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Abstract. We study envy-free mechanisms for assigning tasks to agents, where every task
may take a different amount of time to perform by each agent, and the goal is to get all the tasks
done as soon as possible (i.e., minimize the makespan). For indivisible tasks, we put forward an
envy-free polynomial mechanism that approximates the minimal makespan to within a factor of
O(logm), where m is the number of machines. This bound is almost tight, as we also show that
no envy-free mechanism can achieve a better bound than Ω(logm/ log logm). This improves the
recent result of Mu’alem [On multi-dimensional envy-free mechanisms, in Proceedings of the First
International Conference on Algorithmic Decision Theory, F. Rossi and A. Tsoukias, eds., Lecture
Notes in Comput. Sci. 5783, Springer, Berlin, 2009, pp. 120–131] who introduced the model and gave
an upper bound of (m+1)/2 and a lower bound of 2− 1/m. For divisible tasks, we show that there
always exists an envy-free poly-time mechanism with optimal makespan. Finally, we demonstrate
how our mechanism for envy-free makespan minimization can be interpreted as a market clearing
problem.
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1. Introduction. Imagine a set of n household chores and m kids in the family.
Every chore may take a different amount of time to perform by each child. A single
chore cannot be performed by more than one child, but multiple chores can be assigned
to a single child. The parents want to allocate chores fairly and may offer inducements
to the children so as to ensure fairness. The parents have an additional goal, which
is to get all the chores out of the way as soon as possible. This problem is our main
focus. In job scheduling terminology, we study mechanisms for the fair allocation of
tasks to machines (which correspond to the agents), each of which may take a different
length of time to complete every task, subject to the added goal of minimizing the
makespan, i.e., getting all tasks done as soon as possible. This problem was first
introduced by Mu’alem [24].

The problem of fair division, often modeled as that of partitioning a cake fairly,
goes back at least to 1947 and is attributed to Neyman, Steinhaus, Banach, and
Knaster (see [29, 30]). There are several books on fair division and hundreds of
references, both mathematical and philosophical (see [31, 3, 23, 17, 27]). Gardner [12]
is credited with asking about fair division of household chores. Experiments suggest
that human subjects prefer degraded performance over discrimination; for example,
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ENVY-FREE MAKESPAN APPROXIMATION 13

they prefer longer waiting times in queues over being treated unfairly [28]. Thus,
fairness is a crucial property of any mechanism.

In order to devise a fair division, one should first define the precise notion of
fairness desired. One common notion of fairness is that of “envy-freeness,” an allo-
cation where no one seeks to switch her outcome with that of another (see Dubins
and Spanier [9] and Foley [10]). The envy-freeness notion is a natural extension of
a Walrasian equilibrium. Whereas Walrasian equilibrium seeks posted item pricing
that clears the market, envy-free mechanisms use market-clearing pricing, but where
prices are assigned to bundles of items rather than to individual items.

In a task assignment (or job scheduling) setting, tasks may be divisible or indivis-
ible. With divisible tasks, it is always possible to divide every task equally among all
agents. This is obviously envy-free, but infinite task times (e.g., a task too demand-
ing for a four-year-old child) may make this assignment impossible or ill defined. For
indivisible tasks, it is less obvious whether one can achieve envy-freeness. However,
we can always achieve envy-freeness if we allow the mechanism to determine both an
allocation and payments (to or from the agents, to or from the mechanism).

When payments are used, we assume that an agent’s utility is quasi-linear, i.e., it
is equal to the payment that the agent gets from the mechanism minus the sum of the
costs of tasks assigned to it by the mechanism. In particular, one can easily check that
if we assign each task j to the machine that has the smallest cost for running j (i.e.,
we maximize the social welfare) and use VCG payments, then we get an assignment
which is envy-free.

In fact, when payments are allowed, even a Walrasian equilibrium is known to
exist. A Walrasian equilibrium is a set of payments, one for each item, such that each
agent receives a bundle that maximizes her utility (which is the difference between
her payment and the sum of the costs of the bundle’s items). By definition every
Walrasian equilibrium corresponds to an envy-free mechanism. It is well known that
every setting with gross substitutes valuations1 admits a Walrasian equilibrium [14].

Within the range of possible envy-free allocations, one may want to compute an
envy-free allocation that achieves additional goals, such as economic efficiency, rev-
enue maximization, and incentive compatibility.2 Mu’alem [24] studied the additional
goal of makespan minimization and, in particular, sought envy-free mechanisms for
scheduling indivisible tasks on unrelated machines (i.e., where every task may take
a different amount of time to perform by each machine) that approximately mini-
mize the makespan. Consider an instance of indivisible task scheduling for m agents
(without envy-free requirements), and without loss of generality assume that the as-
signment of minimal makespan has makespan 1. Mu’alem shows that there is no
envy-free mechanism that guarantees a makespan less than 2−1/m, and he also gives
an algorithm that always produces a schedule with makespan at most (m+1)/2. More
recently, Kempe, Mu’alem, and Salek [18] studied the problem of envy-free allocations
for bidders with budget constraints.

