
Automatic Software Verification 2015

Prof. Mooly Sagiv

Lecture 2: SAT Solvers

Kalev Alpernas
Elizabeth Firman

April 6, 2015

1 Introduction

In this lecture we will go over the subject of Satisfiability of Propositional For-
mulas.

The Satisfiability Problem

Given a boolean formula in propositional logic, we would like to determine
whether the formula:

• is valid
i.e. do all possible assignments satisfy the formula.
In case the formula is not valid, we sometimes would also like to find a
counterexample - a non-satisfying assignment.

• is satisfiable
i.e. there exists an assignment which satisfies the formula.
In case there exists a satisfying assignment, we sometimes would also like
to find that assignment.

As we saw in last week’s lecture, we use the result of this problem to verify
program. We write the problem, and the negation of the invariant we would like
to check as propositional formulas, and check whether they are satisfiable. If
there exists a satisfying assignment, then we have found a bug in the program.
Otherwise, we have proved that the invariant holds.

Our input formula has 2n possible assignments, which means that exhaus-
tively checking all assignments is not a feasible approach. In this lecture we will
see a few different approaches to solving this problem.

Example 1. We consider for example the following propositional formula:

ϕ = (a ∨ b) ∧ (¬a ∨ ¬b ∨ c)

1



Figure 1: The truth value search tree for ϕ

In Figure 1 we can see a tree representing the truth state of ϕ. The colour
Green represents a satisfying assignment, and Red represents a non-satisfying
assignment. We can see that ϕ is not valid, for example since the assignment
a = F, b = F, c = T is not a satisfying assignment. We can also see that the
formula is satisfiable, since the assignment a = F, b = T, c = T is satisfying.

Problem Representation

While the input for the SAT problem is a propositional formula, we will work
with formulas in Conjunctive Normal Form or CNF. A CNF formula is a con-
junction of clauses, where each clause is a disjunction of Literals. A literal is a
boolean variable, or its negation.

We choose to represent the problem in CNF, as it allows us to represent
the formula in a compact, simple data structure, it is compositional, and in
addition the fact that each clause in the formula needs to be satisfied, lends
itself to algorithms which are easier to grasp intuitively.

Any propositional formula can be converted to CNF, and the conversion is a
straightforward process, utilizing basic logic equivalences - De-Morgan, double
negation, and distributivity. This process may cause the formula to grow, so
in order to avoid a size explosion of the formula we might be required to add
additional variables to the formula.

Example 2. We consider the following conversion of the formula ϕ = a ∨ (b ∧
¬(c ∨ ¬d)) to CNF:

ϕ = a ∨ (b ∧ ¬(c ∨ ¬d)) ≡ (a ∨ (b ∧ ¬c ∧ ¬¬d)) ≡
(a ∨ (b ∧ ¬c ∧ d)) ≡ (a ∨ b) ∧ (a ∨ ¬c) ∧ (a ∨ d)

(1)

2



Complexity Results

In [1] Cook showed that the Boolean Satisfiability Problem is NP-Complete,
even if we limit the clause size to at most 3 literals1.

Two noteworthy exceptions are 2-SAT, and Horn Satisfiability. These two
problems have polynomial algorithms (in [3] and [4] respectively).

2-SAT is the Boolean satisfiability problem where each clause is limited to at
most 2 literals.

Horn Satisfiability is the Boolean satisfiability problem where each clause
has at most one positive literal2.

What is it Good For?

From the perspective of complexity analysis, the boolean satisfiability problem
is a very useful tool for showing complexity results of many problems in CS.

In [2] Karp uses the complexity result of [1] to show that 21 other problems3

are also NP-Complete, by showing a reduction from the Boolean Satisfiability
problem to each of these problems. Many similar results have been shown for
further problems since.

From the perspective of verification, SAT solvers have proved to be very
useful tools in solving problems in SW and HW verification, as well as in other
fields such as AI. This is because despite the problem being NP-Complete in the
worst case, there are many algorithms which are capable of solving the Boolean
Satisfiability problem in many useful cases.

