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Abstract

Using elementary distributed computing techniques we suggest an explanation for
two unexplained phenomena in regards to ant colonies, (a) a substantial amount of ants
in an ant colony are idle, and (b) the observed low survivability of new ant colonies
in nature. Ant colonies employ task allocation, in which ants progress from one task
to the other, to meet changing demands introduced by the environment. Extending
the biological task allocation model given in [Pacala, Gordon and Godfray 1996] we
present a distributed algorithm which mimics the mechanism ants use to solve task
allocation efficiently in nature. Analyzing the time complexity of the algorithm reveals
an exponential gap on the time it takes an ant colony to satisfy a certain work demand
with and without idle ants. We provide an O(lnn) upper bound when a constant
fraction of the colony are idle ants, and a contrasting lower bound of Ω(n) when there
are no idle ants, where n is the total number of ants in the colony.
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1 Introduction

Biological and distributed systems have a lot in common, and the study of one system
may inspire new observations on the other system in a reciprocal manner [1]. Both fields
have a strong distributed aspect, involving many entities that communicate locally to solve a
global problem. In [1] a collection of cells solve the Maximal Independent Set (MIS) problem
through simple communication between neighboring cells; the MIS cells are those that grow
a bristle on the fruit-fly forehand. In [9, 8, 7, 6, 19, 20, 2] the ants in a colony collaboratively
search and find a food item placed at some arbitrary distance from the nest. In [5] the ants
in a colony switch tasks according to an indication about the work loads in order to achieve
an optimal division of labor. Here, inspired by Gordon [13] and Pacala et al. [21], we
extend the biological task allocation model of [21] to consider the communication aspects
and the more local and distributed nature of the task allocation problem in ant colonies,
and utilize elementary distributed computing techniques to provide possible explanations
for phenomena observed by biologists.

According to [14] at each point of time the ants in an ant colony are partitioned into
several tasks. Examples of tasks include: brood tending, cleaning, patrolling, and foraging
for food. Once an ant is in a task, it can be in one of three states: working, not-needed, or
idle. A working ant is successfully engaged in its current task, a not-needed ant is engaged
in its current task but has no work to do, while an idle ant is not actively doing anything.
To achieve optimal task allocation, the ants communicate locally with each other to decide
whether to switch from one task to another. A not-needed ant in task t1 that senses,
through the accumulation of one-to-one contacts, a sufficient number of working ants in
task t2, switches tasks from t1 to t2. The ant is thus ”recruited” to task t2. This has the
outcome that an ant switches tasks if it is not needed in its current task and there is high
demand from the following task. Notice that an ant has no knowledge of the available
tasks, and what it does next is influenced by interactions [16]. Thus, ants switch tasks
only through encounters, and not independently. This distributed recruitment algorithm
dictates the changes among the tasks.

According to biologists, task allocation in some species involves an irreversible sequence
of tasks, where ants can only promote in their task switching [14, 13, 11]. An individual
advances in only one way through a series of tasks, and does not move backwards in this
sequence. For example, harvester ants proceed through tasks as: Nursing → Cleaning →
Patrolling → Foraging. We incorporate this in our model as well, allowing ants to switch
tasks only one-way, by interacting with working (or idle) ants of the subsequent task.

In recent years, biological observations [18, 3, 4] discovered that, in many species of ants,
a substantial amount (20%-50%) of the ants in the colony are idle, even when there is work
to be done. We suggest a possible explanation for this by showing that if a constant fraction
of the colony are idle ants, the time it takes to converge into an appropriate allocation of
ants to tasks is improved exponentially. We also consider how our model may help to
explain another observation, that in some species the survival rate of young nests is low.
For example, in a population of harvester ants, only 10% of new colonies survive the first
year [15, 14].

We consider the task allocation problem, in which a set of ants start in some initial
assignment to tasks, and the goal is to switch tasks until a demand assignment is reached.
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The demand specifies a lower bound on the number of ants required in each task, reflecting
the workload imposed by external environmental conditions, such as the amount of food to
be obtained, debris to be cleared and so on.

Existing observations and experiments suggest that the rate of encounter is crucial in
the decision of an ant on which task to perform next [16, 17, 22]. In our model, called
ANTTA (ANTs Task Allocation), we support rate of interaction, determining the number
of interactions for each ant before its decision point. We assume the rate is constant
throughout our protocols.