Nisan and Ronen [26] considered the above setting of job scheduling on unre-
lated machines in a game theoretic context, where agents are machines that want

1Let U be the set of items. For an item-payment vector p, letD(p) = argmaxS⊆U

∑
j∈S pj−c(S).

A cost function c : 2U → R satisfies the gross substitutes condition if for any two item-payment
vectors p and q such that q ≥ p, and any A ∈ D(q), there exists B ∈ D(p) such that {a ∈ A | pa =
qa} ⊂ B. In particular if c(S) is the sum of the costs of the items in S, then it satisfies the gross
substitutes condition.

2Several papers consider envy-free item pricing (in various scenarios) with the goal of maximizing
revenue [15, 5, 4, 2]; hardness results for revenue maximization envy-free item pricing appear in [8].
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14 COHEN, FELDMAN, FIAT, KAPLAN, AND OLONETSKY

to minimize their utility. Nisan and Ronen were not concerned with the fairness of
the allocation; rather, they looked for an incentive compatible mechanism that ap-
proximates the minimal makespan. The problem posed by Nisan and Ronen has led
to a great deal of work [21, 7, 19, 1], yet the main question is still open. For the
general case, all that is known is a lower bound of 2.61 and an upper bound of m
(similar to the gap obtained by Mu’alem for envy-free mechanisms).3 For divisible
tasks, Christodoulou, Koutsoupias, and Kovács [6] demonstrated an upper bound of
1+(m−1)/2 and a lower bound of 2−1/m (while for the class of “task independent”
algorithms, the bound of 1 + (m− 1)/2 holds as a lower bound as well).

Our contributions. In section 3 we give an envy-free mechanism for scheduling
indivisible tasks on m unrelated machines that approximates the minimal makespan
to within a factor of O(logm), improving the (m+ 1)/2 bound of Mu’alem [24]. Our
mechanism runs in polynomial time.

In section 4 we give a lower bound of Ω(logm/ log logm) on the makespan approx-
imation ratio of any envy-free scheduling mechanism for indivisible tasks (polynomial
time or not). This improves on the previous 2− 1/m of Mu’alem [24].

In section 5 we consider the problem of machine scheduling with divisible tasks.
We show that, in contrast to the case of indivisible tasks, there always exists an
envy-free mechanism with optimal makespan (which runs in polynomial time).

Finally, in section 6 we demonstrate how our mechanism for envy-free makespan
minimization can be interpreted as a market-clearing problem.

2. Preliminaries. In the scheduling notation of [13], the input to the problem
of makespan minimization on unrelated machines is defined as follows: there are m
machines, n tasks, and a matrix (cij)i∈[m],j∈[n] such that cij is the time (load or cost)
of running task j on machine i.

Machine scheduling can have either divisible or indivisible tasks. An assignment
of tasks to machines is specified by an m×n matrix a = (aij), where aij is the fraction
of job j assigned to machine i. A valid assignment must have

∑
i∈[m] aij = 1 for all

jobs j ∈ [n]. If tasks are divisible, then aij can take any value in [0, 1]. If tasks are
indivisible, then aij ∈ {0, 1}.

Let ci = (ci1, . . . , cin) be the ith row of the cost matrix c = (cij), and let ai be
the ith row of the assignment matrix a = (aij). The load (cost) of machine i under
assignment (aij) is the inner product ci · ai =

∑n
j=1 cijaij . The makespan of the

assignment matrix a is maxi∈[m] ci · ai.
The problem of finding an assignment with a minimum makespan can be formu-

lated as an integer program (IP) for indivisible jobs (aij ∈ {0, 1}) and as a linear
program (LP) for divisible jobs (aij ∈ [0, 1]).

Following Nisan and Ronen [26] and Mu’alem [24], we consider the setting where
the m machines are selfish agents. An allocation function a maps the cost matrix
c = (cij) into an m × n assignment matrix a(c). We denote by ai(c) the ith row of
the matrix a(c). A payment function p is a mapping from the m× n cost matrix c to
a real payment vector p(c) = (p1, p2, . . . , pm), pi ∈ �. Let pi(c) be the ith coordinate
of p(c). We will write just a and p instead of a(c) and p(c) when c would be clear
from the context.

3The bounds given above hold for deterministic mechanisms, but randomization can reduce the
approximation ratio. In particular, Mu’alem and Schapira [25] advocated a randomized truthful
mechanism with an upper bound of 7m/8 and showed a lower bound of 2 − 1/m for randomized
mechanisms.
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ENVY-FREE MAKESPAN APPROXIMATION 15

A mechanism is a pair of functions, M = 〈a, p〉, where a is an allocation function
and p is a payment function. For a mechanism 〈a, p〉 with cost matrix c = (cij), the
utility to agent i is pi(c)− ci · ai(c). Such a utility function is known as quasi-linear.

A mechanism 〈a, p〉 is envy-free if no agent prefers to switch her allocation and
payment with another, i.e., if for all agents i, j ∈ [m] and all cost matrices c,

pi(c)− ci · ai(c) ≥ pj(c)− ci · aj(c).
Based on Mu’alem [24], we say that an allocation function a is envy-free im-

plementable (EF-implementable) if there exists a payment function p such that the
mechanism M = 〈a, p〉 is envy-free.

