
Innocuous Constructor-Sharing Combinations

Nachum Dershowitz

Department of Computer Science
Hebrew University, Givat Ram

Jerusalem 91904
Israel

nachum@uiuc.edu

Abstract. We investigate conditions under which con
uence and/or termi-
nation are preserved for constructor-sharing and hierarchical combinations
of rewrite systems, one of which is left-linear and convergent.

1 Introduction

In recent years there has been a spate of results on properties of rewrite systems
that are preserved when two systems, each possessing the property in question, are
combined. Unfortunately, these results often do not allow the two systems to share
even constructor symbols (in which case they are called \disjoint") and also impose
harsh syntactic conditions on both systems.

Our interest in this paper is in con
uence and termination in the constructor-
sharing case, with an emphasis on minimizing the conditions imposed on one of the
systems, usually at the expense of more severe conditions on the other. Our motiva-
tion is the notion that an \application programmer" Alice composes a query from
functions she has de�ned in a system R, functions S provided by a \systems pro-
grammer" Bob, and constructors. We have in mind for system-provided programs
things like streams of natural numbers and pseudo-higher-order functions like \map-
car". In writing R, Alice is responsible for correctness of R, including termination
and determinism, but should not have to concern herself with the possibility that
something about S will sabotage correctness of R, or vice-versa. We mainly address
the case where S is terminating and con
uent, but R is not necessarily left-linear.

The issue of modularity of rewrite systems was �rst raised by Bidoit [4]. An
early work dealing with combining terminating systems was [5]; con
uence of disjoint
systems was considered in [28]; many other properties were dealt with in [17].

De�nitions and notation are as in [7] and [13]. See Table 1. We will use R and
!R interchangeably for relation R and indicate composition of relations by their
juxtaposition.

2 Counterexamples

The following examples R
S
serve to demonstrate the necessity of various conditions

we impose on the two systems. The �rst [11] is not con
uent though its constructor-
sharing components are (see [15]):

R� The inverse of R, also denoted R .

R= The re
exive closure of R.

R+ The transitive closure of R.

R� The re
exive-transitive closure of R.

R� The symmetric-re
exive-transitive closure of R. Also $�
R.

R! The normalization relation: x !!
R y if x !�

R y and there is no z such
that y !R z.

R# The join relation: x #R y if x!�
R

�
R y.

R=S Rewriting modulo: R=S = S�RS�.

WN (R) R is (weakly) normalizing: for all x there is a y such that x!!
R y.

SN (R) R is terminating (strongly normalizing), or, equivalently, R+ is a well-
founded ordering.

SC (R) R is strongly con
uent: R�R � R=(R=)�; also denoted WCR�1 .

CR(R) R is Church-Rosser, or con
uent; this is equivalent to SC (R�).

Table 1. De�nitions and Notations.

g(x; x)! 0
g(x; c(x))! 1

a! c(a)
(A)

The following constructor-sharing system (cf. [5]) is not terminating, though its
components are:

a! 0
a! 1

f(0; 1; x)! f(x; x; x)
(B)

In the following similarly nonterminating combination, the �rst system is con
u-
ent and (left- and right-) linear (the second is not, however):

g(2)! 0
g(3)! 1

f(0; 1; x)! f(x; x; x)
a! 2
a! 3

(C)

The following nonterminating example (from [30]) has shared constructors on
the right only, but is not left-linear:

a! 0
a! 1

f(x; y; x; y; z)! f(0; 1; z; z; z)
(D)

Toyama [27] devised an example with no shared symbols at all:

g(x; y)! x
g(x; y)! y

f(0; 1; x)! f(x; x; x)
(E)

The following is a combination of non-left-linear con
uent systems that share no
symbols, one of which is non-overlapping (has no critical pairs) and the other has
only a trivial overlap:

g(x; x; y)! y
g(x; y; y)! x

f(x; y; x; y; z)! f(a; b; z; z; z)
a! 0
b! 0

(F)

Drosten [9] composed the following nonterminating combination of con
uent sys-
tems, only one of which is not left-linear:

g(x; x; y)! y
g(x; y; y) ! x
f(a; b; x)! f(x; x; x)
f(x; y; z) ! 0

a! 0
b! 0

(G)

Ohlebusch [20] has shown that termination is also not preserved for con
uent
non-erasing systems. (An erasing system has variables on the left that do not appear
on the right.)

