Program Analysis and Verification 0368-4479

Noam Rinetzky

Lecture 7: Pointer Analysis

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Plan

- Understand the problem
- Mention some applications
- Simplified problem
- Only variables (no object allocation)
- Reference analysis
- Andersen's analysis
- Steensgaard's analysis
- Generalize to handle object allocation

Constant propagation example

$$
\begin{aligned}
& x=3 ; \\
& y=4 ; \\
& z=x+5 ;
\end{aligned}
$$

Constant propagation example with pointers

Constant propagation example with pointers
$\mathrm{p}=\varepsilon \mathrm{y} ; \quad$ pointers affect
$\mathrm{x}=3$; most program analyses $=\& x$;
$=3$;

$$
{ }^{2} \mathrm{p}=4 ;
$$

else

$$
{ }^{*} p=4 ;
$$

$$
z=x+5
$$

$$
\mathrm{p}=\& y
$$

$$
z=x+5
$$

$$
x=3 ;
$$

$$
{ }^{*} p=4 ;
$$

$$
z=x+5
$$

$$
x \text { is always } 3
$$

x may be 3 or 4
(ie., x is unknown in our lattice)

Constant propagation example with pointers

Points-to Analysis

- Determine the set of targets a pointer variable could point-to (at different points in the program)
- "p points-to x"
- "p stores the value \&x"
- "*p denotes the location x "
- targets could be variables or locations in the heap (dynamic memory allocation)
- p = \& ;
- $p=$ new Foo(); or $p=$ malloc (...);
- must-point-to vs. may-point-to

Constant propagation example with pointers

More terminology

- *p and *q are said to be aliases (in a given concrete state) if they represent the same location
- Alias analysis
- Determine if a given pair of references could be aliases at a given program point
- *p may-alias *q
- *p must-alias *q

Pointer Analysis

- Points-To Analysis
- may-point-to
- must-point-to
- Alias Analysis
- may-alias
- must-alias

Applications

- Compiler optimizations
- Method de-virtualization
- Call graph construction
- Allocating objects on stack via escape analysis
- Verification \& Bug Finding
- Datarace detection
- Use in preliminary phases
- Use in verification itself

Points-to analysis: a simple example

How would you construct an abstract domain to represent these abstract states?

Points-to lattice

- Points-to
$-P T$-factoids $[x]=\{x=\& y \mid y \in$ Var $\} \cup$ false $P T[\mathrm{x}]=\left(2^{\text {PT-factoids }}, \subseteq, \cup, \cap\right.$, false, PT-factoids $\left.[\mathrm{x}]\right)$ (interpreted disjunctively)
- How should combine them to get the abstract states in the example?
$\{p=\& x \wedge(q=\& y \vee q=\& x) \wedge x=\& a \wedge y=\& b\}$

Points-to lattice

- Points-to
$-P T$-factoids $[x]=\{x=\& y \mid y \in$ Var $\} \cup$ false $P T[x]=\left(2^{\text {PT-factoids }}, \subseteq, \cup, \cap\right.$, false, PT-factoids $\left.[\mathrm{x}]\right)$ (interpreted disjunctively)
- How should combine them to get the abstract states in the example?
$\{p=\& x \wedge(q=\& y \vee q=\& x) \wedge x=\& a \wedge y=\& b\}$
- $D[x]=\operatorname{Disj}(V E[x]) \times \operatorname{Disj}(P T[x])$
- For all program variables: $D=D\left[\mathrm{x}_{1}\right] \times \ldots \times D\left[\mathrm{x}_{\mathrm{k}}\right]$

Points-to analysis

Questions

- When is it correct to use a strong update? A weak update?
- Is this points-to analysis precise?
- What does it mean to say
- p must-point-to x at program point u
- p may-point-to x at program point u
- p must-not-point-to x at program u
- p may-not-point-to x at program u

Points-to analysis, formally

- We must formally define what we want to compute before we can answer many such questions

PWhile syntax

- A primitive statement is of the form
- $x:=n u l l$
- $x:=y$
- $x:={ }^{*} y$
- $x:=\& y$;
- ${ }^{*} x:=y$

