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Abstract. We investigate combinatorial commutation properties for re-
ordering a sequence of two kinds of steps, and for separating well-
foundedness of unions of relations. To that end, we develop the notion
of a constricting sequence. These results can be applied, for example, to
generic path orderings used in termination proofs.

“Loop” as a train destination means that
the train enters the Loop elevated structure in downtown Chicago,

does a complete circle, and then returns the way it came.
Red Line and Blue Line trains serve the Loop area of Chicago. . . .

– Paul Inast (wikipedia.org)

1 Introduction

Imagine a city that has two coöperating bus companies, a Red line and a Blue
line. An unusual condition of Doornbos, Backhouse, and van der Woude [13]
guarantees that if a circular excursion is possible, then there is one traveling
solely on one of the lines. This condition, denominated here “lazy commuta-
tion”, states that if you can get somewhere by first taking a Red bus and then
transferring to a Blue one, then – unless the Red line can take you directly to
your destination – the Blue line will be able take you someplace whence you can
also get to your destination by some combination of segments.

We demonstrate that lazy commutation implies that there is no need for the
Red line to ever issue transfers to Blue routes, provided there are no circular
trips that are purely Red or purely Blue. Bear in mind that the fact that one bus
line operates from point X to point Y does not mean that it – or its competitor –
necessarily operates in the opposite direction, from Y to X.

One of the earlier works on using commutation properties in termination
proofs, especially of complicated forms of rewriting, was by Porat and Francez
[29]. That same avenue is explored here.

Lazy commutation turns out to be a very meaningful concept. It has three
important consequences regarding sequences of Red and Blue steps:
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1. It implies “finite separation”, in the above sense, namely that Blue steps
followed by Red steps will get one to any destination – unless there is an
infinite monochromatic (single-step or multiple-step) excursion.

2. It implies “infinite separation”, in that if there is an infinite combined Red-
Blue excursion, then there must be an infinite monochromatic excursion as
well, as was shown in [13].

3. If there is an endless combined excursion, but no endless purely Blue ones,
then there is also an endless Red excursion from which a transfer at any
point to the Blue line precludes wandering the lines forever.

After fixing notations and some terminology in the next section, we collect
some new and old observations on separability in Sect. 3. Then, in Sect. 4, we
consider conditions that ensure that a positive number of steps separates into
a likewise nonempty sequence. This is followed by a definition, in Sect. 5, of
“constricting” sequences, expanding on a notion of Plaisted’s [28].

A weaker notion than laziness, dubbed “selection” and defined in Sect. 6,
suffices to prove the main separation results in Sects. 7 and 8. Section 9 discusses
the “lifting” of termination of one color to that of the other in the presence of
separation.

We close with some thoughts on the implications that lazy commutation has
for proofs of well-foundedness of orderings, such as the path orderings commonly
used in proofs of termination (strong normalization) of rewriting.

2 Notions and Notations

All relations in this paper are binary. We use juxtaposition for composition of
relations, represent union by +, and denote the inverse, n-fold composition,
transitive closure, reflexive closure and reflexive-transitive closure of relation E
by E−, En, E+, Eε and E∗, respectively. Let I be the identity relation.

A relation E on a finite or infinite set of elements V may be viewed as a
directed graph with vertices V and edges E. So, there is a (directed) path from
s to t, for s, t ∈ V , if, and only if, s E∗ t.

The immortal elements of a set V equipped with a relation E are those t ∈ V
that initiate infinite E-chains of (not necessarily distinct) elements of V ,

t E t′ E t′′ E · · · .

We will also say that a step t E t′ is immortalizing if t′ is immortal. Define

E∞ = {〈u, v〉 | u, v ∈ V, u is immortal for E} ,

relating immortal elements to all vertices, as is commonly done in relational
program semantics (e.g. [13]). Thus,

E∞C ⊆ E∞ , (1)

for any relation C.
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Fig. 1. Mortal (black) nodes on bottom and immortal (green) nodes on top

· · ·• • • • •

Fig. 2. Mortal in each alone (dashed Azure or solid Bordeaux), but immortal in
their union

In Fig. 1, all the nodes on the upper row are immortal, while all those on the
lower row are mortal. Taking a “wrong” turn can precipitate mortality, but, in
contrast, once mortal, always mortal.

We compose relations, using notation like s BA t to mean that there is two-
step path from s to t, taking B followed by A. Similarly, s ∈ AB∞ means
that s has an A-neighbor that is immortal for B. We say that a relation E
is well-founded (regardless of whether E is transitive) if it admits no cases of
immortality, that is, if E∞ = ∅.

This paper explores properties of the (non-disjoint) union E = A + B of two
relations, A and B. Throughout, we will regularly use E, without elaboration,
to denote the union A + B.

