Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 7: Pointer Analysis

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Plan

Understand the problem

Mention some applications

Simplified problem

— Only variables (no object allocation)
Reference analysis

Andersen’s analysis

Steensgaard’s analysis

Generalize to handle object allocation

Constant propagation example

"
Il
W

=
Il
o~

N
[
*
+
J

Constant propagation example with pointers

Is x always 3 here?]

*p = 4; /

Constant propagation example with pointers

-
p = &y,
X = 3;
*p=4

pointers affect

most program analyses

[x is always 4

else
= &y;
X = 3;
*p = 4;
zZ = + 5;

~

x is always 3]

X may be 3 or 4
(i.e., x IS unknown in our lattice)

Constant propagation example with pointers

"
i

|

p always
points-to y

1f (")

* X 'O

|

p always
points-to x

p may point-to x or y]

Points-to Analysis

* Determine the set of targets a pointer variable
could point-to (at different points in the
program)

— “p points-to x”
* “p stores the value &x”

e “*p denotes the location x”

— targets could be variables or locations in the heap
(dynamic memory allocation)
* p =&
* p =new Foo(); or p = malloc (...);
— must-point-to vs. may-point-to

Constant propagation example with pointers

Can *p denote the
* — 3 e °
! ' same location as *q?
/\

what values can
this take?

More terminology

* *pand *q are said to be aliases (in a given
concrete state) if they represent the same

location

e Alias analysis
— Determine if a given pair of references could be
aliases at a given program point

— *p maye-alias *q
— *p must-alias *q

Pointer Analysis

* Points-To Analysis
— may-point-to
— must-point-to

* Alias Analysis
— may-alias
— must-alias

Applications

 Compiler optimizations
— Method de-virtualization
— Call graph construction
— Allocating objects on stack via escape analysis

* Verification & Bug Finding
— Datarace detection
— Use in preliminary phases
— Use in verification itself

Points-to analysis: a simple example

P = &x;

q = &y,

if (?)
qa = Py

}

X = &aj;

y = &b;

{p=é&x}
{p=&x A g=&y}

We will usually drop
variable-equality
information

{p=&x A g=6&x}
{p=&x A (g=&y V g=é&x)}
{p=&x A (g=&y V g=&x) A x=é&a}

{p=&x A (g=&y V g=&x) A x=&a A y=é&b}
{p=&x A (g=&yVg=&x) A x=&a A y=&b A (z=xVz=y)}

How would you construct an abstract domain to represent these abstract states?

12

Points-to lattice

* Points-to
— PT-factoids[x] = { x=&y | y € Var} U false
PT[x] = (2FPTfactoids ' — \J, N, false, PT-factoids[x])
(interpreted disjunctively)

* How should combine them to get the abstract

states in the example?
{p=&x A (g=&yVg=&x) A x=&a A y=&b}

Points-to lattice

Points-to

— PT-factoids[x] = { x=&y | y € Var} U false
PT[x] = (2FPTfactoids ' — \J, N, false, PT-factoids[x])
(interpreted disjunctively)

How should combine them to get the abstract

states in the example?
{p=&x A (g=&yVg=&x) A x=&a A y=&b}

D[x] = Disj(VE[x]) x Disj(PT[x])
For all program variables: D = D[x,] X ... X D[x,]

Points-to analysis

(How should we
handle this
statement?

7 J [Strong update |

{x=&a A y=&b A (p=&xVp=&y) A v}

{x=&a A y=&b A (p=&xVp=&y) A a=é&c}
{ (x=&aVx=&c) A (y=&bVy=&c) A (p=&xVp=&y) }

NS

[Weak update

Questions

* When s it correct to use a strong update?
A weak update?

* |s this points-to analysis precise?

 What does it mean to say
— p must-point-to x at program point u
— p may-point-to x at program point u
— p must-not-point-to x at program u
— p may-not-point-to x at program u

Points-to analysis, formally

* We must formally define what we want to
compute before we can answer many such

guestions

PWhile syntax

* A primitive statement is of the form

e X :=null
* X:=Vy

e x:= %y
* X := &y;
e *X:=vy
* skip

(Omitted (for now)

« Pointer arithmetic
« Structures and. fields
\- Procedures

~

« Dynamic memory allocation

/

(where x and y are variables in Var)

PWhile operational semantics

State : (Var—Z) U (Var—VarU{null})
[x=y]s =

[x=*y]s =

[*x=y]s =

[x=null]s =
[x=&y]s =

PWhile operational semantics

State : (Var—Z) U (Var—VarU{null})

[x=y]s =s[xs(y)]