The ANTTA model assumes a synchronous round based system where, in each round,
an ant decides on its task in the next round according to multiple interactions with other
ants in the colony. The interacting ants exchange their local information, i.e., which task
each belongs to, and their state. We say an ant is recruited if it switches to another task,
which occurs if it is not needed in its current task and encounters a sufficient number of
working or idle ants in another task.

1.1 Contributions

The main contribution of this paper is the usage of elementary computing and distributed
computing techniques to suggest explanations of biological phenomena.

Biologists observed two phenomena in nature which are, to the best of our knowledge,
as of yet unexplained. First, a constant fraction (20%-50%) of the ants in the colony are
idle, even when there is work to be done. Second, the survival rate of new nests is very low,
having only 10% of new nests survive through the first year [15, 14]. We argue that our
model and results provide possible explanations for each of these phenomena.

To explains the first phenomenon we prove a lower bound of Ω(n) rounds on ANTTA
when there are no idle ants in the colony. We then present a recruitment algorithm that
solves ANTTA in O(lnn) rounds when a constant fraction of the colony are idle ants, thus
presenting an exponential gap on the task allocation time complexity with or without idle
ants, providing a possible explanation for their presence.

As to the second phenomenon, biologists observed that as nests mature, their percentage
of idle ants increases [14, 11]. Young nests contain very few or no idle ants, and thus, by
our hypothesis, have a slow response time to sudden changes in demands for different
tasks, providing a possible explanation for their low survivability. When encountering such
demands, the nest may be incentivized to turn more ants into idle, in order to improve the
response time of task allocation; however, the idle ants need to be distributed among the
tasks to which they recruit (here we assume that each idle ant recruits to a specific task
only). We show that this process takes exponentially longer than ANTTA with idle ants,
and thus the reaction time of young nests to sudden changes in demand remains slow (Ω(n)).
We therefore extend our model to discuss the process by which idle ants are distributed
among the tasks, where the goal is to reach a state in which a constant fraction of idle ants
are in each task, enabling the fast solution of task allocation. We present a lower bound of
Ω(n) rounds required to distribute the idle ants. Thus, when a new demand is encountered
for the first time, young nests still have to solve the idle ants distribution, and are thus still
slow to respond, providing further explanation for their low survivability.

2



2 ANTTA Model

We consider a synchronous system that progresses in rounds. Let n denote the number of
ants, t the number of different tasks that are available, and T r

a ∈ {1, . . . , t} the task an ant a
belongs to in round r. Denote by Xr = {xr1, . . . , x

r
t}, where x

r
i is the number of ants in task

i at round r, the assignment vector at round r. We denote the demand by D = {d1, . . . , dt},
where di is the required number of ants for task i. A demand D that satisfies

∑

i di ≤ γn

is called γ-demand. For simplicity we assume that di > 0 and xri > 0 for each i, r, and that
every demand is a γ-demand for some γ ∈ [0, 1].

Denote by Sr
a ∈ {I,W,N} the state of ant a in round r, which indicates whether

an ant is Idle (I), Working and engaged in its current task (W), or Not-needed (N). Let
B = {β1, . . . , βt} denote the idle factors, such that there are βin Idle ants in task i, where
0 ≤ βi ≤ 1, thus βi is the percentage of idle ants in task i, out of the total number of
ants. Other ants never become idle, and idle ants never change to a different state. Idle
ants do not engage in their task or initiate interactions, and thus do not count towards the
assignment or demand, though they are interacted with.

Let α = 1 −
∑

i βi, we say that the demand D is satisfiable by the assignment X0 and
the idle factors if it is an α-demand and it holds that ∀i: di ≤

∑

j≤i

(x0j − βjn).

Denote by R the interaction rate, the number of interaction an ant performs each round;
we assume R is constant. At the beginning of each round r, min(di, x

r
i ) ants are assigned

W in each task i, arbitrarily chosen from all non-Idle ants in task i, and the rest non-idle
are assigned N . Each non-idle ant a then performs R interactions with other ants. In each
interaction ant a selects, uniformly at random, one ant out of the entire nest to interact
with. Denote by b1, . . . , bR the set of ants a interacted.

In ANTTA, task switching is only done one-way, as observed in nature [14]. Notice that
ants do not switch tasks independently, only through interactions [16]. Thus, if the task of
ant a directly precedes that of ant bi for some i, it may decide whether to switch to the
task of bi, or remain in its current task, i.e., if T r

a + 1 ∈ {T r
b1
, . . . , T r

bR
} then it holds that

T r+1
a ∈ {T r

a , T
r
a + 1}, otherwise T r+1

a = T r
a .