In Fig. 2, the individual relations A (think Azure in the illustrations) and B
(Bordeaux) do not engender immortality, but their union does.

The following two main properties will claim our attention:

Definition 1 (Finite Separation). Two relations A and B are finitely sepa-
rable if

(A + B)∗ = A∗B∗ .

Definition 2 (Infinite Separation). Two relations A and B are infinitely
separable if

(A + B)∞ = (A + B)∗(A∞ + B∞) . (2)

Nota bene. Finite separation is not a symmetric property: we want the A’s before
the B’s. Infinite separation, on the other hand, is symmetric.

Any two points in the graph depicted in Fig. 3 can be connected by A’s
followed by B’s, so the graph is finitely separable. Furthermore, every node is
immortal in B alone, so it is infinitely separable, as well.

In terms of the bus routes (for which there are no simple [non-looping] infinite
paths), infinite separability means that at least one company must provide a
circular excursion, whenever it is possible to go in circles using both companies.
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Fig. 3. The two relations are both finitely and infinitely separable

It is easy to see [33, Ex. 1.3.5(ii)] that finite separability (called “postpone-
ment” in [33]) is equivalent to the (global) “commutation” property

B∗A∗ ⊆ A∗B∗ . (3)

Note 3. This is analogous to the equivalence of the Church-Rosser and global
confluence properties of abstract rewriting [27].

Another trivial induction also shows that (3) is equivalent to an even simpler
property:

Proposition 4 ([30]). Two relations A and B are finitely separable if, and only
if,

B+A ⊆ A∗B∗ .

The point of infinite separability is that it ensures that the union E = A + B is
well-founded if each of A and B is, even without finite separability.

Example 5. An easy example of finite, but not infinite, separability is s A t B s.

s t

Example 6. A simple example of infinite, but not finite, separability is s A s BA
t.

s • t

Definition 7 (Full Separation). Two relations A and B are fully (infinitely)
separable if

(A + B)∞ = A∗B∗(A∞ + B∞)
= A∗B∗A∞ + A∗B∞ .
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Table 1. Types of separation (“coefficients” of right-hand side terms)

⊆ A∗B∗ B∗ A∞ B∞

Weak (Def. 44)
E∗ I

A∗B∗ A∗

Finite (Def. 1)

Productive (Def. 28) E+ A B

Infinite (Def. 2)

E∞
E∗ E∗

Nice (Def. 9)

A∗Full (Def. 7) A∗B∗

Neat (Def. 8) I

With finite separability, infinite separability (2) is equivalent to full separability.
A pleasant special case is the following:

Definition 8 (Neat Separation). Two relations A and B are neatly (in-
finitely) separable if

(A + B)∞ = A∞ + A∗B∞ .

A nice in-between (asymmetric) notion of separability is the following:

Definition 9 (Nice Separation). Two relations A and B are nicely (infinitely)
separable if

(A + B)∞ = (A + B)∗A∞ + A∗B∞ .

Clearly, then, If relations A and B are nicely, or fully, separable, and A is well-
founded, then

E∞ = A∗B∞ .

Table 1 summarizes the various types of separability we will be using, from
weaker down to stronger. For example, the penultimate row defines a relatively
strong form of infinite separability (see Definition 7) and should be read as

E∞ ⊆ A∗B∗A∞ + A∗B∞ .

It implies nice separation, and, a fortiori, (plain) infinite separation, but not neat
separation.

3 Warmup

We begin with relatively simple cases of separability. We are looking for local
conditions on double-steps BA that help establish separability, finite or infinite.
The point is that these local conditions suggest how to eliminate BA patterns,
which are exactly what are prohibited in separated sequences.
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3.1 Finite Separation

Note that CBε = CB + C, and recall the following:

Proposition 10 ([20]). If, for relations A and B,

BA ⊆ A∗Bε (4)

then A and B are finitely separable.

Note 11. When B is the inverse A− of A, Eq. (4) becomes (one half of) Huet’s
[18] strong-confluence condition.

Proof. Repeatedly rewriting the last occurrence of BA in an E-chain with in-
stances of A∗Bε must terminate in a sequence without any instance of BA, since
either the number of B’s decreases, or else the rightmost B moves rightward. ��
By symmetry (of A and B and left and right):

Proposition 12. If, for relations A and B,

BA ⊆ AεB∗ , (5)

then A and B are finitely separable.

Proof. An alternate proof to that of the previous proposition proceeds as follows:
First, an easy induction shows that (5) implies that BnA ⊆ AεB∗, for all n:

BnBA ⊆ BnAεB∗ = BnB∗ + BnAB∗ = B∗ + AεB∗ = AεB∗ .

