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Abstract. We propose a notion of hints, clauses that are not necessarily
consistent with the input formula. The goal of adding hints is to speed up
the SAT solving process. For this purpose, we provide an efficient general
mechanism for hint addition and removal. When a hint is determined to
be inconsistent, a hint-based partial resolution-graph of an unsatisfiable
core is used to reduce the search space. The suggested mechanism is used
to boost performance by adding generated hints to the input formula.
We describe two specific hint-suggestion methods, one of which increases
performance by 30% on satisfiable SAT ’13 competition instances and
solves 9 instances not solved by the baseline solver.

1 Introduction

Modern backtrack search-based SAT solvers are indispensable in a broad variety
of applications [3]. In a classical SAT interface, the solver is given one formula in
conjunctive normal form (CNF) and determines whether it is satisfiable or not.
Performance of SAT solvers has improved dramatically over the past years [15].
The main advancements came as result of developing new heuristics for existing
conflict-driven clause-learning (CDCL) solver techniques, like deletion strategies,
decision heuristics, and restart strategies (plus preprocessing and in-processing).

In this work, we propose and investigate a novel method for cutting the search
space explored by the SAT solver so as to help it reach a solution faster. The
idea is to add hints, clauses that are not necessarily “correct”, in the sense that
they are not necessarily implied by the original input formula.

We call our hint-addition platform HSat (Hint Sat), and present two variants
that have been implemented in HaifaMUC [13]. HaifaMUC is an adaptation
of MiniSat 2.2 [4], which we will henceforth refer to it as Base.

The addition of hintsH to the original formula F creates an extended formula
F ′. Hints can, of course, affect the satisfiability of the formula. As long as H is
implied by F , the extended formula F ′ will be equi-satisfiable with the original
F (either both are satisfiable or neither is). This means that if F is satisfiable
but F ′ is not, then there must be a contradiction between the added hints and
the original formula.

In HSat, we try to solve only the extended formula F ′. In case it is satisfi-
able, we are done, and the solver declares that the original formula was likewise
satisfiable. Otherwise, the extended formula is unsatisfiable, in which case we



need to understand whether the hints are the cause of unsatisfiability, that is,
whether any hint is a necessary part of the proof of the empty clause. This is
accomplished by an examination of the resolution graph that is built during the
run of the solver on F ′. In [14], the authors presented an efficient way (their
“optimization A”) of saving a partial resolution with respect to a given subset
of input clauses. We use this ability to restrict tracking so that only the effects
of hints are recorded in the partial graph. Marking clauses to track their origin
is an old idea used in Chaff [8] and later reintroduced in [17], and is well adapted
to cases when tracking of clauses is required. When the extended formula is un-
satisfiable, we check the cone of the empty clause. If it includes a hint, then the
status of the original formula remains unknown and additional operations are
required (like deletion of the hints). Otherwise, the original formula is unsatisfi-
able, and we are done. Handling of inconsistent clauses was done in several other
applications, like parallel solving [6,7]; our solution differs, having the ability to
track the full effect of the partial resolution tree.

In case the result is unknown and the UNSAT core contains only one hint,
an additional optimization can be made by using the UNSAT core of the partial
resolution graph. Suppose the UNSAT core contains only hint h, then h must
contradict F , and ¬h is implied by F . As ¬h is, in this circumstance, a set
(conjunction) of unit clauses, each literal in h can be negated and added as a fact
to F , which will increase the number of facts and reduce the search space to be
explored. This optimization can be generalized to include all graph dominators
in the partial resolution graph. (See Theorem 1 below.)