Omitted (for now)

- Dynamic memory allocation
- Pointer arithmetic
- Structures and fields
- Procedures
- skip
(where x and y are variables in Var)

PWhile operational semantics

- State : (Var \rightarrow Z) $\cup(\operatorname{Var} \rightarrow \operatorname{Var} \cup\{n u l l\})$
- $\llbracket x=y \rrbracket s=$
- $\llbracket x=* y \rrbracket s=$
- $\llbracket * x=y \rrbracket s=$
- $\llbracket x=$ null $\rrbracket s=$
- $\llbracket x=\& y \rrbracket s=$

PWhile operational semantics

- State : $(\operatorname{Var} \rightarrow Z) \cup(\operatorname{Var} \rightarrow \operatorname{Var} \cup\{n u l l\})$
- $\llbracket x=y \rrbracket s \quad=s[x \mapsto s(y)]$
- $\llbracket x=* y \rrbracket s=s[x \mapsto s(s(y))]$
- $\llbracket * x=y \rrbracket s=s[s(x) \mapsto s(y)]$
 must say what happens if null is dereferenced
- $\llbracket x=$ null $\rrbracket s=s[x \mapsto n u l l]$
- $\llbracket x=\& y \rrbracket s=s[x \mapsto y]$

PWhile collecting semantics

- $C S[u]=$ set of concrete states that can reach program point u (CFG node)

Ideal PT Analysis: formal definition

- Let u denote a node in the CFG
- Define IdealMustPT(u) to be

$$
\{(p, x) \mid \text { forall } s \text { in } \operatorname{CS}[u] . s(p)=x\}
$$

- Define IdealMayPT(u) to be $\{(p, x) \mid$ exists s in $C S[u] . s(p)=x\}$

May-point-to analysis: formal Requirement specification

May/Must Point-To Analysis

> | Compute R: V $->2^{\text {Vars's }}$ such that |
| :---: |
| $R(u) \supseteq$ dealMayPT (u) |

For every vertex u in the CFG,
must compute a set $R(u)$ such that $R(u) \subseteq\{(p, x) \mid \exists s \in C S[u] . s(p)=x\}$

$$
\operatorname{Var}{ }^{\prime}=\operatorname{Var} U\{\text { null }\}
$$

May-point-to analysis:

formal Requirement specification

$$
\begin{gathered}
\text { Compute R: V }->2^{\text {Vars's }} \text { such that } \\
R(u) \supseteq \text { IdealMayPT }(u)
\end{gathered}
$$

- An algorithm is said to be correct if the solution R it computes satisfies

$$
\forall u \in \mathrm{~V} . \mathrm{R}(\mathrm{u}) \supseteq \operatorname{Ideal} \operatorname{MayPT}(\mathrm{u})
$$

- An algorithm is said to be precise if the solution R it computes satisfies

$$
\forall u \in \mathrm{~V} . \mathrm{R}(\mathrm{u})=\text { Ideal } \operatorname{MayPT}(\mathrm{u})
$$

- An algorithm that computes a solution R_{1} is said to be more precise than one that computes a solution R_{2} if

$$
\forall u \in V . R_{1}(u) \subseteq R_{2}(u)
$$

(May-point-to analysis) Algorithm A

- Is this algorithm correct?
- Is this algorithm precise?
- Let's first completely and formally define the algorithm

Points-to graphs

Algorithm A: A formal definition the "Data Flow Analysis" Recipe

- Define join-semilattice of abstract-values
- PTGraph ::= (Var, Var \times Var')
$-g_{1} \sqcup g_{2}=$?
$-\perp=$?
$-\mathrm{T}=$?
- Define transformers for primitive statements
- 【stmt $\rrbracket^{\#}$: PTGraph \rightarrow PTGraph