Then, an application of Proposition 4, on account of B∗A ⊆ AεB∗, gives finite
separation. ��
As an aside, in direct analogy to Newman’s Lemma [27], we have the following:

Proposition 13. If, for relations A and B, A + B− is well-founded and

BA ⊆ A∗B∗ , (6)

then A and B are finitely separable.

This means that local (weak) commutation (6) implies separability, but only with
a strong side condition of well-foundedness.

Proposition 14 ([17,5]). If relation A is well-founded and

BA ⊆ A+B∗ , (7)

for relation B, then A and B are finitely separable.

Note 15. The necessity of either well-foundedness of A + B− or the limiting
right-hand sides of inclusions (4) and (5) can be seen from the following example
(adapted from [27]): s B t B u A v, and t A u. Pictorially:
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s t u v

Note that the edge t E u in this graph belongs to both relations, A and B.

More generally, we have the following definition and result:

Definition 16 (Quasi-commutation [2]). Relation A quasi-commutes over
relation B when

BA ⊆ A(A + B)∗ . (8)

The right-hand side A(A + B)∗ is equivalent to (AB∗)+.
Obviously (by induction):

Lemma 17. Relation A quasi-commutes over relation B if, and only if,

B+A ⊆ A(A + B)∗ .

Theorem 18. If relation A quasi-commutes over relation B, then

(A + B)∗ ⊆ A∗B∗ + A∞ . (9)

(Compare Definition 44 below.)

Proof. Consider any sequence E∗ = A∗(B∗A)∗. Using the above lemma, repeat-
edly replace the first occurrence of B+A with AE∗. If this process continues
forever, then the initial A-segment grows ever larger. Otherwise, we are left with
a sequence A∗B∗ sans occurrences of BA. ��
Corollary 19. If relation A is well-founded, then quasi-commutation of A over
a relation B implies their finite separability.

Since A is well-founded, one may assume that a property in question holds for
every t such that s A t, in an inductive proof that it holds for s. This suggests
the following alternative proof of this corollary:

Proof. We show that every sequence E∗ that is not in the separated form A∗B∗

can be rearranged to be “more separated”. By quasi-commutation (Eq. 8),

E∗ \ A∗B∗ = A∗BAE∗ ⊆ A∗AE∗ ,

and by induction on A
A∗AE∗ ⊆ A+B∗ .

So, in all cases, E∗ ⊆ A∗B∗. ��
Note 20. Quasi-commutation applies to combinatory logic and to orthogonal
(left-linear non-overlapping) term-rewriting systems, where A is a leftmost (out-
ermost) step and B is anything but. This means that leftmost steps may pre-
cede all non-leftmost ones. Combined with the fact that A−B ⊆ B∗A−, this
gives standardization (leftmost rewriting suffices for computing normal forms).
See [23].



66 N. Dershowitz

3.2 Infinite Separation

We start with some obvious aspects of infinite chains:

Proposition 21. For all relations A and B,

(A + B)∞ = (B∗A)∗B∞ + (B∗A)∞ (10)
= (A∗B)∗A∞ + (A∗B)∞ .

It follows from (10) that if infinitely many interspersed A-steps are precluded,
then A + B is well-founded if, and only if, B is:

Corollary 22. If relation B is well-founded, then

(A + B)∞ = (B∗A)∞ . (11)

for any relation A.

In other words, in any E-chain, there are either infinitely many A’s, in which
case E∞ must be an infinite sequence of segments of the form B∗A, or else from
some point on, there are only B’s, and B is not well-founded. Cf. [2, Lemma 1]
and [6, Lemma 12B].

The simplest local condition guaranteeing infinite separability is quasi-
commutation (8). We have the following analogue of Theorem 18, based on the
proof of infinite separation in [2]:

Theorem 23. If relation A quasi-commutes over relation B, that is, if

BA ⊆ A(A + B)∗ ,

then A and B are neatly separable, that is,

(A + B)∞ = A∞ + A∗B∞ .

The proof is also analogous to that of that earlier proposition:

Proof. Consider any E-chain, E∞ = E∗B∞ + A∗(B∗A)∞, as decomposed in
(10). In the first instance (E∗B∞), apply Theorem 18 to E∗ and get E∞ ⊆
E∗B∞ ⊆ (A∗B∗ + A∞)B∞ ⊆ A∗B∞ + A∞. Otherwise, repeatedly replace the
first occurrence of B∗A in An(B∗A)∞ with AE∗, giving An+1E∗(B∗A)∞ =
An+1(B∗A)∞. This process continues forever, there being an infinite supply of
A’s, and the initial A-segment grows ever larger, yielding A∞. ��

Note 24. This form of separability was used to show that “forward closure”
termination suffices for orthogonal term rewriting, where B are “residual” steps
(at redexes already appearing below the top in the initial term) and A are at
“created” redexes (generated by earlier rewrites). See [7].
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Theorem 25. If, for relations A and B,

BA ⊆ A∗B , (12)

then A and B are fully separable, that is,

(A + B)∞ = A∗B∗A∞ + A∗B∞ .