In the task allocation problem, an adversary determines the initial assignment X0 and a
satisfiable demand D. The goal of the protocol is to reach an assignment which matches the
demand. A protocol terminates successfully in the first round f in which the assignment
meets (or exceeds) the demand, i.e., when ∀i: xfi ≥ di.

3 Recruitment Algorithm

Here we present a task allocation algorithm whose expected time complexity when there is a
constant fraction of idle ants is O(lnn) in the worst case. For completeness, we additionally
show that the time complexity of the algorithm when there are no idle ants is O(n lnn).
Our algorithm is based on the biological model of ants task allocation and interactions, as
described in [14, 21].
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3.1 Algorithm

The Recruitment Algorithm is based on the idea that, if a not-needed ant encounters a
sufficient number of working ants in the next task, there is a surplus of ants in its current
task and the demand is probably better met by switching to the next task.

Each round, each ant interacts with R other ants chosen at random from all the ants. If a
not-needed ant interacts with a sufficient number of idle or working ants from its subsequent
task, it switches to that task, in all other cases the ant remains in its current task. This
switch is likely since the probability to interact with a working ant from the subsequent task
is higher when the demand in the next task has not yet been satisfied and, as we claim later,
recruitment by idle ants dramatically improves the time it takes to meet certain demands.
This in effect means working and idle ants ”recruit” other, not-needed ants to their task, as
observed in ant colonies [21, 14, 16]. The sufficient number of interactions with working or
idle ants required in order for a not-needed ant to switch tasks is determined by a threshold
parameter th, where 1 ≤ th ≤ R.

In each round r, each non-idle ant performs the Decide method (see Algorithm 1). The
Decide method for ant a receives as arguments T r

a , S
r
a, the current task and state of a, and

{T r
b1
, Sr

b1
, . . . , T r

bR
, Sr

bR
}, the current task and state of all R ants with which a interacts with

in round r. Recall that idle ants do not initiate interactions and thus their Decide method
is not invoked.

Algorithm 1 Recruitment Algorithm; Decide (performed each round by non-idle ants).

1: function Decide(T r
a , S

r
a, T

r
b1
, Sr

b1
, . . . , T r

bR
, Sr

bR
)

2: if (Sr
a = W ) then ⊲ Current working

3: Return ⊲ No change
4: else ⊲ (a is not-needed)

5: Set C :=
∣

∣

∣

{k|Sr
bk

6= N,T r
bk

= T r
a + 1}

∣

∣

∣

⊲ Idle and working of next task

6: if (C ≥ th) then ⊲ Encountered more than the threshold
7: Set T r+1

a := T r
a + 1 ⊲ Switch to next task

8: end if

9: end if

10: end function

We now analyze the time complexity of Algorithm 1, with and without idle ants in the
colony. We show that, when idle ants in each task constitute a constant fraction of the total
number of ants, the expected time complexity for the algorithm is O(lnn) rounds in the
worst case, presenting an exponential gap from the lower bound (presented below in Section
4) and providing a possible explanation for the existence of idle ants. For completeness, we
show that without idle ants, the expected time complexity for the algorithm is O(n lnn) in
the worst case.
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3.2 Analysis

3.2.1 No Idle Ants

Theorem 3.1. When there are no idle ants, the expected time complexity of Algorithm 1
is Θ(n lnn) rounds in the worst case.

Proof. We prove the theorem in two steps. First, we show that for each assignment and
demand, the algorithm terminates in at most an expected O(n lnn) rounds. We then show
an assignment and demand in which the algorithm takes at least an expected Ω(n lnn)
rounds, proving the bound is tight and the expected time complexity is Θ(n lnn) rounds.

Lemma 3.2. When there are no idle ants, the expected runtime of Algorithm 1 is at most
O(n lnn) rounds.

Proof. For the upper bound we assume th = R; lower values of th can only cause the
demand to be met faster, thus the bound we show holds for any 1 ≤ th ≤ R. Let X0,D

be an initial assignment and demand. If the assignment does not meet the demand, then
there must be some task i < t which exceeds the demand, such that x0i > di. We show that
after n lnn rounds, the expected number of not-needed ants remaining in task i is at most
one. In the worst case, this happens sequentially one task after the other, and we get that
after t · n lnn rounds no task (except the last) exceeds its demand, thus all tasks meet the
demand, and the algorithm terminates successfully. Since the number of tasks t is constant,
the expected time complexity is at most O(n lnn) rounds.

