Problem #5

Originator: Albert Meyer, Roel C. de Vrijer Date: April 1991

Summary: Does surjective pairing conservatively extend $\lambda\beta\eta$ -conversion?

Do the surjective pairing axioms

 $D_1(Dxy) = x$ $D_2(Dxy) = y$ $D(D_1x)(D_2x) = x$

conservatively extend $\lambda\beta\eta$ -conversion on pure untyped lambda terms? More generally, is surjective pairing *always* conservative, or do there exist lambda theories, or extensions of Combinatory Logic for that matter, for which conservative extension by surjective pairing fails? (Surjective pairing is conservative over the pure $\lambda\beta$ -calculus; see [dV89]). Of course, there are lots of other $\lambda\beta$, indeed $\lambda\beta\eta$, theories where conservative extension holds, simply because the theory consists of the valid equations in some λ model in which surjective pairing functions exist, e.g., D_{∞} .

Comment sent by Kristian Støvring

Date: Tue, 22 Nov 2005 00:18:13 +0100

The problem has been solved with a positive answer [Stø05, Stø06]. The generalization to arbitrary lambda theories remains open.

Bibliography

- [dV89] Roel C. de Vrijer. Extending the lambda calculus with surjective pairing is conservative. In *Fourth Symposium on Logic in Computer Science*, pages 204–215. IEEE, 1989.
- [Stø05] Kristian Støvring. Extending the extensional lambda calculus with surjective pairing is conservative. Research Report BRICS RS-05-35, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark, November 2005.
- [Stø06] Kristian Støvring. Extending the extensional lambda calculus with surjective pairing is conservative. Logical Methods in Computer Science, 2(2:1):1–14, 2006.

January 22, 2014