In what follows (Theorem 72), this condition, equivalent to BA ⊆ A+B +B, will
be weakened to laziness, the condition that BA ⊆ AE∗ + B (Definition 52), to
give separation. That way, each occurrence of BA need not always leave a B, as
in this theorem, nor always an A, as in the previous, but might sometimes leave
one and sometimes the other.

Proof. If the number of A’s or B’s in an infinite E-chain is finite, then by virtue of
Proposition 10, we have either A∗B∗A∞ or A∗B∞. In any case, easy inductions
show that BA∗ ⊆ A∗B and that BnA∗ ⊆ A∗Bn, for all n. Thus, a sequence
AmBnA∗BE∞ turns into either Am+kBn+1E∞, k > 0, in which case the number
of initial A’s increases, or else into AmBn+1E∞, in which case the number of
following B’s increases. In the final analysis, one gets either A∞, or else A∗B∞.

��
Note 26. This form of separability was used to show that “forward closure”
termination suffices for right-linear term rewriting, where B are “created” steps
and A are “residual” ones. See [7].

Note 27. When B is the subterm relation, condition (12) is a form of quasi-
monotonicity (weak monotonicity) of A. Compare [8,1].

4 Productive Separation

With finite separability, a non-empty looping sequence (as in Example 5) can
be “reordered” to give an empty one. To preclude an empty reordering, one can
use the following notions:

Definition 28 (Productive Separation). Relations A and B are (finitely)
productively separable if

(A + B)+ = A+B∗ + B+ ,

or, expressed more symmetrically, if

(A + B)+ = A+B∗ + A∗B+ .

Note 29. If, for example, there is no “mixed” loop, that is, if

(A + B)+ ∩ I ⊆ A+ + B+ ,

then finite separation implies productive separation.
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Theorem 30. If relation A quasi-commutes over relation B and A is well-
founded, then A and B are productively separable.

Proof. By Corollary 19, the relations are finitely separable. So, we have:

E+ = AE∗ + BE∗ ⊆ AE∗ + BA∗B∗ = AE∗ + B+ + BAE∗

⊆ AE∗ + B+ + AE∗E∗ ⊆ A+B∗ + B+ . ��

Definition 31 (Promotion). Relation B promotes relation A if

BA ⊆ AB∗ + B+ , (13)

or, expressed more symmetrically, if

BA ⊆ (A + B)B∗ .

Note 32. One can have productivity without promotion: s A t A u with s B t.

s t u

An easy induction shows the following:

Lemma 33. Relation B promotes relation A if, and only if,

B+A ⊆ AB∗ + B+ .

Theorem 34. If relation B promotes relation A, then A and B are productively
separable.

Note 35. Obviously, promotion (13) cannot be weakened to allow the erasure of
both the A and B (cf. 5), as can easily be seen from t BA t (Example 5), which
is finitely, but not productively, separable.

Proof. By Proposition 12, promotion (13) gives finite separability, E∗ = A∗B∗.
By the previous lemma, B∗A ⊆ AB∗ + B+, whence the proposition follows:

E+ = E∗(A + B) = A∗B∗A + A∗B∗B = A+B∗ + A∗B+ . ��
In symmetry with promotion, we also have the following:

Proposition 36. If, for relations A and B,

BA ⊆ A∗B + A+ ,

or, equivalently,
BA∗ ⊆ A∗B + A+ ,

then A and B are productively separable.
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5 Constriction

Let V and E be the vertices and edges of a graph, respectively, and let U = V 2

be all pairs of vertices, so E ⊆ U . For any relation R ⊆ U and property P ⊆ V ,
RP = {v ∈ V | v R w, for some w ∈ P} are all the vertices from which R takes
one to a vertex satisfying P . The kinds of properties P we are interested are:

– a specific goal vertex;
– a set of vertices along some path; and
– the set of immortal vertices.

The point is to consider the impact of a preference for edges A ⊆ E over
others en route to P .

Given some property P , it will be convenient throughout this section to re-
strict E to only those edges allowing one to get to P . Let V = E∗P be those
vertices from which P is reachable, let U = V 2, and let R = R ∩ U be the
restriction of any relation R to vertices leading to P .

