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We formulate the Knuth-Bendix comple~ion method at an abstract level, as an 
equational inference system, and formalize the notion of critical pair criterion 
using orderings on equational proofs. We prove the correctness of standard com- 
pletion and verify all known criteria for completion, including those for which 
correctness had not been established previously. What distinguishes our approach 
from others is that our result, s apply to a large class of completion procedures, not 
just to a particular version. Proof ordering techniques therefore provide a basis 
for the design and verification of specific completion procedures (with or without 
criteria). 

1. I n t r o d u c t i o n  

Rewri te  techniques,  such as s t a n d a r d  complet ion (Knu th  and Bendix, 1970), 
have been applied to a var ie ty  of problems including word problems in univer- 
sal algebra, proofs of induct ive  properties of d a t a  types  (Musser, 1980; Huet 
and Hullot ,  1982), equat ional  p rog ramming  (Dershowitz, 1985; Fribourg,  1985), 
and theorem proving in first order logic (Hsiang, 1985). Rewrite systems are 
sets of directed equat ions  (rewrite rules) t h a t  m a y  be used for computa t ion  by 
simplification. Comple t ion  tackles the problem of construct ing a canonical 
(i.e., t e rmina t ing  and  Church-Rosser)  rewrite system for a given set of 

t This research was supported in part by the National Science Foundation under grant DCR 
85-13417. An extended abstract of this paper, "Critical pair criteria for t;he Knuth-Bendix com- 
pletion procedure," appeared in the Proe. of the 1986 Syrup. on Symbolic and Algebraic Compu- 
tation, Waterloo, Canada, pp. 215-217, 

1 
0747-7171/88/040001 + 18 $03.00/0 �9 1988 Academic Press Limited 



L. Bachmair and N. Dershowitz 

equational axioms. The validity problem is decidable in equational theories 
tha t  can be represented as canonical systems: two terms are equivalent if and 
only if they simplify to an identical form. A large number  of canonical sys- 
tems have been derived using completion (e.g., Hullot, 1980; Le Chenadec, 
1986). 

In constructing a canonical system, completion generates rules by orienting 
equations (with respect to a given well-founded ordering on terms) and derives 
new equations, called critical pairs, by unifying left-hand sides of existing 
rules. The  procedure may fail if an equation is generated tha t  can not be 
oriented in the given term ordering. Mechanisms that  permit  control over the  
number  of rules and critical pairs tha t  have to be computed are indispensable 
for efficiency. Mutua l  simplification of rules, as suggested by Knuth  and Ben- 
dix (1970), may considerably reduce the number  of rules and, consequently, 
also the number  of critical pairs. Schemes for sifting out superfluous critical 
pairs, called critical pair criteria, have been described by Buchberger (1979), 
Winkler (1984), Winkler and Buchberger (1983), K~chlin (1985), and Kaput ,  
Musser, and Narendran  (1985). 

A simplification or deletion scheme for completion is correct if its use does 
not preclude the  construction of a canonical system. Simplification of rules 
was first proved correct by Huet (1981) and, in a more general framework, by 
Bachmair,  Dershowitz, and Hsiang (1986). A major difficulty in verifying criti- 
cal pair criteria consists in showing their compatibility with simplification 
schemes. Criteria based on connectedness (a smaller proof of a critical pair 
exists) have been verified for specific cases (Kiichlin, 1986a; Winkler, 1985). 
We generalize these results and also establish the correctness of criteria based 
on compositeness (a third rewrite applies to the unified left-hand sides), prov- 
ing tha t  composite criteria can be combined with any correct strategy for 
simplification of rules. Furthermore,  we show tha t  the  two types of criteria, 
connectedness and compositeness, can be combined. 

After introducing basic definitions in Section 2, we present ,  in Section 3, an 
equational inference system for s tandard completion and introduce bhe notion 
of proof ordering. In Section 4, we formalize the notion of critical pair cri- 
terion in the proof  ordering framework. Connected criteria are described in 
Section 5; composite criteria, in Section 6. 

2. De f in i t i ons  

We consider t e r m s  over some (finite) set of operator symbols F and some 
set of variables V. The symbols s ,  t ,  u ,  " ' "  denote terms; ] , g ,  -" �9 
denote operator symbols; and x ,  y,  z ,  �9 �9 �9 denote variables. A subterm of a 
term t is called proper  if it is distinct from t .  The expression t / p  denotes 
the subterm of t at position p (positions may, for instance, be represented as 
sequences of indices). We write s It] to indicate that  a term s contains t as a 
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sub te rm and (ambiguously) denote by s [u] the result of replacing a par t icular  
occurrence of t b y  u . 

A binary relation --+ on terms is monotonic (with respect  to the te rm struc- 
ture) if s--+t implies u is ]---+u it], for all terms s ,  t ,  and u .  It is stable 
(under  subst i tut ion)  if s--+t implies s e--+ta, for any subs t i tu t ion  a.  The 
symbols  --++, -+* and +-~ denote the transitive, transitive-reflexive, and sym- 
metric closure of --*, respectively. The inverse of --+ is denoted by +-. W e  call 
--+ an (strict partial) ordering if it  is irreflexive and transitive. An ordering -+ 
is well-founded if there is no infinite sequence tl--+t2---+t 3 . �9 �9 A reduct ion 
ordering is a well-founded ordering that  is stable and monotonic.  

An equation is a pair (s , t )  of terms, wri t ten s = t .  For any set of equa- 
tions E ,  r denotes the smallest  symmetric  relation tha t  contains E and i s  
stable and monotonic.  Tt la t  is, s +~E t if and only if, for some term w and 
some subst i tu t ion ~, s is w [u~r] and t is w [v a], where u "--v is i n E  ( u - - v  

$ 
denotes, ambiguously,  u - = v  or v-~-u ). The relation +-~E is the smallest  
stable congruence tha t  contains E ; a congruence is, by  definition, monotonic.  

Directed equations are also called rewrite rules and are wri t ten s - -+ t .  A 
rewrite system is any set R of rewrite rules. The rewrite relation -+R is the  
smallest stable and monotonic  relation that  contains R . T h a t  is, s--+n t (s 
rewrites to t )  if and only if s is w[u~r] and t is w [ v ~ ] , f o r  some rewri te  rule 
u--+v in R , te rm w,  and subst i tut ion ~. A term t is in normal f o r m  with 
respect t o R  if there is no term u , s u c h  that  t - -+RU. 

