
PDMC 2004 Preliminary Version

Parallel Multithreaded Satisfiability Solver:
Design and Implementation

Yulik Feldman a, Nachum Dershowitz b and Ziyad Hanna a

a Intel Corporation, Haifa, {yulik.feldman, ziyad.hanna}@intel.com
b School of Computer Science, Tel Aviv University, Tel Aviv, Israel,

nachum.dershowitz@cs.tau.ac.il

Abstract

We describe the design and implementation of a highly optimized, multithreaded
algorithm for the propositional satisfiability problem. The algorithm is based on
the Davis-Putnam-Logemann-Loveland sequential algorithm, but includes many of
the optimization techniques introduced in recent years. We provide experimental
results for the execution of the parallel algorithm on a variety of multiprocessor
machines with shared memory architecture. In particular, the detrimental effect of
parallel execution on the performance of processor cache is studied.

1 Introduction

This paper describes the design and implementation of a highly optimized,
parallel multithreaded algorithm for solving the propositional satisfiability
problem (SAT). SAT is a fundamental problem in the theory of computa-
tion, one that has been studied extensively for more than four decades, ever
since the introduction of the first algorithm for its solution in 1960 [5]. Eleven
years later it became the first problem proven to be NP-complete, in a fa-
mous paper by Cook [3]. Nowadays, the problem evidences great practical
importance in a wide range of disciplines, including hardware verification [17],
artificial intelligence [10], computer vision [2] and others. Indeed, one survey
of satisfiability [6] contains over 200 references to applications.

In spite of its computational complexity, there is strong demand for high-
performance SAT-solving algorithms in industry. Over the years, many dif-
ferent approaches and optimizations have been developed to tackle the prob-
lem more efficiently. Algorithms have evolved gradually by extending exist-
ing methods with new, more powerful, optimizations. Current research on
propositional satisfiability is focused on two classes of SAT solving methods:
complete algorithms and incomplete procedures. Complete methods, mostly
represented by backtrack search algorithms, identify both satisfiable and un-
satisfiable problems, and show reasonably good performance on both types.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Feldman, Dershowitz and Hanna

Incomplete methods, mostly represented by variations of local search proce-
dures, perform much faster on satisfiable problems, but incur the price of
not always being able to demonstrate unsatisfiability. The fact that back-
track search algorithms are able to cope with unsatisfiable problems usually
makes them the preferred choice in domains where proofs of unsatisfiability
are required.

Our implementation of a complete backtrack-search parallel algorithm in-
corporates most of the state-of-the-art sequential technologies introduced in
recent years. The emphasis has been on providing an efficient portable im-
plementation that would work on any typical multiprocessor workstation in
an industrial environment and improve runtime, as compared with the core
sequential algorithms, by distributing the workload over several processors
on the machine. To make sure the implementation is efficient and that low-
level implementation details are properly understood, the implementation of
the solver was not based on existing publicly available source code of other
solvers, but instead was designed and coded from scratch. The implementa-
tion was carefully crafted to enable a direct comparison of its behavior with
existing sequential algorithms. After the implementation of the algorithm was
completed, its behavior in different real-life environments was measured. In
particular, the effect of concurrent execution of multiple threads on the behav-
ior of platform architecture primitives, such as processor cache, bus utilization
and resource allocation, was investigated. The main contribution of this work
is that it shows the general disadvantageousness of parallel execution of a
backtrack-search algorithm on a multiprocessor workstation, due to increased
cache misses.

The remainder of this paper is organized as follows: Section 2 briefly de-
scribes the SAT problem. Section 3 gives an overview of the state-of-the-art
techniques used in the implementation of sequential solvers, while Section 4
describes the methods used to parallelize the core sequential algorithms. Sec-
tion 5 reports on the results of experimental runs of the implemented parallel
SAT solver. Section 6 describes related work in the area of parallel SAT
solving, and is followed by a brief concluding section.

2 The SAT Problem

The propositional satisfiability problem can be formulated easily in one sen-
tence: given a boolean formula, check whether an assignment of boolean truth
values to the propositional variables in the formula exists, such that the for-
mula evaluates to true. If such an assignment exists, the formula is said to be
satisfiable; if no such assignment exists, it is unsatisfiable. For a formula with
n variables, there are 2n possible truth assignments.

