Res Publica: The Universal Model of
Computation

Nachum Dershowitz

School of Computer Science, Tel Aviv University, Ramat Aviv, Israel

—— Abstract

We proffer a model of computation that encompasses a broad variety of contemporary generic
models, such as cellular automata—including dynamic ones, and abstract state machines—
incorporating, as they do, interaction and parallelism. We ponder what it means for such an

intertwined system to be effective and note that the suggested framework is ideal for represent-
ing continuous-time and asynchronous systems.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Models of computation, cellular automata, abstract state machines,
causal dynamics, interaction

Digital Object ldentifier 10.4230/LIPIcs.xxx.yyy.p

The nature of the process is truly characterized by Glaucon,

when he describes himself as a companion who is not good for much in an
investigation, but can see what he is shown, and may, perhaps, give the answer
to a question more fluently than another.

—Plato, The Republic

1 Purpose

The goal of this study is to design a model of computation that encompasses various and
sundry generic models, such as dynamic cellular automata [1], as well as interactive and
parallel abstract state machines [2, 3]. Furthermore, the model should be capable of dealing
with continuous-time and asynchronous systems.

We employ a political metaphor.

2 The State Model

Blocs. A bloc is an interconnected collection of states that evolve over time. The number
of states in a bloc may be finite or infinite. States communicate with each other via
(communication) channels. Not only do the internals of states evolve, but their connections
may be reorganized. Furthermore, it may be possible for new states to be created and
connected to existing ones.

Maps. We draw channels as pipes (looking like hoses) emanating from the client state (on
the requesting end) and connected to the serving state (which owns the data that is being
made public). A serving state may allow client to update sections of the shared data. Arrows
along the channel can be used to indicate that data flows along a channel in one direction
only.

© N. Dershowitz;
T2t licensed under Creative Commons License CC-BY

Computer Science Logic.
Editor: Simona Ronchi Della Rocca; pp. 1-5

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Res Publica: The Universal Model of Computation

States. Each state is a logical structure (consisting of a domain, first-order vocabulary,
and interpretations for the operators) whose evolution is governed by its native policy—
which may be natural (fixed by laws), algorithmic (dictated by a program), or arbitrary
(controlled by some external agency)—and may react to its environment. As such, a state
contains interpretations for the functions in its vocabulary (constants may be viewed as
scalar functions and relations as truth-valued functions). Only the interpretations given by
a state to its functions may change during evolution; the domain and vocabulary are fixed
throughout.

Domains. All states in a bloc share the same domain, but can have different vocabularies.
Domains may be finite (automata), countably infinite (machines), or uncountable (processes).

Names. States have (unique) identifying names, taken from a namespace that is included
in the domains of states. Pipes in a graphical representation of this model of computation
depict the use of names.

Resources. A subset of each state’s vocabulary are designated public. Their values are
made visible to other states; private functions are not. A resource is a (named) state along
with one of its public functions. One can consider a framework in which public resources
can be accessed but not modified by others; think of them as (read-only) communiqués.
Alternatively, some resources can be designated shared and allow for modification by foreign
states. No bound is placed on the number of channels connected to a state or the number of
shared resources.

Assets and Agents. From the point of view of the client of a resource, a shared resource
to which it is connected is its agent, while a public resource that is not modifiable is an asset
of its.

Vassals. A state can only modify the values of its own functions or of shared resources to
which it has access. To provide differential access to its public data, a state can set up vassals
(or “satellites”), each of which connects to it by a private one-way channel, keeping the name
of the controlling state secret (not publicly available). The vassal state can continuously
retrieve the relevant part of the data from its master state and pass it on to whichever states
are connected to it, the vassal.

Realignments. The topology of a bloc can change due to modifications of (the values of)
its channels. In particular, if the value of a resource is itself a name, then a state can change
an outgoing channel to refer to the state named by the resource.

Locations. Locations in a state are determined by function symbols (from the vocabulary)
and domain values for its arguments (as per the arity of the symbol); it is the contents of
locations that change when an interpretation is updated.

Puppets. A state may also create a puppet, which is a state with the same domain and
vocabulary, running the same policy. Before releasing the puppet to run on its own, the
controlling state may set various values in the puppet; all other locations in the puppet will
retain their default values.

3 State Evolution

Time. States evolve over time, where time T, in general, can be any linearly-ordered
domain, with ordering < and minimal element, denoted 0. Let S be the initial intervals [0, ¢)
for all t € T.