A rewrite sys tem R is Church-Rozser if, for all terms s and t with  
s +-~R t ,  there exists a term u ,  such tha t  s--+/{ u +--/~ t .  A rewrite sys tem R 
terminates if --+~ is well-founded. Thus, a rewrite sys tem terminates  if and 
only if it is contained in some reduction ordering. A terminat ing Church-  
Rosser system is called canonical. A canonical system defines a unique normal  
form for each term. 

Let E be a set  of equations and R be a rewrite system. A proof of s = t  
inEt_JR (or a p r o o f s + - ~ E u R t ) i s  a sequence (s 0, �9 " - ,  s , ) , s u c h  tha t  s 0 i s s ,  

s n is t and, for l < i  < n ,  one of 8i_1+-+ E Si ,  $i_l-"+R 8i,  o r  Si_l+--l~ S i holds. 
Every single proof  step (Si_l,S i) has to be justified by  an equation u i -~-vi, a 
subst i tu t ion ~;,  and a position Pl,  such tha t  si-1/P~ is u,. ~ i ,  s; is S~_l[V ;cr(] 
(where the replacement  takes place at  position p;),  and u i ~--v; is in E u R .  
The justi f ication of a proof  is the  sequence of all tuples  (Si_l,Si ,u; ~v; ,~r i ,p; )7 
1 < i  < n .  It may be (partially) indicated by writing the  proof as, for instance,  

S 0r  S 1- -+R �9 �9 �9 +--/~ s~, etc. 
A proof step s +-~E t is called an equality step; a step s -+R t ,  a rewrite 

step; a proof s +-R u --+R t ,  a peak. We usually abbreviate  a proof  of the  form 
s0--+R "" "--+~s~ by  s0--+2~s~. A proof s0--~Rs k*--Rs~ is called a rewrite 
proof. A subproof of ( S o , . . .  ,s,~) is any proof  ( s ( , . . . , s i ) ,  where 
0 < i  < j _ < n .  The  flotation P [ P I ]  indicates tha t  P contains p t as a sub- 
proof. 
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A proof pattern in E UR is a schema for a class of proofs; it describes 
proofs tha t  share a common structure. For example, the pattern s-+R t ,  
where the mebavariables s and t deno[e arbitrary terms and R denotes an 
arbitrary rewrite system, characterizes all single step rewrite proofs in R ;  
s -+R u *--R t describes all rewrite proofs in R ; s +-n u -+R t ,  all peaks. An 
instance of a pat tern  is any specific proof of the given structure. 

3. S t a n d a r d  C o m p l e t i o n  

We first describe the Knuth-Bendix completion method for constructing a 
canonical rewrite system R for a given set of equations E .  If R is finite and 
canonical, and the congruence relations +-~ and *-+~ are the same, then R 
may be used as a decision procedure for the validity problem in E : two terms 
s and t are equivalent in E if and only i f ' they  reduce to identical normal 
forms with respect to R .  In particular, canonical systems may be used for 
solving word problems in equational theories. The unsolvability of the word 
problem for certain (even finitely-based) equational theories implies that  the 
construction of a canonical system _R is not always possible. Thus, a comple- 
tion procedure may terminate either with success or failure, or it may not ter- 
minate and instead compute successive approximations R~ of an infinite 
canonical system R .  

We will formulate completion as an equational inference system. Since we 
distinguish between equations and rewrite rules, the objects of this inference 
system are pairs (E ,R ), where /~ is a set of equations and R is a set of rules. 
Let > be a reduction ordering on terms. Standard completion is the proof sys- 
tem C consisting of the following inference rules, where R is any rewrite sys- 
tem contained in > :  

1) Orienting an equation. 

( J ~ U { s - - t } , R )  if s > t  
(E ,R u{s -+t }) 

2) Adding an equational consequence. 

( E , R )  - -  if s+-Ru--+/~ t 
(Eu{s  = t  },R ) 

3) Simplifying an equation. 

( E u { s - -  t} ,R)  if s ~ n  u 
( E u { u  ----" t },R ) 

4) Deleting a trivial equation. 

(EU{s =s  },R l 
(E ,R ) 

The following simplification rules are also par t  of standard completion and are 
indispensable for efficiency: 



Critical pair criteria for completion 

5) Simplifying ~he r ight-hand side of a rewrite rule 

(E,RU{s---+t }) if t ~ R  u 
(E ,R u{s  - ~  }) 

6) Simplifying the left-hand side of a rewrite rule 

(E ,,.iV tt{s ---*t }) 
(Eu{~ = t  },R) 
(E ,R u{s  - . t  }) 
(zu{u  = t  },R) 

if s -+R u at a position not at the top, 

i f s - + R U  b y l - - + r  a n d s D I .  

The symbol [:> denotes the proper subsumplfion ordering: s t> l if and only if 
s is a proper instance of l .  For example, f (z,g (z)) and f (z ,z) are proper 
instances of f (x ,y ), bu t  f (z ,z ) is not. 

We write (E ,R ) ~ (E ' ,R ' ) i f  (E',R ')can be obtained from (E ,R ) by an 
application of an inference rule of (3. A derivation is a (possibly infinite) 
sequence (JEo,Ro)k--(E1,R1)b- ' ' ' .  The limit of a derivation is the  pair 
(E~ ,R  ~), where E *~ is the set Ui >_oni>>_i E i of all persisting equations, and 
R = is the set Ui >oN] >_i Ri  of all persisting rules. 

Standard completion is sound: 

LEMMA 1. If  ( E , R  ) k - - ( E ' , R ' ) ,  then the congruence relations +'+EUR and 
+-+EtUR~ are the same. 

We are interested in derivations for which the limit R r is canonical. If an 
equational theory E UR can be represented by a canonical system, then any 
equation valid in E UR can be proved by simple rewriting. A rewrite proof in 
E UR can he characterized as a proof that  contains no equalit~y step s +-~E t 
and no peak s +-R u---+R t .  The application of a comple~ion inferer~ce rule 
allows us to eliminate (or simplify) such "undesirable"  subproofs. In other 
words, the inference rules of C are reflected on the proof level by a 
simplification or reduction relation on proofs. Proof  orderings (Bachmair,  
Dershowitz, and Hsiang, 1986) are the key to formalizing this aspect of com- 
pletion. 

