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ABSTRACT 

and 

The purpose of this paper is to provide a bridge 
between term rewriting theory in computer science and 
proof theory in logic. It is shown that proof theoretic 
tools are very useful for analyzing two basic attnbutes of 
term rewriting systems, the termination property and the 
Church-Rosser property. 

In section 1 we give the relationship between proof 
theoretic ordinals in logic and the ordering structures used 
in termination proof and in the Knuth-Bendix completion 
procedure of term rewriting theory. In section 2 we 
utilize the proof-theoretic normalization technique to 
analyze Church-Rosser property and completion procedure 
for conditional term rewriting theory. In the course of 
this study, we show that Knuth's Critical Pair Lemma 
does not hold for conditional rewrite systems, by 
presenting a counter-example. Then we present two 
restrictions on conditional systems under which the Critical 
Pair Lemma holds. One is considered a generalization of 
Bergstra-Klop's former result; the other is concerned with 
a generalization of Kaplan's and Jouannaud-Waldmann's 
systems. 

1 PROOF-THEORETIC ORDINALS AND TERM 
REWRITING ORDERINGS 

. To show termination of a given rewrite system, the 
typical method is to embed the reduction ordering of the 
system into an abstract ordering structure known to be 
well-founded. In particular, if a rewrite system R consists 
of a set of (finite) rules (i.e., oriented equations between 
first-order terms) of the form {t1--+r1, t 2--+r2, ... , ln --+rn}' 

then the induced "reduction" ordering ~ is the smallest 
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(strict partial) ordering such that li'r >R rf for all i :::; n 

and any substitution u of terms for variables and which 
has the monotonicity property: if s ~ t, then f( ... s ... ) 

~ f( ... t ... ) for all operators f of R. In other words, s >R 

t if t may be obtained from s by one or more applications 
of rules in R to replace subtenns matching a left-hand 
side li with the corresponding right-hand side ri" By 

T(F, C), we denote the set of variable-free terms 
constructed from constants in C and operators F. Thus, 
to show termination of a system R over a set of tenns 
T(F, C) (i.e. that no infinite seqeunce of rewritings is 
possible and ~ is well-founded), it is (necessary and) 

sufficient to show for some well-founded monotonic ordering 
<T(F, C), -<> on terms one has liu >- riu for all i :::; n 

and for any substitution u. 

For this purpose various abstract ordering structures 
have been proposed and studied in the literature of term 
rewriting. Those include the "recursive path ordering" of 
[5], the "path of subterms ordering" [25], the "recursive 
decomposition ordering" [11], the "path ordering" [16], the 
"lexicographic-path ordering" [15], the "semantic-path 
ordering" [4], etc. However, the size of those orderings 
was not clear because of the lack of a suitable measure. 
Also there was no systematic method of generating larger 
and more general ordering structures, though such 
orderings are sometimes desirable. For example, one of 
the main causes of failures of the Knuth-Bendix completion 
procedure (cf. [10, 17]) (of a given equational system to a 
convergent rewrite system) is "incomparable terms", which 
is due to the lack of more general and larger orderings. 
Also for a termination proof of a rewrite system whose 
reduction ordering is incompatible with the subterm 
property, the existing abstract orderings in the literature 
of term rewriting theory do not work because virtually all 
of them are in the class of simplification orderings (cf. 
Dershowitz [4]) which have the subtenn property. Here 
the subterm property is the condition: if s is a subtenn of 
t then s < t for any terms s and t. 

The purpose of this section is to link proof theoretic 
ordinals with the orderings used in rewriting theory. We 
present a generalized system of Ackennann's ordinals [l] 
(i.e., a generalized constructive notational system for the 
Veblen hierarchy of set theoretic ordinals), and elucidate 
its relationship with the "precedence" orderings used in 
most implementations of the completion procedure to 
guarantee termination of systems it generates. 
(Precedence orderings are orderings on terms induced by 
an ordering on the operators of the underlying signature.) 