We introduce two heuristics for hint generation. The first, “Avoiding Failing
Branches” (Afb), is a purely deterministic hint-addition method. The main idea
behind it is the same idea that drives restarts in modern SAT solvers, namely,
the possibility that the solver is spending too much time on “bad branches”,
branches that do not contain the satisfying assignment to the problem. Our
motivation is to prevent the solver from entering branches that have already been
explored. In our algorithm, we describe an explored branch that is a subset of
decision variables. We pick the most conflict-active decisions and add a hint that
explicitly precludes choosing that set again. In this approach, we keep a score for
each literal. The score is boosted every time a clause containing it participates
in a conflict. The literals with the highest scores are added to a hint in their
negated form. The hint is then added right after a restart, and the same set of
active decision variables will never be chosen unless the hint is removed. This
approach leads to significantly improved solver times for satisfiable instances.

A second heuristic, “Randomize Hints” (Rh), draws a given number of ran-
dom assignments, and tries to create a set of hints that will contradict the
instance. When the solver concludes unsatisfiability, all dominators of the par-
tial resolution graph are extracted, and all literals in all dominators are added
as facts in their negated form.

We continue in the next section with the formalization and various prelimi-
naries. Section 3 presents the HSat algorithm, and, in Sect. 5, we demonstrate
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its correctness. The two heuristic hint-generation methods of Sect. 4 are empir-
ically evaluated in Sect. 6. We conclude and discuss future work in Sect. 7.

This paper contains several contributions. An efficient generic mechanism is
introduced to add hints, the goal of which is to speed up the solver. It is based on
the ability to remove clauses and all the facts derived from them. In HSat, we use
the partial resolution graph of Base to remove the hints and their effect in case
of an unsatisfiable conclusion. In [9,11,10] and later in [14], it was shown that the
alternative, using selector variables for clause removal [5,12], is inferior to the use
of the resolution graph. We extend the path-strengthening technique published
in [10]. Instead of using only immediate children of the removed clauses, we use
all dominators in the partial resolution graph provided in Base. We introduce
two algorithms for hint generation, one of them (Afb) increasing performance
for satisfiable instances by 19–30%.

2 Preliminaries

We presume some basic knowledge of the Boolean Satisfiability Problem and
CDCL SAT solvers [3]. Let ϕ be a CNF formula c1∧ c2 · · · ∧ cm. We write ci ∈ ϕ
if ϕ = c1 ∧ · · · ∧ ci ∧ · · · ∧ cm. Each clause c = `1 ∨ `2 ∨ · · · ∨ `k is a disjunction
of literals, and each literal `i is either a variable v or its negation ¬v. We write
`j ∈ ci if ci = `1∨· · ·∨`j∨· · ·∨`k. In what follows, V denotes the set of variables
occurring in ϕ, and n = |V |.

For two clauses ci = v ∨ c and cj = ¬v ∨ c′, both involving the same variable
v ∈ V , their binary resolvent is

Resol(ci, cj) , c ∨ c′ .

A conflict occurs when several solver decisions and subsequent implications
result with a clause being unsatisfiable. In CDCL SAT solvers, a clause prevent-
ing the last conflicting set of decisions is created and added; it is referred to as
a conflict clause. In [8], it was shown that the best clause is the one created by
finding the cut in the implication graph that includes the Unique-Implication-
Point (UIP) closest to the conflict. That cut corresponds to a number of binary
resolutions performed on clauses that are inside the cut or intersect it. For ex-
ample, Fig. 1 illustrates the cut and the clauses c4, c5, c6 that participated in the
resolutions that derived the conflict.

If ϕ is a formula and H is a set of hint clauses, then by ϕ∧H we mean their
conjunction: ϕ ∧

∧
h∈H h, which we will call a hint-extended formula.

In HSat, we use a resolution graph to determine why ϕ∧H is unsatisfiable,
when it is, by extracting the UNSAT core.

Definition 1 (Hyper-Resolution). Let c1, c2, . . . , ci be all the clauses (from
the implication graph) that participated in the binary resolutions that created the
first UIP conflict clause U . The Hyper-Resolution function

Hyper(c1, c2, . . . , ci) , U

yields that resulting conflict clause U .
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Fig. 1. Conflict analysis graph. The grey nodes represent decision variables while
the black nodes represent propagated values. The vertical line is the first UIP
cut.
Writing vi = a@b means that vi was assigned to a at decision level b.