[x=*y]s =s[x-s(s(y))
[*x=y]'s =s[s(x)~s(y)]

must say what
happens if null is
dereferenced

|

[x=null s =s[x~>null]

[x=&y] s =s[x~y]

20

PWhile collecting semantics

e CS[u] = set of concrete states that can reach
program point u (CFG node)

ldeal PT Analysis: formal definition

* Let u denote a node in the CFG

e Define IdealMustPT(u) to be
{(p,x) | forall sin CS[u]. s(p) = x}

* Define IdealMayPT(u) to be
{(p,x) | exists s in CS[u]. s(p) =x }

May-point-to analysis:
formal Requirement specification

May/Must Point-To Analysis

Compute R: V -> 2Vars'sych that
R(u)=2ldealMayPT(u)

may

For every vertex u in the CFQ,
must compute a set R(u) such that

R(u) = { (p.x) | 3seCS[ul. s(p) = x 1

Var’ = Var U {null}

May-point-to analysis:
formal Requirement specification

Compute R: V -> 2Vars'sych that
R(u) 2 ldealMayPT(u)

* An algorithm is said to be correct if the solution R it
computes satisfies

YueV. R(u) 2 IdealMayPT(u)

* An algorithm is said to be precise if the solution R it
computes satisfies

YueV. R(u) = IdealMayPT(u)

* An algorithm that computes a solution R; is said to be more
precise than one that computes a solution R, if

YueV. Ry(u) < R,(u)

(May-point-to analysis)
Algorithm A

* |s this algorithm correct?
* |s this algorithm precise?

e Let’s first completely and formally define the
algorithm

Points-to graphs

{x=&a A y=&b A (p=&xVp=&y)

{x=&a A y=&b A (p=&xVp=&y)
{ (x=&aVx=&c) A (y=&bVy=&c) A

o
e°‘e
ORI

}

A\ a=é&c}
(p=&xVp=&y) A a=é&c}

The points-to
set of x

26

Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

* Define join-semilattice of abstract-values
— PTGraph ::= (Var, VarxVar’)

—g;g,=7?
—1=7

—T=7
* Define transformers for primitive statements
— [stmt]}* : PTGraph — PTGraph

Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

* Define join-semilattice of abstract-values
— PTGraph ::= (Var, VarxVar’)
—g; LUg,=(Var, E; UE,)
— 1 =(Var, {})
— T = (Var, VarxVar’)
* Define transformers for primitive statements
— [stmt]}* : PTGraph — PTGraph

Algorithm A: transformers

Abstract transformers for primitive statements
— [stmt J*: PTGraph — PTGraph

[x:=y]#(Var, E) =7

[x := null ¥ (Var, E) =7
[x:= &y [[f (Var, E) = ?
[x:=*y [# (Var, E) =7

[*x := &y J¥ (Var, E) =7

29

Algorithm A: transformers

Abstract transformers for primitive statements
— [stmt [J*: PTGraph — PTGraph

[x:=y]
[x := null

[x:=*y]

(Var, E) = (Var, E[succ(x)=succ(y)]
[I# (Var, E) = (Var, E[succ(x)={null}]

[x := &y [(Var, E) = (Var, E[succ(x)={y}]

(Var, E) = (Var, E[succ(x)=succ(succ(y))]

[*x := &y] (Var, E) = 2?7

30

Correctness & precision

* We have a complete & formal definition of the
problem

 We have a complete & formal definition of a
proposed solution

e How do we reason about the correctness &
precision of the proposed solution?

Points-to analysis
(abstract interpretation)

MayPT(u)

] & Ut
CS(u) o — ldealMayPT(u)
2 State PTGra PI'\

oY) ={(p,x) | existssinY.s(p)=x} ‘

IdealMayPT (u) = a (CS(u)) ‘

32

Concrete transformers

CS[stmt] : State — State

[x=y]s =5
[x=*y]s =s
[*x=y]s =5
[x=null [s=s
[x=&y [s =s

xes(y)]
xe>s(s(y))]
S(x)—s(y)]
X—null]

X—Y]

CS*[stmt] : 25tate N 25tate
CS*[st] X={CS[st]s | s € X }

33

Abstract transformers

e [stmt]#: PTGraph — PTGraph

e [x:=vy ¥ (Var, E) = (Var, E[succ(x)=succ(y)]

e [x:=null J# (Var, E) = (Var, E[succ(x)={null}]

o [x:=&y J* (Var, E) = (Var, E[succ(x)={y}]

e [x:=*y[* (Var, E) = (Var, E[succ(x)=succ(succ(y))]
o [*x:=&y [(Var, E) = 2?7

34

Algorithm A: transformers
Weak/Strong Update

e —

x: &y

y: &X

z: &a

x: &y

y: &z

z: &a

B

s

= &b;