Although there are many ways to represent a boolean formula, conjunctive
normal form (CNF) is most frequently used for this purpose. In general, it
is not a limitation to use CNF for the representation of formulas, since any

2



Feldman, Dershowitz and Hanna

boolean formula can be transformed to an equivalently satisfiable formula in
CNF (with extra variables) in polynomial time [14]. In CNF, the variables
of the formula appear in literals, which are either a lone variable (x) or the
negation of a variable (x̄). Literals are grouped into clauses, which represent
a disjunction (logical or) of the literals they contain. A single literal can
appear in any number of clauses. The conjunction (logical and) of all clauses
represents a formula. For example, the CNF formula (x1∨ x̄2)∧(x̄3)∧(x1∨x3)
contains three clauses: x1 ∨ x̄2, x̄3 and x1 ∨ x3. Two literals in these clauses
are positive (x1, x3) and two are negative (x̄2, x̄3). Note that for a variable
assignment to satisfy a CNF formula, it must satisfy each of its clauses. For
example, if x1 is true and x3 is false, then all three clauses are satisfied,
regardless of the value of x2.

3 Sequential SAT

The sequential SAT solving algorithm employed in our parallel implementation
is based on the commonly used Davis-Putnam-Logemann-Loveland algorithm
(DPLL) [4], which performs a methodical enumeration of assignments, look-
ing for one that satisfies the formula. To build the assignments, the algorithm
chooses variables in a certain order and incrementally assigns a value to each.
As long as the resulting partial assignment does not falsify the formula, it
continues to choose variables and assign values. If the resulting partial as-
signment falsifies the formula, the algorithm assigns the opposite value to the
last variable chosen and checks whether the resulting assignment still falsifies
the formula. If not, it proceeds with assigning values to more variables. If
the formula is falsified regardless of the value of the most recently assigned
variable, it backtracks to the previously chosen variable and assigns it the
opposite value. The algorithm continues the search in a similar fashion, as-
signing, reassigning and unassigning values until all variables are assigned
and the formula is satisfied, or, alternatively, until all possible assignments
are accounted for, without finding a satisfying assignment. Note that DPLL
does not always explicitly visit all 2n assignments, since it backtracks once
an unsatisfying partial assignment is found. Of course, the complexity of the
algorithm remains exponential.

The original DPLL algorithm incorporated an optimization technique called
unit propagation, or boolean constraint propagation (BCP). If the current par-
tial variable assignment causes all but one literal of some clause to have the
value false, then the remaining literal must be assigned true in order not to
falsify the clause and, consequently, the whole formula. Such a literal is called
a unit literal, and such a clause is a unit clause. When a unit clause is found,
the algorithm chooses the variable of a unit literal next, and assigns it the
value that makes the clause true.

In recent years, many sophisticated optimization techniques have been
introduced to improve the performance of the core DPLL algorithm. These

3



Feldman, Dershowitz and Hanna

include watched literals, conflict analysis, non-chronological backtracking, vari-
able state independent decaying sum (VSIDS) decision heuristics and restarts.
Refer to [11,13] for a description of these techniques, all of which have been
incorporated in the parallel solver presented here.

The actual performance of our solver in a single-threaded configuration on
a benchmark suite of about 500 industrial tests is comparable to, although
slightly below, the performance of the award-winning zChaff sequential solver
[13]. The total runtime of our solver on this benchmark suite was about 10%
higher than that of zChaff, and its total memory consumption was about 12%
smaller. Our solver was able to solve seven more tests, within the time and
memory limits set during the experiment.

4 Parallel SAT

To parallelize the sequential DPLL algorithm, the search space is partitioned
into several disjoint parts that are treated in parallel. An important charac-
teristic of the SAT search space is that it is hard to predict the time needed to
complete a specific branch of the search space. Consequently, it is impractical
to partition the search space statically at the beginning of the algorithm, since
an incorrect prediction of the complexity of the chosen partitions would result
in an uneven workload distribution, and, concomitantly, in reduced efficiency
of the algorithm. To cope with this problem, the implemented parallel algo-
rithm dynamically partitions the search space, assigning available work to the
available threads during run-time.