Using this relationship we can express the size of 
the different orderings (in rewriting theory) in terms of 
ordinal numbers. It has sometimes been considered 
implicitly that the orderings used in rewriting theory are 
not that large (e.g. less than E0) and the canonical 

rewrite systems embeddable into those orderings have the 
expressive power of a relatively small class of the 
computational functions (such as the primitive recursive 
functions or the E

0
-ordinal recursive functions). Our 

results show, on the contrary, that the size of those 
orderings and hence the expressive power of such systems 
are much more than expected. 

Since proof theory in logic provides various methods 
of generating larger and more general ordering structures 
(e.g. Backmann hierarchy, Howard ordinals, 
Feferman-Schutte ordinal notations, Takeuti's ordinal 
diagrams) than the Ackermann's ordinals, it is desirable to 
utilize such methods for term rewriting theory. Some 
examples of the use of such higher proof theoretic ordinals 
for termination proof of tree rewritings and term 
rewritings may be found in (23] and its references. In 
particular, one can expect the following benefits with more 
general and stronger orderings: 

1. A reduction in frequency of failure of ~he completion 
procedure. 

2. Termination proofs for a wider range of rewrite 
systems (particularly those whose reduction ordering is 
not compatible with the subterm property). 

3. More powerful tools for proving termination and 
related properties of conditional rewrite systems (see 
§2 below). 

4. Provision of stronger orderings on proofs (i.e., 
orderings of proof-rewriting, instead of term-rewriting) 
for theoretical analysis of confluence and of completion 
of term rewrite systems (cf. §2 for proof-rewriting 
with some term rewrite systems; see also [2]). 

Now we introduce Ackermann's system (l] of ordinals 
based on partial ordered sets, (cf. (19]). 

Definition (The set of generalized Ackermann terms An (F, 

C)). Let F be a set of operators, C a set of constants. 
Then 

(1) if c E C then c E An(F' C). 

(2) if al' ... , an E An (F, C), f E F, then f(a
1

, ... , an) 

E An (F, C), and 

(3) if a 1, ... , am E An(F' C), then a 1 # .. JI am E 

An(F' C). 

A term of the form f(a1, ... , an) or c (for c in C) (as 

opposed to one of the form a 111 ••• *am) is called a 

"connected" term; a term all of whose subterms are 

connected is called "purely connected"; A* (F, C) denotes 
the subset of purely connected terms in A(F, C). 

Definition <An(F' C), >-> (The Ackermann ordering on 

An (F, C).) Let F and C be well-founded by <. 

Case 1 H s, t E C, then s >- t if s > t in C. H s E 
c, t e c, then s -< t holds, but s >- t does not. 
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>- t 
if (1) 

or (2) 

or (3) 

where lld 

si ~ t for some i (1 ~ i ~ n), 

f > g, s >- t1, ... , s >- tn' 

f = g, Bl lld tl' ... , Bi-l lld ti-1' Bi >- ti' 

ti+l' ... , s >- tn, for some i, 1 ~ i :!!; n, 

means the permutative congruence. 

8 >-

Case 3 Let s = s1 *···* sm' t = t 1 *···* tl . Then 

s >- t iff {s1, ... , sm} >->- {t1, ... , tl}, where >- >- is the 

multiset ordering induced by . >- , in the sense of 
Dershowitz-Manna [6]. More precisely, 

tjk for some i 

and 

Remark The ordering on multisets is essentially the same 
as the ordering of natural sums a

1
11 ••• *an for additive 

principal ordinal numbers ai" 

An (F, C) is well-founded by >-. H F and C are 

totally ordered by >- (hence well-orderings), An (F, C) is 

also totally ordered, hence well ordered by >-. 

The above dermition is essentially due to Ackermann 
[l], though he only considered the total order case, and 
only descnbed A

3 
explicitly. A

2
({0}, {0}) is the 

Feferman-Schutte system (cf. (29]) of ordinal notations less 
than.r

0
. 

Theorem The multiset extension of the recursive path 
ordering Dershowitz [5] over T(F u C) is the same as 
A

1
<F,C). 