As mentioned in Sect. 1, we use a partial resolution graph to generate hints.
This graph is used to determine whether there exists a directed path from H to
an empty clause.

Definition 2 (Resolution Graph). The Resolution Graph G = (V,E) is de-
fined recursively as follows:

V := ϕ ∪H ∪ {Hyper(c1, . . . , cm) | c1, . . . , cm ∈ V }
E := {(ci,Hyper(c1, . . . , ci, . . . , cm)) | c1, . . . cm ∈ V } .

In words, the vertices are the initial clauses and hints closed under hyper-
resolution and the edges point from participating clauses to their hyper-resolvent.

Determining whether a path exists from H to the empty clause is possible by
saving only the part relevant to hints. The partial resolution graph will consist
only of hints or conflict clauses that were derived by some hint. To do so, we
start just with the hints and define the relevant hint-based Partial Resolution
Graph as follows:

Definition 3 (Partial Resolution Graph). The Partial Resolution Graph
GP = (VP , EP ) is defined recursively as follows:

VP := H ∪ {Hyper(c1, . . . , ci, . . . , cm) | ci ∈ VP , c1, . . . , ci−1, ci+1, . . . , cm ∈ V }
EP := {(ci,Hyper(c1, . . . , ci, . . . , cm)) | ci ∈ VP , c1, . . . , ci−1, ci+1, . . . , cm ∈ V } .

In words, the vertices are the hints closed under hyper-resolution and the edges
point from participating clauses to their hyper-resolvent. Figure 2 contains an
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Fig. 2. Resolution graph. Black nodes are the set H. Blue nodes are the hyper
resolvents of VP . The grey nodes are the nodes in V \ VP .

example illustrating Definitions 2,3. The nodes c4, c5, c6, c9 form the set ϕ, while
c7, c8 are the hints in H. The entire graph represents G while the black and blue
nodes and the edges between them are the restricted graph GP .

Having defined the partial resolution graph, we are interested in isolating the
proof of unsatisfiability. To do so, we define the UNSAT core (UC) of a resolution
graph.

Definition 4 (UNSAT Core). The UNSAT core is a subset UC of ϕ∪H that
is backward reachable from the empty clause in G.

We are interested in finding that part of UC that is relevant to the hints:

Definition 5 (Relevant UNSAT Core). The Relevant UnsatCore is the in-
tersection RC = H ∩ UC.

We refer to the set of all dominator points (a vertex that lies along every path)
between RC and the empty clause in an UNSAT proof as DominatorRC .

The negation ¬h of a clause h = `1 ∨ `2 · · · ∨ `k is the set (conjunction) of its
negated literals ¬`1 ∧ ¬`2 · · · ∧ ¬`k, viewed as unit facts.

3 Hint Addition

We proffer a general platform for adding clauses without worrying that they
might be inconsistent with the input formula. These “hint” clauses can be created
using prior knowledge about the formula’s origins or from information garnered
during SAT solving, as explained in Sect. 4. Our solution enjoys several benefits:

1. No additional literals are added.

2. We delay the effect of hints by using techniques from HaifaMUC as de-
scribed in [14].

3. “Bad” hints, hints participating in the empty clause derivation, are used for
search space reduction.
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We use a resolution-graph-based solution to avoid the need for extra literals
and to enable further optimizations in case the extended formula is unsatisfiable
on account of the hints. In addition, we want to prevent any aggressive inter-
vention of hints in the SAT solver’s solution process, by using hints only when
necessary, which is achieved by delaying their use. We discriminate in favor of
the use of ordinary clauses because conflicts derived from hints are not necessar-
ily consistent with the formula. The same motivation underlies modern Minimal
Unsatisfiable Set (MUS) and Group Minimal Unsatisfiable Set (GMUS) solvers,
which prefer to use clauses already known to be in the minimal core, to keep that
as small as possible. Because of the similarity between hints and core clauses in
MUS and GMUS solvers, we base our solver on HaifaMUC and use the op-
timization techniques described in [14]. These techniques allow us to prioritize
ordinary clauses over hints and therefore reduce the run-time effect of hints.