Let kri = xri −di denote the number of not-needed ants in task i at round r. The number
of recruiting (i.e., working) ants in task i+ 1 is at least 1, thus for each not-needed ant in
i, the probability to interact with a sufficient number of working ants in i+ 1, and thus be
recruited to task i+ 1, is at least 1

nR . The probability of an ant to not be recruited is thus

at most 1 − 1
nR . Let x be some number of rounds, the probability for an ant to remain in

task i after x rounds is at most (1− 1
nR )

x. The expected number of ants remaining in task

i after x rounds is thus at most kri (1 −
1
nR )

x. Assigning x = n lnn, after n lnn rounds the
expected number of ants remaining in task i is thus at most:

kri · (1−
1

nR
)n lnn ≤ kri ·

1

e

lnn

=
kri
n

≤ 1

Thus, after n lnn rounds, the expected number of not-needed ants remaining in task i is
at most one (which switches after an expected n rounds in the worst case), and the overall
upper bound is O(n lnn).

Lemma 3.3. When there are no idle ants, the expected time complexity of Algorithm 1 is
Ω(n lnn) rounds in the worst case.

Proof. We will now show an initial assignment and demand in which the algorithm termi-
nates in at least an expected Ω(n lnn) rounds. For the lower bound we assume th = 1;
larger values of th can only cause the demand to be met slower, thus the bound we show
holds for any 1 ≤ th ≤ R. Let us define the following assignment and demand vectors for
t = 3 tasks and n ants:

X0 = {n− 2, 1, 1};D = {1, 1, n − 2}
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We show that after (n−1) ln(n−3)
R

= O(n lnn) rounds, the expected number of not-needed
ants in task 1 is at least one, thus the algorithm does not terminate and thus the overall
runtime is Ω(n lnn).

The number of working ants in tasks 1 and 2 is always 1, thus in each round r, the
number of not-needed ants in task 1 is kr1 = xr1 − 1, and each not-needed ant in task 1 has
a probability of (1− 1

n
)R to remain in task 1 and not be recruited to task 2. Let x be some

number of rounds, the probability for a not-needed ant in task 1 to remain for at least x

rounds is (1 − 1
n
)Rx. The expected number of not-needed ants remaining in task 1 after

x rounds is thus (n − 3)(1 − 1
n
)Rx. Assigning x = (n−1) ln(n−3)

R
, the expected number of

unsuccessful ants remaining in task 1 is:

(n− 3)(1 −
1

n
)(n−1) ln(n−3) > (n− 3) ·

1

e

ln(n−3)

=
n− 3

n− 3
= 1

Thus, after O(n lnn) rounds, the expected number of not-needed ants in task 1 is at
least one, meaning the demand is not satisfied, and the overall lower bound is Ω(n lnn).

We have shown an upper bound and lower bound of O(n lnn), and thus the expected
time complexity of Algorithm 1 is Θ(n lnn) rounds in the worst case.

3.2.2 With Idle Ants

Here we prove the time complexity of Algorithm 1 when there are idle ants in the colony,
assuming βi > 0 for all i. If the idle factors are constant, such that ∀i : βi = O(1), Corollary
3.5 shows that the expected time complexity of the algorithm is O(lnn) in the worst case.

Theorem 3.4. When utilizing idle ants, such that ∀i : βi > 0, the expected time complexity
of Algorithm 1 is O(lnn

∑t
i=2

1
βR
i

) rounds in the worst case.

Proof. The proof is similar to Lemma 3.2; some details are omitted to avoid repetition.
Let X0,D be an initial assignment and demand, and assume th = R and ∀x : βx > 0.

If the assignment does not meet the demand, then there must be some task i < t which
exceeds the demand. We show that after lnn

βR
i+1

rounds, the expected number of not-needed

ants remaining in task i is at most one. In the worst case, this happens sequentially one
task after the other, thus after O(lnn

