctness

We show that limγ→λ hγ(i) converges to some fixed tree. By construction, we
have (for all α and i):

Dhα ⊇ Dhα+1(6)

hα(i) � hα+1(i)(7)

h•α(i) - h•α+1(i)(8)

For each sequence hα (for every countable ordinal α and for all i < j ∈ Dhα):

hα(i) 6↪→ hα(j)(9)

h•α(i) - h•α(j)(10)
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For α a successor ordinal, (9,10) are proved by induction: The only interesting
case is i < min Dg ≤ j, when

h•α+1(i) = h•α(i) - h•α(j) - k•(j) = f •(j) = g•(j) = h•α+1(j)

from which (9) follows using (E). By considering the limit case, it can be seen
that for all α < β:

Dhα⊇Dhβ(11)

To complete the proof of the construction, it remains only to establish
three additional aspects:

(i) The constructed sequences hα are all infinite.

(ii) The constructed sequences hα are each distinct.

(iii) The construction eventually terminates with a minimal bad sequence.

Aspect (i) It must be that |Df | = ∞ in the successor case: Suppose f is
finite at stage α + 1. Let k be the bad sequence of subtrees of hα constructed
by lex at stage α + 1, and kα, the one constructed at the prior step α from
subtrees of some sequence h (in case α = 0, this kα is the output of lex h at
the H(0) stage). Let q = k \ f be those elements of k that have smaller root
symbols than hα (see Fig. 1). By supposition and condition (C), q is infinite
and bad. Consider

p = kα[0 : n− 1] ∪ (q � Dkα)

where n = min(Dkα ∩Dq). Note that Dp ⊆ Dkα, Dq ⊆ Dhα and that for all i
if kα(i) = ⊥ then also p(i) = ⊥.

We show now that p ∈ Bad ∩ Sub h. Since k•α(n) � q•(n) = p•(n) also
holds, this contradicts the picking of kα(n), rather than p(n), by lex at the α
stage.

Thus, for i ∈ Dp, if i < n, we have p(i) = kα(i) � h(i), by construction of
kα. If i ≥ n

p(i) = q(i) = k(i) � hα(i)(12)

and hα(i) = kα(i) � h(i) or hα(i) = h(i). In the latter case, p(i) � h(i) follows
directly from (12), in the former case, p(i) � h(i) follows from p•(i) ≺ k•α(i)
and (A). Hence p ∈ Sub h.

Furthermore, were kα(i) ↪→ q(j) for some i < n ≤ j, then (by D) kα(i) ↪→
kα(j), which is in contradiction to kα ∈ Bad. Hence, p ∈ Bad ∩ Sub h and as
claimed hα+1 is infinite.

In the limit case also, hλ is infinite: Let gα+1 be the g constructed at step
α + 1 and nα+1 = min Dgα+1. Since trees have only finitely many subtrees,
and gα+1 is built of proper subtrees of the prior bad sequence, we have

lim inf
α→λ

nα+1 → ω(13)

Otherwise, if lim infα→λ nα+1 → c for some c ∈ N, then by the Pigeonhole
Principle, for some i in [0, c] there would have been infinitely many subtrees
taken from h(i).
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h
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n

Fig. 1. The bad sequences of the proof of the main theorem. The (dotted) lines
represent the domains of the sequences, which are getting sparser as the induction
goes on.

Furthermore, once nα+1 < nγ for all γ such that α + 1 < γ < λ, we get
hγ[nα+1] = gα+1[nα+1] 6= ⊥ for all such γ, which indeed happens infinitely
many times by (13).

Aspect (ii) Distinctness follows from the construction, since, as long as f is
infinite, min Dg is defined and hα+1 6= hα.

Aspect (iii) Termination follows from distinctness by a cardinality argument:
There are only countably many sequences hα, each corresponding to the pair
〈i, j〉, for the jth time a proper subtree is taken (by lex) in the ith index
position.

3.3 Path Comparable Trees

We now make the gap subtree and the gap embedding relations explicit:

Definition 3.2 [Gap subtree] For two trees s, t in T , we say that t is a gap
subtree of s, and write s � t, if t is a subtree of s and the path P = [s• : t•]
from s• to t• in s meets the following condition:

• min- P ∈ {s•, t•}.

Definition 3.3 [Gap embedding] For two trees s, t we say that s is embedded
with gaps in t and write s ↪→ t if there is an embedding ι : s → t satisfying
the following additional conditions (see Fig. 2):

• Edge gap condition: for all edges 〈x, y〉 in s (x is the parent of y) and for
all nodes z in the path from ι(x) to ι(y) in t, z % y ;

• Root gap condition: x % s• for all nodes x in the path from t• to ι(s•).

Recall that T is the set of ordered rooted finite trees, with nodes well-quasi-
ordered by - , and such that every node is comparable with all its ancestors.
This corresponds to condition (C) in Section 3. We make the following three
observations:
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Fig. 2. Gap embedding of s into t.

Observations.

i. The gap subtree conforms to conditions (A,B) given in the previous section.

ii. Gap embedding respects conditions (D,E) of the previous section.

iii. The gap subtree relation includes all immediate subtrees.

Proof of Main Theorem:

Assume by way of contradiction that Bad 6= ∅. Hence, by Observations
(i) and (ii), we showed in the previous subsection that there is a minimal bad
sequence h ∈ Bad such that Bad∩Sub h = ∅. Let S be the set of all immediate
subtrees of trees in h, that is, trees rooted by immediate children of trees in h.
Since the labels are taken from a wqo set, there can be at most finitely many
trees of only one vertex in h; therefore S is infinite.