4.1 Search space partitioning

To partition the search space, the algorithm uses the concept of guiding path,
first introduced in [1]. The guiding path describes the current state of the
search process. It does so by recording the list of variables to which the
algorithm assigned a value up until the given point of execution. For each
recorded variable, the guiding path associates the currently assigned boolean
value, as well as a boolean flag that says whether there has been an attempt
to assign both boolean values to the given variable or whether the currently
assigned value is the only one for which the assignment has been attempted. A
variable for which there was an attempt to assign both boolean values is said
to be closed, while one for which there was an attempt to assign only one value
is open. Open variables represent junctions on the guiding path that lead to
yet unexplored search space. In the sequential SAT-solving algorithm, which
can be seen as a special case of a parallel SAT-solving algorithm working with
a single thread, the guiding path represents the internal stack of the partial
assignments. Variables that are assigned new values are pushed onto the stack,
and, therefore, are added to the end of the current guiding path. Variables
that are removed from the stack as a result of backtracking are removed from

4



Feldman, Dershowitz and Hanna

the end of the guiding path.

Since a single thread explores only the currently assigned value of the open
variables, the search algorithm may be parallelized by letting other threads
explore the search space defined by the open variables on the guiding path of
the current thread. The other threads start their execution by assigning the
variables that precede the selected open variable on the guiding path, with the
values stored on the guiding path, and by flipping the value assigned to the
open variable. The selected open variable is then marked “closed” to prevent
other threads from following the paths already being explored. Note that each
running thread maintains a private guiding path associated with its execution
state. The available threads are then free to select any open variable from
any existing guiding path to pick up a new task. The thread that has the
selected open variable, and the thread that selects that variable, are said to
be in a parent-child relationship: the thread with the selected open variable
is the parent ; the one that selects the variable is the child. Running threads
form a conceptual tree, wherein nodes represent threads and edges represent
parent-child relationships.

4.2 Task scheduling

The execution of the parallel algorithm starts with a thread tree consisting of
a single node that is assigned the task of solving the whole problem instance.
As execution of the first thread begins, a number of open variables appear
on the guiding path of the first thread. A second thread picks one of the
open variables and joins the thread tree as a child of the root and explores a
subspace of the solution space being explored by the root. The other threads
choose an open variable from one of the running threads and join the tree,
exploring subspaces of those that are being explored by their parent threads.
The tree grows as long as available threads join the execution of the algorithm.

A working thread finishes the execution of its current task in one of two
fashions: either the thread finds an assignment to all variables such that the
whole formula is satisfied, or the thread figures out that no such assignment
exists in its subspace. In the first case, the parallel algorithm is stopped and
the solution is reported. In the second case, the outcome does not necessar-
ily mean that the whole formula is unsatisfiable, since the subspaces being
explored by other threads were not searched by the current thread. In this
case, the completed thread picks up an open variable from one of the other
threads and starts exploration of the corresponding subspace. The thread
that finished execution of its latest task is removed from the tree and joins it
again at a different branch. If no available open variables exist at the time
an available thread looks for a new task, the thread is temporarily suspended
until an open variable appears. If all threads finish their execution and are in
suspension while waiting for an available task, this indicates that the search
space has been fully explored and the problem is unsatisfiable.

5



Feldman, Dershowitz and Hanna

Note that with such dynamic partitioning of the search space, the work
load is evenly distributed between the working threads, and these threads are
all kept busy until the problem is solved. To minimize the thread waiting
times and the time needed to find a new task, a list of available tasks is
maintained. When a new open variable is introduced by a thread, the thread
adds a description of a task that is associated with the new variable to the list
of available tasks. Since the number of open variables is usually much larger
than the number of working threads, the threads add new tasks to the list
only until a certain threshold on the size of the list is reached. When a thread
completes the execution of the current task, it chooses an available task from
the list and removes the task from the list. The other threads promptly add
a new task to the list, maintaining its size around the threshold. Due to the
large discrepancy between the number of open variables and the number of
threads, thread-waiting times on an empty list are very short. These times are
restricted to the stage just after the beginning of execution of the algorithm,
when the list is still empty, up to the time just prior to the completion of
execution, when no more open variables remain.

To reduce the overhead of reinitializing the state of the threads when they
switch from execution of one task to another, the available tasks are chosen in
such a way that the expected running time of each individual task is higher.
This is achieved by choosing open variables that are closest to the beginning
of the guiding paths. In each thread, such a single open variable is chosen as
a candidate for entering into the list of available tasks. The list of available
tasks is sorted by the same means, according to the length of the guiding path
leading to the open variables in the tasks. This approach prevents frequent
task switches that would create additional overhead compared to the sequen-
tial algorithm. Aside from reducing the overhead of task switches, the choice
of these variables also eliminates the need to implement a complex messaging
mechanism between threads, as explained next.