Algorithm A: A formal definition the "Data Flow Analysis" Recipe

- Define join-semilattice of abstract-values
- PTGraph ::= (Var, Var \times Var')
$-g_{1} \sqcup g_{2}=\left(\operatorname{Var}, E_{1} \cup E_{2}\right)$
$-\perp=(\operatorname{Var},\{ \})$
$-\mathrm{T}=\left(\operatorname{Var}, \operatorname{Var} \times\right.$ Var' $\left.^{\prime}\right)$
- Define transformers for primitive statements
- 【stmt】\# : PTGraph \rightarrow PTGraph

Algorithm A: transformers

- Abstract transformers for primitive statements
$-\llbracket$ stmt $\rrbracket^{\#}:$ PTGraph \rightarrow PTGraph
- $\llbracket \mathrm{x}:=\mathrm{y} \rrbracket^{\#}(\operatorname{Var}, \mathrm{E})=$?
- $\llbracket x:=$ null $\rrbracket^{\#}($ Var, $E)=$?
- $\llbracket x:=\& y \rrbracket^{\#}($ Var, $E)=$?
- $\llbracket x:=$ * $y \rrbracket^{\#}($ Var, $E)=$?
- $\llbracket{ }^{*} x:=\& y \rrbracket^{\#}(\operatorname{Var}, \mathrm{E})=$?

Algorithm A: transformers

- Abstract transformers for primitive statements
$-\llbracket$ stmt $\rrbracket^{\#}:$ PTGraph \rightarrow PTGraph
- $\llbracket \mathrm{x}:=\mathrm{y} \rrbracket^{\#}(\operatorname{Var}, \mathrm{E})=(\operatorname{Var}, \mathrm{E}[\operatorname{succ}(\mathrm{x})=\operatorname{succ}(\mathrm{y})]$
- $\left[x:=\right.$ null $\rrbracket^{\#}($ Var, $E)=(\operatorname{Var}, E[\operatorname{succ}(x)=\{n u l l\}]$
- $\llbracket x:=\& y \rrbracket^{\#}(\operatorname{Var}, E)=(\operatorname{Var}, \mathrm{E}[\operatorname{succ}(x)=\{y\}]$
- $\llbracket x:={ }^{*} y \rrbracket^{\#}(\operatorname{Var}, E)=(\operatorname{Var}, E[\operatorname{succ}(x)=\operatorname{succ}(\operatorname{succ}(y))]$
- $\llbracket{ }^{*} x:=\& y \rrbracket^{\#}($ Var, E$)=$???

Correctness \& precision

- We have a complete \& formal definition of the problem
- We have a complete \& formal definition of a proposed solution
- How do we reason about the correctness \& precision of the proposed solution?

Points-to analysis

(abstract interpretation)

$$
\alpha(Y)=\{(p, x) \mid \text { exists } s \text { in } Y . s(p)=x\}
$$

$$
\text { IdealMayPT }(u)=\alpha(\operatorname{CS}(u))
$$

Concrete transformers

- CS[stmt] : State \rightarrow State
- $\llbracket x=y \rrbracket s \quad=s[x \mapsto s(y)]$
- $\llbracket x={ }^{*} y \rrbracket s=s[x \mapsto s(s(y))]$
- $\llbracket *^{*} x=y \rrbracket s=s[s(x) \mapsto s(y)]$
- 【x $x=$ null $\rrbracket s=s[x \mapsto n u l l]$
- $\llbracket x=\& y \rrbracket s=s[x \mapsto y]$
- CS* stmt $]: 2^{\text {State }} \rightarrow 2^{\text {State }}$
- CS*[st] $X=\{C S[s t] s \mid s \in X\}$

Abstract transformers

－【 stmt 】\＃：PTGraph \rightarrow PTGraph
－$\llbracket x:=y \rrbracket \#(\operatorname{Var}, E)=(\operatorname{Var}, E[\operatorname{succ}(x)=\operatorname{succ}(y)]$
－【x ：＝null 】\＃（Var，E）＝（Var，E［succ（x）＝\｛null\}]
－$\llbracket x:=\& y \rrbracket^{\#}(\operatorname{Var}, \mathrm{E})=(\operatorname{Var}, \mathrm{E}[\operatorname{succ}(x)=\{y\}]$