—_—

e —

x: &b

y: &X

z: &a

x: &y

y: &z

z: &b

x: {&y}

y: {&x,&z}

z: {&a}

g - &b

x: {&y,&b}

y: {&X, &2}

z: {&a,&b}

—_

Algorithm A: transformers
Weak/Strong Update

e —

y: &X

z: &a

y: &z

z: &a

B

—_—

@*x = &b;

e —

y: &b

z: &a

y: &b

z: &a

—_

x: {&y}

y: {&X,&z} | z: {&a}

x - &b

x: {&y}

y: {&b}

z: {&a}

Abstract transformers
o [*x:=&y [(Var, E) =
if succ(x) = {z} then (Var, E[succ(z)={y}]
else succ(x)={z,,...,z,} where k>1

(Var, E[succ(z,)=succ(z,)Uiy}]

[succ(z)=succ(z Uiyl

37

Some dimensions of pointer analysis

Intra-procedural / inter-procedural
Flow-sensitive / flow-insensitive
Context-sensitive / context-insensitive

Definiteness

— May vs. Must

Heap modeling

— Field-sensitive / field-insensitive
Representation (e.g., Points-to graph)

Andersen’s Analysis

* A flow-insensitive analysis

— Computes a single points-to solution valid at all
program points

— lgnores control-flow — treats program as a set of
statements

— Equivalent to merging all vertices into one (and
applying Algorithm A)

— Equivalent to adding an edge between every pair of
vertices (and applying Algorithm A)

— A (conservative) solution R: Vars — 2V2"¢ such that
R 2 IdealMayPT(u) for every vertex u

Flow-sensitive analysis

Ll:
L2:
L3:
L4:

=
§)

(]

L1®

R X R

N X K X%
]

<o
e

H ®® @

L2

L3

SoIoRC

L4

L5

2 Oe-®

@) (@

Ll:
L2:
L3:
L4:
L5:

N X K X

-low-insensitive analysis

L1-5

41

Andersen’s analysis

* Strong updates?

e |nitial state?

Why flow-insensitive analysis?

Reduced space requirements
— A single points-to solution

Reduced time complexity
— No copying

* Individual updates more efficient
— No need for joins
— Number of iterations?
— A cubic-time algorithm
Scales to millions of lines of code
— Most popular points-to analysis

Conventionally used as an upper bound for precision
for pointer analysis

Andersen s analysis as set constraints
[x:=y]* PT[x] 2 PT[y]

[x:=null [¥ PT[x]
[x:=&y[* PT[x]>{y}
[x:=*y ¥ PT[x] = PT[z] for all zePT[y]
[*x:= &y ¥ PT[z] = {y}forall zePT[x
[*x:=y [[f PT[z] = PT[y] for all zePT[x]

> {null}

Cycle elimination

* Andersen-style pointer analysis is O(n3) for
number of nodes in graph

— Improve scalability by reducing n

* Important optimization

— Detect strongly-connected components in
PTGraph and collapse to a single node
 Why? In the final result all nodes in SCC have same PT

— How to detect cycles efficiently?
* Some statically, some on-the-fly

Steensgaard’s Analysis

e Unification-based analysis

* |Inspired by type inference

— An assignment |hs :=rhsis interpreted as a
constraint that |hs and rhs have the same type

— The type of a pointer variable is the set of
variables it can point-to

e “Assignment-direction-insensitive”

— Treats |hs :=rhs as if it were both |hs :=rhs
and rhs := |hs

Steensgaard’s Analysis

* An almost-linear time algorithm
— Uses union-find data structure

— Single-pass algorithm; no iteration required

* Sets a lower bound in terms of performance

Steensgaard’s analysis initialization

Ll:
L2:
L3:
L4:
L5:

N X K X

&a,
X,
&b ;

@

(©)

@

®

©

48

Steensgaard’s analysis x=&a

Ll:
L2:
L3:
L4:
L5:

N X K X

e ® ®

&a,
X,
&b ;

49

Steensgaard’s analysis y=x

Ll:
L2:
L3:
L4:
L5:

N X K X

&a,
X,
&b ;

50

Steensgaard’s analysis x=&b

Ll:
L2:
L3:
L4:
L5:

N X K X

&a;
X,
&b ;

\

Automatically
sets y=&b

51

Steensgaard’s analysis z=x

Ll:
L2:
L3:
L4:
L5:

N X K X

&a;
X,
&b ;

& ®

Automatically sets
z=&a and z=&b

52

Steensgaard’s analysis final result

Ll:
L2:
L3:
L4:
L5:

N X K X

&a;
X,
&b ;

& ®

53

Andersen’s analysis final result

Ll:
L2:
L3:
L4:
L5:

N X K X

&a;
X,
&b ;

e

54

Ll:
L2:
L3:
L4:
L5:

O K X

&a,

&b ;
&C,;

Another example

Andersen’s analysis result = ?