4.3 Conflict clause exchange

Although the threads work quite independently of each other, the parallel al-
gorithm requires special treatment of the conflict clauses produced by each
thread. Conflict clauses are clauses generated by the conflict analysis algo-
rithm, described in [11]. The clauses, similar to some other internal data
structures used by the parallel algorithm, have thread-specific data associated
with them. This data should be initialized in the context of each thread to
let the threads benefit from the existence of conflict clauses. Since the clauses
are generated by specific threads, the information about the generated clauses
should be distributed to the other threads. This is done by maintaining a
list of generated conflict clauses that is accessible from all threads. When a
conflict clause is generated by a thread, the thread that generated it puts it
onto the list. The others threads frequently check the existence of new clauses
on this list. If a thread detects that a new clause that is not yet initialized in

6



Feldman, Dershowitz and Hanna

the context of that thread has been added to the list, it initializes the clause in
its own context, and marks the clause as initialized in its context. Whenever
a clause is initialized in the contexts of all working threads, it is removed from
the list.

The distribution of conflict clauses between threads improves the effective-
ness of the search performed by each thread, much like it does in the sequential
SAT solving algorithm. It also eliminates the need to implement a complex
messaging mechanism between threads, which would allow the threads to ter-
minate the execution of tasks in other threads when they discover that these
tasks are not essential for solving the problem. The need for such termina-
tion signals arises when a thread finds a conflict and backtracks over several
variables to resolve the conflict. If one of the backtracked variables became
closed as a result of another thread starting exploration of the correspond-
ing subspace of the solution space, this exploring thread should be informed
that its current task is superfluous, since it leads to a conflict found by the
current thread. The implementation of the termination signals may be com-
plex and inefficient due to the need to implement synchronization mechanisms
protecting the thread data from simultaneous access from different threads.
Fortunately, if the distribution of conflict clauses is implemented, it becomes
unnecessary to signal other threads explicitly. When the current thread finds
a conflict, aside from backtracking over several variable assignments, it also
generates a conflict clause that describes the reason for the conflict, and puts
the clause on the list of conflicts. Once the other thread detects the presence
of this clause on the list and initializes it in its own context, it will be forced to
backtrack itself to avoid the conflict described in the conflict clause. Since the
tasks are created based on the open variable found closest to the beginning
of the corresponding guiding path, it is guaranteed that no more open vari-
ables are on the guiding path of the thread, and the backtrack algorithm will
terminate execution of the task once it reaches the beginning of the guiding
path.

4.4 Thread synchronization overhead

From an implementation point of view, the list of available tasks and the list of
conflict clauses not yet learned by all threads are the only two data structures
that implement synchronization mechanisms to protect data from simultane-
ous access from different threads. Both new task generation and new conflict
clause generation are relatively infrequent tasks compared to the rest of the
work being performed by threads. This makes the synchronization overhead
of these data structures insignificant compared to overall performance.

Aside from these two global data structures, the solver maintains another
global structure that represents the clauses of the formula being solved. How-
ever, since this data structure is read-only, it does not require thread synchro-
nization.

7



Feldman, Dershowitz and Hanna

Available tasks
Conflict clauses not yet
learned by all threads

Mutex Mutex

Thread 1
Thread 1

private data

Thread 2
Thread 2

private data

Thread N
Thread N

private data

Original formula clauses (read only)

...

Fig. 1. High-level architecture of the parallel multithreaded satisfiability solver

The remaining data structures are accessed by the single thread owning
them, and, as such, do not require any thread synchronization. As a result, the
introduction of thread synchronization mechanisms does not impose significant
overhead on the performance of the core sequential algorithm (see Section 5
for more details). Figure 1 displays the high-level architecture of the solver.

5 Experimental Results

In this section, experimental results of running the implemented parallel mul-
tithreaded SAT solver on a variety of machine configurations are provided. It
should be noted that, in general, it is difficult to precisely measure the per-
formance of the solver due to the high variance of run-times of consecutive
invocations of the same test in the same environment. This may be attributed
to a combination of two factors. The first is the inherent indeterminism of
the parallel execution of a multithreaded program. The second factor is the
unpredictably unbalanced structure of the search space of the SAT problem.
These two factors together make it difficult to measure the performance of
an individual test, which may change in order of magnitude from run to run.
To minimize the effect of indeterminism on the results, the tests in this sec-
tion were run several times and the total running times were recorded. The
standard deviation was in the range of 20–30%.