The optimizations relevant to hints are the following:

1. Maintain only the partial resolution proof of clauses derived from the added
hints. This prevents the keeping of the whole resolution proof in the memory
and significantly reduces the memory footprint of the solver.

2. Selective clause minimization. Clause minimization [2,16] is a technique for
shrinking conflict clauses. If the learned clause is not derived from the hints,
then during shrinking we prevent the use of hints in the minimization. The
result is that no additional dependencies on hints are added even at the
expense of longer learned clauses.

3. Postponed propagation over hints. This optimization is performed by chang-
ing the order of BCP (Binary Constraint Propagation). BCP first runs over
ordinary (non-hint) clauses, and only if no conflict is found does it run over
hints. The motivation is to prefer conflicts caused by ordinary clauses.

4. Selective learning of hints and selective backtracking. Both optimizations
change the learning scheme by reducing the number of clauses effected by
hints in case an ordinary clause can be learned.

We denote these optimization techniques collectively as HMucOpt.

One of the benefits of using a resolution-graph method is the availability of
clause relation information, which can be used in case the extended formula is
unsatisfiable on account of hints. In [10], a path strengthening technique was
presented in relation to the MUS problem solution. It uses the partial resolution
graph and is used to check whether a clause c is part of the MUS. Checking
whether c ∈MUS can be done by checking if the formula is unsatisfiable without
using c. If it is, then c cannot be part of the minimal core. To speed up the SAT
solver run, the negation of the clause is added to the SAT Solver as assumptions.
Path strengthening extends this set of assumptions by analyzing the resolution
graph. If c has only one derived clause in the cone of the empty clause, then
the literals of this clause are added as assumptions as well. This operation is
performed recursively until a clause with more than one child is reached. In
HSat, we extend this by using all dominators between the hint clause and the
empty clause in the partial resolution graph.
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Algorithm 1 HSat– Solves an extended formula, negates dominators and cleans
hints’ effects.
Input: instance – Boolean formula in CNF form

H – Initial set of Hints (in our case ∅)
Output: SAT or UNSAT (ignore timeout)

1: while true do
2: model := Solve(instance ∧H) . New h ∈ H can be added in Solve()
3: if model 6= null then
4: return SAT . We have the model
5: else
6: RC := GetRC ()
7: if RC.Size() = 0 then
8: return UNSAT
9: else

10: DominatorRC := GetDominators(RC)
11: for each D ∈ DominatorRC do
12: instance := instance ∧Negate(D)

13: for each ci ∈ RC do
14: RemoveClauses(ci)

Algorithm 1 introduces the general workflow of HSat. Operation Solve() is
a modification of a generic SAT solver with several additions. First, it allows
the addition of new hints and produces a partial resolution in case those hints
are added. In addition, Solve() contains an implementation of HMucOpt. Op-
eration Solve() can return satisfiable or unsatisfiable. In the satisfiable case, we
are done, as the solver found a satisfying assignment to the formula. In case the
result is unsatisfiable, we check the RC (UNSAT core of hints) created by the
hints. The extraction of RC is performed using GetRC (). If RC is empty, then
the solver found a proof of the empty clause without relying on hints, so the
original formula is unsatisfiable. Otherwise, we find all dominators of the RC
using GetDominators(). (See Alg. 2 and the next paragraph.) For each domi-
nator, we add its negation via Negate() to the input formula and create a new
instance, which goes back to Solve(). Before the next call to Solve(), we clean
the effect of hints in GP by means of RemoveClauses(). The correctness of Alg. 1
is justified by the observations of Sect. 5. As mentioned already, for Solve() we
use a modification of Base, so all the optimizations HMucOpt are used, as
was introduced in [14]. This way, we ensure an increased chance of finding the
solution without hints if such a solution is easy to find.