For any B ⊆ E, let
B� = B \ AU ,

that is, a useful B-step at a point such that no useful A-step can lead to P . Such
B�-steps will be called constricting.

Example 37. Fair termination of E = A + B with respect to A, à la the work
of Porat and Francez [29], means that the union E is well-founded, except for
the possibility of an infinite sequence that “unfairly” avoids taking an A-step
infinitely often. So, the only way E can diverge is if from some point on A-steps
were possible infinitely many times, but were never taken. This property can be
expressed as

(B∗A)∞ = B∞
� = ∅ ,

where the property P that defines B� is always satisfied. It means that there are
no infinite sequences with infinitely many A’s (which certainly are fair), nor are
there infinite sequences of B’s, at every point of which no A-step was possible
(these are the B�).

Accordingly:

Definition 38 (Constricting Chains). An E-chain t0 E t1 E · · · is con-
stricting in A with respect to P if its non-A steps are constricting, in the sense
that there is no case of ti AE∗P , for any ti (E \ A) ti+1.

This means that the steps are all in A + B�. Our notion generalizes the “con-
stricting” sequences of [28].

For any property, one can always build a constricting sequence. The idea is
to ignore B-steps whenever an A-step is available:
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Theorem 39. For any relations A and B and property P ,

(A + B)∗ ⊆ (A + B�)∗ + (A + B�)∞

= (A + B�)∗ + (A + B�)∗A∞ + (A∗B�)∞ ,

where A and B are A and B steps, respectively, from which P is reachable and
B� is a B-step from whose origin there is no outgoing A.

Proof. Just take an A-step whenever possible, that is, whenever there is one that
leads to P . Only take B if there is no choice, so the B-steps are constricting.
Then, every A-step is actually A and every B-step is B� (as well as B). This
process either terminates, or else goes on forever, with either infinitely many B
steps, or finitely many. ��
Note 40. If there is an infinite A-path, then preferring A can be a bad idea.
Witness: s A s B t, that is,

s t

Note 41. Even if the sole infinite path involves both relations, A’s can preclude
reaching the goal, as in t A s B t B u:

s t u

6 The Selection Property

In this section we deal with non-local properties for which constriction yields
separation.

Definition 42 (Selection). We say that relation B selects relation A if

BA+ ⊆ A(A + B)∗ + B+ . (14)

Definition 43 (Weak Selection). We say that relation B weakly selects re-
lation A if

BA+ ⊆ A(A + B)∗ + B∗ + A∗B∗(A∞ + B∞) . (15)

Clearly, weak selection is weaker than selection.
Quasi-commutation gave a special case (Eq. 9) of the following property:

Definition 44 (Weak Separation). Two relations A and B are weakly
(finitely) separable if

(A + B)∗ ⊆ A∗B∗ + A∗B∗A∞ + A∗B∞

= A∗B∗(I + A∞ + B∞) .

It is straightforward to see that
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Proposition 45. Infinite separability plus weak separability give full separability.

Restricting attention to constricting sequences teaches the following:

Theorem 46. If relation B weakly selects relation A, then A and B are weakly
separable.

Proof. Suppose s E∗ t and let P (x) hold only for x = t. The premise (15) means
that

B�A
∗ ⊆ B∗ + B∗(A∞ + B∞) = B∗(I + A∞ + B∞) ,

since there can be no (relevant) outgoing A-step where there is a constricting
B-step. Theorem 39 asserts the (algebraic) equivalent of

E∗ ⊆ A∗(B�A
∗)∗ + A∗(B�A

∗)∞ + A∗(B�A
∗)A∞ ,

and, replacing B�A
∗ as reasoned above,

E∗ ⊆ A∗B∗[(I + A∞ + B∞) + (I + A∞ + B∞)∞ + (I + A∞ + B∞)A∞]
⊆ A∗B∗(I + A∞ + B∞) . ��

Note 47. An alternative weak version of selection,

BA+ ⊆ A(A + B)∗ + B∗ + (A + B)∗(A∞ + B∞) ,

does not yield weak separability. For example, s BA t A t is not weakly separable,
though BA+ ⊆ B∗A∞:

s • t

Theorem 48. If relation B selects relation A and both are well-founded, then
A and B are productively separable.

Proof. Selection implies weak selection, which, per the previous theorem, gives
weak separation, which, with well-foundedness, is finite separation. So selection,
itself, becomes

BA+ ⊆ AE∗ + B+ ⊆ A+B∗ + B+ ,

as required by Definition 28. ��

Note 49. Without well-foundedness of A, one does not have separation, as may
be seen from the following selecting, but unseparable example: s A s BA t.
That is,
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s • t

Note 50. Well-foundedness of B is also needed. To wit:

• • • •

A somewhat analogous way of obtaining a “productive” version of weak sep-
arability, similar in flavor to promotion as used in Theorem 34, is the following:

Theorem 51. If, for relations A and B,

B+A ⊆ A(A + B)∗ + B+ + A∗B∗A∞ , (16)

then

(A + B)+ ⊆ A+ + A∗B+ + A∗B∗A∞ .

