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Abstract
We define well-founded monotonic rewrite orderings on graphs inspired by the recursive path
ordering on terms. Our graph path ordering applies to finite, directed, ordered multigraphs and
provides a building block for rewriting with such graphs, which should impact the many areas in
which computations take place on graphs.
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1 Introduction

We are interested in well-founded orderings that can be used to show termination of rewriting
on first-order terms having both sharing and back-arrows, which is another way of saying
that we study rewriting of rooted (multi-) graphs, each vertex of which is labeled by a
function symbol whose arity governs the number of vertices it points to. Different target
applications require different properties of the ordering: totality is crucial for operaders,
while monotonicity with respect to graph structure is important for rewriters.

We propose a generalization of the recursive path ordering to ordered, labeled, rooted
graphs. The graph ordering we end up with, GPO, has the very same definition as the
recursive path ordering (RPO), but the computation of the “head” and “tail” of a multigraph
shares little resemblance with the case of trees, for which the head is the top function symbol
labeling the root of the tree and the tail is the list of its subtrees. GPO has many of the
properties that are important for its various potential users. It is well-founded, total on
graph expressions up to isomorphism, and monotonicity is testable.

Graph rewriting has been richly studied. Path orderings of term graphs were developed
in [3]. Graph decomposition and weight-based orderings for cyclic graphs are explored in [1].
By adding a root structure to cyclic graphs, we get a natural decomposition into head and
tail and a concomitant path ordering.

2 Drags

We work with drags, which are finite directed multi-rooted vertex-labeled graphs with
multiple edges. We begin with a brief presentation of the algebra of drags, developed more
fully in [2].

We presuppose a set of function symbols Σ, whose elements are used as vertex labels
and are equipped with a fixed arity, plus a denumerable set of (nullary) variable symbols
Ξ disjoint from Σ. Outgoing edges are ordered (from left to right, say) and their quantity
depends solely on the label of the vertex. An “open” drag will include variables, while a
“closed” one won’t. The successors of a vertex labeled f ∈ Σ in a drag are understood as
the arguments of the function symbol f – in order. In contrast with the common categorical
approach to graph rewriting, this multigraph model is quite standard. The novelty is that
we allow for arbitrarily many roots and arbitrarily complex cycles.
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2 Path Ordering for Graphs

A (closed) drag is a tuple ⟨V,R,L,X⟩, where V is a finite set of vertices; R is a finite
(ordered) list of vertices, called roots, with R(n) denoting the nth root in the list; L ∶ V → Σ
is the labeling function, mapping vertices to labels from the vocabulary Σ; and X ∶ V → V ∗

is the successor function, mapping each vertex v ∈ V to a list of vertices in V whose length
equals the appropriate arity. Given b ∈ X(a), we say that there is an edge from source a
to target b and write aXb. The reflexive-transitive closure X∗ of relation X is accessibility.
Vertex v is accessible if it is accessible from a root r ∈ R (rX∗v). A drag is clean if all
its vertices are accessible. A root r is maximal if it can access all roots its accessible from
(∀r′ ∈ R. r′X∗r implies rX∗r′).

An open drag is a drag over Σ ∪ Ξ. The vertices labeled by a function symbol in Σ
are internal; those labeled by a variable are called sprouts. When nonempty, the set S of
sprouts will be added at the end of the tuple: ⟨V,R,L,X,S⟩. An open drag is termed linear
if different sprouts have different labels. It is cyclic if each internal vertex accesses a root
(∀v ∈ V ∖ S. ∃r ∈ R. vX∗r) and it has no variable roots (R ∩ S = ∅).

Given drag D, Acc(D) is its set of accessible vertices; R(D), its list of roots; R●(D) ⊆
R(D) are the maximal roots; [R] are the numbers [1 .. ∣R∣] referring to the roots in order;
S(D) are its sprouts; Var(D) = L(S(D)) are the variables labeling its sprouts; and D♯ is
the clean drag obtained by removing inaccessible vertices and associated edges. Drag D is
(quasi-) isomorphic to drag D′, indicated D ≅ D′ (or D ≃ D′ in the quasi case) if there is
a graph isomorphism between them that respects roots (as multisets in the quasi case) and
sprouts up to renaming of labels.