The operation GetDominators() gets all nodes v ∈ VP such that all
paths from H to the empty clause go through v. At first, we save all nodes
from RC in a list called workList. The algorithm iterates until workList is
empty. We get from the list some v ∈ VP that has all parent marked using
GetAllParentsMarked(workList). Note that since RC has no parents, all mem-
bers of RC have all parents marked. If the size of workList is 1, then v is a
dominator and we push it into DominatorRC . We mark v using Mark(v) and
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Algorithm 2 GetDominators() – Gets all dominators in GP . This set will be
negated in Alg. 1

Input: GP – The Partial Resolution Graph
Input: workList – list of vertices. Initially set to RC
Output: DominatorRC – The dominators with respect to GP

1: while workList.Size() > 0 do
2: v := GetAllParentsMarked(workList)
3: if workList.Size() = 1 then
4: DominatorRC .Push(v) . A dominator

5: Mark(v) . v now marked
6: for each u ∈ Children(v) do
7: if ¬IsMarked(u) then
8: workList.Push(u)

9: workList.Remove(v)

10: return DominatorRC

push all its unmarked children into workList. Note that the empty clause is a
child too.

4 Hint Creation Algorithms

Heuristics for hint generation can vary from completely random selection to a
purely deterministic selection algorithm.

4.1 Avoiding Failing Branches

In this section, we present a deterministic heuristic for hint creation based on the
restart strategy and conflicts. We call this heuristic Avoiding Failing Branches
(Afb). The idea is to track the most conflict-active decisions in the explored
branch and add a hint that explicitly prevents choosing that set again. If a
restart took place, it is reasonable to assume heuristically that the last explored
branch is less likely to contain the satisfying assignment.

In Afb, we keep an array of variable activity to determine the most conflict-
active decisions. When the solver encounters a conflict, we update the scores
of all variables responsible for the conflict. We will explain what “responsible”
means shortly.

The decision to add hints is taken upon backtracking. If the backtracking
is actually a restart, then the most active literals are chosen to participate in
a hint, which is added right after the restart. Because the literals are added in
their negated form, all explored branches containing the set of literals in the hint
will not be re-explored.

In Alg. 3, which is implemented within the function Analyze() of MiniSat
2.2 [4], we update the score of the variables participating in a conflict. For this
purpose, we keep an array of variables (variableScores), which is updated for all
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Algorithm 3 Update the score of a variable after a conflict. The score is updated
for all decision variables in the first UIP, and for all variables in the reason clause
for non-decision variables.
1: Analyze() {
2: · · ·
3: U := ComputeFirstUip()
4: · · ·
5: for each ` ∈ U do
6: v := Var(`) . v is the variable of `
7: if DecisionVariable(v) then
8: variableScores[v] := variableScores[v] + 1
9: else

10: cv := Reason(v)
11: for each `′ ∈ cv do
12: v′ := V ar(`′)
13: variableScores[v′] := variableScores[v′] + 1

14: ...
15: }

literals that are in the first UIP (U) computed in ComputeFirstUip(). We then
iterate all variables v ∈ U . If v is a decision variable (DecisionVariable(v)), we
increment its score by one. Otherwise, we take the reason for v being assigned
(cv := Reason(v)) and increment the score for all variables in cv.

In Fig. 1, the first UIP node is U = v10 ∨¬v4 ∨ v11. Alg. 3 will first compute
U and iterate through all its literals. The scores of decision variables v10, v11 are
increased in line 8; v4 is not a decision variable, so its reason, c3, is computed in
line 10. The score of variables v2, v3, v4 is increased in line 13.