In other words, if we consider the connected terms of 
A1 (F, C), the generalized Ackermann ordering is the same 

as the recursive path ordering, with a term f(tl' ... , tm) 

in T(F u C) interpreted as the connected term f(t1# ... #tm) 

in A 1(F, C). 

In rewriting theory, one is mainly interested in finite 
sets F and C, because one usually deals only with finite 
rewrite systems. For any finite C and totally ordered F 
of cardinality n, the order type of A1 (F, C) is 'P n 0 (of 

Fefermann-Schtitte's system (29]). From this, and the 
fact that the different precedence-based orderings share the 
same structure as the recursive path ordering for the 
same total ordering <F u C; -<> (cf. Rusinowitch (27]), we 
have 

Theorem The path of subterms ordering (Plaisted (25]), 
recursive path ordering (Dershowitz (5]), recursive 
decomposition ordering (Jouannaud-Lescanne-Reinig (11]), 
and path ordering (Kapur-Narendran-Sivakumar (16]), are 
of order type up to ipwO. In particular, for n distinct 

operators, the order type is bounded by ipnO. 



The well-foundedness of these orderings is provable in 
the system of Implication-free Inductive Definition defined 
in Okada [22] §3, which is a subsystem of the usual 
system of (non-iterated) - Inductive Definition, hence a 
subsystem of the second order arithmetic. Actually, the 
critical erdinal (i.e., the first unprovable ordinal) of this 
system is ipwO. 

Theorem The recursive path ordering, extended to allow 
arbitrary terms as operators (as in [4]), is of order type 
ro. 

Now we extend the Ackermann ordering of An<F' C) 

to one of Aw<F' C). The set Aw<F' C) of Ackermann 

terms is defined in the same way as An<F' C), except 

that for each f e F, f may have an unbounded, finite 
number of argument. In other words, we have terms 
f(al' ... , am) for any m. The Ackermann ordering >-r for 

Aw<F' C) is defined in the same way as before, where 

when we compare f(al' ... , an) with g(.81' ... , {3m) for n 

< m, we re-interpret f(a1, ... , an) as f(Q, -~·· Q, al' ... , 
m-n 

an), then follow the definition before. >- l is the same as 

>-r but we re-interpret f(a1, ... , an) as f(a 1, ... , an' 0, 

0). Here 0 is a minimal element of C. 

A• <F, C) is defined in the same way as before, i.e., 
w 

the set of purely connected terms. 

The system <Aw({O}, {0}),>- > is essentially the same 

as the Schiitte ordinals of §11 in [28]. 

Theorem The lexicographic path ordering (Kamin-Levy 

[15] over T<F u C) is the same as <A:<F. C), >-(>. 

Theorem Lescanne's ordering (Lescanne [18]) (which is 
obtained by combining the lexicographic ordering with the 
recursive path ordering) over T<F u C) is the same as 
<Aw<F' C), >-(>. 

We note the following: < A:<F, C), >-j> is not 

well-founded even for singleton F and C. However, 

<A~ <F, C), >-j> is well-founded for every n provided F and 

C are. In other words, the lexicographic path ordering is 
only well-founded when the number of arguments to each 

f is bounded. Also, <A~<F, C), >-j> has the same order 

type as <An (F, C), >-? for all n ?. 3 provided F and C 

are well-ordered, while <A;<F. C), >-r> for any finite sets 

F, C has the order type E
0

. 

We next relate Ackermann's ordering with special 
cases of the "semantic path orderingM of Plaisted [personal 
communication] and Kamin-Levy [15]. The following is 
the quasi-order version of the semantic path ordering. 

Definition. (The semantic path ordering) Let !::: be a 
quasi ordering on An<F' C). 
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Case 2. Let s a f(sl' ... , Sn) and t - g(tl ' ... , tn). 

Then s ?.
8
pot if 

(1) si ?.spo t for some i (1 ~ i $ n), or 

(2) s >- t and s >
8
po tj for all j (1 $ j $ n), or 

(3) s Pd t and {s1 , ... , sn} ?.?.
8
po {t1 , ... , tn}. 

Case 1 and Case 3 are the same as those in the 
definition of the Ackennann's ordering. 

Consider the following three orderings. 