A binary relation ~ on proofs is called monotonic if P ~ P ~  implies 
Q [ P ] ~ Q [ P ' ] ,  for all p r o o f s P , P ' , a n d  Q.  tt is ~tableif 

( s ,  . . . ,  , ~ ; , . . . ,  t ) ~  ( s , . . . ,  ~ , ; , . . . ,  t) 

implies 

(~ [s ~ ] , . . . ,  ~ [ u , G  �9 �9 �9  ~ [t ~ 1 ) ~  (~ [s G . . - ,  , ,  [~j~], - ,  ~ [t ~]), 

for all proofs, terms w,  and substitutions a. A proof ordering is a stable, 
monotonic, and well-founded ordering on proofs. 

An elimination pattern is a pair of proof pat terns.  If S is a set of elimina- 
tion patterns,  then ~ s  denotes the smallest stable and monotonic relation on 
proofs that  contains each instance of an elimination pat tern of S .  In other 
words, ~ s  is the rewrite relation on proofs induced by E.  
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For  comple t ion  we have equality patterns 

s ~-~E t ~ s --+t~,t 
s +-+E t ~ s v--~,t 
s ++E t ~ s--+~,U ~+E,t 
s +-+E t ~ s +-+E,U +--R,t 
8 +-~E S ~ 8 

i f s  > t  
if t > s 

overlap pa t terns  

s +--R u --+R t 

s+-- R u-+ R t 

and simpli f icat ion pat terns  

8 "-+R t ~ s --~R,u +---Rtt 
t e-R S ~ t--+~,u +--Rts 
s --+R t ~ s --+RtV ++Ett 
t+--RS ~ t++E,V+-R,S 

(see Figures  1, 2, and 3). In all pa t te rns  above R and R I have to be con- 
ta ined in the given reduction ordering > .  In the simplification pat terns,  
s--+ R t is by  appl icat ion of a rule l--+r at position p;  s ~ R , u  is by applica- 
tion of I--+r'  a t  posit ion p ; and s -+~ ,v  is either strictly below p ,  or at  posi- 
tion p by  applicat ion of a rule I I - + r  I with  l~>l t. By ~ c  we denote the 
rewri te  relat ion on proofs induced by  the above pat terns  with these restric- 
tions. 

LEMMA 2. Whenever  (E ,R ) V - ( E ' , R  ' )  and P is a proof  in E U R  , then there 
exists a p r o o f P  I i n E I U R  I s u c h t h a t P ~ c P *  i ! 

W e  n e x t  p rove  tha t  the ordering ~ +  is well-founded. In this context the 
concept  of mult iset  orderings is of importance.  A multiset is a finite unordered 
collection of  elements  in which elements may  appear more than once. If > is 
a par t ia l  ordering on a set  S~ then the corresponding multiset  ordering >> on 
t h e  se t  of all mul t ise ts  of elements in S is the smallest transitive relation such 
that 

M U { x } > > ] Y f U { y l ,  . . . ,  y~ }, whenever n >0  and x >Yl ,  for l < i  < n .  

According to this  ordering an element of a multise6 can be replaced by  any 
finite number  of elements tha t  are smaller in > .  Dershowitz and Manna 
(1979) have  proved t ha t  the multiset  ordering >> is well-founded if  and only if 
> is well-founded. 

LEMMA 3 (Bachmair ,  Dershowitz, and Hsiang, 1986). The ordering =~+ is a 
proof  ordering. 
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Figure 1. Equality patterns 
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Figure 2. Overlap patterns 
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Figure 3. Simplification patterns 

Proof. We construct a well-founded ordering > c  and prove that P=:~cP I 
implies P > c P / ,  for all proofs P and P i 

First we define the complexity c (s ,t ) of a single proof step (s ,t ) by: 

if s---+~ t by l -+r  at p o s i t i o n p , t h e n  c ( s , t ) i s  ({s },s /p  , l , t  ); 
if s +---• t by l---+r at position p ,  then c (s , t ) i s  ( i t  } , t / p  , l ,s  ); 
if s ~ t,  then c (s , t ) i s  ({~ ,t },-,-,-).  

Only the first component is relevant in the last case. The ordering >c is the 
lexicographic combination of the multiset extension >> of the reduction order- 
ing > ,  the proper subterm ordering, the proper subsumption ordering [:>, and 
the reduction ordering > .  We define: ( s 0 , . . . , s ~ )  > r  . . . ,  t~) if and 
only if ( C ( S o , S l ) , . . .  , c ( s~_ l , sm)}>> c { c ( t o , t l ) , . . .  , c(t,~_l,t~) }. S~nce 
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the reduc t ion  ordering > and the  proper subterm ordering are well-founded,  
monoton ic ,  and stable (under subst i tut ion) and the subsumpt ion  ordering [:> is 
wel l - founded,  we can readily infer tha t  > e is a proof ordering.  Therefore it 
suffices to  show tha t  > c contains any instance of an e l iminat ion pa t t e rn  for 
comple~ion. For equality pat terns:  

a) (8 +~s t ) > o (s -+R,t ) ,  since {s ,t } >> {s }; 
b) (8 ~ t )  > r (s ~ R , u  ~ , t  ), 

since (s  ,t }>> {s } and {s ,t } >> {u ,t }; 
c) (s +-+Es) > c (s) ,  since { ( s , s  }}>>0.  

For over lap pat terns:  
d) (8 ~ - ~ .  - ~  t) > o (s - ~ , ,  + - ~ , t ) ,  

since all terms on the r ight-hand side are smaller ~han u ; 
e) (s +---R u--+t~ t ) > e (s ,-+E,t ), since {u }>> { s , t  }. 

For simplif icat ion patterns:  
f) { ( i s  } , s / p  , l , t ) }  >>~ {( is  } , s / p  , l , u ) , ( { t  } , t / q  , l ' , u ) } ,  

since t > u  a n d s  > t ;  
g) {( is  } , s / p  , l , t ) }  >>~ { ({ t ,u  },- ,- , -) , ({s } , s / q  , l ' , v ) } ,  

since s > t ~  s > u ~  and either q is strictly below p ,  or l~>l  
[] 

Th is  l emma shows tha t  the inference system C can be used to simplify 
proofs conta ining equality steps s ++E t or peaks s +--R u --+R t . Equal i ty  steps 
can be e l iminated by orienting, simplifying, or deleting equations.  To  elim- 
inate  peaks  it suffices to generate certain equational consequences called criti- 
cal pairs. 