On the first set of tests, overall performance of the solver on a single
medium-size SAT problem was measured—over a variety of different machine
architectures with different numbers of concurrently running threads. The
particular SAT problem was chosen in such a way that it is complex enough
to objectively test the overall performance of the solver and small enough to
allow running multiple tests within a reasonable timeframe. It was also chosen
so that memory consumption does not cause a performance bottleneck and

8



Feldman, Dershowitz and Hanna

Table 1
Machine configurations

OS Processor Type MHz HT CPU L2

A
Windows 2000 AS Pentium III

700 No 4 1024K

B 500 No 2 512K

C
Windows XP

Mobile Pentium III 800 No 1 512K

D Pentium M 1700 No 1 1024K

E

Linux RH 7.1

Pentium 4 2400 No 1 512K

F
Xeon

2200 Yes 1(2) 512K

G 2400 Yes 2(4) 512K

H Linux RH AW 2.1 Itanium 2 (64 bit) 1300 No 2 (*)

processor performance alone is being tested. The problem is dlx2 aa from the
“Superscalar Suite 1.0” of Velev [18], and represents the correctness criteria
for the 2-issue superscalar DLX processor with in-order execution, having 2
pipelines of 5 stages each. The problem, with 490 variables and 2804 clauses,
is unsatisfiable. The single-threaded configuration of the solver requires about
7000 decisions and 120,000 implications to conclude that it is unsatisfiable.
During the run, the solver consumes about 1.5MB of heap memory.

Table 1 shows the different machine configurations used in the tests. The
HT column specifies whether the given processor has Intel R© Hyper-Threading
Technology (HT) enabled. When HT is enabled, each physical processor is
perceived by the OS as two logical processors, enabling more concurrency be-
tween threads in the system (the number of logical processors is shown in
parentheses). The L2 column specifies the amount of L2 cache in each proces-
sor in kilobytes. All processors have two levels of cache, with the exception
of the Itanium 2 processor (Configuration H), which has three levels of cache
(256K of L2 cache and 3072K of L3 cache). Table 2 shows the overall per-
formance of the SAT solver on each configuration in Table 1, with a different
number of concurrently working threads. Numbers are given in seconds and
represent the sum of runtimes for 10 consecutive invocations of the same test.
The overhead for executable startup, thread initialization and parsing of the
problem was in the range of 0.1-0.2 seconds per invocation. The last column
gives the ratio of performance of the configuration with four threads to the
single-threaded configuration.

As this set of tests shows, the overall performance of the solver, not only
does not improve with the increased number of concurrently working threads,
but becomes worse when the number of working threads is increased. Perfor-
mance degradation is especially severe on systems that have more than one

9



Feldman, Dershowitz and Hanna

Table 2
Performance of SAT solver with different numbers of working threads

Configuration One Two Three Four Four:One

A 13 15 61 89 6.8

B 20 21 42 47 2.4

C 14 16 19 22 1.6

D 13 15 14 15 1.2

E 7 7 7 10 1.4

F 8 20 27 53 6.6

G 6 55 195 168 28.0

H 6 52 86 107 17.8

processor, whether physical or logical. The least degradation is observed with
Configurations C, D and E, which are single processors. The worst degrada-
tion occurs with Configuration G, with two processors and HT enabled. The
tendency for performance to degrade with an increased number of threads is
not limited to configurations shown in Table 2, with up to four threads; per-
formance continues to degrade as the number of working threads is increased
beyond four. A similar picture was observed when the solver was invoked on
other problems.

The above results suggest that there is some kind of interference between
threads running on different processors, which causes the performance degra-
dation. To locate possible sources of such interference, a detailed analysis
of algorithm performance on a single machine configuration with a varying
number of threads was done. The IntelR© VTuneTM Performance Analyzer [8]
was used to collect data and to perform the analysis. The initial investigation
of solver process behavior relative to the other processes in the system, load
distribution of the threads inside the process and the distribution of func-
tion calls inside the threads did not reveal the cause for the degradation of
performance as the number of working threads increases. Independent of the
number of working threads, the solver process took a large part of the total
processor load, the load distribution between process threads was even, and
the same function call patterns appeared in the performance bottlenecks inside
the threads. Consistent with performance reports of other DPLL satisfiability
solvers, for about 70% of total running time the threads were busy running
boolean constraint propagation algorithms, while this number did not change
with the number of working threads. The only thing that changed with the
increased number of threads was the time that different functions spent wait-
ing on synchronization locks for shared data structures. However, even in

10



Feldman, Dershowitz and Hanna

the case of four running threads, the total waiting time did not reach 10% of
the total running time, a percentage that could not explain the performance
degradation observed in the above tests.