Consider the following definition of a locally efficient allocation.
Definition 2.1. An allocation function a is said to be locally efficient if for all

cost matrices c and all permutations π of 1, . . . ,m,

m∑
i=1

ci · ai(c) ≤
m∑
i=1

ci · aπ(i)(c).

Haake, Raith, and Su [16] provided a characterization of EF-implementable allo-
cation functions that is cast in the following theorem.4

Theorem 2.2 (see [16]). An allocation function a is EF -implementable if and
only if a is locally efficient.

3. An upper bound for indivisible jobs. In this section we present a polyno-
mial time algorithm that produces a locally efficient, and hence envy-free, allocation
of indivisible jobs whose makespan is at most O(logm) times the optimal makespan
without envy-freeness constraints. In particular, our algorithm approximates the min-
imum makespan with envy-freeness constraints to within a factor of O(logm).

To simplify the description we assume that the algorithm starts with an allocation
OPT that minimizes the makespan. If we were to start with an α-approximation
to the minimal makespan, for some constant α, the final approximation would be
α · O(logm) = O(logm). Lenstra, Shmoys, and Tardos [22] give a polynomial time
2-approximation algorithm for scheduling indivisible tasks.

The allocation a, which we start with, fixes a partition of the jobs into bundles5

B = {b1, . . . , bm}, where bi is the set of jobs running on machine i. That is, j ∈ bi
if and only if aij = 1. Given a set of bundles D = {dj}kj=1, k ≤ m, we denote
by LE(D) a locally efficient assignment of D. This is an assignment of bundles to
machines, with no more than one bundle per machine, such that the sum of the loads
is minimized. A locally efficient assignment of D can be computed using a weighted
matching algorithm in polynomial time, for example, using the Hungarian algorithm
[20].

We slightly abuse notation and use OPT to denote both the allocation and its
makespan when no confusion can arise. We will sometimes use the bundle b also as
the corresponding characteristic vector a, where aj = 1 if j ∈ b and aj = 0 otherwise;
no confusion will arise.

The algorithm works in phases. We start each phase with a subset of the bundles
that have not been assigned to machines yet. We compute a locally efficient assign-
ment of these bundles. Then if this locally efficient assignment contains a machine

4An explicit proof of this theorem appears in [24].
5In this paper, bundles consist of jobs or other objects and do not include payments, which are

dealt with separately.
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16 COHEN, FELDMAN, FIAT, KAPLAN, AND OLONETSKY

with load larger than e ·OPT, we discard all bundles assigned to such machines (these
bundles will be considered again only in the next iteration) and repeat the process
with the remaining bundles until the makespan of the locally efficient allocation is at
most e · OPT. Thus, each phase produces an assignment of some subset of the bun-
dles. The final assignment is the union of the assignments obtained in the different
phases. Specifically, we assign to each machine the union of the bundles assigned to it
in the different phases. The full description of the algorithm is given in the procedure
Find-Approx.

Algorithm 1. Compute envy-free (O(logm))-approximation.

1: procedure Find-Approx(B, c) � B – set of OPT bundles, c – cost matrix
2: q ← 0
3: Bout ← ∅
4: Bactive ← B
5: while Bactive 
= ∅ do
6: q ← q + 1
7: a← LE(Bactive)
8: while makespan(a) > e ·OPT do
9: for all i do

10: if ci · ai > e ·OPT then
11: Bout ← Bout ∪ ai
12: Bactive ← Bactive \ ai
13: end if
14: end for
15: a← LE(Bactive)
16: end while
17: aq ← a
18: Bactive ← Bout

19: Bout ← ∅
20: end while
21: ai = ∪qj=1a

j
i

22: return a
23: end procedure

The following is the main result of this section.
Theorem 3.1. The allocation computed in Algorithm Find-Approx is locally

efficient, and its makespan is at most e lnm ·OPT = O(logm)OPT.
The proof of this theorem follows directly from the following lemmas. The first

lemma shows that in each phase the number of bundles which we discard is at most
a fraction 1/e of the number of bundles we start out with.

Lemma 3.2. During a phase of Algorithm Find-Approx (lines 5–20) that starts
with k bundles, no more than k

e − 1 bundles are discarded.
Proof. Consider the set of bundles Bactive = {bi1 , . . . , bik}, k = |Bactive|, at the

beginning of a phase. Let ai be the bundle assigned to machine i by the locally
efficient assignment LE(Bactive), and let ai = 0 if no bundle is assigned to machine
i by LE(Bactive). By the definition of a locally efficient assignment it follows that
the sum of loads in LE(Bactive) is smaller than the sum of loads of the same bundles
when placed by OPT, which is smaller than k ·OPT; i.e.,

m∑
i=1

ci · ai ≤
k∑

j=1

cij · bij ≤ k ·OPT.
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Table 1

Cost matrix of the lower bound proof.

c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∞ ∞ ∞ . . . ∞ ∞
1− 1

2(n−1)
1 ∞ ∞ . . . ∞ ∞

1− 2
2(n−1)

1− 1
2(n−2)

1 ∞ . . . ∞ ∞
1− 3

2(n−1)
1− 2

2(n−2)
1− 1

2(n−3)
1 . . . ∞ ∞

...
...