3 The Pentagon Property

Before turning to rewrite relations, we look at some abstract properties relating two
binary relations R and S.

Suppose T is normalizing and con
uent. Then it de�nes unique normal forms.
That is, there is a unique t, denoted T (s), such that s !!

T t. These normal forms
can be used to establish properties of the union R [S.

De�ne the square property Q(R;S; T) as the inclusion T�R � ST�. Figura-
tively, that is:

S

R

T T

Clearly,

Fact 1.

CR(R) ^CR(S) ^Q(R�;R�; S�)) CR(R [S)

(just by tiling the diamond).
It is well-known that:

Fact 2.

CR(R) ^CR(S) ^WN (S) ^Q(R;R�; S !)) CR(R [S)

(See, for example, [1].) The square property here looks like:

R

R

! !

*

S S

Proof. If s !S t, then S(s) = S(t), since normal forms are unique. If s !R t, then
the given square property means that S(s) $�

R S(t). So whenever s$�
R[S t we have

S(s) $�
R S(t). By con
uence of R we have s!�

S S(s) #R S(t) �S t. Thus, R [S is
con
uent.

We say that R preserves S-normal forms if s !!
S t !R u whenever s !!

S

t!R!
!
S u. We will use PNF (R; S) to denote this property.

It should be obvious that normal forms are preserved if S quasi-commutes over
R:

Fact 3 [26].

RS � SR�) PNF (R; S)

It is also not hard to see that preservation of normal forms allows one to extend
the square property from T � to T ! (when T ! is de�ned):

Lemma4.

Q(R;S; T �) ^ PNF (S ;T)^WN (T)) Q(R; S ;T !)

Preservation of normal forms is also used to such ends in [6] and [8].
De�ne the pentagon property P (R;S; T) as the inclusion S�R � TRT�. (This

property is similar to coherence, as explored in [12].) Figuratively, that is:

S

T T

R

R

Obviously:

Fact 5.

Q(R;R; S!) ^WN (S)) P(R; S�; S !)

and

Fact 6.

P (R;S�; S!)) Q(R;R; S!)) Q(R;R�; S!)

Accordingly, we look for conditions under which P (R;S�; S!) holds.
If S is convergent (con
uent and terminating), then the pentagon property ex-

tends from a single S step to arbitrarily many:

Lemma7.

P (R;S; S�) ^ CR(S) ^ SN (S)) P(R; S�; S�)

Proof. The proof is a straightforward induction with respect to the well-founded
relation S: Suppose u !S v !�

S s and u!R t. It is given that there are u0; t0 such
that v !�

S u0 !R t0 and t !�
S t0. By CR(S) there is an s0 such that s !�

S s0 and
u0 !�

S s0. Thus, u0 !�
S s0 and u0 !R t0. Since u is greater than u0 with respect to

S, by induction, s0 !�
S!R w and t0 !�

S w for some w. Putting everything together,
we have s !�

S s0 !�
S!R w and t !�

S t0 !�
S w, which is P (R;S�; S�). (See the

Appendix.)

Similarly:

Lemma8.

P (R;S; S�) ^ SC (S)) P(R; S�; S�)

What we really want is P (R;S�; S!):

Lemma9.

P (R;S!; S�) ^ PNF (R; S) ^WN (S)) P(R; S�; S !)

Lemma10.

WN (S) ^ P(R; S !; S !)) P(R; S�; S !)

Note that:

Lemma11.

WN (S) ^ P(R; S !; S�)) P(R; S�; S�)

It is easy to see that:

Lemma12.

P (R;S!; S�) ^ PNF (R; S)^CR(S)) Q(S�RS�;R; S !)

Proof. See the Appendix.

Theorem13.

P (R;S!; S�) ^ PNF (R; S) ^ CR(R) ^CR(S) ^WN (S)) CR(R [S)

Proof. String together Fact 1, Lemma 9, and Fact 6.

Lemma14.

P (R;S�; S�) ^ SC (R) ^CR(S) ^WN (S)) SC (S�R)

Strong con
uence and con
uence of R� are the same; strong con
uence of S�R�

implies con
uence of R [S.

Proof. See the Appendix.

Theorem15.