With the help of VTune’s sampling performance analysis, it was found
that the average number of processor clockticks needed to execute a single
processor instruction (CPI, clockticks per instruction) grows significantly with
the increased number of working threads. While the CPI of the solver process
was about 1.4 in the configuration with one thread, which is considered very
good for this class of processors, the CPI grew to about 3.7 in the configuration
with four threads, which is considered poor.

To investigate the cause of this degradation further, the behavior of
processor-monitoring events was analyzed. The processor-monitoring events
are hardware-level processor-specific counters that enable monitoring of low-
level processor events, such as cache misses and bus utilization. (For a detailed
description of processor-monitoring events, refer to [7].) A total of more than
200 different tests have been run and detailed statistics have been collected.
Due to lack of space, Table 3 shows only the most interesting results. All
tests in the table were run on the same SAT problem on the same machine
(Configuration B from Table 1). Instead of showing the raw values of various
processor-monitoring events, the table shows the ratios of the events to other
related basic events. These ratios make the numbers independent of the ac-
tual runtime of a process. In particular, the increased runtimes of tests due
to an increased number of working threads have no effect on the ratios. For
example, the “Instructions Decoded / Clockticks” ratio represents the average
amount of decoded instructions per processor clocktick, independent of how
many clockticks have actually been executed.

As Table 3 demonstrates, most of the above ratios are strongly affected
by the increased number of threads. The more threads running, the worse
the ratios look. The most seriously affected ratios are the increased cache
and memory misses which slow down the execution very significantly. The
average “L2 M-state Lines Allocated / DMRs” is 0.0005 when one thread is
running, while it is more than 0.0053 when two or more threads are running,
a tenfold increase (!). It is important to note, once again, that these numbers
are independent of actual execution time, which varies with the number of
threads.

Several factors may lead to the increased cache misses. One is that the
essence of the parallel SAT solving algorithm requires that most of the auxil-
iary data structures storing the current state of the algorithm are duplicated
for each additional thread. The only data that can be shared between threads
are the sets of literals of the formula clauses. This does not constitute a major
part of the total processed data. The increased number of memory allocations
results in an increased number of cache misses. Table 4 shows the amount of
allocated heap memory as a function of the number of working threads and
the number of decisions made by the solver. Note that when more than one

11



Feldman, Dershowitz and Hanna

Table 3
Ratios of processor-monitoring events with different number of working threads

Ratio One Two Three Four

Partial Stall Cycles / Clockticks 0.0216 0.0413 0.0483 0.0427

Resource Related Stalls / Clockticks 0.2758 0.7620 0.4565 0.4439

L2 Cache Reads / DMRs (*) 0.0135 0.0175 0.0303 0.0314

L2 Cache Writes / DMRs 0.0017 0.0041 0.0096 0.0088

L2 M-state Lines Allocated / DMRs 0.0005 0.0053 0.0094 0.0066

L2 M-state Lines Evicted / DMRs 0.0004 0.0036 0.0109 0.0082

External Bus Cycles / Clockticks 0.0008 0.0070 0.0079 0.0095

Instructions Decoded / Clockticks 0.7908 0.5984 0.4855 0.4511

L2 Cache Request Misses / DMRs 0.0013 0.0075 0.0126 0.0096

(*) Data Memory References

Table 4
Heap memory allocation with different number of working threads

Decisions 1000 2000 3000 4000 5000 6000 7000

One thread 872 968 1036 1104 1308 1464 1596

Two threads 1172 1408 1528 1624 1756 1828 1912

Three threads 1416 1472 1584 1668 1928 1976 2100

Four threads 1648 1768 2080 2232 2340 2392 2592

thread is used, the actual number of decisions made during the solution of
the tested SAT problem may vary from about 2000 to about 9000, due to
nondeterminism of the algorithm. The data in Table 4 shows the approximate
memory allocation (in kilobytes) made during solver invocations that resulted
in a total of about 7000 decisions.