This lecture will show us a few such algorithms, which solve the SAT problem
with exponential worst case complexity, but work well on many useful instances.

2 Resolution

The first approach to solving the SAT problem that we will see in this lecture
is the Clause Resolution method.

Clause Resolution

Resolution of a pair of clauses with one incompatible variable, is a process where
given two clauses, in which there is exactly one variable that has incompatible
truth values, i.e. the variable appears in one clause, and its negation appears in
the other, we derive a new clause, called the resolvent, which is the disjunction
of the original two clauses, without the incompatible variable.

1Known as the 3-SAT problem.
2Known as Horn clause.
3Known as Karp’s 21 NP-Complete problems.

3



Figure 2: An example of resolution on the variable c

Example 3. In Figure 2 we can see the resolution method applied to the clauses
(a ∨ b ∨ ¬c ∨ f) and (g ∨ ¬h ∨ c ∨ f).

The incompatible variable is c, and we can see that the resulting clause is a
disjunction of (a ∨ b ∨ f) and (g ∨ ¬h ∨ f) (f appears in both original clauses,
so it only appears once in the resolvent).

The following deduction is the formal justification for single variable applying
resolution:

A =⇒ B ¬A =⇒ C

B ∨ C

Note that every clause is equivalent to an implication formula where the rhs
of the implication is a disjunction of literals.

Claim 1. The resolvent and the original clauses are equisatisfiable, i.e. the
original clauses are satisfiable iff the resolvent is satisfiable. Furthermore, the
same assignment satisfies both.

From Claim 1 we get that applying resolution on two clauses in a CNF
formula preserves the satisfiability of the formula. In a similar sense we get
that resolution preserves the validity of a formula, since validity of a formula
is equivalent to the satisfiability of it’s negation, and satisfiability is preserved
under resolution.

Davis-Putnam Algorithm

In [5] Davis and Putnam proposed the following algorithm for solving the SAT
problem:

for all Variables in formula do
Resolve all clauses for variable
if Reached empty clause then

Report UNSAT
else

4



Discard resolved clauses
end if

end for

If the algorithm reaches an empty clause as a resolvent, then there is no
satisfying assignment for the original formula, and we can say that the formula
is not satisfiable (let alone valid).

If, however, the algorithm terminated without reaching an empty clause,
then the formula is satisfiable, and there are no incompatible variables remain-
ing in any two clauses. Finding a satisfying assignment at this point is straight-
forward.

Figure 3: An example of resolution of the formula ϕ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨
¬f) ∧ (¬b ∨ e)

Example 4. In Figure 3 we see the application of the resolution method on
the formula ϕ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬f) ∧ (¬b ∨ e). In the first iteration the
variable b is chosen, and two resolvents are produced. In the second iteration
the variable c is chosen and a single resolvent is produced.

The algorithm terminated without reaching an empty clause, which means
that this formula is satisfiable.

Figure 4: An example of resolution of the formula ϕ = (a∨ b)∧ (a∨¬b)∧ (¬a∨
c) ∧ (¬a ∨ ¬c)

5



Example 5. In Figure 4 we see the application of the resolution method on
the formula ϕ = (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ c) ∧ (¬a ∨ ¬c). In the first iteration
the variable b is chosen, one resolvent is produced and two other clauses are
carried without change. In the second iteration the variable a is chosen and two
resolvents are produced. In the third iteration the variable c is chosen, and the
empty clause is produced.

The algorithm terminated after reaching an empty clause, which means that
this formula is not satisfiable.

This algorithm may potentially produce an exponential amount of clauses,
since in the worst case in every iteration every pair of clauses is resolved, result-
ing in an exponential space complexity. We will see next an algorithm which
does not require exponential space.

A point of note is that in case the formula is satisfiable, the order of the
variables selected may greatly affect the outcome of the algorithm. If the formula
is not satisfiable, then the algorithm is guaranteed to reach an empty clause
regardless of the order of the variables.

3 DPLL

The DLL [6] algorithm, also known as DPLL, is a refinement of the Davis-
Putnam algorithm. It’s the basic framework of many existing SAT solvers.