Proof. If a nonempty E-chain is not of the form A∗B∗, then it must be of
the form AmB+AEn (m, n ≥ 0). The premise (16) is then used to replace the
segment B+A. The situation devolves into one of three possibilities:

1. We get AmAE∗, in which case the initial run of A’s grows by at least one,
and the process may be repeated.

2. We get AmB+En, in which case the AE∗-tail shrinks to length less than
n + 1, and the process is repeated.

3. We get AmA∗B∗A∞, in which case we are done.

So, either the process continues ad infinitum and infinitely many A’s get pushed
frontwards, giving A∞, or else eventually the process ends happily. It can end
either in immortality, when the third case transpires, or else in separation – with
no subsequences B+A to power the process. ��

7 Lazy Commutation

In [13,14], the following local property is defined and examined:

Definition 52 (Lazy Commutation). Relation A commutes lazily over rela-
tion B if

BA ⊆ A(A + B)∗ + B . (17)

Figure 3 has lazily commuting relations; Fig. 2 does not.
Back to busses: Lazy commutation means that a Red-Blue trip can be sub-

stituted by a single ride on Red or by a junket beginning with a Blue segment.
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Example 53. The relations s B t A t commute lazily:

s t

Note 54. Lazy commutation is noticeably weaker than quasi-commutation (8),
which was shown in [2] to separate well-foundedness of the union into well-
foundedness of each. (See [31] for an automated proof using Kleene algebras.)
Corollary 76 below is stronger.

Note 55. As pointed out in [13], lazy commutation is also much weaker than
transitivity of the union, which – by a direct invocation of a very simple case of
the infinite version of Ramsey’s Theorem – gives separation. (See [17,4] for some
of the history of this idea.)

Note 56. Note that replacing BA with AABB is a process that can continue
unabated: BBA, BAABB, AABBABB, AABAABBBB, . . . , with infinitely
many paths through the graph.

The following is known:

Proposition 57 ([14, Eq. 4.5]). If A commutes lazily over B, then

BA∗ ⊆ A(A + B)∗ + B , (18)

and – in particular – B selects A.

In short, laziness is stronger than selection.

Note 58. An example of selection without laziness is s B t B u with t A u, the
graph of which looks like this:

s t u

It is convenient to make use of the following notion:

Definition 59. Relation X absorbs relation A if

XA ⊆ X .

For example, A∗, E∗, B∞, and ∅ all absorb A. (Recall Eq. 1.) Obviously, if X
absorbs A, then it absorbs any number of A’s, and CX absorbs A whenever X
does.
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Proposition 60. If
CA ⊆ C + X

for a relation X that absorbs A, then

CA∗ ⊆ C + X .

Proof. By induction on n,
CAn ⊆ C + X ,

since, trivially, C ⊆ C + X , while, by the inductive hypothesis and absorption,

CAAn ⊆ (C + X)An = CAn + XAn ⊆ C + X + X = C + X . ��

Proposition 57 is a corollary, with C = B and X = AE∗:

BA+ ⊆ B + AE∗ ⊆ B+ + AE∗ .

A weaker version of laziness, which allows for infinite exceptions, is the
following:

Definition 61 (Lackadaisical Commutation). Relation A commutes lack-
adaisically over relation B if

BA ⊆ A(A + B)∗ + B + A∗B∗(A∞ + B∞) . (19)

Theorem 62. If relation A commutes lackadaisically over relation B, then B
selects A weakly.

Proof. Applying the previous proposition (E∗, A∞, and B∞ each absorb A), the
premise (19) implies

BA+ ⊆ AE∗ + B + A∗B∗(A∞ + B∞) ,

which is more than weak selection. ��
Now, by Theorem 46:

Theorem 63. If relation A commutes lackadaisically over relation B, and – in
particular – if A commutes lazily over B, then A and B are weakly separable.

Note 64. That an infinite A-chain cannot be ruled out can be seen from s B t A
t BA u:

s t • u

So lackadaisicalness gives only weak separability, rather than finite separability.
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With well-foundedness, weak separation turns into finite separation and lack-
adaisical commutation into lazy commutation.

Corollary 65. If relation A commutes lazily over relation B, and both are well-
founded, then in fact

BA ⊆ A+B∗ + B .