In addition to an increased number of memory allocations, the algorithm
is unable to process the data in a linear fashion to allow pre-fetching of coming
data. Rather, data is accessed in a nearly random order, inside a single thread
and, in addition, with no correlation between different threads. Frequent
accesses to data from an increased number of locations also result in increased
cache misses. When the algorithm is run on a multiprocessor machine, the
situation is worsened by the fact that a change of data by one processor
invalidates the cache lines holding the memory region surrounding the changed
data in other processors.

12



Feldman, Dershowitz and Hanna

The data structures and algorithms of modern SAT solvers are highly op-
timized with regard to cache misses, so the sharp increase in the number of
cache misses in a multithreaded environment seemingly overweighs the po-
tential advantages of parallel execution of parts of the problem on a single
multiprocessor machine.

These hypotheses as to the root causes of the performance degradation
are based on the experimental results and on a detailed analysis of the imple-
mented algorithm, after having invested considerable effort in an attempt to
optimize cache behavior. Still, it is possible that some alternate organization
of data structures or different sequential or parallel algorithms might reduce
the number of cache misses within a multithreaded environment.

6 Related Work

Research on parallelizing SAT solving algorithms can be traced back to a
1994 paper by Bohm and Speckenmeyer [1], who presented a parallelization
of a simple sequential Davis-Putnam (DP) SAT solving algorithm for k-SAT
problems on a parallel MIMD machine consisting of 320 T800 transputers.
The authors showed a linear speed-up with increasing numbers of processors.

In subsequent years, a number of works in the field of parallel SAT algo-
rithms were published. These included parallelizing a more advanced version
of DP/DPLL algorithms, such as PSATO [19] and parallel Satz [9], paral-
lelizing local search algorithms [12] and hardware-based approaches [20]. One
of the most interesting is the implementation of PaSAT [15,16], a parallel
version of a DPLL-based SAT solver that incorporates a number of recently
introduced techniques, such as conflict analysis, non-chronological backtrack-
ing and dynamic learning. The authors make a special emphasis on studying
the behavior of dynamic learning in a parallel environment and its effect on
overall performance. The parallel solver was run on a cluster of 24 Sun work-
stations, and variations of different dynamic learning parameters on several
test cases were observed. In many cases, the authors achieves linear, and even
super-linear, speed up in terms of the number of running threads.

There are two main aspects in which the work presented in the current pa-
per differs from the above works. First, a substantial effort has been made to
implement efficiently most published state-of-the-art sequential SAT solving
techniques, making the performance of the single-threaded algorithm directly
comparable to other modern SAT solvers. This allowed the studying of the be-
havior of parallel execution of the algorithm in a real-life environment, where
it had to coexist with other implemented optimizations of the SAT solving al-
gorithm. This also made it possible to observe the negative effect on otherwise
highly optimized cache performance of the sequential algorithm.

The other major distinction between this and previous works is that we
have investigated the parallel execution of a SAT solving algorithm on a single
multiprocessor workstation with shared memory architecture, as opposed to

13



Feldman, Dershowitz and Hanna

executing on a cluster of network-connected machines. In a typical industrial
environment, it is usually difficult to dedicate a cluster of network-connected
machines to the solution of a SAT problem, due to the lack of sufficient re-
sources. On the other hand, it is quite common for one or more processors
on a company workstation to be idle, since the operating system is unable to
distribute the workload of a single-threaded SAT solving algorithm to other
processors. However, while it is possible to achieve a linear speed-up on a
cluster of network-connected machines, the effect of shared memory architec-
ture on cache performance seemingly diminishes the advantages of parallel
execution on a single multiprocessor workstation.

7 Conclusion

The previous sections presented experimental results of running a highly op-
timized parallel SAT solving algorithm on a single multiprocessor workstation
with shared memory architecture. The results show a very significant detri-
mental effect on cache performance, and, consequently, on total run-time.
Cache performance is so greatly affected that total run-time grows with the
increased number of running threads, in spite of the workload distribution
among different processors. This effect remains similar on a variety of hard-
ware and system configurations, with the tendency to become stronger as the
number of processors increases.