3.1 The Basic DPLL Algorithm

To avoid using exponential space we don’t want to apply resolution on all the
clauses, but on some reduced set. We can do it in a very straightforward way:
Given a set of clauses we do a Depth First Search on the decision tree (a reduced
version). For some order of variables, we assign 0 to the first literal (according to
the order of the DFS scan) and remove all the satisfied clauses. Then we have
a reduced set of clauses with a reduced set of literals (the ones that weren’t
assigned yet). We recursively keep assigning values until we reach a satisfiable
assignment or a contradiction. Also, at some point we would like to apply
resolution instead of keep assigning values. We want to stop assigning as early as
we can, but we want to do it without the exhaustive cost of applying resolution.

Before introducing the DPLL algorithm lets go over some key definitions
that the algorithm uses:

Implication: A variable is forced to be assigned to be True or False based on
previous assignments.

Unit Clause: An unsatisfied clause that has exactly one unassigned literal (all
the other literals were already set).

Unit Clause Rule: The unassigned literal in the unit clause is implied.

Boolean Constraint Propagation (BCP): Iteratively apply the unit clause
rule until there are no unit clauses available.

6



The DPLL algorithm returns SAT if the formula is satisfiable, UNSAT oth-
erwise. We define the algorithm as follows:

while true do
if If all variables are assigned then

Return SAT
end if
Choose the next variable and value
while Apply BCP and a conflict is reached do

Resolve conflict - backtrack until there’s no conflict
if Conflict cannot be resolved then

Report UNSAT
end if

end while
end while

Figure 5: The decision tree of Example 6 with applied BCP

Example 6. Consider the formula (a
′
+ b + c)(a + c + d)(a + c + d

′
)(a + c

′
+

d)(a + c
′

+ d
′
)(b

′
+ c

′
+ d)(a

′
+ b + c

′
)(a

′
+ b

′
+ c) We first try to explore the

case of a = 0, if it won’t work we will explore the case of a = 1. We assign
first according to DFS a = 0, b = 0, c = 0, until we’re left with the formula
(a+ c+ d)(a+ c+ d

′
). Now we apply resolution, which is cheap since we choose

to resolve unit clauses. For each clause we can infer the value of d and reach
a contradiction. In Figure 6 we can see the implication graph and the reached
conflict. Since we have a conflict, we backtrack and check the assignment c = 1.
We call this assignment a forced decision since we exhausted the search for
c = 0. We backtrack again and continue as described in the algorithm. Lets
look at the final branch where a = 1, b = 1. Note we got this assignment after
backtracking and forced decisions. For this assignment we are left with the
formula (b

′
+ c

′
+ d)(a

′
+ b

′
+ c) and apply BCP: First we apply the unit clause

rule on (a
′

+ b
′

+ c) and get the assignment c = 1. Then we apply the unit
clause rule on (b

′
+ c

′
+ d) and get the assignment d = 1. See the implication

graph in Figure 7. We can see that the conflict was finally resolved and we got
a satisfying assignment.

7



Figure 6: in Example 6 a conflict is reached for a = 0, b = 0, c = 0

Figure 7: The implication graph for the assignment a = 1, b = 1 in Example 6

3.2 Conflict Driven Learning

In the basic DPLL algorithm we backtracked only one level up, chronologically
according to DFS. But we can imply a better heuristic which is not in the original
DPLL algorithm. We can achieve non chronological backtracking as a result of
the conflict driven learning. In this heuristic we take advantage even of the
”unsuccessfull” explorations, by exploiting the variables’ assignments that led
to a conflict. Meaning, when reaching a conflict, we can remember the variables
that led us there, and create a new clause with those variable. This clause is
added to the set of clauses, and we backtrack to the lowest level where one of
the variables was involved. Note that we can backtrack more than one level up,
as opposed to the basic DPLL. By learning the new clause from the conflict, we
can limit our explorations - whenever we reach a point in the tree with those
assignments, we won’t have to continue until a contradiction is reached, since
the additional clause will imply that the assignment is not a satisfying one.
Lets look at the following example to better understand how the conflict driven
learning heuristic works and how it differs from the basic DPLL.