(1) f(s1 , ... , sn) <
0 

g(t1 
in the precedence F. 

(2) f(s1 # •• JI sn) <1 g(t1 # ... # tm) on A1 <F, C) ift' 

(i) f < g in F, or 
(ii) f = g and {s1 , ... , sn} $$spo {tl' ... , tm}, 

(i) 

(ii) 

(iii) 

where $$
8
po is the multiset extension of $

8
po 

f < g in F, or 

f = g, 81 = tl ' ···• si-1 = ti-1 • 8i <spo ti ' 
for some i (1 $ i $ n), or 

Theorem. 

(1) 

(2) 

• If we take <o for -<, then <
8
po on Aw <F, C) is the 

same as the recursive path ordering on A1 (F, C). 

If we take <1 for -<, then ~po on A1 (F, C) is the 

same as the recursive path ordering on A
1 

(F, C). 

(3) If we take <lex for -<, then 

(i) < spo on Aw<F' C) is the same as the 

Ackermann ordering; therefore 
(ii) < on A *CF, C) is the same as the spo w 

(iii) 
lexicographic path ordering, and 
< on A1<F, C) is the same as the recursive spo 
path ordering. 



2 PROOF-NORMALIZATION AND REWRITE SYSTEMS 

In this section, we first outline the correspondence 
between the paradigm of traditional proof theory and the 
paradigm of the "proof ordering" method (cf. 
Bachmair-Dershowitz-Hsiang [2]) used for analyzing 
"completion procedures" for (unconditional) rewrite systems 
(like the one in Knuth-Bendix [17]). Next we will show 
how the same paradigm can be applied to the theory of 
conditional rewriting. 

Unless otherwise stated, rewrite systems are 
presumed to be terminating, i.e., their reduction ordering 
(the transitive closure of the rewrite relation) embeds in 
some well-founded structure. As discussed in the previous 
section, in most cases termination is established by 
embedding the given rewrite system in a segment of the 
generalized Ackermann ordinals. 

Traditional proof theory is concerned with reduction 
procedures that transforms a given proof into a "normal 
proof'. For that purpose, the following steps are 
employed: 

(1) Assign a (proof-theoretic) ordinal to each proof. 
(2) Define a "maximal formula" or an "essential cut" of 

a proof. (A proof without maximal formula or 
essential cut is called a "normal proof'.) 

(3) Define a reduction step which reduces one "maximal 
formula" or "essential cut". 

(4) State a lemma, called the "existence lemma", showing 
thee.xistence of a reduction under certain 
circumstances. 

(5) Show that each reduction step decreases the ordinal 
of the proof. 

The simplest application of this paradigm in rewrite 
theory is in proving that a rewrite system has the 
Church-Rosser property (hence provides a decision procedure 
for the underlying word problem) if every critical pair (in 
the sense of Knuth-Bendix [17]) is "joinable", i.e. both 
terms in the pair rewrite to the identical terms. 

Below, s • t stands for the usual sense of equality 
in equatinal systems; s -+ t stands for one-step rewrite in 

a rewrite system; s -+ • t is a reflexive-transitive closure 
of one-step rewriting; s!t stands for the joinability relation, 

i.e. s -+ u • +- t for some u; s = • t means that there 
exist u1, ... , un such that s!u1 ! ... !un!t. 

s - • t in a rewrite system if and only if s = t in 
the underlying equational system (considering every rule to 
be an equation). Actually, a switch of the direction of 

one rewrite -+ of a proof s = • t in a rewrite system 
corresponds to one use of the symmetric axiom for a proof 
of s = t in the underlying equational system. 

A proof of the form s = • t is called an equational 
proof. A proof of the form s! t is called a normal proof. 

Transforming a proof P of the form s = • t to a proof P' 
of normal form s!t is called "normalization". H every 

proof of the form s = • t is normalizable, the system is 
said to have the Church-Rosser property. 
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We are interested, then, in proving a theorem of the 
following form. 

Normalization Theorem 

For any equational proof, by successive reductions 
(regardless of choice of maximal term (peak)), one can 
reach a normal proof. 