Let  s - + t  and I - + r  be rules in R with no variables in common  (the vari- 
ables of one  rule are renamed if necessary) and suppose tha t ,  for some posi t ion 
p ,  s / p  is not a variable and is unifiable wi th  I, a being the  most  general 
unifier ( thus  s o~/p and let are identical). Then  the superposition of l--+r on 
s--~t at posi t ion p determines a critical pair t a = s  ~r[r ~] (where the replace- 
m e n t  in s cr takes place at  position p ) .  The  proof t a+-R s cr-+ R s a i r  a] is 
called a critical overlap; the  term s or, the overlapped term; the  posi t ion p ,  the 
critical pair position. By G P ( R )  we denote  the set of all critical pairs 
be tween rules of R . 

CRITICAL PAIR LEMMA (Knuth and Bendix, 1970; Huet, 1980). For each peak 
s *--R u -+R t there exists a term v ,  such that either s ---+~ v +-~ t , or else s is 
v [st o] and t is v [t' ~],for some critical pair s ' = t '  in CP (R ). 

T h e  considerat ions above lead to 

DEFINITION 1. A derivation (Eo,Ro)F--(E1,R1)~- " '"  is fair if (a) E ~ - 0  
and (b) VP (R ~) is a sub~et of Uk E~. 

A completion procedure is any procedure tha t  accepts as i npu t  a set of 
equat ions  E ,  a rewrite system R , and a reduct ion ordering > conta in ing R ,  
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and generates a derivation (E ,R )k-[E~,R ~)F-- ' ' ' ,  using applications of the  
inference rules of C as the only elementary computat ion steps. Since a fair 
derivation may not be possible from an ~rbitrary pair (E~. ,R,. ), or may  require 
backtracking (Dershowitz, Marcus, and Tarlecki,  1987), we have to allow for 
the possibility of failure for certMn inputs E ,  R ,  and  > .  A completion pro- 
cedure may terminate  with output  "failed," even when it need not.  We ignore 
derivations for which a procedure explicitly fails, and call the procedure  fair if 
all its non-failing derivations are fair. 

TI~OREM 1 (Huet, 1981; BachmMr, Dershowitz, and Hsiang, 1986). I f  a com- 
pletion procedure is fair, and does not fail for inputs t?,, R ~ and >,  then R oo 
is canonical. 

Proof. Let (E0 ,R0)~- - (E1 ,R1)F-  . . .  be a fair derivation. We show t h a t  R r176 
is canonical. Since R oo is contained in > ,  it is terminat ing.  For the Church-  
Rosser properly we prove, by induction on ~ + ,  t ha t  for any a rb i t ra ry  proof 
P in E i uR i,  i >0,  there exists a rewrite proof P I  in R oo with P ~ P  i We 
assume that each proof @ with P ~ + Q  can be t ransformed into a persisting 
rewrite proof. 

If P contains an equality step s ~z~ t in which an equation u ~---v is used, 

then, by fairness, the  equation u = v  will eventually be formed into a rewri te  
rule, simplified, or deleted. By Lemma 2, there is a proof Q in E i u R i ,  for 
some j > i ,  such tha t  P = * + Q .  Likewise, if P contains a non-persisting 
rewrite step s - + s . t ,  then simplification will eventually result in a proof Q ,  

such that P ~ + Q  . 
If P is a proof in R o~ but  not a rewrite proof, then  it must contain a peak 

s +--/k u -+R~ t .  By the Critical Pair Lemma, if this peak is not a critical over- 

lap, then there is a rewrite proof s --+~.v +--~ t ; hence P =----*cQ, for some proof  

Q in E~.UR~.. If the peak is a critical overlap, then s-=-t can be wr i t t en  as 
v [s' r]=v [t' r], where s '  ~---t' is in CP (R~176 By fairness, s'~---t '  is conta ined 
in Ek, for some k .  Using Lemma 2, we may conclude tha t  there is a proof  @ 
in E i UR i , for some j > i ,  such tha t  P + 

In summary, there exists a proof @ in E # U R i ,  for some j > i ,  such t h a t  
P ~ c + Q .  By the induction hypothesis, there is a rewrite proof @~ in R r 
with @ ~ c Q  ~ Therefore we have P + * �9 =----*c @ ~, which concludes the  proof. [] 

The notion of completion as formalized above covers a wide var ie ty  of 
specific completion procedures, including those given in Knuth  and Bendix 
(1970) and Huet (198I). Any particular completion procedure has to specify in 
which order the inference rules of C are to be applied to given sets of equa- 
tions and rules. We call such a selection strategy fair if it gives rise only to 
fair or failing derivations. By Theorem 1, any implementat ion using a fair 
selection strategy is guaranteed to construct a (possibly infinite) canonical sys- 
tem, provided it does not  fail. Such an implementat ion is therefore called 



10 L, Bachmair and N. Dcrshowitz 

correct. T h e  cor rec tness - - in  this sense--of  a specific comple~ion procedure 
was first proved by  Huet  (1981). Huet 's  proof requires intricate arguments by 
induct ion  on certain orderings on terms. One of the main differences with our 
approach  is tha t  we use orderings on proofs. The use of multisets of terms, as 
in J o u a n n a u d  and  Kirchner  (1986), may be regarded as a simple instance of a 
proof  order ing t h a t  makes  no use of the (additional) information contained in 
the proof  steps. The  full potent ial  of proof orderings is only realized when this 
in fo rmat ion  is utilized. 