Example 7. Consider the formula (x1 + x4)(x1 + x
′

3 + x
′

8)(x1 + x8 + x12)(x2 +
x11)(x

′

7 + x
′

3 + x9)(x
′

7 + x8 + x
′

9)(x7 + x8 + x
′

10)(x7 + x10 + x
′

12).

Lets run he basic DPLL (Figure 8): First we assign x1 = 0, (x1 + x4) be-
comes a unit clause so according to the unit clause rule we get x4 = 1. Next
we assign x3 = 1 and by the BCP we get x8 = 0, x12 = 1. Now we choose
again and set x2 = 0, by applying BCP we get x11 = 1. We choose an assign-
ment again of x7 = 1. By applying BCP we get a contradiction of the clauses
(x

′

7 + x
′

3 + x9)(x
′

7 + x8 + x
′

9). It’s easy to see that the assignment that caused
this contradiction is x3 = 1, x7 = 1, x8 = 0.

Conflict Learning (Figure 9): Now we deviate from the basic DPLL, and use
the new acquired knowledge from the contradiction. We learned that this spe-
cific assignment to these variables leads to a conflict, based on choices we made
before. Lets call it a local conflict. We can benefit from remembering local

8



conflicts, since if we reach this assignment again as a result of some other as-
signments, we can avoid reaching the same conflict. To achieve this goal we
create a new clause - a conflict clause, that is evaluated to false given the local
conflict assignment. Here the conflict clause is: x

′

3 + x
′

7 + x8. Notice that this
clause is a result of applying resolution on (x

′

7 + x
′

3 + x9)(x
′

7 + x8 + x
′

9).

Non Chronological Backtracking (Figure 10): After adding a new conflict clause,
we backtrack to the lowest level that included one of the variables in this clause.
Here we backtrack to the decision level x3 = 1, x8 = 0, x12 = 1. In this level
we will choose x7 = 0, as a result of applying BCP to the newly added conflict
clause.

Figure 8: The decision tree of Example 7 with applied DPLL

Figure 9: In Example 7 we can look at this decision graph, and take the cut
that leads to the conflict. We can deduce the conflict clause from the sources of
the edges that are in the cut: x3, x7, x8.

Note that by adding clauses we give up the polynomial space complexity of
the basic DPLL, and we can reach exponential space complexity in the worst
case.

3.3 Restart

Another heuristic that some SAT solvers apply is restarting the assignment tree.
At a certain point the SAT solver can give up the current tree it uses for its

9



Figure 10: In example 7, after adding the conflict clause we backtrack to the
level of x3, which is the lowest level where the variables of the conflict clause
participate.

search, and start over. For example decide on a different variable order. But it
won’t start completely from scratch, the conflict clauses that were learned are
part of the clause set. This adds to the robustness of the solver, and can help
reducing the search space. Note that every time the SAT solver restarts, it can
start over with a different set of clauses. This also contributes to the different
assignment the SAT solver can produce.

3.4 BCP Algorithm

What we did so far in the BCP step, is iteratively assign literals in unit clauses
to their implied value. But there is a more efficient heuristic that minimizes
the clause access. Instead of just propagating assignments in unit clauses, we
choose 2 literals in each clause and call them the ”watch literals”. For each
clause, if its watch literals remain unassigned in the current iteration we ignore
other assignments of variables in the clause and do nothing. Once a watch
literal is assigned to False (otherwise the clause is satisfied), we choose the next
unassigned variable in the clause to be the watch literal. We keep propagating
assignments until the clause becomes a unit clause and the value of the last
variable is implied. If there’s no unit clause in the current iteration, we choose
the next variable and assignment and continue to the next iteration. Note that
we don’t inspect a clause until one of its watch literals is assigned, as opposed
to the naive BCP that inspect clauses with every assignment.