...
...

1/2 + 1
2(n−1)

1/2 + 1
2(n−2)

1/2 + 1
2(n−3)

1/2 + 1
2(n−4)

. . . 1 ∞
1/2 1/2 1/2 1/2 . . . 1/2 1

2 2 2 2 . . . 2 2
4 4 4 4 . . . 4 4
...

...
...

...
2� 2� 2� 2� . . . 2� 2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Every time we throw out bundles in the inner loop (lines 8–16 of Algorithm Find-

Approx) and recompute the locally efficient assignment of the remaining bundles, a
bundle of size greater than e ·OPT is removed; thus

∑
i ci ·ai decreases by more than

e ·OPT. Clearly, the sum
∑

i ci · ai never increases during a phase, since moving to a
locally efficient assignment can only decrease the sum of loads. Altogether, it follows
that the inner loop repeats less than k·OPT

e·OPT = k
e times, implying that at most k

e − 1
bundles can join the set Bout.

The following lemma follows directly from Lemma 3.2.

Lemma 3.3. When Algorithm Find-Approx terminates, we have q ≤ lnm.

It follows from the definition of the algorithm that the makespan of the assign-
ment aj produced by phase j is at most e · OPT. The final assignment assigns to
each machine the union of the bundles assigned to it by the different phases. Since
we have at most lnm phases we obtain that the makespan of the final assignment
is at most e lnm · OPT. To complete the proof of Theorem 3.1 we have to show
that the assignment which we produce is locally efficient. This follows from a more
general observation that any union of locally efficient assignments is locally efficient,
as established by the following lemma.

Lemma 3.4. Let c be a cost matrix, and let b and b′ be two assignments of
different sets of jobs to the same set of machines. Let a be the assignment such that
for every i, ai = bi ∪ b′i. If b and b′ are locally efficient, then so is a.

Proof. Assume that a is not locally efficient; then there is a permutation π of
1, 2, . . . ,m such that

∑
ci · aπ(i) <

∑
ci · ai. By the definition of a, this implies that∑

(ci · bπ(i) + ci · b′π(i)) <
∑

(ci · bi + ci · b′i) and, therefore, either
∑

ci · bπ(i) <
∑

ci · bi
or

∑
ci · b′π(i) <

∑
ci · b′i, which contradicts the assumption that b is locally efficient

or contradicts the assumption that b′ is locally efficient, respectively.

4. A lower bound for indivisible jobs. We give a lower bound of
Ω(logm/ log logm) on the makespan approximation achievable by any locally effi-
cient allocation of indivisible jobs. This shows that the upper bound given in the
previous section is almost tight.

Let n be the number of jobs. For every n we define the cost matrix c = (cij) with
m = n+ � machines, where 2� = logn/(4 log log n) as follows (see Table 1).

Row i, 1 ≤ i ≤ n + �, of the cost matrix c corresponds to the ith machine, and
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18 COHEN, FELDMAN, FIAT, KAPLAN, AND OLONETSKY

cij is the cost of running job j on machine i. The horizontal line, which lies between
machine n and n + 1, is drawn merely to emphasize the two different parts of the
matrix. For 1 ≤ i ≤ n, machine i has cost 1 for job i, costs 1− (i − j)/(2(n− j)) for
jobs j < i, and cost ∞ for the rest of jobs (j > i). For n+ 1 ≤ i ≤ n+ �, all costs of
machine i are equal to 2i. Observe that cij − c(i+1)j = 1/(2(n− j)) for 1 ≤ i < n and
j ≤ i.

The optimal makespan of all these matrices is 1. We can achieve makespan 1 by
running job i on machine i for every 1 ≤ i ≤ n, and we cannot do better since job n
has load ≥ 1 on all machines.

We establish a lower bound of 2� = logn/(4 log logn) on the makespan of any
envy-free allocation for this instance. This shows that we cannot have an algorithm
that always produces an envy-free allocation whose makespan approximates the op-
timal makespan to within a factor smaller than logn/(4 log logn).

Specifically, we show that for any partition of the jobs into ≤ n+ � bundles, any
locally efficient assignment of these bundles to the machines has makespan at least 2�.
Our first lemma makes a few easy observations regarding allocations with makespan
< 2�.

Lemma 4.1. For the cost matrix (cij) above, any allocation with makespan < 2�

satisfies the following:

(a) There are fewer than 2�+1 jobs on each machine.
(b) There are fewer than 2�/2(i−n) jobs on each machine n < i ≤ n+ �.
(c) There are fewer than a total of 2� jobs running on the set of machines n +

1, . . . , n+ �.