4. C r i t i c a l  P a i r  C r i t e r i a  

T h e  efficiency of the  completion process depends on the number  of rewrite 
rules and critical pairs generated.  Simplification can be a very effective 
mechan i sm for el iminat ing superfluous equations and rules. For instance, 
whenever  a critical pair s ~- t  has been computed,  both s and t can be 
reduced  to normal  forms s I and t r If the normal forms are identical, then 
the equat ion  s ~ = t  i can be deleted, indicating tha t  the original equation s ~---t 
was no t  needed  in the  first place. Normalization is done systematically in 
most  complet ion procedures,  but  can he costly. The redundancy  of s ~-~t can 
often be de te rmined  more efficiently by  looking at the s t ructure  of its associ- 
a ted cri t ical  overlap s +--/~ u --+m t .  Characterizations of r edundan t  critical 
pairs, called critical pair criteria, can be conveniently described by  proof order- 
ings. 

We say tha t  a set (]PC of elimination pat terns  of the form 
@ 

where  R is contained in the given reduct ion ordering > ,  specifies a critical 
pair criterion. By =cope  we denote  the corresponding rewrite relation on 
proofs. We use this proof relation to sift out  r edundan t  critical pairs. By 
CPC (E ,R ) we denote  the  set of  all critical pairs s = t  in GP (R)  for which 
the  critical overlap s +--n u --+R t can be reduced via ~ ore+ ," t h a t  is, for which 
there  exists a proof  P in E UR with  (s +--R u --+~ t ) ~  ~?c P .  Critical pairs in 
CPC (E ,R ) are m e a n t  to be t rea ted  as superfluous. 

DEFINITION 2. A derivation (Eo,Ro)b-(E~,R~)b- " ' '  is fair relative to a 
critical pair criterion CPC if (a) E ~---~, and (b) CP ( r /~)_  Ui CPC (E i ,Ri) is 
a subset  of U~ E k �9 

(A-B denotes  the  set of all elements of A tha t  are not in /? .) Fairness rela- 
tive to the  trivial criterion CPC, for which CPC(E ,R ) is always empty,  
corresponds  to fairness in the usual sense. Thus, Definition 1 is a special case 
of Defini t ion 2. 

A cr i ter ion CPC is correct if, for all derivations tha t  are fair relative to 
CPC, the  limit R ~ is canonical. If CPC is correct, then critical pairs in 
CPC (E ,R ) may be ignored by completion. 
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THEOREM 2. Let CPC be a correct critical pair criterion and C be a comple- 
tion procedure that is fair relative to CPC. If C does not fall for inputs E ,  R 
and >,  then R ~ is canonical. 

Proof. Immediate  from the definition of correctness of a criterion. [] 

The following l emma is useful for establishing the correctness of a cri terion.  

LEMMA 4. A critical pair criterion CPC is correct if the ordering induced by 
~ r  c~r is well-founded. 

Proof. Let CPC be a critical pair criterion for which the  ordering induced b y  
~ c U ~ c p c  is well-founded. Let (Eo,R 0)F-(E1,R 1)~- �9 �9 �9 be a der iva t ion  
tha t  is fair relative to CPC. We have to show tha t  R r162 is canonical. Since 
R ~ is contained in the reduction ordering > ,  it is terminating. For t h e  
Church-l~osser property,  it suffices to show that  any arbitrary proof P in 
E i [JR; can be t ransformed,  via (==~c[J~ePc)+, into a rewrite proof in R ~. 
We assume tha t  this assertion holds for every proof Q w i t h  
P cpc  ) + q  �9 

Let P be a proof in /~iUR; .  Using fairness and Lemma 2, we may  con- 
clude that whenever P contains a non-persisting proof step or u non-critical 
overlap, then there is a proof Q in Ej[_JR], for some ]_>i, such that 
p + c @ �9 Suppose P contains a persisting critical overlap s +--/~.u --+/~. t .  

Thus, s----t must  involve some critical pair s I----tl in UP (R~). If this criti- 
cal pair is not  contained in U i CPC (E i ,R i ), then, by fairness, it is in E k , for  
some k. By Lemma 2, there is a proof Q in E jUR: . ,  for some j _ > i ,  s u c h  
tha t  P ~ + Q .  If s r___~t ' is contained in some set CPC (E k ,R k ), then there  is, 
by definition, a proof Q i in E~ UR~, such that  P + i ~ cpo Q Using L e m m a  2, 
we may conclude tha t  there is ~ proof Q in Ej  OR i , for some j _>i, such t h a t  

In summary,  we have shown ~hat there exists a proof Q in E i U R j ,  for  
some j >_i, such tha t  P ( ~ c O ~  cPc)+Q. By the induction hypothesis,  Q 
(and therefore P ) can be t ransformed into a rewrite proof in R oo. [] 

A criterion can considerably decrease the total number  of critical pairs gen- 
erated by completion. This advantage may be offset, however, by the  addi-  
tional cost of checking whe the r  the criterion applies to a given crit~ca] pair. 

Critical pair criteria have also been applied to testing the Church-Rosser  
property.  

DEFINITION 3. A criterion CPC is sound if, for each rewrite system R con- 
tained in > ,  the following proper ty  holds: R is Church-Rosser if and only if 
there exists a rewrite proof in R ,  for each critical pair in CP (R ) -CPC (~,R ). 

A sound criterion, whose applicability can be effectively tested, can be used for 
testing the Church-Rosser  proper ty  of terminating systems. While soundness  
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of a cri terion can usually be established wi thout  difficulty, correctness can be 
cons iderab ly  more difficult to verify. 

PROPOSITION 1. Any correct criterion is sound. 

Proof. Let R be a rewrite system contained in the given reduction ordering 
> ,  and  let  CPC be a correct criterion. Furthermore,  suppose that ,  for each 
critical pa i r  s ~---t in CP(R )-CPC(O,R), there exists a term v,  such tha t  
s --+R v +--R t .  We  have to show that  R is Church-lZosser. 

U n d e r  the above assumptions, there exists a finite derivation 
( CP (R ) -CPU (r ),]~ )~-- . . .  ~--(~,R ). (Each equation in the  initial set  
can be reduced ~o a trivial one, and then de]eted.) Since 
C P ( R ) - U i  CPC(Ei ,R)  is a subset  of the initial set of equations 
CP ( R ) -  CPC(O,R ), the above derivation is fair relative to criterion CPC. 
By correctness,  R is canonical. [] 

Formal iz ing critical pa~r criteria in terms of proof orderings greatly facili- 
t a t es  the  task  of  proving correctness. We will present correctness proofs for 
all known criteria, including those for which correctness had no t  been esta- 
blished previously.  