For a tree t ∈ T , we denote by 〈t1, . . . , tn〉 the finite ordered sequence
consisting of its immediate subtrees, in the order they occur as children of t•;
by t•〈t1, . . . , tn〉, we denote t itself.

Now, S must be wqo, or else there would be a bad infinite sequence µ ⊆ S.
Since, for each tree in h, the number of children of the root is finite, we can
assume that µ contains at most one subtree for each tree in h. Therefore,
µ ∈ Bad ∩ Sub h, in contradiction to the construction of h.

So, S is a wqo. Let (si)i∈Dh be the infinite sequence defined as:

∀i ∈ Dh. si := 〈h(i)1, . . . , h(i)ni
〉

where ni is the number of children of h•(i). Since S is a wqo, by Higman’s
Lemma [2], (si)i∈Dh is a good sequence with respect to the embedding relation
on finite sequences of trees from T defined by:

〈s1, . . . , sn〉 ↪→ 〈t1, . . . , tm〉 if

∃ι :{1,. . . ,n} → {1, . . . ,m} . ι is strictly monotone ∧
∀j (1≤j≤n). sj ↪→ tι(j)

Therefore, as h is increasing, there exists a pair of trees s, t in h, such that
s precedes t and s = s•〈s1, . . . , sn〉 ↪→ t•〈t1, . . . , tm〉 = t, where the root is
mapped to the root and the immediate subtrees of s are embedded in those
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of t, according to Higman’s sequence embedding. Note that this embedding is
actually a gap embedding (the fact that ι is strictly monotone is required so
that the order of children denoted by @ is preserved in the embedding); thus,
we arrive at a contradiction to the badness of h. 2

4 Comparable Subpaths

The condition that each node in a path is comparable to all its ancestors can
be relaxed, by allowing each path to be partitioned to only a bounded number
of comparable subpaths. By a comparable subpath we mean a tree path (that
might begin and end in an internal node) with all nodes comparable to each
other. In what follows we sketch the proof.

Let us slightly change the gap embedding relation ↪→ to allow trees to have
leaves labelled by a possibly distinct node ordering: For two trees, the gap
embedding of s into t is defined the same as before except for leaves, for which
the gap condition is not applicable (eventually we show that it is applicable
in order to complete the proof). That is, if 〈u, v〉 is an edge of s and v is a
leaf, then we require that v be mapped to a node with greater or equivalent
node, which could only be a leaf of t, since the leaf ordering is disjoint from
that of internal nodes (by disjoint orderings we mean that the set of labels are
disjoint). No additional condition on the path from ι(u) to ι(v) is required.
For internal edges of s the conditions remain the same.

We have the following:

Theorem 4.1 Let Tn be a set of finite trees with nodes well-quasi-ordered
such that each path in a tree can be partitioned into n ∈ N or less comparable
subpaths then Tn is a wqo under gap embedding.

We prove Theorem 4.1 in two steps. First we show that indeed putting an
arbitrary well-quasi-ordering on leaves from T maintains the wqo property of
T with respect to the gap-embedding. Since we can put also trees as labels of
leaves, we can choose to label the leaves of T by some set of trees with nodes
well-quasi-ordered by some possibly disjoint ordering than that of T . Hence if
we could “unfold” the leaves of T into subtrees and still keep the set of trees
well-quasi-ordered under gap embedding then by induction on n, Theorem 4.1
would follow.

The first step stems easily from the proof of the main theorem: As before,
we need a minimal bad sequence theorem for the set of trees with two distinct
node ordering on internal nodes and leaves. The proof is identical, since the
leaf ordering is a wqo then in any induction stage of the construction there
can only be finitely many trees with only one node (that is, just leaves), and
they are skipped when building f .

The second step consists of showing that using a set of well-quasi-ordered
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trees to label the leaves, yields again a wqo with respect to the original defini-
tion of gap embedding even when we unfold these leaves to form a set of trees
such that each path can be partitioned into two comparable subpaths. Note
that if we have two trees s, t with all internal nodes comparable to their ances-
tor nodes, and leaves labelled by some set of comparable paths trees, such that
s is embedded in t according to the relaxed definition above, then unfolding
the leaves of s and t would not necessarily yield that the resulting trees have
a gap embedding such that all the nodes preserve the gap conditions. The
reason is that we did not require leaves to have a gap condition in the relaxed
gap embedding.

The second step is achieved by forcing the embedding to map each terminal
edge to a terminal edge. (This ensures that leaves trivially preserve the gap
conditions.) We do this simply by introducing a new node as a parent of
each leaf, labelled with a new maximum element ∞. Since the new maximum
element is comparable to all elements of the node ordering, the minimal bad
sequence theorem of the previous paragraph applies to the resulting set of
trees. Now, any embedding of two trees from this set of trees ought to map a
terminal edge to a terminal edge, therefore by the above explanation Theorem
4.1 follows.

5 Conclusions

As noted earlier, a simple counterexample shows that if the paths of trees in
T do not necessarily contain comparable nodes then our Main Theorem might
fail, even for strings: Let a, b, c be three incomparable elements of the node
ordering. The following is an antichain with respect to gap embedding:

c− a− c c− b− a− c c− a− b− a− c c− b− a− b− a− c . . .

Consequently, Theorem 4.1 shows that the above counterexample is canonical :
Every bad sequence with respect to gap embedding must contain paths of
unbounded incomparability.
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