Example 8. Consider the formula (v2 + v3 + v1 + v4 + v5)(v1 + v2 + v
′

3)(v1 +
v

′

2)(v
′

1 + v4)(v
′

1). First we will choose the first two literals of every clause (with
more than one literal) to be the watch literals of that clause. From the unit
clause (v

′

1) the assignment v1 = 0 is implied. Now we inspect the clauses where
the watched literals were set to false. For the second clause we replace the
watched literal v1 with the unassigned literal v

′

3 (Figure 11), and since the third
clause is a unit clause, the value of the second watch literal is implied and we

10



get v2 = 0 (Figure 12). Note that this assignment sets the first watched literal
in the second clause to False, therefore we examine it and discover we have a
unit clause. Once again we get from implication a variable assignment v3 = 0.
Since it affects the first watched literal of the first clause, we replace it with v5
which becomes the second watch literal in the first clause (Figure 13). At this
point the BCP terminates and we choose the next variable and a value. Lest
say the algorithm chose v4 = 1. No watched literals were affected (we ignore
the last clause since it’s already satisfied), and there’s no contradictions. The
BCP has nothing to do and we choose the next variable. The algorithm chooses
the remaining unassigned variable v5 and sets it to False. We do not examine
the first clause since it’s already satisfied, also v5 is not watched in any other
clause. The algorithm terminates with a satisfying assignment (Figure 14).

Figure 11: The watched literals in Example 8, after the first assignment and the
examination of the second clause. Here the Red literals are set to False, and
the Green literals are set to True.

Figure 12: The examination of the third clause in Example 8, leads to implica-
tion of the second watched literal. The colors are set as in Figure 11.

Figure 13: The unit clause propagation in Example 8, after we set the value
of v2 to False. Also a new watch literal is selected for the second clause. The
colors are set as in Figure 11.

3.5 Chaff Decision Heuristic

We can see that the DPLL algorithm is very sensitive to the order of variables.
We would like to choose the optimal order that will result with the minimal
decision tree. We can’t find the best order, but we can apply a heuristic that

11



Figure 14: The final assignment in Example 8. The colors are set as in Figure
11.

helps us choose the next variable in a smarter way. This heuristic is called
Variable State Independent Decaying Sum - VSIDS. The idea is to order the
variables according to the literal count in the initial clause set, to increment
the counts only when new clauses are added (conflict clauses) and periodically
divide all counts by a constant. It’s a Quasi-static algorithm, since it’s both
static and non static. It’s static because it doesn’t depend on variable state,
and it’s not static because it gradually changes as new clauses are added.

4 Game Theoretic Approach to the SAT Prob-
lem

An alternative way to approach finding a solution for the SAT problem is to
consider it as a 2 player game. The winning condition for Player 1 is if she finds
a satisfying assignment, the goal of Player 2 is to show that no such assignment
exists.

The initial state is an empty assignment, and the original formula. At her
turn Player 1 updates the assignment such that the new assignment satisfies a
clause that was not satisfied by the previous assignment, and Player 2 updates
the formula by adding a clause that is implied by the formula and is not satisfied
by Player 1’s assignment.

Example 9. We consider the example of solving the SAT problem for the
formula ϕ = (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ c) ∧ (¬a ∨ ¬c) with a 2-player game:

Initially the assignment is empty, and the formula is ϕ.
Player 1 (Assignment) Player 2 (Formula)

0 [] (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ c) ∧ (¬a ∨ ¬c)
1 [a 7→ T ]

(a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬a)
2 [a 7→ F ]

(a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬a) ∧ (a)
3 [a 7→ F, b 7→ T ]

(a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬a) ∧ (a) ∧ ()
On round 1 Player 1 assigns a to be T . Player 2 counters by deriving the

clause (¬a) which is not satisfied by the assignment. On round 2 Player 1
changes the assignment of a to F so that the clause added in round 1 is no
longer contradicted. Player 2 counter by deriving the clause (a). On round 3
Player 1 adds the assignment of b to T to the assignment. Player 2 counters

12



by deriving the empty clause, showing that the formula is not satisfiable, thus
winning the game.