N. Dershowitz

Discrete Time. For discrete systems, time is the natural numbers N, with initial segments
S =10..n), for n € N.

Continuous Time. For continuous behavior, time T would be the non-negative reals.

Signals. Each resource to which a state is connected provides it with a signal, which is a
function from an interval in S to the domain of the bloc. A signal defined for an interval
[0,t) has length t. Concatenation of a signal of length s with one of length ¢ gives a signal of
length s + ¢ in the obvious way.

Interaction. Channels provide a means for communication between states, but there is no
special mechanism for explicitly responding to requests. Clearly, the signal emitted by one
resource may depend on signals emitted by others. That is the nature of interaction.

Environments. The ensemble of signals reaching a state constitutes its environment. Let
the possible environments, X, be all tuples of signals of the same length. The width of an
environment the number of components in the tuple. The concatenation o3 of environments
a, B € 3 of the same width is the tuple of concatenated signals. Write o < v if there exists a
08 such that af = ~.

Evolutions. Policies are described by transition functions 7 (perhaps multivalued) that
map states and environments to states. That is, 7: X x ¥ = X. The evolution of a state x
for a given environment v is the sequence of states obtained in this way: {74 (z)}a<~-

Causality. Let 7 be a transition function. Transitions must be causal (“retrospective”),
depending only on the past, so that 7,5(z) = 73(7o(z)) for all states z, where af is a
concatenated environment. If 7 is multivalued, then 75 should be understood as extended to
sets. Put differently, 7,3 = 74 o 73, as relations.

Federations. One can view a subset of the states as one federated state. The transitions of
the federation depend on its external environment, mediated by channels from the outside.

Globe. The global federation consists of the totality of states, or at least those states that
are governed by programs or processes.

4 State Policies

Programs. Algorithmic transitions may be described by programs. Programs may be
expressed in the basic language of abstract state machines [6], which includes the following
at a minimum:
general assignments: f(s1,...,sk) =t (terms s;, t in the vocabulary of the state)
conditionals: if ¢ then P (Boolean term ¢ and program P), and
parallel composition: P || @ (programs P, Q).
In addition, we want
higher-order assignments: f := g, where f and g are functions (of the state vocabulary)
of the same arity, and
serial composition: P;@Q (programs P, Q).

Channels. A channel is a name-valued location. A foreign location is indicated by an
expression of the form p.¢, where p is a channel and /¢ is a location. Only local locations and
shared resources may appear on the left of assignments. A foreign resource on the left of an
assignment is an agent; if it only appears on the right side or in conditions, it is an asset
(that is read-only).

CSL

Res Publica: The Universal Model of Computation

Dependence. A new state may be conceived with a

creation assignment: p := new f,g,... allow h,k,....
The new puppet state, pointed to by p, with have public functions f,g,...,h,k, ..., with
the second half of the list shared freely. When launched, the puppet will run the same
programmed policy as its parent. Assignments may be made to locations in unlaunched
puppets (high-level assignments are of help here); flags can be used to specialize the behavior
of puppets.

Independence. The

launch command: free p
activates the program in the puppet pointed to by p, at which point the parent can no longer
modify it on its own. The puppet is now independent.

Federations. The program of the federation as a whole is just the union of the programs of
its constituent states, with functions disambiguated by the name of the state they reside in.
(Of course, some states might not be governed by programs, but rather provide measurements
of natural phenomena like temperature and barometric pressure.) Whereas an individual
programmed state has a bounded number of channels it owns, a federation can create more
and more new states, each of which is connected to non-federated states.

Flows and Jumps. A jump in the evolution of a continuous-time state is a change in its
dynamics, in contrast with flows, during which the dynamics are fixed. See [5].

Flows. For continuous-time systems, the discrete programming language is extended with
continuous (explicit) assignments: f(s1,...,sg) = t,
which stay in force until a new assignment is made to the same term by some program.

Jumps. Jumps are effected by conditionals. Additional constraints on algorithmic evolution
make sense in the continuous context. These include that tests should test for conditions
that have non-zero duration and that the dynamics of a system change only finitely often in
a finite period of time.

Conflicts. Programs as described above can cause conflicts (“clashes”) when different
(discrete or continuous) assignments (in one or more state programs) attempt to assign
different values (at the same moment) to a single location. The outcome of any such conflict
is any one of the possibilities. (These nondeterministic semantics are preferable to a system
crash.)