Ll:
L2:
L3:
L4:
L5:

O K X

&a;
X,

&b;
&C;

Ll:
L2:
L3:
L4:
L5:

O K X

&a;

&b ;
&C;

Another example

o7

Steensgaard’s analysis result = ?

Ll:
L2:
L3:
L4:
L5:

O K X

&a;
X,

&b;
&C;

Steensgaard’s analysis result =

Ll:
L2:
L3:
L4:
L5:

O K X

&a;
X,

&b;
&C;

99

May-points-to analyses

l[deal-May-Point-To

Algorithm A

move efficient] / less precise

Andersen’s

move efficient] / less precise

I Steensgaard’s I

60

ldeal points-to analysis

A sequence of states s;s, ... 5,,is said to be an
execution (of the program) iff
— s, is the Initial-State

— s ~>s,forl<=1l<n

A state s is said to be a reachable state iff there exists
some execution s;s, ... s, is such that s, = s.

CS(u) ={s | (u,s) is reachable }
ldealMayPT (u) ={(p,x) | A s € CS(u). s(p) =x}
ldealMustPT (u) = {(p,x) | V s € CS(u). s(p) = x }

61

Does Algorithm A compute
the most precise solution?

ldeal vs. Algorithm A

: &X

: &2z

: &X

<|lsls|l<

. &z

: &X

: &2z

——

e Abstracts away correlations

between variables

— Relational analysis vs.

— Independent attribute (Cartesian)

s
—

x: {&y,&b}

y: {&X, &z}

Does Algorithm A compute
the most precise solution?

Is the precise solution computable?

* Claim: The set CS(u) of reachable concrete
states (for our language) is computable

* Note: This is true for any collecting semantics
with a finite state space

65

Computing CS(u)

Precise points-to analysis: decidability

Corollary: Precise may-point-to analysis is computable.

Corollary: Precise (demand) may-alias analysis is
computable.

— Given ptr-expl, ptr-exp2, and a program point u, identify if
there exists some reachable state at u where ptr-exp1 and
ptr-exp?2 are aliases.

Ditto for must-point-to and must-alias

... for our restricted language!

67

Precise Points-To Analysis:
Computational Complexity

 What's the complexity of the least-fixed point
computation using the collecting semantics?

 The worst-case complexity of computing reachable
states is exponential in the number of variables.

— Can we do better?

* Theorem: Computing precise may-point-to is
PSPACE-hard even if we have only two-level
pointers

May-Point-To Analyses

l[deal-May-Point-To

move efficient] / less precise

Algorithm A

move efficient] / less precise

Andersen’s

move efficient] / less precise

I Steensgaard’s I

69

Precise points-to analysis: caveats

* Theorem: Precise may-alias analysis is
undecidable in the presence of dynamic
memory allocation
— Add “x = new/malloc ()” to language
— State-space becomes infinite

* Digression: Integer variables + conditional-
branching also makes any precise analysis
undecidable

70

High-level classification

| Ideal (with Int, with Malloc) l
| ldeal (with Int) l l Ideal (with Malloc) I

ldeal (no Int, no Malloc)

l Algorithm A I
l Andersen’s I

l Steensgaard’s |

71

Handling memory allocation

s: x =new () / malloc ()

Assume, for now, that allocated object stores one
pointer

— s: x = malloc (sizeof(void*))

Introduce a pseudo-variable V. to represent objects
allocated at statement s, and use previous algorithm
— Treat s as if it were “x = &V.”

— Also track possible values of V.,

— Allocation-site based approach

Key aspect: V represents a set of objects (locations),
not a single object

— referred to as a summary object (node)

Dynamic memory allocation example

Ll1:

L3:
L4 :

How should we handle
these statements

O

®

73

Summary object update

Ll1:

L3:
L4 :

Object fields

* Field-insensitive analysis

class Foo {
A* f;
B* qg;

Ll: x = new Foo()

g
\4
Hh
Il

&b ;

X->g = &a;

75

Object fields

* Field-sensitive analysis

class Foo {
A* f;
B* g;

Ll: x = new Foo ()

g
\4
Hh
Il

&b ;

X->g = &a;

76

Other Aspects

Context-sensitivity

Indirect (virtual) function calls and call-graph
construction

Pointer arithmetic
Object-sensitivity