The structure of the SAT problem, and the backtrack search SAT algo-
rithm, make it very difficult to adjust the data structures or the algorithm
for better cache locality during concurrent execution of parts of the problem.
As a result, there seems to be no practical advantage in attempting to opti-
mize the backtrack search algorithm by letting it execute concurrently on a
multiprocessor workstation.

References

[1] Max Bohm and Ewald Speckenmeyer. “A fast parallel SAT-solver — efficient
workload balancing”, URL: http://citeseer.ist.psu.edu/51782.html, 1994.

[2] Ronald T. Chin and Charles R. Dyer. Model-based recognition in robot vision,
ACM Computing Surveys, 67–108, 1986.

[3] Stephen A. Cook. The complexity of theorem proving procedures, Proceedings of
the 3rd Annual ACM Symposium on the Theory of Computing, 151–158, 1971.

[4] Martin Davis, George Logemann and Donald W. Loveland. A machine program
for theorem proving, Journal of the ACM, 394–397, 1962.

[5] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory, Journal of the ACM, 201–215, 1960.

14

http://citeseer.ist.psu.edu/51782.html


Feldman, Dershowitz and Hanna

[6] Jun Gu, Paul W. Purdom, John Franco and Benjamin W. Wah.
“Algorithms for the satisfiability (SAT) problem: A survey”, URL:
http://citeseer.ist.psu.edu/56722.html, 1996.

[7] Intel Corp. “IA-32 Intel Architecture Software Developer’s Manual Volume 1:
Basic Architecture”, URL: http://developer.intel.com/design/Pentium4/
documentation.htm, 2003.

[8] Intel Corp. “IntelR© VTuneTM Performance Analyzer”, URL: http://www.

intel.com/software/products/vtune/vpa/index.htm, 2004.

[9] Bernard Jurkowiak, Chu Min Li and Gil Utard. Parallelizing Satz using dynamic
workload balancing, Electronic Notes in Discrete Mathematics, 9 (2001).

[10] Henry Kautz and Bart Selman. Unifying SAT-based and graph-based planning,
Workshop on Logic-Based Artificial Intelligence, 1999.

[11] João P. Marques-Silva and K. A. Sakallah. Conflict analysis in search algorithms
for propositional satisfiability, Proceedings of the IEEE International Conference
on Tools with Artificial Intelligence, 1996.

[12] Simone L. Martins, Celso C. Ribeiro, Mauricio C. Souza. A parallel GRASP for
the Steiner problem in graphs, Workshop on Parallel Algorithms for Irregularly
Structured Problems, 1998.

[13] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and
Sharad Malik. Chaff: engineering an efficient SAT solver, Proceedings of the
38th Design Automation Conference, 2001.

[14] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form
translation, Journal of Symbolic Computation 2 (1986), 293–304.

[15] Carsten Sinz, Wolfgang Blochinger and Wolfgang Küchlin. PaSAT -

parallel SAT-checking with lemma exchange: implementation and applications,
Proceedings of SAT2001.

[16] Carsten Sinz, Wolfgang Blochinger and Wolfgang Küchlin. Parallel

propositional satisfiability checking with distributed dynamic learning, Parallel
Computing 29(7) (2003), 969–994.

[17] Miroslav N. Velev and Randal E. Bryant. Effective use of Boolean satisfiability
procedure in the formal verification of superscalar and VLIW microprocessors,
Proceedings of the Design Automation Conference, 226–231, June 2001.

[18] Miroslav N. Velev. “Superscalar Suite 1.0”, URL: http://www.ece.cmu.edu/
∼mvelev, 1999.

[19] Hantao Zhang, Maria Paola Bonacina and Jieh Hsiang. PSATO: a distributed
propositional prover and its application to quasigroup problems, Journal of
Symbolic Computation, 1996.

[20] Ying Zhao, Sharad Malik, Matthew Moskewicz and Conor Madigan.
Accelerating Boolean satisfiability through application specific processing, ISSS,
2001.

15

http://citeseer.ist.psu.edu/56722.html
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm
http://www.intel.com/software/products/vtune/vpa/index.htm
http://www.intel.com/software/products/vtune/vpa/index.htm
http://www.ece.cmu.edu/~mvelev
http://www.ece.cmu.edu/~mvelev

	Introduction
	The SAT Problem
	Sequential SAT
	Parallel SAT
	Search space partitioning
	Task scheduling
	Conflict clause exchange
	Thread synchronization overhead

	Experimental Results
	Related Work
	Conclusion
	References