The hints are added in the function CancelUntil() of MiniSat 2.2 [4]. If a
restart is decided upon, we use the information acquired by Alg. 3 to choose the
most active literals to participate in the hint. A literal ` is chosen to participate
if variableScores[Var(`)] is greater than some threshold θ. The integer conflict is
the number of conflicts since Solve() was called. Three magic numbers, α ∈ [0..1],
x ∈ N, y ∈ N, also appear in Alg. 4. They are used in the following fashion:

1. A literal ` is added to the hint if variableScores[Var(`)] > α× conflicts = θ.

2. We observed that, as time passes, it’s advisable to increase θ.

3. Parameter x was added as a minimal threshold to prevent adding hints too
“quickly”. The idea is to prevent hints from being used when easy instances
are solved.

4. Parameter y is used to ensure that new hints are not too small. Small hints
can be too influential in the search procedure.

We maintain a vector of literals, hint, to store the clause that might form the
future hint. Function AddClause() adds the hint to the input instance.
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Algorithm 4 Afb hint addition – Adds a hint built of all negated literals with
a score exceeding θ.

1: CancelUntil(backtrackLevel){
2: if backtrackLevel > 0 then . This is not a restart
3: Performing backtracking until backtrackLevel . . .
4: Upon freeing variable v:
5: variableScores[v] := 0
6: . . .
7: else . This is a restart
8: if conflicts > x then
9: for each decision variable v with decision ` do

10: if variableScores[v] > α× conflicts then
11: hint.Push(¬l)
12: for each variable v with decision ` do
13: variableScores[v] := 0

14: Perform backtracking until backtrackLevel = 0 . . .
15: if hint.Size() > y then
16: AddClause(hint)

17: hint.Clear()

18: ...
19: }

4.2 Randomized Hints

We introduce next a completely random selection algorithm for hint creation,
based on random assignments and satisfiability checking. We call this heuristic
Randomize Hints (Rh). In this algorithm, we use random assignments to see if
we can learn literals that are likely untrue, that is, if chosen, a conflict is reached.
We add these literals to form a new hint, that will hopefully lead the solver to
an unsatisfiable conclusion. This hint is then negated, and the explored search
space is reduced.

The randomized hint is created before HSat is called. First, k random assign-
ments are drawn, each with uniform distribution over {0, 1}n. These assignments
are then checked on every clause. If some clause is unsatisfied, we bump the grade
of all literals in the clause. We keep a vector of grades, literalsGrades(), and track
the maximal graded literals that will be chosen to participate in the hint. We
encourage the solver to pick the literals of the hint as decisions by increasing the
activity of the variables involved in MiniSat’s VarBumpActivity(v).

The following functions and variables are used in Alg. 5 for random hints:

1. DrawRandomAssignments(num) creates num random assignments.

2. ClauseSatisfied(c, σ) returns true iff σ(c) = true.

3. PopMax () returns and removes the literal with the highest score.
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Algorithm 5 Create randomized hints – draws random assignments and boosts
score for all literals in a clause unsatisfied by an assignment. The literals with
the highest scores are chosen to participate in hints.

Input: sizeOfHint – Size of the hint
Input: assignments – Number of assignments to

draw

1: DrawRandomAssignments(assignments)
2: for each Assignment σ do
3: for each Clause c do
4: if ¬ClauseSatisfied(c, σ) then
5: for each literal ` ∈ c do
6: literalsGrades[l] := literalsGrades[l] + 1
7: VarBumpActivity(V ar(`))

8: for i ∈ [0..sizeOfHint− 1] do
9: hint[i] := literalsGrades.PopMax ()

10: AddClause(hint)
11: hint.Clear()

5 Theoretical Basis

For completeness, a few observations are in place, which should serve to convince
readers that correctness is being maintained.

Proposition 1. For any formula ϕ, a set of hints H and assignment σ : V →
{0, 1} of truth values to the variables of ϕ ∧H,

σ(ϕ ∧H)⇒ σ(ϕ) .

Proposition 2. For any formula ϕ and set of hints H,

ϕ ∧H ∈ UNSAT⇒ ϕ ∧ ¬H ≡ ϕ .