Continuity. Continuous assignments may involve infinitesimal time, dt, provided the
outcome is independent of the choice for dt. This is a continuity requirement of sorts. One
can conceive of implicit specifications of continuous behavior, as well.

5 State Policies

Clocks. To achieve synchronous behavior in a continuous-time environment, there would
need to be a global clock to which other states are connected, directly or indirectly.

Archives. When foreign locations provide only read-only resources, write abilities to a
public (but not shared) memory need to be achieved via requests—as in modern hardware. A
state p can allocate resources for requests r, addresses a, and values v, which it makes available
to a memory module. The latter runs a program of the sort if p.r then m(p.a) := p.v, for
some “storage” function m. A similar setup may be used to serve stored values.

N. Dershowitz

Queues. When unboundedly many states use the same controlled archive, some queueing
mechanism needs to be set up, by means of which individual states can place requests while
the archive deals with them one at a time.

Data. If (automata) states share a finite domain (as in cellular models [1]), then unbounded
memory is achievable by means an unbounded number of connected states, in which case an
unbounded number of steps may be needed to reach a particular datum.

Interfaces. To model a physical or biological system in which units are each governed by
rules, but adjacent units exchange values or signals, one could represent their interface as a
channel. For example, the temperature of a wall would be a public function over R? of one
side or the other.

Effectiveness. In general, for a system to be deemed effective, not only should its
transitions and evolutions be describable by a finite text, but also the initial states with
the operations they are endowed with. For a bloc to be effective, it should have finitely
many states, each governed by an effective algorithm [4]. The number of states and their
inter-connections may grow unboundedly during its evolution.

6 Conclusion

We believe that most of the usual and unusual models of computation are instances of this
paradigm.

—— References

1 Pablo Arrighi and Gilles Dowek, July 2012, “Causal graph dynamics”, Proceedings of the
39th International Colloquium on Automata, Languages, and Programming (ICALP 2012),
Warwick, UK, Lecture Notes in Computer Science, vol. 7392, Part II, pp. 54—66. Available
at http://arxiv.org/pdf/1202.1098v3 (viewed July 10, 2013).

2 Andreas Blass and Yuri Gurevich, 2006, “Ordinary interactive small-step algorithms, Part
I”. ACM Transactions on Computational Logic, 7(2), pp. 363-419. Available at http://
tocl.acm.org/accepted/blass04.ps (viewed July 10, 2013).

3 Andreas Blass and Yuri Gurevich, June 2008, “Abstract state machines capture parallel
algorithms: Correction and extension”, ACM Transactions on Computation Logic, 9(3),
Article 19. Available at http://research.microsoft.com/en-us/um/people/gurevich/
Opera/157-2.pdf (viewed July 10, 2013).

4 Udi Boker and Nachum Dershowitz, August 2010, “Three paths to effectiveness”, in
Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and
Computation: FEssays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday,
volume 6300 of Lecture Notes in Computer Science, pp. 3647, Springer, Berlin. Available at
http://nachum.org/papers/ThreePathsToEffectiveness.pdf (viewed July 10, 2013).

5 Olivier Bournez, Nachum Dershowitz, and Evgenia Falkovich, May 2012, “Towards an
axiomatization of simple analog algorithms”, in Manindra Agrawal, S. Barry Cooper, and
Angsheng Li, editors, Proceedings of the 9th Annual Conference on Theory and Applications
of Models of Computation (TAMC 2012, Beijing, China), volume 7287 of Lecture Notes
in Computer Science, pp. 525-536. Springer, Berlin. Available at http://nachum.org/
papers/SimpleAnalog.pdf (viewed July 11, 2012).

6 Yuri Gurevich, 1995, “Evolving algebras 1993: Lipari guide”, in Egon Borger, editor,
Specification and Validation Methods, pp. 9-36. Oxford University Press. Available at
http://research.microsoft.com/~gurevich/opera/103.pdf (viewed July 10, 2012).

CSL

http://arxiv.org/pdf/1202.1098v3
http://tocl.acm.org/accepted/blass04.ps
http://tocl.acm.org/accepted/blass04.ps
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-2.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-2.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf
http://nachum.org/papers/SimpleAnalog.pdf
http://nachum.org/papers/SimpleAnalog.pdf
http://research.microsoft.com/~gurevich/opera/103.pdf

	Purpose
	The State Model
	State Evolution
	State Policies
	State Policies
	Conclusion