To achieve this, we need the following five steps: 

(1) Ordinal assignment for proofs 

The ordinal for an equational proof P is the multiset 
of terms occurring in P. Hence, if a is the order type of 
the reduction ordering, then proofs are assigned ordinals 

less than w a. (See Section 1 for the definition of the 
ordering on multisets.) E.g., if P is of the form 
s
1

-+s
2

+-s
3

-+s
4

-+s
5

+-s
6

, then the multiset {s1, s2, ... , s6} 

is the ordinal of P. 

(2) Maximal term 

A "peak" or a "maximal term" in a rewrite proof is 
an occurrence of a term t in the form s ._ t -+ u. 

(3) Reduction step 

By a reduction of an equational proof we mean a 
replacement of a sub-proof of the form s ._ t -+ u for a 

peak t by a sub-proof of the form s -+ • v • ._ t for some 
v (i.e., s!t) in the proof. 

(4) Existence lemma 

H every critical pair is joinable, every non-normal 
proof allows at least one reduction. 

(A critical pair is a special kind of peak. A finite 
rewrite system has only a finite number of critical pairs.) 

(5) Lemma <Decreasing Lemma) 

For each reduction step, the ordinal of the proof 
decreases. 

In proof theory, the system under consideration is 
fixed; hence the restriction in the Existence Lemma is also 
fixed. In rewrite theory, on the other hand, the system 
is dynamic; for this reason, completion procedures 
constantly generate new equational consequences to satisfy 
the requirements of the Existence Lemma. Completion 
typically includes the deletion of rules from the system 
under construction; this requires somewhat more subtle 
ordering assignments (cf. Bachmair et al [2]). 

Our purpose in the remainder of this section is to 
show how this same paradigm applies to the theory of 
conditional rewriting. By a "conditional equational 
system", we mean a set of Hom clauses of the form 

s1 = t1 A ••• A sn - tn * t = r 

A "standard conditional rewrite system" is a rewrite 
system whose rules are of the form 

s1 !t1, ... , sn!tn : l -+ r 

A "natural conditional" rewrite system is a rewrite system 
whose rules are of the form 

l -+ r 



COMPARISON OF SIMPLE EXAMPLES OF NORMALIZATION 
PARADIGM IN PROOF THEORY AND TERM REWRITING THEORY 

Peano Arithmetic 
(Gentzen) 

ordinal ordinals less 
assignment than £0 

maximal essential cut 
element (maximal formula) 

existence holds for 

lemma proofs 0 of E1-formulae 

It is easily seen that if a conditional or natural 
conditional rewrite system R is convergent (or "canonical", 
i.e., has the termination and Church-Rosser properties) 
then it is equivalent to the corresponding equational 
system E, i.e., s!t in R if and only if s = t in E. It is 
also easily seen that for any natural, not necessarily 
convergent, conditional rewrite system R and the 

corresponding equational system E, s = * t in R if and 
only if s - t in E. We follow the usual definitions of 
basic notions (including a "critical pair") for conditional 
rewrite theory (cf. [3, 7]). 

However, first we remark that the condition for the 
existence lemma should be modified for standard 
conditional rewrite systems. Actually, if we keep the 
same condition, i.e., "every critical pair is joinable", then 
the existence lemma does not hold. In other words, the 
Critical Pair Lemma of Knuth-Bendix [17] and Huet [9] 
does not carry over to standard conditional systems, as 
can be seen from the following counter-example. 

Counter-example (A): 

h(f(a)) -+ c 
h(x) -+ k(x) 
c -+ k(f(a)) 
a -+ b 
c -+ k(g(b)) 
k(g(b))!h(f(x)) : f(x) -+ g(x) 

Here a peak k(g(a)) +- k(f(a)) -+ k(f(b)) allows no 
reduction. On the other hand, as easily seen, every 
critical pair is joinable. (See [8] for further discussion on 
the counter-example.) 