By ¬H, we mean
∨

h∈H ¬h.

Proof. If ϕ ∧H ∈ UNSAT, then ¬(ϕ ∧H), which is equivalent to ϕ⇒ ¬H. �

From Proposition 2, we establish the following:

Proposition 3. Given ϕ ∧H ∈ UNSAT and |H| = 1 where h = `1 ∨ `2 · · · ∨ `k

ϕ ∧ ¬`1 ∧ ¬`2 ∧ · · · ∧ ¬`k ≡ ϕ .

This observation is critical for HSat. In this case, k new facts are learned, which
helps reduce the fraction of the search space that gets explored.

As mentioned earlier, this idea can be generalized to include all dominators.

Theorem 1. If ϕ ∧ H is unsatisfiable, then ϕ ≡ ϕ ∧ ¬D for every D ∈
DominatorRC .

Proof. Since D ∈ DominatorRC , it is sufficient to prove ϕ ∧ D ∈ UNSAT. By
Proposition 2, ϕ ≡ ϕ ∧ ¬D. �
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Table 1. Afb performance results for SAT 2013: satisfiable (left) and unsatis-
fiable (right) instances. Run-time is in minutes.

SAT Base Afb

Run-time 990 697

Unsolved (by one) 9 4

UNSAT Base Afb

Run-time 727 779

Unsolved (by one) 2 3

6 Experimental Results

6.1 AFB Results: SAT 2013

We compare now the performance of HSat, with and without heuristic Afb. We
find that hints have a positive effect for satisfiable instances but cause a moderate
degradation for unsatisfiable ones. The positive results for satisfiable instances
are in line with our presumption that, if a restart takes place, it is heuristically
likelier that the satisfying assignment to the problem lies on another branch.

We ran over 150 satisfiable instances from SAT 2013, but the results reported
below refer only to the 113 that were fully solved by at least one solver within
half an hour. All of the instances are publicly available at [1]. We implemented all
the algorithms in Base [14], which is built on top of MiniSat 2.2 [4]. The code
is public and available at [13]. For the experiments, we used machines running
Intelr Xeonr processors with 3Ghz CPU frequency and 32GB of memory.

Table 1 displays a 30% improvement in overall runtime for satisfiable in-
stances. Furthermore, there are 9 instances solved by Afb that are not solved
by the base solver, compared to 4 instances solved by Base but not by Afb.

In addition, 130 unsatisfiable instances from SAT 2013 were tested; the re-
ported results refer only to the 60 that were fully solved by at least one solver
within the 30-minute time limit. Table 1 shows a 7% degradation in overall
runtime for unsatisfiable instances.

Figure 3 presents Base vs. Afb. The diagonal y = x emphasizes the supe-
riority of Afb. Figure 4 presents the time differential between Base and Afb.
On average, Afb solves one of these problem instances 2 1

2 minutes faster than
the baseline. The graphs refer to satisfiable instances only.

Figure 5 shows three curves, plotted at one minute intervals. The lower curve
(A) is the percentage of instances solved by Base and Afb both; the middle (B)
is the percentage of instances solved by Base the upper (C) is the percentage
solved by either one. The gap B−A represents the percentage of instances solved
by Base but not by Afb; C − B represents the percentage solved by Afb but
not by Base. Notably, C −B is consistently larger than B −A.

We observe that the positive effect of Afb is due to successful branch cutting
by hints and not because of HSat’s ability to negate dominators. Most of the
hints added did not contradict the instance, so HSat’s UNSAT core abilities
were not helpful in Afb.
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Fig. 3. Comparing Afb to Base.

Fig. 4. The time difference (in seconds) between Base and Afb

For the SAT 2013 benchmark, we also measured the average size of hints
(number of literals participating in a hint), the average number of hints per
instance, and the number of dominators found in all instances:

SAT UNSAT
Hint average size 34 43
Hints per instance 0.84 1.16
Dominators 2 15

Hints were used in 34% of the satisfiable instances and 39% of the unsatisfiable
cases.