P (R;S!; S�) ^ SC (R) ^CR(S) ^WN (S)) CR(R [S)

Proof. This follows, by tiling, from Lemmas 11 and 14.

To summarize, we have two approaches to showing con
uence of the union of
two con
uent systems R and S, when S is terminating. They require the pentagon
property P (R;S; S�) (for Lemma 7) and either (a) strong con
uence of R (Theorem
13) or (b) preservation of S-normal forms (Theorem 15).

4 Con
uence

Turning to rewrite systems, we look for su�cient conditions under which the pen-
tagon property P (R;S; S�) holds. The di�culty is that preservation of normal forms
is hard to achieve for practical systems, since constructor-topped right sides of R
can easily overlap constructor patterns of left-sides of S.

Toyama [28] proved that the union of two con
uent systems that share no sym-
bols is con
uent (for example, System G), but we are interested in systems that at
least share constructor symbols. System (A) shows that such a union need not be
con
uent; one result for the constructor sharing case is that unique-normalization is
preserved [22]; a hierarchical combination need not be con
uent, even if the union
is normalizing [G. Sivakumar, private communication, 1986]:

g(x; x)! c(x)
g(x; c(x))! 1

f(0; y) ! g(f(y; 0); f(y; y))
(H)

Hereon, R and S will be rewrite systems for which there are no critical pairs
between left sides of one and the other. We denote this Rl?Sl and say that their
left sides do not overlap. When we impose the condition Rr?Sl, we mean that there
are no critical pairs between right sides of R and left sides of S. In particular, R
could not even have, in this case, a variable right-hand side (i.e. it must be non-
collapsing), since that variable uni�es with all (renamed) left sides of S. We do allow
shared constructors and non-constructors, unless otherwise indicated. To indicate
that neither side of R overlaps S on the left, we write R?Sl.

If the union is terminating, then as a well-known consequence of Knuth's Critical
Pair Lemma, the union is also con
uent:

Lemma16.

CR(R) ^CR(S) ^ SN (R [S) ^Rl?Sl) CR(R [S)

The union need not be terminating, however (System B). Even if no symbols are
shared, it need not (System E).

We use LL(R) to indicate that R is left-linear. A left-linear system R is orthogonal
if Rl?Rl, that is, if it has no critical pairs between its left sides (except for a left
side with all of itself). Orthogonal systems are con
uent:

Fact 17.

LL(R) ^ Rl?Rl) SC (Rk)

The parallel rewriting relation Rk applies one rule of R at any number of disjoint
positions in a term. In general, one can show that R is con
uent by showing CR(R0)
for any R0, like Rk, whose re
exive-transitive closure is the same.

The following is standard (by considering the relative positions of redexes):

Lemma18.

LL(S) ^Rl?Sl) P(Rk; S ; S�)

Clearly, the union of two orthogonal systems is orthogonal, hence, con
uent. This
has been weakened to allow critical pairs within each system:

Theorem19 [24].

LL(R) ^ LL(S) ^CR(R) ^CR(S) ^Rl?Sl) CR(R [S)

System (A) demonstrates the need for left linearity.
We can allow non-collapsing R to be non-left-linear, by imposing termination on

S. Speci�cally:

Theorem20.

CR(R) ^CR(S) ^ LL(S) ^ SN (S) ^Rl?Sl ^ PNF (R; S)) CR(R [S)

Again, System (A) demonstrates the need for left-linearity (or preservation) and
termination.

Proof. We use the abstract properties of the previous section. By Lemma 18, we
have P (Rk; S; S�), which by Lemma 7 gives P (Rk; S�; S�). Since R preserves normal
forms, so does Rk, and by Lemma 9, we get P (Rk; S�; S!). This impliesQ(Rk; Rk; S!)
and, by Fact 2, yields con
uence.

The following should be clear:

Fact 21 [26].

LL(S) ^Rr?Sl) PNF (R; S)

Indeed, it is virtually imperative that S be left-linear (or else, every redex of a
non-left-linear rule in S must be reducible by some other rule in S).

Hence:

Corollary 22.

SN (S) ^ LL(S) ^ CR(R) ^CR(S) ^ R?Sl) CR(R [S)

In particular, since orthogonal systems are con
uent, the union of an orthogonal
system R that has de�ned symbols at the top of every right side with any constructor-
sharing left-linear convergent system S is also con
uent.