Given drag D = ⟨V,R,L,X,S⟩ and a subset W ⊆ V of its vertices, the subdrag D∣W of
D generated by vertices W is the drag ⟨V ′,R′, L′,X ′, S′⟩ where V ′ is the least superset
of W that is closed under X; L′,X ′, S′ are the restrictions of L,X,S to V ′; and R′ is
(R ∩ V ′) ∪ (X(V ∖ V ′) ∩ V ′). A subdrag is clean by construction. Its roots are obtained by
adding as new roots those vertices that have an incoming edge in D that is not in D∣W .
The order of elements in this additional list does not really matter for now. In particular,
restricting a drag D to its maximal roots, yields D♯ (=D∣R●(D)).

The key to working with drags is that we can equip them with a parameterized binary
composition operator that connects sprouts of each of two drags with roots of the other.
Denote by Dom(ξ) and Im(ξ) the domain (of definition) and image of a (partial) function
ξ, using ξA→B for its restriction going from A ⊆ Dom(ξ) to B ⊆ Im(ξ), omitting →B when
irrelevant. Let D = ⟨V,R,L,X,S⟩ and D′ = ⟨V ′,R′, L′,X ′, S′⟩ be open drags. A switchboard
ξ ∶ S ∪ S′ → N for D,D′ splits into a pair ⟨ξD ∶ S → [R′], ξD′ ∶ S′ → [R]⟩ of partial
injective functions such that (i) ∀s, t ∈ S. s ∈ Dom(ξ) and L(s) = L(t) imply t ∈ Dom(ξ) and
D∣R′(ξ(s)) ≃D∣R′(ξ(t)); (ii) ∀s′, t′ ∈ S′. s′ ∈ Dom(ξ) and L′(s′) = L′(t′) imply t′ ∈ Dom(ξ) and
D′
∣R(ξ(s′)) ≃D

′
∣R(ξ(t′)). We also say that D′ξ is an extension of D.

Each switchboard induces a binary composition operation on open drags, the precise
definition of which we omit (but see [2]). The essence is that the (disjoint) union of the two
drags is formed, with sprouts in the domain of the switchboards merged with the vertices
referred to in its images. This necessitates renaming targets of edges that had pointed to
sprouts.

A switchboard ξ for D,D′ is directed if one of ξD and ξD′ has an empty domain. Directed
switchboards correspond to the tree case, with all connections from one of the drags to the
other.

▸ Lemma 1 (Unique Decomposition). Given a drag D and a subset of its vertices W , there
exists a drag A, called its antecedent, and a directed switchboard ξ such that D = A ξ D∣W .

The fact that the switchboard ξ is directed expresses the property that decomposing a drag
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into a subdrag and its antecedent does not break any of its cycles. If it’s cyclic, it’s its own
antecedent.

Just as a tree can be decomposed into a head node f and subtrees, a drag has a head,
viz. its smallest (nontrivial) antecedent, and one tail, possibly a list of several connected
components. The tail ∇D of a drag D = ⟨V,R,L,X,S⟩ is the subdrag generated by the set
of vertices V ∖ {v ∈ V ∶ vX∗R●(D)}. Furthermore, for drag D, there exists a linear drag D̂,
the head of D, and a directed switchboard ξ such that D = D̂ ξ ∇D. The head of a drag is
therefore the antecedent of its tail.

Isomorphic drags have isomorphic heads and tails. The crucial point is that decomposi-
tion into head and tail is canonical and faithful because drags are multi-rooted. Uni-rooted
drags cannot represent horizontal sharing, in contrast to vertical sharing which can some-
times be preserved with uni-rooted drags.

3 Drag Rewriting

An extension Bξ is a context of drag D when Dom(ξD) = ∅. It’s a substitution when
Dom(ξB) = ∅. It is a rewriting extension if ξB is linear and surjective and ξD is total.
An extension Bξ of a clean drag D is cyclic if B is a linear drag generated by Im(ξD),
B ξ D is a clean nonempty drag, and there exists s ∈ Dom(ξB) such that tX∗s for all t ∈ V .
The extension is trivial if B is an identity drag (a linear open drag all of whose vertices are
sprouts and sans edges) and total if ξB is surjective.