Proof. (a) follows since cij ≥ 1/2 for all i and j. (b) follows since for n < i ≤ n+�,
cij ≥ 2i−n. (c) follows by summing the upper bound on the number of jobs on each of

these machines; this sum can be at most
∑(n+�)

i=n+1(2
�/2(i−n) − 1) = 2� − � < 2�.

We can now conclude with the proof of the lower bound.

Theorem 4.2. For any partition of jobs into bundles, the makespan of any locally
efficient assignment of the bundles is at least 2� = logn/(4 log log n).

Proof. Fix an arbitrary partition into bundles and suppose that there is an envy-
free assignment of the bundles with makespan < 2�. We will derive a contradiction
by showing that the assignment is not locally efficient.

Since the makespan is < 2�, no bundle is assigned to machine n+ �. So we derive
the contradiction by showing that if we move the bundle assigned to machine i to
machine i+ 1 for 1 ≤ i < n+ �, we decrease the total load.

By Lemma 4.1(a), there are ≤ 2�+1− 1 jobs in the bundle assigned to machine n.
So moving this bundle to machine n+ 1 increases the load of this bundle by at most
3/2 · 2�+1.

Since c(i+1)j = 2cij for n+1 ≤ i < n+ � and all j, moving a bundle from machine
i to machine i + 1 for n + 1 ≤ i < n+ � increases the load of this bundle exactly by
a factor of 2. Since the load on each of these machines is < 2�, the total increase in
load caused by moving each of these bundles one machine down is < � · 2�.

Summing up we obtain that the increase in the load due to moving bundles on
machines n, . . . , n + � is at most (3/2)2�+1 + �2� = (� + 3)2�. Substituting 2� =
logn/(4 log logn), we obtain that this increase for large n is smaller than logn/4,
which is smaller than, say, lnn/2.5.

By Lemma 4.1(c), at most 2� jobs are in bundles assigned to machine n+1, . . . , n+
� and, by Lemma 4.1(a), at most 2�+1 jobs are in the bundle assigned to machine n.
Therefore, at least n− 3 · 2� jobs are in bundles assigned to machines 1, . . . , n− 1. If

D
ow

nl
oa

de
d 

12
/1

0/
17

 to
 1

32
.6

7.
10

8.
24

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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job j is in one of these bundles, then after we move these bundles the contribution
of job j to the load decreases by 1/(2(n − j)). So the total decrease in load due to
moving bundles assigned to machines 1, . . . , n − 1 is at least (1/2)(Hn − H3·2�) ≈
(1/2)(lnn− ln(3 · 2�)) ≥ (1/2− ε) lnn for large enough n.

Since the decrease in the load caused by moving bundles on machines 1, . . . , n−1 is
larger than the increase in the load caused by moving bundles on machines n, . . . , n+�,
we obtain a contradiction.

Since m = n+ � = O(n), we get that it is an Ω(logm/ log logm) approximation,
as promised.

5. Unrelated machine scheduling with divisible jobs. The existence of
an envy-free assignment for divisible tasks is trivial, even without payments. For
example, simply assigning each machine a 1/m fraction of every job is trivially envy-
free. However, it is certainly not optimal with respect to makespan minimization.
The question that is of interest in this section is how close we can get to the optimal
makespan if the tasks are divisible.

Recall that for indivisible tasks, the previous section establishes a lower bound of
Ω(logm/ log logm). Here we prove that when tasks are divisible, there always exists
an optimal envy-free allocation, i.e., one that achieves the minimum makespan. In
order to find such an allocation, solve the LP that minimizes the makespan subject to
two sets of constraints, one which ensures the validity of the assignment and another
which ensures that the assignment is envy-free. The main challenge is to prove that
this LP formulation has a solution. This is established in the following theorem.

Theorem 5.1. For any instance of machine scheduling with divisible jobs, there
is a locally efficient assignment with minimum makespan.

Consider an instance of the machine scheduling problem, specified by the cost
matrix c = (cij). As we deal with divisible assignments, bundles are sets of fractions
of tasks. An assignment itself is represented as a real valued matrix, (aij), where aij
is the fraction of task j assigned to machine i. As before, we use ai to denote the
ith row of the assignment matrix (aij) and also to denote the set of fractional tasks
assigned to agent i.

Before dwelling on the proof of the general case, we begin with a warm up, which
establishes the statement of the theorem for the simple case of two machines with
finite valuations.

Warm up. Consider an instance with two machines i ∈ {1, 2} such that all
entries in c are finite. We show that any assignment with minimum makespan must
be locally efficient. Let o be an optimal assignment, and assume by contradiction that
o is not locally efficient. Without loss of generality, we can assume that the makespan
of o is 1 and that both machines have the same load c1 · o1 = c2 · o2 = 1, where oi is
the bundle assigned to machine i (i ∈ {1, 2}). (Otherwise, we can transfer (fractional)
jobs from the machine with load 1 to the other machine and get an assignment a with
a strictly lower makespan than o, which contradicts the optimality of o.)

Our assumption that o is not locally efficient implies that we strictly decrease the
total load to be smaller than 2 if we assign the bundle of machine 2 to machine 1 and
vice versa. Without loss of generality, we assume that c1 ·o2 = 1−y and c2 ·o1 = 1+x
for some y > x ≥ 0.