Unfortunately, this does not allow the right sides of R (which might ordinarily
be variables or constructor terms) to overlap left sides of S, as in

f(x) ! g(a)
g(x)! x

h(x; x)! 0
a! 1

(I)

Here
h(f(0); 1) �

S
h(f(0); a)�!

R
h(g(a); a)�!

R
h(a; a)�!

R
0

but not
h(f(0); 1)

�
�!
S

�
�!
R

�
 �
S

0

When R is collapsing, S needs to have very simple left-hand sides, or else, R could
easily destroy its normal forms. Suppose S is a rule of the form f(x1; : : : ; xn)! r,
where the xi are distinct variables. Any (�nite or in�nite) system of such rules,
each for a di�erent de�ned symbol f , is con
uent and is called a recursive program
scheme. The following is easy:

Lemma23. Every system R preserves normal forms of any recursive program
scheme S.

It follows from Theorem 20 that:

Corollary 24. The union of a terminating recursive program scheme with any con-

uent system not having the scheme's de�ned symbols on its left side is con
uent.

5 Termination

Turning to termination, numerous results are known in the disjoint, shared construc-
tor, and hierarchical cases. We are primarily interested in the shared constructor
case and in results that impose minimal restrictions on R (other than termination,
of course). There are few such: for constructor-based systems in [19]; for right-linear
and non-duplicating S in [21] (for the disjoint case, it conjectured by [25] and proved
in [16]). Some results for the hierarchical case are contained in [6] and [14].

A standard method of proving termination of a union R[S is to �nd a convergent
transformation function T , containing S, such that Q(R;R+; T !):

R

R

T T! !

+

Thus, any derivation containing in�nitely many R (and S) steps would map via T
to an in�nite derivation in R alone. In other words,

Fact 25.

SN (R) ^ SN (S) ^ S � T ^CR(T)^Q(R;R+;T !)) SN (R [S)

(Cf. [2, Theorem 4].)
For example, let S be a symbolic interpretation (as de�ned in [2]), that is, S

consists of a rule f(x1; : : : ; xn) ! r such that all xi, but not f , appear in r. By
the above considerations, and using S for T , the combined system is terminating,
since any R redex above an f is still a redex after normalizing by S and any redex
below an f occurs at least once in r. Applying R can only duplicate redexes of S,
but cannot create new ones. The extra restriction on the occurrences of xi in r are
not, however, necessary, as we will see below.

One does not really need every R step to map to a strict decrease vis-a-vis R,
only that were there an in�nite derivation in the union, the decrease would be strict
in�nitely often.

For example, we have already seen (Fact 18) that P (S�; Rk; S�) holds whenever
the left sides of R and left-linear S do not overlap, whence it follows that

S(s)
�
�!
R

u
�
 �
S

t

whenever s !R t. When R preserves S-normal forms, we have in fact that u is an
S-normal form (of t). Hence, S(s) rewrites to S(t) in zero or more R steps. These
conditions hold, for example, in the case considered in [29, Appendix B], where R
and S share no symbols, S is left-linear, con
uent and terminating, and R is non-
collapsing. Since every right side of R contains a symbol that does not appear in S,
any R step below and preceding an S step must be in the variable part of the left
side of the rule of S. To establish termination, one needs the added consideration
that an in�nite derivation with fewest alternations of layers of symbols from R and
S must have in�nitely many steps in the uppermost layer.

Theorem26. The union of a terminating system S consisting of one rule of the
form f(x1; : : : ; xn)! r, where the xi are distinct variables, and a terminating system
R that does not contain the symbol f is terminating.

Proof. As we have stated in Lemma 23, R preserves S-normal forms. Consider an
in�nite derivation t0 ! t1 ! t2 ! � � � in the union, initiated by the smallest possible
term t0. Since R preserves normal-forms, we have S(t0)!�

R S(t1)!�
R S(t2)!�

R � � �.
Clearly, S(t) = S(t0) if t!S t0, but there must be in�nitely manyR steps as well. The
only way one could have S(t) = S(t0) when t!R t0 would be if there were an f above
the R redex. Were that S-redex to be present throughout the in�nite derivation, then

there would be a \smaller" in�nite derivation with that redex omitted. It could not
be that an f were the top-most symbol throughout the derivation, since then either
the top is never rewritten, in which case one of its proper subterms has an in�nite
derivation, or else the top is rewritten in�nitely by S, with R steps interspersed
below, contradicting the fact that S is terminating. Were the uppermost S redex
to be the result of an R step, then too there must be a smaller in�nite derivation
initiated by the ancestor of that S redex in the �rst term of the derivation, since
the only way an application of R can replace a redex with a term headed by an f is
if that f is a descendent of one already occurring in the initial term of the in�nite
derivation (R has no f 's of its own).