Proof. Since laziness with well-foundedness gives finite separation,

BA ⊆ AE∗ + B ⊆ AA∗B∗ + B . ��

Moreover, we have productive separability (Definition 28):

Theorem 66. If relation A commutes lazily over relation B, and both are well-
founded, then A and B are productively separable.

Proof. A simple induction – using the previous lemma – yields

BA+ ⊆ A+B∗ + B .

Thus, using finite separation,

E+ = EA∗B∗ = A+B∗ + BA+B∗ + B+ ⊆ A+B∗ + B+ . ��

Note 67. Well-foundedness of A and of B are necessary, even in the presence of
lazy commutation. Refer to the examples in Notes 49 and 50.

Note 68. Lazy commutation cannot be weakened to

BA ⊆ AE∗ + B+ .

Even
BA ⊆ AA + BB

causes trouble, as can be seen from the non-separable example in Note 15.

Note 69. Lazy commutation also cannot be weakened to

BA ⊆ AE∗ + Bε ,

as can be seen from the following non-separable graph:

• • • •
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8 Endless Commutation

We will see below that selection (Definition 42) suffices for the main consequences
of lazy commutation, namely finite and infinite separation. But, first, observe
the following:

Lemma 70. If

BA+ ⊆ A(A + B)∗ + B+ + (A + B)∗(A∞ + B∞) , (20)

for relations A and B, then they are infinitely separable.

This will be our main tool for separation.

Note 71. The condition (20) clearly does not suffice for full separation. See the
example in Note 47.

Proof. We use constriction (Sect. 5), letting P (x) hold for immortal x. The
premise (20) implies that

B�A
∗ = B+ + E∗(A∞ + B∞) ,

since B� precludes there being an initial immortalizing A-step. By Theorem 39:

E∗ ⊆ A∗(B�A
∗)∗ + A∗(B�A

∗)∞ + A∗(B�A
∗)∗A∞ .

Infinite composition of this means that either the first possibility, A∗(B�A
∗)∗,

repeats forever, or else it repeats finitely often and then one of the two infinite
cases takes over:

E∞ = (A∗(B�A
∗)∗)∞

+ (A∗(B�A
∗)∗)∗A∗(B�A

∗)∞ + (A∗(B�A
∗)∗)∗A∗(B�A

∗)∗A∞

= A∗(B�A
∗)∞ + A∗(B�A

∗)∞ + A∗(B�A
∗)∗A∞ .

By the premise, this is

A∗B∞ + A∗B∗A∞ + E∗(A∞ + B∞) = E∗(A∞ + B∞) ,

as desired. ��
The net result is that

Theorem 72. If relation B selects relation A, and – in particular – if A com-
mutes lazily over B, then A and B are fully separable.

Proof. Selection (14) implies the condition (20) of the previous lemma, giving
infinite separation. Theorem 46 gives weak separation; Proposition 45 gives full
separation; Proposition 57 gives the particular, lazy case. ��
The fact that laziness implies infinite separability is the main result of [13].
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Example 73. The graph s AB t A t is lazily commuting, since BA ⊆ B, and in
fact s ABA∞, as can be seen in the following diagram:

s • t

So, the relations are fully separable, but not neatly separable.

Note 74. Obviously, sans lazy commutation, immortality cannot necessarily be
separated. For example, with s AB s, only in the union is s immortal. See
Example 5.

Note 75. Lazy commutation cannot be weakened to include BA ⊆ AA + BB.
To see that, wrap the counterexample of Note 68 around itself, as follows:

• • •

Combining this theorem with Theorem 48, we can summarize by saying the
following:

Corollary 76. If relations A and B are both well-founded, and, furthermore, B
selects A, or – in particular – A commutes lazily over B, then the union A + B
is also well-founded and A and B are (finitely) productively separable.

When the relations are finite, as for the bus companies of the introduction, any
infinite tours are circular.

Corollary 77. If relation B promotes relation A, then A and B are fully (in-
finitely) separable, as well as (finitely) productively separable.

Proof. By Lemma 33, B+A ⊆ AB∗+B+, so A commutes lazily over B+. Clearly,
E∞ = (A + B+)∞. The result follows from Theorems 72 and 34. ��
Note 78. Promotion (Eq. 13) cannot be weakened to allow the erasure of both
the A and B, as can be seen from t BA t, which only cycles in the union.
Compare Note 35.

Actually:

Theorem 79. Whenever relations A and B are (finitely) productively separable,
they are also fully (infinitely) separable.

Proof. Productive separability (E+ ⊆ A+B∗ + B+) implies that A+ commutes
lazily over B+ (i.e. that B+A+ ⊆ A+E∗ + B+) which means, thanks to The-
orem 72, that A+ and B+ are fully separable, which is the same as A and B
themselves being fully separable, since

E∞ = (A+ + B+)∞ = (A+)∗(B+)∗(A+)∞ + (A+)∗(B+)∞ = A∗B∗A∞ + A∗B∞ .