A first example of a critical pair criterion is blocking, a concept introduced 
by  Slagle (1974) and applied to rewriting by Lankford and Ballantyne (1979). 

DEFINITION 4. Let  R be a rewrite system and t ~r+--2~ s ~[la]--+R s ~[r ~] be a 
critical overlap be tween  rules s -~ t  and l--~r.  The critical pair t ~r~s a i r  a] is 
called blocked if z cr is irreducible, for all variables x in s or I. Otherwise, i~ 
is called unbIocked. 

If  t a ~ s  air a] is a unblocked critical pair, then z c~--+ R w , for some vari- 
able z in s or l ,  and some term w.  L e t a  I be the subst i tut ion for which za~ 
is w ,  and y ~l is y ~r, for all variables y distinct from z .  Then there is a 
proof  to---~to-'e-Rsa'--+Rs#[rat]+-~sa[ro-], and we also have 
s o'---~s cd. We define B C P  as the set of all elimination pa t te rns  

t s o i l  s t t s s [r s 

where  s---~t, l - -~r ,  6% and a t are as described above. The set BCP (E ,R )  
contains  all unblocked cri6ical pairs in UP (R) .  

PROPOSITION 2. The unblocked criterion BCP is correct. 

Proof. Ib suffices to show that  ~ B c p  is contained in > c. This is trivial, 
since each lef t-hand side of an elimination pa t te rn  of BCP contains a term s (r 
t ha t  is bigger t han  all terms on the corresponding right-hand side. [] 

The  proposi t ion shows that  unblocked critical pairs may be ignored by  
complet ion.  The unblocked criterion BCP is a special case of both the con- 
nected  criterion and the composite criterion discussed below. 
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5. C o n n e e t e d n e s s  

Several critical pair criteria have been proposed that  are based on the con- 
cept of connectedness. 

DEFINITION 5. Let R be a rewrite system and > be a reduction ordering. 
Two terms s and t are connected in E U R  below u (relative to > )  if 

8+-+EUR~I~-~EU R �9 " " + - + E U R  U n + - + E U R t ~  for some terms ui, . . :~u ,~ ,  n>O, 
w i t h u > u i ,  for l < i < n .  

This concept was introduced in a more restricted form by  Buchberger (1984) 
and can be readily utilized for a critical pair criterion. Completion can be 
viewed as a process of establishing, for every critical overlap s +--• u -+R t ,  the  
connectedness of s and t below the overlapped term u .  For instance, adding 
the critical pair s = t  as an equation is one possible way  of establishing con- 
nectedness. Conversely, if s and t are already connected, then the critical 
pair s = t  is superfluous. Thus, we define the set CCP as consisting of all 
elimination pat terns,  for n >0 ,  of the  form 

8 + - R  U---+R t ~ 8+-+EUR U l ~ -~E U ~ " " " Un +'+EUR t 

where > contains R and u > u i ,  for l < i < n .  The set C C P ( E , R )  contains 
all critical pairs in CP (R) that  are connected below their associated over- 
lapped term. 

PROPOSITION 3. The connected criterion CCP is correct. 

Proof. It suffices to prove tha5 ~ nap is contained in the proof ordering :> c. 
Suppose that  P ~ a?a P i, where in P some peak s +-R u --+R t is replaced by  

u 0+-+EUR " " "  +-+EUR a n + l ,  with u 0 being s, u~ +i being t ,  and u > ui ,  for 
0 < i  < n  +1. The first component  of the quadruple c (s ,u ) is {u }, and the  
 rst c o m p o n e n t  of  c is }, or  }. Since > we  

have c ( s , u ) > ~ c ( u  i ,u; +l), for a l l i , 0 < i < n + l .  This i m p l i e s P > c P ~  [] 

A criterion based on connectedness was first formulated b y  Buchberger  
(1979) for a completion-like algorithm for construct ing canonical bases  for 
polynomial ideals. This criterion has been adapted to completion by Winkler  
and Buchberger (1983), Winkler (1984, 1985), and Kfichlin (1985, 1986a). 
Each criterion checks whether  a critical pair is connected relative to the  order- 
ing --*~ induced by R .  The criteria differ in the respective tests used to 
ensure connectedness. We sketch the basic idea. 

Suppose tha t  s +-R u ~ n  t is a critical overlap and that u reduces to a 
term v.  Thus, we can decompose the original overlap into two peaks  
S+--RU--+nv and v+--nu--+n t .  If s + - - n u - - + n v  is no overlap or is a vari- 
able overlap, then s and v are connected below u .  Otherwise, s ~---v mus t  
involve an inseance of a critical pair s I = v  i If this critical pair  has already 
been computed, then s and v are also connected below u .  Similar a rguments  
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apply to v and t .  Thus,  connectedness can often be verified by checking 
whether certain critical pairs have already been computed.  Various book- 
keeping mechanisms to tha t  end have been proposed by Kiichlin (1985, 1986a) 
and Winkler (1985). The test described by Winkler restricts the  position at 
which the rewrite step u -+R v may apply. No such restriction is imposed by 
Kiichlin. 

The emphasis in the papers cited above is on soundness and practicality. 
Winkler (1985) and Ktichlin (1986a) also show the correctness of specific ver- 
sions of completion tha t  incorporate tests for connectedness. Winkler 's  proof 
is similar to the proof of correctness of s tandard completion in Huet (1981); 
Kiichlin's proof is based on multiset induction. Both are quite complicated. 
Our correctness proof is not  only considerably simpler, but  also applies to a 
l~rge class of completion procedures. The flexibility of our approach should be 
particularly helpful in establishing the correctness of other implementat ions  of 
completion procedures and criteria. 

6. C o m p o s i t e n e s s  

A different type of criterion was suggested by Kapur,  iViusser, and Naren- 
dran (1985). 

DEFINITION 6. Let R be a rewrite system and t ~ +-R s cr[l ~]--+R s ~[r ~] be a 
critical overlap between rules s--+t and l-+r in R .  The critical pair 
t ~-----s air cr] is called composite if some proper subterm of 1 c~ is reducible in 
R .  

For example; suppose • contains rewrite rules -(-x-~ y)--+-y +-(-x), 
x + - z  --* 0, and - ( -x  ) -+ z .  The first two rules define a critical overlap 

))+ ) +-R + )) -0. 