In particular:

Corollary 27 [2]. The union of a terminating (non-erasing) symbolic interpretation
S and a terminating system R that does not contain the interpretation's de�ned
symbols is terminating.

Corollary 28. 1 The union of a projection rule f(x1; : : : ; xn)! xi and a terminat-
ing system R that does not contain f is terminating.

System (E) shows that one cannot have more than one rule per f .
The above theorem can be trivially iterated to allow any number of such rules

in S for di�erent f , yielding a new proof of:

Corollary 29 [18]. The union of a terminating recursive program scheme S and a
terminating system R that does not contain the scheme's de�ned symbols is termi-
nating.

Systems (B,E) show what happens if one has constructor terms rather than
variables in a scheme for f . All the same, we show now how to allow constructor-
based linear left sides f(c1; : : : ; cn), where the ci are constructor terms (built from
free constructors and variables), by insisting that R be consistent|in the sense that
it does not equate instances of distinct constructor terms.

Theorem30. The union of two constructor-sharing terminating systems R and S
is terminating if S is con
uent, left-linear, and constructor-based and any R-uni�er
of constructor terms appearing on the left of S is also an ordinary uni�er.

Systems (B,E) are inconsistent; (G) shows what happens when S is not
constructor-based; (C) shows the need for con
uence; and (D,F) show the need
for left-linearity.

Proof. The proof is similar to the previous, but uses the extended relation T = RnS,
instead of plain S, to take normal forms. This rewrite relation is the subset of S=R
that allows R steps only below the redex p prior to applying a rule in S:

t[s]p !
p

RnS t0 � t[s0]p !
p
S t0 ^ s$�

R s0

1 This result, and suggested proofs, were the object of discussions with Aart Middeldorp,
Albert Rubio, and Hans Zantema, at the Termination Workshop in La Bresse, France,
1995.

This relation T is normalizing by innermost rewriting, as is the case for constructor-
sharing systems, in general. Furthermore, T is locally con
uent, since the conditions
on R prevent it from introducing new critical pairs. It is, therefore, terminating
(since it is overlaying; see [10]) and con
uent. So T gives unique normal forms and
T ! is well-de�ned. Also, R preserves T -normal forms, since it does not introduce any
fs, and any e�ect it can have to create a pattern ci is taken into account by the R
steps that are anyway allowed in applying the extended relation T .

Consider, as before, a minimal in�nite derivation t0 ! t1 ! t2 ! � � �, for which
we have T (t0)!�

R T (t1)!�
R T (t2)!�

R � � �. Clearly, T (t) = T (t0) if t!S t0, but there
must be in�nitely many R steps as well. This time, we cannot have in�nitely many
S rewrites at the top, with R steps interspersed below, since that would contradict
the fact that T is terminating. So, there must be in�nitely many R steps on top,
leading to in�nitely many strict decreases T (ti0)!

+
R T (ti1)!

+
R � � �.

This applies to the system

mapf(�) ! �
mapf(x : y)! f(x) : mapf(y)

(J)

conjectured in [6] to be terminating in conjunction with arbitrary rewrite system R
(� and : are constructors). If R is inconsistent, however, as for example

f(0)! 1 f(x) ! g(a; a; x)
g(�; 1 : �; x)! g(x; x; x) g(x; y; z)! 1

a! �
a! 0 : �

(K)

then the union need not be terminating. In this case,

g(mapf(a);mapf(a);mapf(a)) ! g(mapf(�);mapf(a);mapf(a)) !
g(mapf(�);mapf(0 : �);mapf(a))! g(�;mapf(0 : �);mapf(a)) !
g(�; f(0) : mapf(�);mapf(a)) ! g(�; f(0) : �;mapf(a))!
g(�; 1 : �;mapf(a))! g(mapf(a);mapf(a);mapf(a)) ! � � �

The rules on the right are not needed for nontermination; they are included only to
make it have unique constructor normal forms.