- 【x ：＝＊y 】\＃（Var，E）＝（Var，E［succ（x）＝succ（succ（y））］
- 【＊x ：＝\＆y 】 ${ }^{\#}(\operatorname{Var}, \mathrm{E})=$ ？？？

Algorithm A: transformers Weak/Strong Update

```
x: &y y: &x z: &a
```

$x: \& y ~ y: \& z ~ z: ~ \& a$
$f * y=\& b ;$

$$
f{ }^{*} y=\& b ;
$$

$$
f^{f^{f}}{ }^{*} y=\& b ;
$$

\section*{| $x: \& b$ | $y: \& x$ | $z: \& a$ |
| :--- | :--- | :--- |}

$x: \& y$	$y: \& z$	$z: \& b$

Algorithm A: transformers Weak/Strong Update

$x: \& y$	$y: \& x$	$z: \& a$

$x: \& y \quad y: \& z \quad z: \& a$
$\sqrt{f}^{*} x:=\& b ;$

$$
\begin{array}{|l|l|l|}
\hline x: \& y & y: \& b & z: \& a \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
\hline x: \& y & y: \& b & z: \& a \\
\hline
\end{array}
$$

${ }^{\mathrm{f}^{H}}{ }^{*} \mathrm{x}:=\& b ;$

$$
x:\{\& y\} \quad y:\{\& b\} \mid z:\{\& a\}
$$

Abstract transformers

- $\llbracket{ }^{*} x:=\& y \rrbracket^{\#}($ Var, $E)=$
if $\operatorname{succ}(x)=\{z\}$ then $(\operatorname{Var}, E[\operatorname{succ}(z)=\{y\}]$
else $\operatorname{succ}(x)=\left\{z_{1}, \ldots, z_{k}\right\}$ where $k>1$
(Var, E[succ $\left.\left(z_{1}\right)=\operatorname{succ}\left(z_{1}\right) \cup\{y\}\right]$
$\left[\operatorname{succ}\left(z_{k}\right)=\operatorname{succ}\left(z_{k}\right) \cup\{y\}\right]$

Some dimensions of pointer analysis

- Intra-procedural / inter-procedural
- Flow-sensitive / flow-insensitive
- Context-sensitive / context-insensitive
- Definiteness
- May vs. Must
- Heap modeling
- Field-sensitive / field-insensitive
- Representation (e.g., Points-to graph)

Andersen's Analysis

- A flow-insensitive analysis
- Computes a single points-to solution valid at all program points
- Ignores control-flow - treats program as a set of statements
- Equivalent to merging all vertices into one (and applying Algorithm A)
- Equivalent to adding an edge between every pair of vertices (and applying Algorithm A)
- A (conservative) solution R : Vars $\rightarrow 2^{\text {Vars' }}$ such that $R \supseteq$ IdealMayPT(u) for every vertex u

Flow-sensitive analysis
L1 $: ~ x=\& a ;$
L2: $y=x ;$
L3: $x=\& b ;$
L4: $z=x ;$
L5:

L4

L5

Flow-insensitive analysis
L1: $\mathbf{x}=\& a ;$
L2: $y=x$;
L3: $\mathbf{x}=\& \mathrm{~b}$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

Andersen's analysis

- Strong updates?
- Initial state?

Why flow-insensitive analysis?

- Reduced space requirements
- A single points-to solution
- Reduced time complexity
- No copying
- Individual updates more efficient
- No need for joins
- Number of iterations?
- A cubic-time algorithm
- Scales to millions of lines of code
- Most popular points-to analysis
- Conventionally used as an upper bound for precision for pointer analysis

Andersen＇s analysis as set constraints

－$\llbracket x:=y \rrbracket^{\#}$ $\mathrm{PT}[x] \supseteq \mathrm{PT}[y]$
－【x：＝null 】\＃\quad PT［x］〇 $\{n u l l\}$
－$\llbracket x:=\& y \rrbracket^{\#} \quad$ PT $[x] \supseteq\{y\}$
－$\llbracket x:=* y \rrbracket^{\#} \quad \mathrm{PT}[x] \supseteq \mathrm{PT}[z]$ for all $z \in \mathrm{PT}[y]$