6.2 AFB Results: SAT 2014

We used the same configuration when testing Afb on satisfiable instances from
the SAT 2014 competition. Table 2 shows a 19% improvement in overall runtime

13



Fig. 5. Comparing percentage of instances solved by Base and Afb.

Table 2. Afb performance results for SAT 2014: satisfiable instances. Run-time
is in minutes.

SAT Base Afb

Run-time 833 681

Unsolved (by one) 9 2

for satisfiable instances. Furthermore, there were 9 instances solved by Afb that
were not solved by the base solver, compared to 2 instances solved by Base but
not by Afb. These results refer only to the 98 instances that were fully solved
by at least one solver within 30 minutes.

6.3 RH Results: SAT 2013

The same configuration as in Sect. 6.1 was used for the Rh heuristic on satisfi-
able instances from SAT 2013, and the same instances were tested. The results
reported below refer only to the 116 instances that were fully solved by at least
one solver within 30 minutes. Table 3 shows a 8% improvement in overall runtime
for satisfiable instances.

We were admittedly surprised to see that satisfiable instances were solved
faster because of “good” hints, hints that do not contradict the input. We were
surprised because we tried to build hints that would contradict the input and
have the negation of dominators drive the solution.

In addition, 130 unsatisfiable instances from SAT 2013 were tested; the results
below refer only to the 60 that were fully solved by at least one solver within
the 30-minute time limit. Table 3 shows a 15% degradation in overall runtime
for unsatisfiable instances.

Combining the two heuristics, Afb and Rh, as though they would run in
parallel for half an hour on the SAT 2013 benchmark, we obtain 16 SAT instances
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Table 3. Rh performance results: satisfiable (left) and unsatisfiable (right) in-
stances. Run-time is in minutes.

SAT Base Rh

Run-time 1080 988

Unsolved (by one) 12 12

UNSAT Base Rh

Run-time 757 888

Unsolved (by one) 3 9

that are solved for which Base times out, versus 2 that only Base solves, and
5 UNSAT instances that Base fails on, versus 3 only by Base.

7 Discussion

We have introduced a new paradigm and platform, called HSat, with which one
can speed up SAT solving by means of added clauses. It enables the addition of
“hint” clauses that are not necessarily derivable from the original formula but
which can nevertheless help the solver reach a solution faster. HSat avoids the
addition of new literals, using instead a partial resolution graph to keep track
of the effect of hints. We have seen that the Afb hint heuristic, which causes
the prover to avoid retaking the most conflict-active decisions, outperforms the
(hintless) baseline system and introduces a significant improvement in the solver
core. On a benchmark of 280 instances, 150 of which are satisfiable: Afb achieved
a 30% runtime improvement over the baseline and solved 9 instances not solved
by the baseline prover.

Though these results are very encouraging, we have reason to believe that
future work can lead to further improvements. For example, we tried to increment
conflict decision variable scores by an amount that is inversely proportional to its
depth in the proof tree, so those closer to the root (which have greater impact)
get greater weight. This approach did not work for the thresholds we looked
at, but might work for others. Another example is that our hint heuristics do
not work well for unsatisfiable instances, the main reason being that there are
usually no dominator clauses, in which case unsatisfiability does not drive the
subsequent search very well. In this case, the incremental running of Alg. 1 just
adds overhead. An interesting avenue for research would be to design hints that
create multiple dominators or that lead the solver to a contradiction faster.

There are an endless number of ways to create hints, and many places in
the process to add them; so far we have only explored a few options. It is likely
that there remain even more interesting ways to create good hints for satisfiable
instances and, hopefully, for unsatisfiable ones, too.

Acknowledgments. The suggestion to exploit hints originated with Ofer
Strichman. The authors would like to thank Alex Nadel and Ofer Strichman
for their advice and reading of a draft of this paper.
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