/ la(/(a)) - h(/(b)) 

h(g(a)) ~ ~ 
~ - /(a)) l(/(b)) 

h(g~ I ~ l(g(a)) 

~k(g(b))/ 
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Unconditional 
Rewrite System 

multiset extension of 
reduction ordering 

ordering peak 
(maximal term) 

holds if every 

critical pair is joinable 

Hence our aim is to provide suitable additional 
conditions for the existence lemma. Here we give two 
such examples. The first one is a generalization of 
Bergstra-Klop's result [3]; the second one is concerned with 
a generalization of Kaplan's simplification systems [13] 
and of Jouannaud-Waldmann's reductive system [12]. 

Definition (depth of a prooO 

(1) The depth of a proof of s-+t is 0 if s-+t is the 
result of an application of an unconditional rule. 

(2) The depth of a proof of s -+ t is one more than the 
maximum depth of subproofs for conditions u1!v1, ... , 

un!vn if s-+t is the result of an application of a 

conditional rule which has a substitution instance of 
the form u1!v1, ... , un!vn : l -+ r. 

(3) The depth of a proof of s -+ s1 -+ s2 -+ . . . -+ sm 

-+ v +- tn +- t
1 

+- t is the maximum depth of 

subproofs for s -+ sl' s1 s2, ... , sm -+ v, tn 

v, ... , tl -+ t2' t -+ tl" 

Definition For a critical pair (s, t) and overlap u of the 
form s +- u -+ t such that u -+ s has depth n and u 
-+ t has depth m, the critical pair is "shallow joinable" if 

there exists a term v such that t -+ * v is provable with 

depth less than or equal to n and s -+ • v is provable 
with depth less than or equal to m. 

For a normal form (i.e., irreducible term) N and a 
term s, a condition of the form s!N is called a "normal 
condition" ora "Bergstra-Klop condition". A conditional 
rewrite system in which every conditional rule is of the 
form s

1 
!Nl' ... , sn!Nn : l -+ r, for normal conditions 

si!Ni, is called a "normal conditional system". 

Normal conditional systems were introduced by 
Bergstra-Klop [3]. First we consider extensions of the 
following Theorem in Bergstra-Klop [3]. A "left-linear" 
system is a system in which a left-hand side l of a rule 
C : l -+ r allows only one occurrence for any variable. 

Bergstra-Klop's Theorem [3]. For every left-linear (not 
necessarily terminating) normal conditional system with no 
critical pair, every proof is normalizable. 



We can relax the "no critical pair" condition of 
Bergstra-Klop, at the expense of insisting on termination, 
as follows. 

Existence Lemma For any left-linear normal conditional 
system, if every critical pair is shallow joinable then every 
non-normal proof has a reduction. 

The Existence Lemma is obtained via the following 
lemma. 

Substitution Lemma If N!r(s) is provable with depth n, 
and if s-+t is provable, then N!r(t) is also provable with 
depth at most n, where N is an irreducible term. 

The proof is carried out by double induction on (n+m, 
r(s)), where m is the depth for s-+t. (See [8] for 
details.) 

Theorem For any left-linear normal conditional system, if 
every critical pair is shallow joinable then every proof of 
this system is normalizable. Hence such a system has 
the Church-Rosser property. 

Here we can take the same (multiset) ordinal 
assignment for unconditional systems. 

Next we consider an alternative restriction to give an 
existence lemma. By the reduction ordering, we mean the 
transitive closure of finite reductions in a given system. 

A conditional system is called a "decreasing" system 
if there exists a well-founded extension < of the reduction 
ordering which satisfies the following properties: 

(1) For each conditional rule of the form s1 !tl' ...• sn!tn 

: l r, sia < la and tia < la for all i (1 $ i $ 

n) and for all substitutions a. 
(2) < has the subterm property, i.e., if s is a proper 

subterm of t then s < t. 

Then a decreasing system has the following 
properties: 

1. the system is terminating 
2. the basic notions are decidable, i.e., for any terms s 

and t, one step reduction s -+ t, a finite reduction 

s -+ • t, s!t, "s is a normal form" are all decidable. 

We can readily see that Kapaln's simplification 
systems [13] and Jouannaud-Waldmann's reductive systems 
[12] are special cases of our decreasing systems. 