This overlap is composite, since the subterm - ( - z  ) of -z  + - ( - z  ) is reducible. 
Let PCP be the  set of elimination pat terns 

8+---R u--+R t ~ s+--/~ u--+R V+--R u--+R t 

where the rewrite step u -+~  v applies strictly below U-+R s ,  and u - - ~  s 
applies below u-+R t .  The rewrite relation ~ p e P  induced by PCP can be 
used to eliminate composite overlaps. The set PCP (E ,R ) consists of all com- 
posite critical pairs in CP (R). 

LEMMA 5 (Kapur, Musser, and Narendran, 1985). The composite criterion 
PCP is sound. 

This result is also implied by: 

PROPOSITION 4. The composite criterion PC_P is correct. 
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Proof. Let (E0,R 0)V-~(E1,R 1)k- " �9 �9 be a derivation fair relative to P U P .  
We show that  whenever P is a proof in E i u R ; ,  for some i >_0, then there  is a 
rewrite proof P i in R ' ,  such that  P ~ + P  i This obviously implies t ha t  R "  
has the Church-Rosser property.  

Let P be a proof in E; u R  i.  We assume tha t  the  assertion is true for all 
proofs Q with P ~ + Q .  Using fairness and L e m a n  2, we may conclude ~hat 
whenever P contains a non-persisting proof step or a non-crltical overlap, 
then there is a proof Q in E i UR i , for some j ~ i ,  such tha t  P ~ +Q . Sup- 
pose P contains a persisting critical overlap s +-R~u --+~ t .  Thus,  s m-t mus t  

involve some critical pair s I ~ t l  in CP (R~176 
Suppose s l ~ t  I is not  contained in U i PCP (E i ,R i) .  By fairness, it is in 

some set Ek, which, by L e m a n  2, implies P ~ + Q ,  for some proof Q in 
EiLARi, j>_i .  On the other  hand, if s t ~ - t  t is contained in some set 
PCP (E k ,Rk ), then the overlap s +-~k u--+a~ t can be decomposed into two 

peaks, s +-R~ u --+R~ v and v +-a~ u --+R~ t .  Since both peaks are smaller than  

P ,  they can, by the induction hypothesis, be t ransformed via ~ into rewri te  
, �9 * t * respectively. The concatenat ion proofs s ---+ROOm +--aoov and v ---+Roow +--ROOt, 

s---+Roow +---2r +--ROOt of these two proofs is also smaller than  P ,  

hence can be t ransformed into a persisting rewrite proof. The overlap 
s +--R.u --+R.t can therefore be replaced by a rewrite proof in R OO. By L e m a n  

==~G ~ �9 2, there is a proof Q in E j  UR i , for some j >_ i ,  such tha t  P + 
Using the induction hypothesis,  we may  conclude tha t  Q (and therefore P ) 

can be transformed via ~ c + into a rewrite proof P J in R o~. [] 

The correctness of criterion PCP can also be proved by construct ing a 
well-founded ordering > Po~ tha t  contains both ~PoP and ~ c .  

Let P be an overlap s +--/~ u --+R t,  and P i be s +--R U -'+R V + -R  U "--+R ~ , 

where u-+R v by l"-+r " a t  a position q strictly below p (see Figure 4). 
Since both P and P t  contain the proof steps u--+Rs and u - -+Rt ,  we have 
p I > o P !  However, including a measure of the overlap between successive 
proof steps in the complexity of a proof allows us to distinguish between 
occurrences of these single proof steps in P and p i, respectively, so t h a t  we 
can design a proof ordering > Pc~ wherein P > PeP P 

Let P be a proof (s0, . . . , s ~ )  and p; be the position of the i - t h  proof 
step (Si_l,S;). By M ( P )  we denote the mult iset  { d ( s o , S l , P ) , . . . ,  
d (s n_l,sn ,P )), where d (s~'_l,Si ,P ) is 

(where si-1/Pl-1 is- ,  if i is 1); 
({Si } , S l / p  i , l ,si-i,  Si /Pi+l), if 8i_l+--R S i by l--+r 

(where si /Pi+l is-, if i is n); 
if s,.. 
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,d d 

Figure 4. Composite overlap 

The first four components  of d are the same as for the complexity measure e . 
The addit ional  fifth component  reflects the amount  of the overlap of a rewrite 
step with its neighboring step. The  ordering >d is ~he lexicographic combina- 
tion of the  mult iset  extension >> of the reduction ordering > ,  the proper sub- 
term ordering, the  proper subsumpt ion  ordering t>, the reduction ordering > ,  
and the  proper subterm ordering. This ordering is well-founded and stable, 
but  not  monotonic.  The ordering > Pc~,  defined by: _P > P w  P i if and only 
if  M ( P ) > > d M ( p t ) ,  contains both proof relations, ~ c  and ~ c P .  The 
proof of this  fact is not  difficult, but  rather technical. Details can be found in 
Bachmair (1987). 

The unblocked criterion B C P  can also be regarded as a special case of 
compositeness, since any unblocked critical pair is composite. Furthermore,  
composite and connected criteria can be combined. 

PROPOSITION 5. The combined criterion CCP [_JPCP is correct. 

Proof. The proof of Proposit ion 4 can be easily adapted to the criterion 
CCP [2PCP . The  correctness also follows from the fact tha t  the rewrite rela- 
tions ~ c ,  ~ c c 2 ,  and ~ P c P  are all contained in > P e r ;  hence (the transitive 
closure of) their union is well-founded. [] 

Exper imental  results tha t  give some indication of the utility of critical pair 
criteria have been reported by Kapur,  Musser and Narendran (1985)--for 
composi teness- -and  by Kiichlin (1985)--for connectedness. 

7. S u m m a r y  

We have presented a general formalism for describing critical pair criteria 
for completion and have demonstra ted  that  proof orderings provide a powerful 
tool for reasoning abou~ completion with criteria. Proof ordering techniques 
facilitate relatively simple and intuitive correctness proofs and are useful for 
both designing and verifying critical pair criteria. 