We now construct a new assignment a, whose makespan is smaller than 1. This
will contradict the optimality of o. Let ε = (y − x)/2, and let a1 = o2 + (y − ε)o1
and a2 = (1 − y + ε)o1. It is easy to see that a is well defined for any 0 < ε < y.
The makespan of assignment a is max{c1 · a1, c2 · a2}. The load of a on machine 1
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is c1 · a1 = (1 − y) + (y − ε) = 1 − ε < 1; the load of a on machine 2 is c2 · a2 =
(1−y+ε)(1+x) = 1−y+x−yx+ε+εx≤ 1−(y−x)+ε(1+x) < 1−(y−x)+2ε = 1.
It follows that max{c1 · a1, c2 · a2} < 1, which contradicts the optimality of o.

We next establish the statement in its general form.
General instance. Consider a cost matrix c = (cij) of the machine scheduling

problem with m ≥ 2 machines, which may include +∞ entries. We first define a
lexicographic order on assignments.

Definition 5.2. A vector (l1, . . . , lm) is smaller than (l′1, . . . , l
′
m) lexicographi-

cally if for some i, li < l′i and lk = l′k for all k < i. An assignment a is smaller than
a′ lexicographically if the vector of machine loads l(a) = (l1(a), . . . , lm(a)), sorted in
nonincreasing order, is lexicographically smaller than l(a′), sorted in nonincreasing
order.

Clearly, every lexicographically minimal assignment has minimum makespan.
When all entries are finite, any assignment with minimum makespan has equal loads
on all machines, and therefore minimum makespan implies a lexicographically min-
imal assignment.6 In either case (with all entries finite or not), there exists some
lexicographically minimal schedule with minimal makespan. In order to prove Theo-
rem 5.1, it is therefore sufficient to prove that a lexicographically minimal schedule is
also locally efficient.

Lemma 5.3. Every lexicographically minimal assignment is locally efficient.
Proof. Assume toward contradiction that o is a lexicographically minimal assign-

ment that is not locally efficient, and let � be a locally efficient assignment of the
bundles of o (i.e., � = LE(o)). Consider a directed graph G, where the nodes corre-
spond to machines and the arcs correspond to a reassignment of bundles between o
and �. We also include empty bundles, and hence this reassignment is a permutation.
Each machine has either no incoming and outgoing arcs or exactly one incoming and
exactly one outgoing arc. The graph G is therefore a collection of singletons and
cycles.

Since � 
= o, and there are no paths, G must contain a cycle. Moreover, because
� is locally efficient and o is not, G must contain a cycle X such that

(1)
∑
i∈X

ci · oi >
∑
i∈X

ci · �i.

Consider such a cycle X with |X | = k ≥ 2 nodes (machines). We (re-)number
machines such that machines along the cycle are indexed [0, . . . , k− 1] in cyclic order.
We also renumber the bundles accordingly such that the bundles of machine i are oi
and �i. By definition, �i+1 = oi (all addition operations throughout this section are
modulo k).

We claim that all machines in the cycle X must be equally loaded under o, that
is, ci ·oi = cj ·oj for every 0 ≤ i, j ≤ k−1.7 Assume for a contradiction that there are
two consecutive machines onX , i and i+1, such that ci ·oi > ci+1 ·oi+1. We construct
an assignment a from o by shifting a fraction f of the bundle oi from machine i to
machine i + 1 such that both machines have equal loads. That is, f is chosen such
that (1− f)ci · oi = ci+1 · (oi+1 + foi) or explicitly f = ci·oi−ci+1·oi+1

(ci+ci+1)·oi . Since �i+1 = oi

6To see this, suppose toward contradiction that this is not the case. Consider an assignment
with minimum makespan. Let M′ ⊂ [m] be machines with load strictly lower than the makespan.
We can transfer (fractional) jobs from [m] \M′ machines to M′ machines and obtain an assignment
with strictly lower makespan, which contradicts optimality.

7This is immediate if there are no +∞ entries in v.
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and ci+1 · �i+1 <∞, it follows that ci+1 ·oi <∞ and therefore f > 0. The assignment
a is strictly lexicographically smaller than o, which is a contradiction.

By scaling, we can assume that ci · oi = 1 for all 0 ≤ i ≤ k − 1. Let ci+1 · �i+1 =
1 +Δi be the load of machine i+ 1 under � (Δi ≥ −1). From (1) it holds that

(2)

k−1∑
i=0

Δi < 0.

We conclude the proof by constructing an assignment a that is identical to o
outside the cycle, has

∑k−1
i=0 ai =

∑k−1
i=0 oi, that is, the same total allocation as o on

cycle machines, has load ci ·ai = 1 on machines i = 1, . . . , k−1, and has load c0 ·a0 < 1
on machine 0. The assignment a is strictly lexicographically smaller than o, which
contradicts the assumption that o is a lexicographically minimum assignment.