��Alternatively, one could have agreed directly from constriction.
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9 Lifting Relations

For various applications of commutation arguments, the well-foundedness of one
relation is dependent on that of the other.

First, note the following:

Proposition 80. If, for relations A, B, and C, one has

B ⊆ A+B + C ,

then
B ⊆ A∞ + A∗C .

Proof. By unending application of the premise, we get (the greatest pre-fixpoint)
A∞ + A∗C (for B). ��

In particular, if B∞ ⊆ A+B∞ + A∞, then B∞ ⊆ A∞, meaning that B is well-
founded if A is.

Theorem 81. If relations A and B are infinitely separable and if

B∞ ⊆ A+B∞ + (A + B)∗A∞ ,

then
(A + B)∞ = (A + B)∗A∞ .

Proof. By the premise and the above proposition,

B∞ ⊆ E∗A∞ .

By infinite separation,

E∞ = E∗A∞ + E∗B∞ ⊆ E∗A∞ + E∗E∗A∞ = E∗A∞ . ��

Definition 82 (Lifting). Relation A lifts to relation B if

B∞ ⊆ A(A + B)∞ . (21)

Regarding lifting (21), see [22,16,19]. It implies that if there is an infinite E-chain,
then there is one with infinitely many interspersed A-steps. That is:

Lemma 83. If relation A lifts to relation B, then

(A + B)∞ = (B∗A)∞ .

Compare Eq. (11).
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Proof. By Proposition 21 and lifting,

E∞ = (B∗A)∗B∞ + (B∗A)∞

⊆ (B∗A)∗AE∞ + (B∗A)∞ = (B∗A)+E∞ + (B∗A)∞ .

By the previous proposition, we obtain the following:

E∞ ⊆ (B∗A)∞ + (B∗A)∗(B∗A)∞ = (B∗A)∞ . ��

Moreover, B steps need only be taken when no A step leads to immortality.

Lemma 84. If relations A and B are nicely separable and A lifts to B, then

(A + B)∞ = (A + B)∗A∞ .

Proof. Combining niceness and lifting, we have that

E∞ ⊆ E∗A∞ + A∗B∞ ⊆ A+E∞ + E∗A∞ .

By Proposition 80, E∞ gives either A∞ or else A∗E∗A∞. ��
In other words:

Theorem 85. If relations A and B are nicely separable and A lifts to B, then
A + B is well-founded if (and only if) A is.

Finally, we have the following:

Theorem 86. If relation A commutes lazily over relation B and A lifts to B,
then A + B is well-founded if, and only if, A is.

Proof. Use Theorems 72 and 85, bearing in mind that full separation is more
than just nice separation. ��

10 Discussion

Table 2 summarizes many of the more significant dependencies derived in the
preceding sections.

The claims of Sects. 3 and 4 are amenable to automated proofs [32]. More
work is needed, however, to automate the more advanced results of Sects. 6–8.
This interest of ours in mechanization is why we have indulged in alternative
proofs of some results.

In future work, we plan to use the ideas developed herein to show how laziness
and constriction can contribute to proving well-foundedness of an abstract path
ordering – in the style of [19,6] – which includes the nested multiset ordering
[12], multiset path ordering [8], lexicographic path ordering [22], and recursive
path ordering [24,9] as special cases. We seem to need a weaker alternative to
lifting [16,19], in which lifting need only take place eventually.
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Table 2. Implication graph (Legend: Definition; Note; Proposition; Theorem)

Quasi-
Commutation

=⇒
T23

Neat
Separation Promotion

⇓N54 ⇓D8 ⇓T34

Lazy
Commutation

=⇒
P57

Selection =⇒
T72

Full
Separation

⇐=
T79

Productive
Separation

⇓D61 ⇓D43 ⇓D28

Lackadaisical
Commutation

=⇒
T62

Weak
Selection

=⇒
D44

Weak
Separation

⇐=
T46

Finite
Separation

As pointed out in [10], there is an analogy between the use of reducibility pred-
icates and the use of constricting derivations in proofs of well-foundedness. We
are optimistic that the commutation-based approach taken here will likewise help
for advanced path orderings, like the general path ordering [11] and higher-order
recursive-path-ordering [15,21,3], without recourse to reducibility/computability
predicates.

We plan to analyze minimal bad sequence arguments for well-quasi-orderings
(pioneered in [26]) in a similar fashion. See [25]; compare [19]. We also hope to
apply the results of the previous sections to analyze the dependency-pair method
of proving termination. See [1]; compare [10].
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