The  approach described here can also be used in the more general context 
of rewrit ing modulo a congruence (Bachmair and Dershowitz, 1987a). For 
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ins tance ,  we h a v e  s h o w n  recen t ly  ( B a c h m a i r  a n d  Der showi t z ,  1987b) t h a t  a 
res t r i c ted  vers ion of  b lock ing  can be  used  w i th  the  a s s o c i a t i v e - c o m m u t a t i v e  
comple t ion  p r o c e d u r e  of  P e t e r s o n  and  Stickel  (1981). O t h e r  cr i t ical  p a i r  cri-  

t e r i a  for rewr i t ing  m o d u l o  a congruence  have  been  s t u d i e d  by W i n k l e r  (1984) 
and  K~ichlin (1986b).  

We thank G. Sivakumar  for ongoing discussions and running experiments, and the 
referees for their comments .  

l~eferen ces 

Bachmair, L. (1987). Proof methods for equational theories. Dissertation, Univ. of Illinois at 
Urbana-Champaign. 

Bachmair, L., Dershowitz, N., and ttsiang, J. (1986). Orderings for equational proofs. Proc. 
IEEE Syrup. Logic in Computer Science, Cambridge, Massachusetts, pp. 346-357. 

Bachmair, L., and Dershowitz, N. (1987a). Completion for rewriting modulo a congruence. In: 
(Leseanne, P., ed.) Proe. Second Int. Conf. on Rewriting Techniques and Applications. 
Springer Lec. Notes Comp. Sci. 256, 192-203. 

Bachmair, L., and Dershowitz, N. (1987b). Critical pair criteria for rewriting modulo a 
congruence. To appear in Proc. gurocal '87. Leipzig, German Democratic Republic. 

Buchberger, B. (1979). A criterion for detecting unnecessary reductions in the construction of 
GrSbner bases. In: (Ng, W., ed.) Proc. Eurosam '79. Springer Lee. No~es Comp. Sei. 72, 
3-21.. 

Buchberger, B. (1984). A critical-pair/completion algorithm for finitely generated ideals in 
rings. In: (Boerger, E., et ah, eds.) Proc. Syrup. Rekursive Kombinatorik. Springer Lec. 
Notes Comp. Sei. 171, 137-161. 

Dershowitz, N. (1985). Computing with rewrite systems. Inf. Control 64, 122-157. 
Dershowitz, N., and Manna, Z. (1979). Proving termination with multiset orderings. Comm. 

ACM 22, 465-476. 
Dershowitz, N., Marcus, L., and Tarlecki, A. (1987). Existence, uniqueness, and construction of 

rewrite systems. To appear in SIAM J. Comput. 
Fribourg, L. (1985). SLOG: A logic programming language interpreter based on clausal superpo- 

sition and rewriting. Proc. 1985 Syrup. on Logic Programming~ Boston, Massachusetts, 
pp. 172-184. 

Hsiang, J. (1985). Refutational theorem proving using term-rewriting systems. Ar~if. In,ell. 
25, 255-300. 

Huet, G. (1980). Confluent reductions: abstract properties and applications to term rewriting 
systems. J. ACM 27, 797-821. 

Huet, G. (1981). A complete proof of correctness of the Knuth and Bendix completion algo- 
rithm. J. Comp. Syst Sci. 23, 11-21. 

Huet, G. and Hullot, J.M. (1982). Proofs by induction in equational theories with constructors. 
J. Comp. Sysl gci. 25, 239-266. 

Hullot, J.M. (1980). A~ catalogue of canonical term rewriting systems. Teeh. Rep. CSL-113, SRI 
International, Menlo Park, California. 

Jouannaud, J.-P., and Kirehner, H. (1986). Completion of a set of rules modulo a set, of equa- 
tions. SIAM J. Comput. 15, 1155-1194. 

Kapur, D., Mussel D.R., and 1Nurendran, P. (1985). Only prime superpositions need be con- 
sidered in the Knuth-Bendix proeedule. Unpublished manuscript, Computer Science 
Branch, Corporate Research and Development, General Electric, Schenectady, New "York. 

Knuth, D., and Bendix, P. (1970). Simple word problems in universal algebras. In: (Leech, J., 
ed.) Computational Problems in Abstract Algebra~ pp. 263-297. Oxford: Pergamon Press. 

Kiichlin, W. (1985). A confluence criterion based on the generalised Newman lemma. In: 



18 L. Bachmair and N. Dershowitz 

(Caviness, B., ed.) Prec. Eurocal '85. Springer Lec. Note8 Getup. Sci. 204, 390-399. 
K(ichlin, W. (1986a). k generalized Knuth-Bendix algorithm. Rep. 86-01, Dept. of Mathemat- 

ics, ETH Ziirich, Switzerland. 
Kiichlin, W. (1985b). Equational Completion by Proof Simplification. Report 86-02, Dept. of 

Mathematics, ETH Ziirich, Switzerland. 
Lankford, D., and Ballantyne, A. (1979). The refutation completeness of blocked permutative 

narrowing and resolution. In: (Joyner, W. H., Jr., ed.) Prec. Fourth Workshop on 
Automated Deduction, Austin, Texas, pp. 168-174. 

Le Chenadec, P. (1986). Canonical forms in finitely pre~ented algebras. London: Pitman. 
Musser, D.L. (1980). On proving inductive properties of abstract data types. Prec. 7th ACM 

Syrup. on Principles of Programmir~g Languages, Los Vegas, Nevada, pp. 154-162. 
Peterson, G. E., and Stickel, M. E. (1981). Complete sets of reductions for some equational 

theories. Y. ACM 28, 233-264. 
Single, J. R. (1974). Automated theorem proving for theories with simplifiers, commutativity, 

and associativity. #. AGM 21,622-642. 
Winkler, F. (1984). The Church-Rosser property in computer algebra and special theorem prov- 

ing: An investigation of critical-pair/completion algorithms. Dissertation, Johannes Kepler 
Universit~/t Linz, Austria. 

Winkler~ F. (1985). Reducing the complexity of the Knuth-Bendix completion algorithm: a 
'unification' of different approaches. In: (Caviness, B., ed.) Prec. Eurocal '85. Springer 
Lec. ]Votes Getup. Sci. 204,378-389. 

WJnkler, F., and Buchberger, B. (1983). A criterion for eliminating unnecessary reductions in 
the Knuth-Bendix ul~or[thm. Prec. Coll. or~ Algebra, Combina~orlcs and Logic in Com- 
puter Science, GySr, Hungary. 