Corollary31. The union of two constructor-sharing con
uent and terminating
rewrite systems, one of which is constructor-based and left-linear, is terminating
and con
uent.

Proof. Con
uence provides consistency. Con
uence of the union follows from the
Critical Pair Lemma.

6 Remarks

A stream system S (for f) is a con
uent set of left-linear constructor-based rules of
the form f(c1; : : : ; cn) ! r, with r headed by a constructor. (We can always make
such a system terminating|but noncon
uent|by adding an extra argument to each

occurrence of f in a rule. The f on the left becomes fs(n) and those in r become fn,
where n is a new variable.) The ideas of this paper can be extended to show that
such streams do not destroy con
uence and termination of R=S.

We have tended towards the abstract in this paper in the hope that additional
applications might surface. We are aware that some of the su�cient conditions we
give can be re�ned to demand only exactly what is required by the proof. It would
also be nice to have counterexamples for the necessity of each condition. Finally,
we should mention that critical pair conditions for the pentagon property could be
formulated, along the lines of the work in [12, 3, 23].

Appendix

This section contains diagrammatic proofs of several key lemmas. We use dashed
arrows for steps in R and solid for S.

Proof of Lemma 7. The proof of the pentagon property P (R;S�; S�) is by induction
with respect to the terminating relation S:

S

S

SS

S

S

S

S

R

R

R

*

*

*

*

*

*

1

2

3

*

1. Pentagon property P (R;S; S�).
2. Con
uence of S.
3. By induction.

Proof of Lemma 12. The proof is straightforward

* *

!
S

S

R S

S S1
2

R

!

S

!3!

1. S has unique normal forms.
2. Pentagon property P (R;S!; S�) and preservation.
3. S has unique normal forms.

Proof of Lemma 14. The proof of strong con
uence of S�R is by induction with
respect to terminating S.

2

3

*

S

R

*
S

R

R

S
*

R
*

S

S
*

SR

S
*

1

+
S

*

1. Con
uence of S.
2. Pentagon property P (R;S�; S�).
3. Induction.

References

1. Y. Akama. On Mints' reductions for ccc-calculus. In Proceedings of the International
Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in
Computer Science, pages 1{12, Berlin, 1993. Springer-Verlag.

2. Leo Bachmair and Nachum Dershowitz. Commutation, transformation, and termina-
tion. In J. H. Siekmann, editor, Proceedings of the Eighth International Conference
on Automated Deduction (Oxford, England), volume 230 of Lecture Notes in Computer
Science, pages 5{20, Berlin, July 1986. Springer-Verlag.

3. Fran�coise Bellegarde and Pierre Lescanne. Termination by completion. AppliedAlgebra
on Engineering, Communication and Computer Science, 1(2):79{96, 1990.

4. Michel Bidoit. Une m�ethode de pr�esentation de types abstraits: Applications. PhD
thesis, Universit�e de Paris-Sud, Orsay, France, June 1981. Rapport 3045.

5. Nachum Dershowitz. Termination of linear rewriting systems. In Proceedings of the
Eighth International Colloquium on Automata, Languages and Programming (Acre,
Israel), volume 115 of Lecture Notes in Computer Science, pages 448{458, Berlin, July
1981. European Association of Theoretical Computer Science, Springer-Verlag.

6. Nachum Dershowitz. Hierarchical termination. In N. Dershowitz
and N. Lindenstrauss, editors, Proceedings of the Fourth International Workshop on
Conditional and Typed Rewriting Systems (Jerusalem, Israel, July 1994), volume 968
of Lecture Notes in Computer Science, pages 89{105, Berlin, 1995. Springer-Verlag.

7. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B: Formal Methods and
Semantics, chapter 6, pages 243{320. North-Holland, Amsterdam, 1990.

8. Roberto di Cosmo. On the power of simple diagrams. In Proceedings of the Seventh
International Conference on Rewriting Techniques and Applications (New Brunswick,
NJ), volume 1103 of Lecture Notes in Computer Science, pages 200{214. Springer-
Verlag, July 1996.