The conditions for being a cyclic extension impose that ξD is surjective on R ∖ S as a
set so as to generate B. Identity cyclic extensions of D are such that its sprout variables are
in one-to-one correspondence with the sprouts in D that are connected by the switchboard
and connect them to some of the roots of D. Thus, cyclic extensions modify the structure
of D by connecting some of its sprouts to some of its roots. Unfortunately, identity cyclic
extensions suffice for that purpose only in special cases. Identity extensions allow one to
change the structure of a drag without changing its internal nodes. If the drag has a single
root, it is easy to see that identity extensions are enough to predict all forms that a drag
may take under composition with an extension. This is not true for multirooted drags, since
identity cyclic extensions cannot reach two different roots from the same sprout.

▸ Theorem 2. Let D,E be clean nonempty drags and ξ be a switchboard for them. If ξE
is surjective on maximal roots R●(D), then there exist drags A,B,C and switchboards ζ, θ
such that (i) B⟨ξB , ξD→B⟩ is a cyclic extension of D; (ii) Cθ is a substitution extension of
B ξ D; (iii) Aζ is a context extension of (B θD) η C; (iv) E ξ D = A ζ ((B θD) η C); (v) C
is empty if all internal nodes of E reach one of its sprouts.

Can a drag D be seen as the composition of a given drag G with some context C via
some switchboard ξ? In this case, we say that D matches G, E and ξ being the matching
context and switchboard. The idea is that E splits into three: vertices that are accessible
from some sprout of G and can access some of its roots define a drag B; those accessible
from some sprout of G but which cannot access any of its roots define a drag C that is a
substitution extension of G; those which are not accessible from the sprouts of G form the
remaining part A, which is a context extension of G.

A graph rewrite rule is a pair of open clean drags written G → G′ such that ∣R(G)∣ =
∣R(G′)∣ and Var(G′) ⊆ Var(G). We say that a nonempty clean drag D rewrites to a clean
drag D′ via this rule, and write DÐ→D′, if D = EξG and D′ = (E ξ G′)♯ for some rewriting
extension Eξ of G, such that ξG is linear if G is. We have: (1) If DÐ→D′, then Var(D′) ⊆
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4 Path Ordering for Graphs

Var(D). (2) If DÐ→D′ is a rewrite, C is an open drag, and ξ is a switchboard for C,D,
then ξ (restricted to sprouts of D′) is also a switchboard for C,D′. (3) If DÐ→D′, then
D = A ζ ((B ξ L) θ C) and D′ ≅ A ζ ((B ξ L) θ C) for some A,B,C and ζ, ξ, θ such that Aζ,
Bξ and Cθ are context, cyclic and substitution extensions, respectively.

A graph rewrite system is a set of graph rewrite rules, each of which can be used to
rewrite.

4 Graph Path Ordering

A reduction ordering is a well-founded ordering ≻ of the set of drags that is (i) compatible
with drag isomorphism: for all D,D′,E,E′ such that D ≻ E, D ≅ D′ and E ≅ E′, then
D′ ≻ E′; (ii) monotonic: for all D,E such that D ≻ E and for all context extensions Aξ of
D, then Aξ D ≻ Aξ E; and (iii) stable: for all D,E such that D ≻ E and for all substitution
extensions Cξ of D, then D ξ C ≻ E ξ C. Apart from compatibility with isomorphism, the
notion of reduction ordering is the same as the usual one. Monotonicity is the usual property
since a directed switchboard turns the context A into a usual context. Stability corresponds
to the usual stability property, but substitution extensions can introduce sharing.

▸ Theorem 3 (Termination). A graph rewrite system R terminates iff there’s a graph reduc-
tion ordering ≻ such that, for all rules G → G′ ∈ R and cyclic extensions Bξ of G, we have
B ξ G ≻ B ξ R.

We need the analog for drags of the precedence on function symbols used by RPO: A
head order for a drag rewrite system R is a quasi-order u on clean cyclic drags whose strict
part ⋅> is well-founded.

▸ Definition 4 (Graph Path Order (GPO)). Given two drags s, t and a head order u, we define
s ≻ t (under GPO), iff any of the following three cases hold:

[∇] ∇s ⪰ t [⋅>] ŝ ⋅> t̂ and s ≻ ∇t [≐] ŝ ≐ t̂, s ≻ ∇t and ∇s ≻ ∇t.

GPO is defined by induction on the pair ⟨s, t⟩ via the lexicographic extension of the
subdrag order imposed by tails. Let t ⊳ u if u = ∇t and let ⊳+ be its transitive closure.