A Recitation

In the recitation we’ve seen several examples for using SAT solvers.

Graph Colouring

The first example we’ve seen was a reduction from the graph colouring problem
to the SAT, leveraging the SAT solver to find a solution to the colouring problem.

The input to the graph colouring problem is a graph G = (V,E) and a
natural number k, where V = {0, 1, ..., n− 1} and E ⊆ V ×V . The question we
would like to answer is whether there exists a colouring C : V → {0, ..., k − 1}
such that ∀v1, v2 ∈ V : (v1, v2) ∈ E ⇒ C(v1) 6= C(v2), or intuitively, no two
adjacent vertices have the same colour.

Reduction to SAT:

Variables
∀v ∈ V, c ∈ {0, ..., k − 1} : bv,c. Intuitively bv,c means that the variable v
is coloured with the colour c, or bv,c ⇔ C(v) = c.

Clauses
∀v ∈ V : bv,0∨bv,1∨ ...∨bv,k−1. A variable has to have at least one colour.
∀c1 6= c2 ∈ {0, ..., k− 1}, v ∈ V : ¬bv,c1 ∨¬bv,c2 . A variable has to have at
most one colour.
∀c ∈ {0, ..., k − 1}, (v1, v2) ∈ E : ¬bv1,c ∨ ¬bv2,c. Adjacent variables can’t
have the same colour.

Hamiltonian Path

The input to the Hamiltonian path problem is a graph G = (V,E) as before. The
question we would like to answer is whether there exists a path which visits every
node in the graph exactly once. A path is a series of nodes (v1, ..., vn), vj ∈ V ,
where (vi, vi+1) ∈ E.

Reduction to SAT:

Variables
bi,j . Intuitively bi,j means that the j-th vertex in the path is the vertex i,
or bi,j ⇔ vj = i.

Clauses
For every item in the path we construct the following clause (presented
here for the first path item):
∀jms.t.(i, jm) ∈ E : bi,0 =⇒ (bj1,1 ∨ bj2,1 ∨ ... ∨ bjk,1)

Note that the actual encoding of the clauses in the code is different than the
one presented here.

13



Unsat Core

In case the formula we are checking is unsatisfiable, we would like, in some cases,
to get a reduced formula which is itself unsatisfiable. This is called an Unsat
Core.

In Z3, to get an Unsat Core, we need to pass a set of additional variables
(or formulas) to the call to solver.check(). The solver will then return a subset
of these clauses which, along with the other formulas added to the solver, are
unsatisfiable.

In the graph colouring example, we added a new variable per vertex in the
graph, and disjoined each variable with the clause that constrained the colour
of each vertex. We then passed these variables to the check() call. The resulting
unsat core is a subgraph of the original graph, which does not have a k colouring.

Note that in Z3 the unsat core is not necessarily minimal, neither locally,
i.e. there might be a strict subset of the unsat core which is itself unsatisfiable,
nor globally, i.e. there might be smaller, disjoint subset of the problem which
was not reported.

References

[1] S. A. Cook, The complexity of theorem proving procedures. Proceedings Third
Annual ACM Symp. on the Theory of Computing,1971, 151-158.

[2] R. M. Karp, Reducibility among combinatorial problems. Complexity of
Computer Computations: Proc. of a Symp. on the Complexity of Computer
Computations, 1972, pp. 85-103.

[3] Krom, Melven R., The Decision Problem for a Class of First-Order Formulas
in Which all Disjunctions are Binary. 1967, Zeitschrift fr Mathematische
Logik und Grundlagen der Mathematik 13: 1520.

[4] Dowling, W., and Gallier, J., Linear-time algorithms for testing the satisfia-
bility of propositional Horn formulae. 1984, Journal of Logic Programming,
3, 267-284

[5] M .Davis, H. Putnam, A computing procedure for quantification theory. 1960,
J. of ACM, Vol. 7, pp. 201-214

[6] M. Davis, G. Logemann and D. Loveland, A Machine Program for Theorem-
Proving. 1962, Communications of ACM, Vol. 5, No. 7, pp. 394-397

14