- 【＊$x:=\& y \rrbracket^{\#} \quad \operatorname{PT}[z] \supseteq\{y\}$ for all $z \in \operatorname{PT}[x]$
- 【＊$x:=y \rrbracket^{\#}$
$\mathrm{PT}[z] \supseteq \mathrm{PT}[y]$ for all $z \in \mathrm{PT}[x]$

Cycle elimination

- Andersen-style pointer analysis is $O\left(\mathrm{n}^{3}\right)$ for number of nodes in graph
- Improve scalability by reducing n
- Important optimization
- Detect strongly-connected components in PTGraph and collapse to a single node
- Why? In the final result all nodes in SCC have same PT
- How to detect cycles efficiently?
- Some statically, some on-the-fly

Steensgaard's Analysis

- Unification-based analysis
- Inspired by type inference
- An assignment lhs := rhs is interpreted as a constraint that lhs and rhs have the same type
- The type of a pointer variable is the set of variables it can point-to
- "Assignment-direction-insensitive"
- Treats Ihs := rhs as if it were both Ihs := rhs and rhs := lhs

Steensgaard's Analysis

- An almost-linear time algorithm
- Uses union-find data structure
- Single-pass algorithm; no iteration required
- Sets a lower bound in terms of performance

Steensgaard's analysis initialization
L1: $\mathbf{x}=\& a ;$
L2: $y=x$;
L3: $\mathbf{x}=\& \mathrm{~b}$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

Steensgaard's analysis $\mathbf{x = \& a}$

L1: $\mathbf{x}=\& a ;$
L2: $y=x$;
L3: $x=\& b$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

Steensgaard's analysis $\mathbf{y}=\mathbf{x}$
L1: $\mathbf{x}=\& a ;$
L2: $y=x$;
L3: $x=\& b$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

Steensgaard's analysis $\mathbf{x}=\boldsymbol{\&} \mathbf{b}$

L1: $\mathbf{x}=\& a ;$
L2: $\mathrm{y}=\mathrm{x}$;
L3: $\mathbf{x}=\& \mathrm{~b}$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

Steensgaard's analysis $\mathbf{z = x}$

L1: $\mathbf{x}=\& \mathrm{a}$;
L2: $y=x$;
L3: $x=\& b$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

Steensgaard's analysis final result
L1: $\mathbf{x}=\& a ;$
L2: $y=x$;
L3: $x=\& b$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

Andersen's analysis final result

L1: $\mathbf{x}=\& \mathrm{a}$;
L2: $y=x$;
L3: $\mathbf{x}=\& \mathrm{~b}$;
L4: $\mathbf{z}=\mathbf{x}$;
L5:

$\mathrm{L} 1: \mathrm{x}=\& \mathrm{a} ;$
$\mathrm{L} 2: \mathrm{y}=\mathrm{x} ;$
$\mathrm{L} 3: \mathrm{y}=\& \mathrm{~b} ;$
$\mathrm{L} 4: \mathrm{b}=\& \mathrm{c} ;$
$\mathrm{L} 5:$

Another example

Andersen's analysis result = ?

$\mathrm{L} 1: x=\& a ;$
$L 2: y=x ;$
$L 3: y=\& b ;$
$L 4: b=\& c ;$
$L 5:$
$\mathrm{L} 1: x=\& a ;$
$L 2: y=x ;$
$L 3: y=\& b ;$
$L 4: b=\& c ;$
$L 5:$

Another example

Steensgaard's analysis result = ?
L1: $x=\& a ;$
L2: $y=x ;$
L3: $y=\& b ;$
L4: $b=\& C ;$
L5:

Steensgaard's analysis result =
L1: $\mathbf{x}=\& a ;$
L2: $\mathrm{y}=\mathrm{x}$;
L3: $y=\& b$;
L4: b = \& C;
L5:

May-points-to analyses

Ideal-May-Point-To

Algorithm A

more efficient / less pr Andersen's

more efficient $\sqrt{\text { / less precise }}$
Steensgaard's

Ideal points-to analysis

- A sequence of states $\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{n}}$ is said to be an execution (of the program) iff
- s_{1} is the Initial-State
$-\mathrm{s}_{\mathrm{i}} \rightarrow \mathrm{s}_{\mathrm{i}+1}$ for $1<=\mathrm{l}<\mathrm{n}$
- A state s is said to be a reachable state iff there exists some execution $\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{n}}$ is such that $\mathrm{s}_{\mathrm{n}}=\mathrm{s}$.
- $\operatorname{CS}(u)=\{s \mid(u, s)$ is reachable $\}$
- IdealMayPT $(u)=\{(p, x) \mid \exists s \in \operatorname{CS}(u) . s(p)=x\}$
- IdealMustPT $(u)=\{(p, x) \mid \forall s \in \operatorname{CS}(u) . s(p)=x\}$

Does Algorithm A compute the most precise solution?

Ideal vs. Algorithm A

- Abstracts away correlations

Does Algorithm A compute the most precise solution?

Is the precise solution computable?

- Claim: The set CS(u) of reachable concrete states (for our language) is computable
- Note: This is true for any collecting semantics with a finite state space

Computing CS(u)

Precise points-to analysis: decidability

- Corollary: Precise may-point-to analysis is computable.
- Corollary: Precise (demand) may-alias analysis is computable.
- Given ptr-exp1, ptr-exp2, and a program point u, identify if there exists some reachable state at u where ptr-exp1 and ptr-exp2 are aliases.
- Ditto for must-point-to and must-alias
- ... for our restricted language!

Precise Points-To Analysis: Computational Complexity

- What's the complexity of the least-fixed point computation using the collecting semantics?
- The worst-case complexity of computing reachable states is exponential in the number of variables.
- Can we do better?
- Theorem: Computing precise may-point-to is PSPACE-hard even if we have only two-level pointers

May-Point-To Analyses

Ideal-May-Point-To

more efficient / less pre Algorithm A

more efficient / less precise
Andersen's
more efficient / less precise
Steensgaard's

Precise points-to analysis: caveats

- Theorem: Precise may-alias analysis is undecidable in the presence of dynamic memory allocation
- Add " $x=$ new/malloc ()" to language
- State-space becomes infinite
- Digression: Integer variables + conditionalbranching also makes any precise analysis undecidable

High-level classification

Handling memory allocation

- $\mathrm{s}: \mathrm{x}=$ new () / malloc ()
- Assume, for now, that allocated object stores one pointer
- s: x = malloc (sizeof(void*))
- Introduce a pseudo-variable V_{s} to represent objects allocated at statement s , and use previous algorithm
- Treat s as if it were " $x=\& V_{s}$ "
- Also track possible values of V_{s}
- Allocation-site based approach
- Key aspect: V_{s} represents a set of objects (locations), not a single object
- referred to as a summary object (node)

Dynamic memory allocation example

$$
\begin{aligned}
& \text { L1: } \mathbf{x}=\text { new } 0 \text {; } \\
& \text { L2: } \mathrm{y}=\mathrm{x} \text {; } \\
& \text { L3: *y = \&b; } \\
& \text { L4: *y = \&a; }
\end{aligned}
$$

How should we handle

Summary object update

$$
\begin{aligned}
& \mathrm{L} 1: x=\text { new } 0 ; \\
& \mathrm{L} 2: y=x ; \\
& \mathrm{L} 3:{ }^{*} y=\& b ; \\
& \mathrm{L} 4:{ }^{*} y=\& a ;
\end{aligned}
$$

Object fields

- Field-insensitive analysis

$x->f=\& b ;$
$x->g=\& a ;$

Object fields

- Field-sensitive analysis

Other Aspects

- Context-sensitivity
- Indirect (virtual) function calls and call-graph construction
- Pointer arithmetic
- Object-sensitivity