9. K. Drosten. Termersetzungssysteme. PhD thesis, Universitat Passau, Berlin, Germany,
1989. Informatik Fachberichte 210, Springer-Verlag.

10. Bernhard Gramlich. Relating innermost, weak, uniform and modular termination of
term rewriting systems. In A. Voronkov, editor, Proceedings of the Conference on Logic
Programming and AutomatedReasoning (St. Petersburg, Russia), volume 624 of Lecture
Notes in Arti�cial Intelligence, pages 285{296, Berlin, July 1992. Springer-Verlag.

11. G�erard Huet. Con
uent reductions: Abstract properties and applications to term
rewriting systems. J. of the Association for Computing Machinery, 27(4):797{821,
October 1980.

12. Jean-Pierre Jouannaud and H�el�ene Kirchner. Completion of a set of rules modulo a
set of equations. SIAM J. on Computing, 15:1155{1194, November 1986.

13. Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, chap-
ter 1, pages 1{117. Oxford University Press, Oxford, 1992.

14. M. R. K. Krishna Rao. Modular proofs for completeness of hierarchical term rewriting
systems. Theoretical Computer Science, 151:487{512, 1995.

15. M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting sys-
tems with shared constructors. Theoretical Computer Science, 103:273{282, 1992.

16. Aart Middeldorp. A su�cient condition for the termination of the direct sum of term
rewriting systems. In Proceedings of the Fourth Symposium on Logic in Computer
Science, pages 396{401, Paci�c Grove, CA, 1989. IEEE.

17. Aart Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije
Universiteit, Amsterdam, The Netherlands, 1990.

18. Aart Middeldorp, Hitoshi Ohsaki, and Hans Zantema. Transforming termination by
self-labelling. In M. A. Robbie and J. K. Slaney, editors, Proceedings of the Thirteenth
International Conference on Automated Deduction, volume 1104 of Lecture Notes in
Arti�cial Intelligence, pages 373{387, Berlin, July/August 1996. Springer-Verlag.

19. Aart Middeldorp and Yoshihito Toyama. Completeness of combinations of constructor
systems. In R. Book, editor, Proceedings of the Fourth International Conference on
Rewriting Techniques and Applications (Como, Italy), volume 488 of Lecture Notes in
Computer Science, pages 174{187, Berlin, April 1991. Springer-Verlag.

20. Enno Ohlebusch. Termination is not modular for con
uent variable-preserving term
rewriting systems.

21. Enno Ohlebusch. On the modularity of termination of term rewriting systems.
Report 11, Abteilung Informationstechnik, Universit�at Bielefeld, Bielefeld, Germany,
1993.

22. Enno Ohlebusch. On the modularity of con
uence of constructor-sharing term rewrit-
ing systems. In Proceedings of the Colloquium on Trees in Algebra and Program-
ming, volume 787 of Lecture Notes in Computer Science, pages 261{275, Berlin, 1994.
Springer-Verlag.

23. Christian Prehofer. On modularity in term rewriting and narrowing. In J.-P. Jouan-
naud, editor, Proceedings of the First International Conference on Constraints in Com-
putational Logics, volume 845 of Lecture Notes in Computer Science, pages 253{268,
Berlin, 1994. Springer-Verlag.

24. Jean-Claude Raoult and Jean Vuillemin. Operational and semantic equivalence be-
tween recursive programs. J. of the Association for Computing Machinery, 27(4):772{
796, October 1980.

25. Michael Rusinowitch. On termination of the direct sum of term-rewriting systems.
Information Processing Letters, 26:65{70, 1987.

26. Karl Stroetmann. The union of rewrite systems. Cited in [23].
27. Yoshihito Toyama. Counterexamples to termination for the direct sum for the direct

sum of term rewriting systems. Information Processing Letters, 25:141{143, 1987.
28. Yoshihito Toyama. On the Church-Rosser property for the direct sum of term rewriting

systems. J. of the Association for Computing Machinery, 34(1):128{143, January 1987.
29. Yoshihito Toyama, Jan Willem Klop, and Hendrik Pieter Barendregt. Termination for

direct sums of left-linear complete term rewriting systems. J. of the Association for
Computing Machinery, 42(6):1275{1304, November 1995.

30. Xubo Zhang. Overlap closures do not su�ce for termination of general term rewriting
systems. Information Processing Letters, 37(1):9{11, 1991.