▸ Lemma 5 (Subdrag Properties). (1) The subdrag order ⊳+ is well-founded on nonempty
open drags. (2) The empty drag is minimal in ≻. (3) ⊳⊆≻. (4) If D ≻ E, then Var(D) ⊆
Var(E). (5) GPO (≻) is transitive.

GPO is a strict ordering compatible with drag isomorphism. This justifies our way of
building compatibility into a path ordering via a careful definition of subdrags instead of us-
ing a normal-form representation of congruence classes of drags. If the drag ∇t is terminating
with respect to ≻, then the drag t = g(t) is.

A head order is compatible if two cyclic drags that are isomorphic up to their lists of
roots are equivalent in the quasi-order. It is total if u is total and its equivalence ≐ is exactly
cyclic drag isomorphism up to their lists of roots. It is subcyclic if D ⋅> A whenever D = AξB
for a cyclic drag B that is not isomorphic to an identity. And it is cyclic monotonic if
for all cyclic drags D,E and for all cyclic extensions Cξ of D, D ⋅> E implies C ξ D u
C ξ E. Cyclic monotonicity tells us that the order between cycles is preserved by growing
them. Monotonicity/stability of drag orders and cyclic monotonicity of head orders are
complementary: the former extends a drag by preserving its head, while the latter extends
heads.
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▸ Theorem 6 (GPO is Good). (1) GPO is a rewrite ordering: it is monotonic and it is
stable (if D ≻ E, then D ξ C ≻ E ξ C for all substitution extensions Cξ of D). (2) GPO is
well-founded, which makes it a reduction ordering. (3) GPO is total on equivalence classes
of drags (modulo isomorphism) if the head order is total.

We define two head orders, one total but not subcyclic, and another that is subcyclic
but partial.

Let ≥ be a total precedence on Σ, whose strict part > is well-founded, andD = ⟨V,R,L,X⟩,
a clean drag from which the sprouts and their incoming edges have been removed. Represent
a drag as a list of function symbols. The interpretation JDK of D = ⟨V,R,L,X⟩, is a list of
symbols in Σ defined as follows: If Acc(D) = ∅, then JDK ∶= ∅. Otherwise, JDK ∶= L(r)∪JW K,
where R = r∪R′ andW = ⟨V ∖r, (X(r)∖r)∪R′, L′,X ′⟩, L′,X ′ being the restrictions of L,X
to V ′, respectively. In words, JDK collects the function symbols labeling the internal nodes
of a drag by traversing this drag in a depth-first manner starting from R. We can now define
our head order on drags: D u D′ iff ⟨∣JDK∣, JDK⟩ (≥N,≥lex)lex ⟨∣JD′K∣, JD′K⟩. The relation u is
a total head order. This head order is not subcyclic, nor cyclic-monotonic.

Alternatively, represent a drag as the multiset of function symbols labeling its accessible
vertices: Define the interpretation as the multiset of symbols that label the vertices of D♯.
Given two drags, we define: D uD′ iff JDK ≥mul JD′K. This u is a subcyclic, cyclic-monotonic
head order.

▸ Example 7. Consider an application of a rule G = f(x) → a = G′, where f and a are
drag labels and x is a variable, to the cyclic graph D = → f ↔ f leading to the noncyclic
term D′ = f(a). The resultant inequality is D = ⟨{1,2},1,{1,2 ↦L f},{1 ↦X 2,2 ↦X 1}⟩ ≻
⟨{1,2},1,{1 ↦L′ f,2 ↦L′ a},1 ↦X′ 2⟩ = D′, foregoing braces around singletons. The first
drag is its own head. The head of the second is f(y) = ⟨{1,2},1,{1 ↦L′ f,2 ↦L′ y},1 ↦X′
y,2⟩, which is a subdrag of the first. By the subterm property of head orders, the first is
strictly larger than the second in u. Therefore, we are left with a subgoal: D ≻ ∇D′ = a =
⟨2,2,2↦L′′ a,∅⟩ =D′′. This time, the second drag is also itself a head, but it is not a subdrag
of the first. Therefore, we must have D ⋅> D′′ in the head order for this constraint to pass.
A head order with precedence f > a does the trick. ◂

▸ Theorem 8 (Decidability). It is decidable whether a system R terminates under GPO
provided the universal first-order fragment of head-order constraints is decidable.
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