The assignment a is such that for i = 0, . . . , k − 1, an 0 ≤ αi ≤ 1 fraction of oi is
assigned to machine i, and the remaining (1−αi) is assigned to machine i+1. Define

(3) μ = max

⎧⎨
⎩1, max

i=0,...,k−1

i∏
j=0

(1 + Δi)

⎫⎬
⎭ ,

α0 = 1− 1
2μ , and for i = 1, . . . , k − 1,

(4) (1− αi) = (1− αi−1)(1 + Δi−1).

It follows that for i = 1, . . . , k − 1,

(5) (1 − αi) = (1 − α0)
i−1∏
j=0

(1 + Δj).

We show that all αi are well defined (i.e., αi ∈ [0, 1]): Since 1 ≤ μ <∞, α0 ∈ [1/2, 1).
For i = 1, . . . , k − 1, using (5) and (3) we obtain

(6) (1 − αi) =
1

2μ

i−1∏
j=0

(1 + Δj) ≤ 1

2
< 1.

As a product of positive quantities, (1− αi) ≥ 0.
The load ai places on machine i (i = 1, . . . , k − 1) is (using (4))

(7) ci · ai = αi + (1 +Δi−1)(1 − αi−1) = αi + (1 − αi) = 1.

The load a0 places on machine 0 is (using (5))

c0 · a0 = α0 + (1 +Δk−1)(1− αk−1)

= α0 + (1 − α0)

k−1∏
j=0

(1 + Δj)

< α0 + (1 − α0) = 1,

where the strict inequality follows from (1 − α0) = 1/(2μ) > 0 and from
∏k−1

j=0 (1 +
Δj) < 1 (which follows from (2)).
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6. Market-clearing prices for makespan minimization. In our model, a
mechanism receives the agents’ valuations as an input and computes an envy-free
outcome (i.e., allocation and payments). One can reinterpret our mechanism for
envy-free makespan minimization as a market-clearing problem.

We first argue that any envy-free mechanism can be modified so that agents
assigned the empty bundle receive payment zero (and thus utility zero) and that all
utilities are nonnegative. We refer to such payments as normalized payments. Given
an envy-free mechanism 〈a, p〉, fix a cost matrix c and consider the allocation a(c)
and the payments p(c). We can add an arbitrary constant to the payments of every
agent up to the point where all utilities are nonnegative and the mechanism remains
envy-free. If there exists an agent who receives the empty bundle, then her payment
must be zero; otherwise the agent with utility zero envies that agent.

Let the minimal payment to any agent be d. We replace the payment function p
with p′, where p′i(c) = pi(c)−d for all agents i. If the mechanism 〈a, p〉 was envy-free,
then so is 〈a, p′〉, but the minimal payment to any agent under 〈a, p′〉 is zero. In
particular, any agent i that is allocated the empty bundle must receive the minimal
payment under p (otherwise any agent receiving less than pi(c) will envy agent i).
Thus, agents allocated the empty bundle receive zero payment under p′.

With this we are ready to reinterpret our mechanism as a market-clearing prob-
lem. A central authority has a large set of tasks that must be performed in parallel by
a set of agents, each of which has different capabilities. The agents report their costs
for the tasks, and the authority computes nonnegative payment offers for all bundles
(where the payment for the empty bundle is zero). This notion is closely related to the
notion of a Walrasian equilibrium. However, unlike a Walrasian equilibrium, which
has supporting item prices, in our case the authority associates a payment to every
bundle, where a bundle price may not necessarily be equal to the sum of its items’
prices.

As we shall show next, our results imply that it is possible to compute payments
for all the bundles such that each agent will choose a bundle that maximizes her utility
(i.e., payment minus costs) in a way that all the tasks will be performed, no task will
be assigned to more than one agent, and the makespan will be within a logarithmic
factor of the minimal makespan.

Fix a cost matrix and let 〈a, p〉 be an envy-free mechanism with normalized pay-
ments. Consider the bundles assigned to agents 1, . . . , n, namely, a1(c), a2(c), . . . ,
an(c), and their associated payments p1(c), p2(c), . . . , pn(c). The authority implicitly
offers payments for all possible bundles of tasks as follows: for every bundle B let SB

be the set of agents i such that ai(c) ⊆ B. The payment offered by the authority for
bundle B is

(8) p(B) =

{
maxj∈SB pj(c) SB 
= ∅,
0 SB = ∅.

Observation 6.1. Let 〈a, p〉 be an envy-free mechanism with normalized pay-
ments, and consider the bundle payments given in (8). Then,

ai ∈ argmaxB⊆2M

⎛
⎝p(B)−

∑
j∈B

cij

⎞
⎠ ;

i.e., ai is an optimal bundle for agent i.
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Proof. Suppose toward a contradiction that under the payments specified in (8)
there exists a bundle a′ such that

p(a′)−
∑
j∈a′

cij > p(ai)−
∑
j∈ai

cij .