∑t
i=2

1
βR
i

) rounds no task (except the last) exceeds its

demand.
Let kri = xri −di denote the number of not-needed ants in task i at round r. The number

of recruiting (i.e., working or idle) ants in task i+1 is at least βi+1n, since there are βi+1n

idle ants in task i+ 1; thus for each not-needed ant in i, the probability to interact with a
sufficient number of recruiting ants in task i + 1, and thus be recruited to task i+ 1, is at
least βR

i+1. The probability of an ant to not be recruited is thus at most 1− βR
i+1. Let x be

some number of rounds, the probability for an ant to remain in task i after x rounds is at
most (1 − βR

i+1)
x. The expected number of ants remaining in task i after x rounds is thus

at most kri (1 − βR
i+1)

x. Assigning x = lnn

βR
i+1

, after lnn

βR
i+1

rounds the expected number of ants

remaining in task i is thus at most:

kri · (1− βR
i+1)

lnn

βR
i+1 ≤ kri · (

1

e
)lnn =

kri
n

≤ 1
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Thus, after lnn
βR
i+1

rounds, the expected number of not-needed ants remaining in task i

is at most one (which switches after an expected 1
βR
i+1

rounds in the worst case), and the

overall upper bound is O(lnn
∑t

i=2
1
βR
i

).

Theorem 3.4 directly brings us to the desired runtime when the idle factors are constant,
proving that the algorithm terminates in an expected O(lnn) rounds.

Corollary 3.5. If the idle factors are non-zero constant fractions, such that ∀i: 0 < βi ≤ 1
and βi ∈ O(1), the expected time complexity of Algorithm 1 is O(lnn) rounds in the worst
case.

4 Lower Bound

We now present a lower bound of Ω(n) on any algorithm that solves task allocation, thus
showing the exponential gap between the algorithm time complexity with idle ants, and the
lower bound without idle ants.

Theorem 4.1. Any protocol that solves task allocation without utilizing idle ants requires
at least an expected Ω(n) rounds to complete successfully in the worst case.

Proof. We prove the theorem by providing an example that requires at least O(n) rounds
to terminate successfully. Let us define the following assignment and demand vectors for
t ≥ 3 tasks:

X0 = {2, 1, . . . , 1, n − t};D = {1, 1, . . . , 1, n − t+ 1}

In the above assignment, task 1 exceeds the demand by one ant, and task t is short of
the demand by one ant. All other tasks exactly meet their demand. To satisfy the demand,
an ant must switch from task 1 to task 2, then an ant must switch from task 2 to task 3,
and so on until the demand D is satisfied.

Task 2 contains a single ant; in a single interaction, the probability of any ant to interact
with a specific ant is 1

n
, thus the probability of any ant to interact with the ant in task 2 in

a single interaction is 1
n
. Thus, an ant interacts with the ant in task 2 after an expected n

total interactions. There are two ants in task 1, each performing R interactions per round,
thus an ant in task 1 interacts with an ant in task 2 after an expected n

2R = O(n) rounds.
Since in the ANTTA model an ant must interact with an ant in the next task in order to

switch tasks, and task switching is done one-way, an ant in task 1 must interact with an ant
in task 2 in order to switch to task 2, and for the demand D to be met, thus the expected
lower bound for any protocol solving ANTTA is Ω(n) rounds in the worst case.

5 Idle Distribution

Idle ants exponentially reduce the time it takes the colony to meet certain demands, as
shown in Section 3. However, idle ants do not exist in equal amounts in each stage of the
colony’s life; biologists observed that new nests start with very few or no idle ants, and
as the nest matures, the percentage of idle ants increases [14, 11]. This is consistent with
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the possibility that each ant has certain decision points in which it might become idle with
some probability. Thus, a larger percentage of the ants become idle, until reaching a stable
fraction of the nest.

Young nests contain very few or no idle ants, and thus have a slow response time to
sudden changes in demands for different tasks. When encountering such demands, the nest
may be incentivized to turn more ants into idle, in order to improve the response time of
task allocation. However, these idle ants, once becoming idle, need to be distributed among
the tasks to which they recruit to enable the fast solution of task allocation.

In this section we present the problem of Idle Distribution, in which idle ants determine
which task they recruit to, where the goal is to reach a state in which a constant fraction of
idle ants are in each task, We show a lower bound of Ω(n) rounds to solve idle distribution.
Thus, when a new demand is encountered for the first time, young nests still have to solve
the idle distribution, and are thus still slow to respond, providing further explanation for
their low survivability [15, 14].

5.1 Model Extensions

Denote by m the number of idle ants, such that
∑

i βin = m. Here we assume t ≤ m ≤ n.
For an idle ant a, we denote by T r

a the task into which it recruits other ants; the idle
ant a does not actually belong (i.e., contribute) to that task. For simplicity, we assume that
when an ant becomes idle, it recruits to whatever task it was assigned previously.