The following "critical pair" lemma can be proved by 
essentially the same argument as used by the above 
authors. 

Existence Lemma 

For any decreasing system, if every critical pair is 
joinable then every non-normal proof allows a reduction. 

It should be remarked that the existence lemma does 
not hold in general if we omit the second condition, the 
"sub-term property", in our definition of decreasing 
systems. In particular, counter-example (A) above satisfies 
all the properties of decreasing systems, except for the 
subterm property. 
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Now we show this. For this purpose, we utilize 
systems of proof theoretic ordinals in logic, which provide 
various well-founded orderings without the sub-term 
property. Here we actually consider an embedding of our 
counter-example into Takeuti's system 0(2, 1) of ordinal 
diagrams, which is one of the two major systems of proof 
theoretic ordinals. 

The reduction ordering of this system is embeddable 
into the ordering <

00 
in 0(2, 1) (see eg. Okada [20] or 

Okada-Takeuti [21] for the definitions <
00 

and 0(2, 1)), 

by the following embedding o: 

o(h(t)) = (0, o(t)#2) 
o(f(t)) = (1, o(t)) 
o(c) = (0, (1, l)#l) 
o(k(t)) (0, o(t)) 
o(a) = 1 
o(b) = 0 
o(g(t)) = (0, o(t)) 

Also, <
00 

satisfies the additional condition for the 

decreasingness, i.e., each condition term d and h(f(x)) is 
less than the left-hand side f(x) of the last rule in the 
sense of< . 

00 

If we consider a decreasing system in which every 
critical pair is joinable, then the same proof for the 
Normalization Theorem holds, as before. Moreover, with a 
decreasing system, we can extend the Normalization and 
Church-Rosser properties further. We introduce a stronger 
form of Normalization and the Church-Rosser properties to 
analyze conditional rewrite systems. 

1. By a "fully normal" proof of s = * t in a given 
natural conditional system, we mean a normal proof 

s!t such that every subproof sia = • tia used in 

establishing the conditions needed for s!t is fully 
normal. 

2. If for a given proof P of s = * t in a natural 
conditional system R there is a fully normal proof P' 
(of s!t) in R, we say the proof P is fully 

normalizable. If every proof (of the form s = * t) is 
fully normalizable, the system is said to have the 
"strong" Church-Rosser property. 

A decreasing natural system is a natural conditional 
system which satisfies all the above conditions for a 
decreasing system. 

Theorem (Full Normalization Theorem cf. [24]) 

For any decreasing natural system, if every critical 
pair is joinable, then every proof is fully normalizable. 
Hence such a system has the strong Church-Rosser 
property. 

The full normalization is carried out by successive 
normalizations from the surface proof to the deepest levels. 

More precisely, first we normalize the surface proof of s= * 
t to a normal form s!t in the given natural system. 

Then we consider the immediate conditions c1 = * dl' ... , 



c - • d used for the proof s!t, and normalize th~ n n 
surface proof of each of those to ci!di. We repeat this 

process. Each normalization procedure is exactly the same 
as the case for unconditional systems before: For the 
ordinal assignment of a given conditional proof, we use 
the multiset of terms occurring in the surface proof. We 
use the following Existence Lemma for a natural 
conditional system. 

Existence Lemma For any (not necessarily decreasing) 
natural conditional system, if critical pair is joinable, then 
every surface proof which is not normal allows a 
reduction. 

It should be remarked that the above successive 
normalization processes stop in finite steps because of the 
decreasingness property (1). 

The following corollary is a direct consequence of the 
Full Normalization Theorem. 

Corollary If a decreasing natural conditional system (with 

conditions of the form s = • t) is convergent (canonical), 
then the corresponding standard conditional system (with 
conditions of the form s!t) is also a convergent (canonical) 
decreasing system. 

It should also be remarked that the converse of this 
corollary is obvious for general case, i.e., if a standard 
conditional system is convergent then the corresponding 
natural conditional system is also convergent (without any 
assumption of decreasingness). 

Further techniques for full normalization of conditional 
equational proofs are studied in [24). 
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