Let Sa′ be the set of agents � such that a�(c) ⊆ a′. We distinguish between two cases. If
Sa′ 
= ∅, then let i′ = argmaxi∈Sa′ pi(c). Since ai′(c) ⊆ a′, it holds that

∑
j∈ai′ (c)

cij ≤∑
j∈a′ cij , and from the definition of the payment and the definition of i′ it follows

that p(ai′(c)) = p(a′). It follows that p(a′) −∑
j∈a′ cij ≤ p(ai′(c)) −

∑
j∈ai′ (c)

cij .

Observe that p(ai′(c))−
∑

j∈ai′ (c)
cij ≤ p(ai(c))−

∑
j∈ai(c)

cij (which follows from the

envy-freeness of the mechanism 〈a, p〉) arrives at a contradiction to the envy of agent
i. Otherwise, Sa′ = ∅. In this case p(a′) = 0, and it follows that p(a′)−∑

j∈a′ cij ≤ 0.
But the original mechanism is normalized so that the utility of every agent is non-
negative, in contradiction to the envy of agent i.

A direct corollary of the last observation is that the bundle payments given in
(8) clear the market; i.e., if each agent chooses a bundle that maximizes her utility,
then all the tasks will be performed and no task will be assigned to more than one
agent. Moreover, the resulting makespan is no worse than O(logm) times the minimal
makespan.

7. Summary and open problems. Table 2 summarizes upper and lower bounds
on the ratio of the optimal makespan of machine scheduling with envy-freeness con-
straints and the optimal makespan without envy-freeness constraints. The upper
bounds correspond to polynomial time algorithms. An obvious challenge is to close
the gap between the upper and lower bounds for indivisible tasks.

Table 2

Summary of our results on the cost of envy-freeness. The rows correspond to divisible or
indivisible tasks. The columns correspond to upper bounds on the ratio and lower bounds on the
worst-case ratio. The number of machines is m.

Lower bound Upper bound
(Divisible+EF)/Divisible 1 1 (Thm. 5.1)

(Indivisible+EF)/Indivisible Ω( logm
log logm

) (Thm. 4.2) O(logm) (Thm. 3.1)

An intriguing issue is to understand the interaction of envy-freeness and incentive
compatibility. What can we say about the makespan approximation for mechanisms
that are both envy-free and incentive compatible? Clearly, any o(m) approximation
that is both incentive compatible and envy-free would be a major breakthrough.
Recently, Ashlagi, Dobzinski, and Lavi [1] gave a lower bound of Ω(m) on makespan
approximation for incentive compatible and anonymous mechanisms. What happens
if we discard the anonymous assumption but require that the mechanism also be
envy-free?

Minimum makespan machine scheduling is classically formulated as an LP (for di-
visible jobs) or an IP (for indivisible jobs), both with the same set of linear constraints.
The requirement of envy-freeness can be captured by adding payment variables (that
are not required to be integral) as additional linear constraints. Accordingly, for a cost
matrix (cij), we denote the optimal makespan with or without integrality or envy-
freeness by TLP(cij), TIP(cij), TLP+EF(cij), and TIP+EF(cij), respectively. Using
this notation, Table 2 lists bounds on the ratios TIP+EF(cij)/TIP(cij) (indivisible)
and TLP+EF(cij)/TLP(cij) (divisible).
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Starting with divisible tasks without envy-freeness constraints (TLP(cij)) we con-
sider the impact on the optimal makespan of integrality and envy-freeness. The envy-
freeness requirement alone does not result in an increase of the optimal makespan
(Theorem 5.1). There are instances (the instances in our lower bound construction in
Theorem 4.2) where the integrality requirement (indivisible tasks) results in at most
a factor 2 increase while, curiously, the combination of both requirements results in a
Ω(logm/ log logm) factor increase.

Considering the approximability of the optimal makespan under the different
types of constraints, TLP and TLP+EF are LPs and hence solvable in polynomial time,
and TIP has a 2-approximation algorithm and an inapproximability result of 1.5 [22].

As for TIP+EF, we provided an O(logm) approximation algorithm, and we know
the problem is NP-hard because integral machine scheduling with identical machines is
known to be NP-hard (by a reduction to partition), and any assignment on identical
machines is trivially locally efficient and hence envy-free. This leaves a wide gap
for the (in)approximability of TIP+EF. Closing this gap seems challenging, as the
following show:

• A 2-approximation algorithm for TIP(cij) was constructed using the relation
to TLP(cij) [22]. This approximation algorithm is based on taking a fractional
schedule a and rounding it to an integral one with a makespan larger by at
most an additive term of maxi,j|aij>0 cij over that of a, where cij is the time
required by machine i to run job j. This approach does not immediately
carry over, when starting from a fractional envy-free schedule, because the
envy-free constraints might be violated when rounding.
• The inapproximability result of 1.5 for TIP(cij) [22] was for makespan mini-
mization. However, the instance used is in fact envy-free. Thus, [22] further
implies that one cannot approximate the minimal makespan and envy-free
assignment to within a factor of 1.5 in polynomial time.
• Lastly, our lower bound on the ratio TIP+EF(cij)/TIP(cij) precludes obtain-
ing a tighter approximation using a better rearrangement of the bundles of a
solution to TIP(Cij) to achieve envy-freeness.
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