Idle ants switch tasks only through interactions and recruitment, following the biological
model and observations [16, 21]; in order to switch to task i in round r, an idle ant must
interact with an ant in task i in round r − 1, i.e., for an idle ant a, if T r+1

a = i then it
holds that either T r

a = i or i ∈ {T r
b1
, . . . , T r

bR
}, where {b1, . . . , bR} is the set of ants which a

interacts with in round r.
In the idle distribution problem, an adversary determines the number of idle ants m, the

initial allocation to tasks of the idle ants, and the initial assignment of non-idle ants X0.
The goal of the protocol is to distribute the idle ants among the tasks, such that each task
will contain a constant fraction of the idle ants. A protocol terminates successfully in the
first round f in which the idle factor of each task is a constant fraction of m, such that
∀i : 0 < βi ≤ 1, βi = O(1). When m is a constant fraction of n (the total number of ants in
the colony), the resulting idle factors of each task are non-zero constant fractions of n, as
assumed by Corollary 3.5.

5.2 Lower Bound

Theorem 5.1. Any protocol that solves Idle Distribution requires at least an expected Ω(n)
rounds to complete successfully in the worst case.

Proof. We will prove the theorem by an example that requires at least Ω(n) rounds to
terminate successfully. Let t = 2 be the number of tasks, and let m = 2, such that,
to terminate successfully, a single idle ant must belong to each task. Let us define the
following assignment vector: X0 = {n − 3, 1}. In addition, both idle ants start in task 1.

To recruit to task 2, an idle ant must interact with an ant in task 2. There is only one
ant in task 2, thus, each idle ant has a R

n
probability to interact with it. Since there is a
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constant number of idle ants, it takes at least an expected O( n
R
) = O(n) rounds.

6 Discussion

In large enough colonies, such as a nest of 5000 ants (a standard size of a mature colony
in various ant species [14]), a runtime of O(n) is unacceptable: with R = 1 and round
length of 1 second, it would take a nest over an hour to meet the demand. In recent years,
biological observations [18, 3, 4] discovered that, in many species of ants, a substantial
number (20%-50%) of the ants in the colony are idle, even when there is work to be done.

We have presented a new model for the task allocation problem, inspired by the biology
of ant colonies. Under this model, we devised an algorithm that mimics the behavior of
ant colonies in order to solve the task allocation problem. The time complexity of the
algorithm is O(lnn) rounds when the number of idle ants constitutes a constant fraction
of the number of ants in the colony (the time complexity of the algorithm without idle
ants is O(n lnn) rounds). On the other hand, when assuming there are no idle ants, the
lower bound is Ω(n) rounds which is exponentially worse. This requirement for a constant
fraction of the colony to be idle ants is actually portrayed in nature. Biologists observed
that, in ant colonies, approximately 20-50% of the worker ants are idle [18, 3, 4]. The gap
described in the previous paragraph provides a possible explanation for this phenomenon
which, to the best of our knowledge, is still unexplained by biologists.

In addition, we presented a model for distributing the idle ants among the tasks, such
that enough idle ants recruit to each task, as assumed by the gap shown. In some species,
the survival rate of young nests is very low; only 10% of new nests survive through the
first year [15, 14]. Our model gives a possible explanation for this phenomenon which
is also, to the best of our knowledge, as of yet unexplained. Ants in new ant colonies,
likely to encounter sudden changes in demands for different tasks, might be incentivized to
become idle to improve task allocation. Our model shows a lower bound of Ω(n) for the
process of idle distribution, showing why the total time to do both task allocation and idle
distribution is much longer than just task allocation when there are already enough idle
ants, thus providing a possible explanation for the low survivability of new ant colonies.

6.1 Future Work

Following our work, several additional topics arise that may be of interest:
An interesting topic is that of density, the probability of interacting with another ant.

Our model assumes a completely uniform density, such that interactions are uniformly
random, i.e., each ant has an equal probability to interact with each other ant. Consider
what would happen if an ant interacts with higher probability with some subset of ants,
such as ants of the same task, ants previously interacted with, or even according to the
physical location of the ants.

Further topics for research:

• Interactions with ants of different nests, each nest aiming to achieve its own demands
without interference, perhaps even with competing demands.
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• Differentiation among ants, such that each ant may contribute different work to each
task, or may even be excluded from certain tasks completely.

• Incorporating work or success rate, such that the working and not-needed states are
assigned probabilistically, according to the assignment and demand of each task.
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