
Program Analysis
and Verification

0368-4479

Noam Rinetzky

Lecture 7: Pointer Analysis

1

Slides credit: Roman Manevich, Mooly Sagiv, Eran Yahav

Plan

• Understand the problem
• Mention some applications
• Simplified problem
– Only variables (no object allocation)

• Reference analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Generalize to handle object allocation

2

Constant propagation example

x = 3;

y = 4;

z = x + 5;

3

Constant propagation example with pointers

x = 3;

*p = 4;

z = x + 5;

Is x always 3 here?

4

p = &y;
x = 3;
*p = 4;
z = x + 5;

Constant propagation example with pointers

x is always 4

p = &x;
x = 3;
*p = 4;
z = x + 5;

if (?)
p = &x;

else
p = &y;

x = 3;
*p = 4;
z = x + 5; x is always 3

x may be 3 or 4
(i.e., x is unknown in our lattice)

pointers affect
most program analyses

5

p = &y;
x = 3;
*p = 4;
z = x + 5;

Constant propagation example with pointers

p = &x;
x = 3;
*p = 4;
z = x + 5;

if (?)
p = &x;

else
p = &y;

x = 3;
*p = 4;
z = x + 5;

p always
points-to y

p always
points-to x

p may point-to x or y
6

Points-to Analysis

• Determine the set of targets a pointer variable
could point-to (at different points in the
program)
– “p points-to x”
• “p stores the value &x”
• “*p denotes the location x”

– targets could be variables or locations in the heap
(dynamic memory allocation)
• p = &x;
• p = new Foo(); or p = malloc (…);

– must-point-to vs. may-point-to
7

Constant propagation example with pointers

*q = 3;

*p = 4;

z = *q + 5;

what values can
this take?

Can *p denote the
same location as *q?

8

More terminology

• *p and *q are said to be aliases (in a given
concrete state) if they represent the same
location

• Alias analysis
– Determine if a given pair of references could be

aliases at a given program point
– *p may-alias *q
– *p must-alias *q

9

Pointer Analysis

• Points-To Analysis
– may-point-to
– must-point-to

• Alias Analysis
– may-alias
– must-alias

10

Applications

• Compiler optimizations
– Method de-virtualization
– Call graph construction
– Allocating objects on stack via escape analysis

• Verification & Bug Finding
– Datarace detection
– Use in preliminary phases
– Use in verification itself

11

Points-to analysis: a simple example
p = &x;
q = &y;
if (?) {
q = p;

}
x = &a;
y = &b;
z = *q;

{p=&x}

{p=&x . q=&y}

{p=&x . q=&x}
{p=&x . (q=&y - q=&x)}
{p=&x . (q=&y - q=&x) . x=&a}
{p=&x . (q=&y - q=&x) . x=&a . y=&b}
{p=&x . (q=&y-q=&x) . x=&a . y=&b . (z=x-z=y)}

How would you construct an abstract domain to represent these abstract states?

We will usually drop
variable-equality
information

12

Points-to lattice

• Points-to
– PT-factoids[x] = { x=&y | y Î Var} 4 false

PT[x] = (2PT-factoids, Í, 4, 3 , false, PT-factoids[x])
(interpreted disjunctively)

• How should combine them to get the abstract
states in the example?
{p=&x . (q=&y-q=&x) . x=&a . y=&b}

13

Points-to lattice

• Points-to
– PT-factoids[x] = { x=&y | y Î Var} 4 false

PT[x] = (2PT-factoids, Í, 4, 3 , false, PT-factoids[x])
(interpreted disjunctively)

• How should combine them to get the abstract
states in the example?
{p=&x . (q=&y-q=&x) . x=&a . y=&b}

• D[x] = Disj(VE[x]) % Disj(PT[x])
• For all program variables: D = D[x1] % … % D[xk]

14

Points-to analysis
a = &y
x = &a;
y = &b;
if (?) {
p = &x;

} else {
p = &y;

}

*x = &c;
*p = &c;

How should we
handle this
statement?

Strong update

Weak updateWeak update

{x=&a . y=&b . (p=&x-p=&y) . a=&y}

{x=&a . y=&b . (p=&x-p=&y) . a=&c}
{(x=&a-x=&c) . (y=&b-y=&c) . (p=&x-p=&y)}

15

Questions

• When is it correct to use a strong update?
A weak update?

• Is this points-to analysis precise?

• What does it mean to say
– p must-point-to x at program point u
– p may-point-to x at program point u
– p must-not-point-to x at program u
– p may-not-point-to x at program u

16

Points-to analysis, formally

• We must formally define what we want to
compute before we can answer many such
questions

17

PWhile syntax

• A primitive statement is of the form
• x := null
• x := y
• x := *y
• x := &y;
• *x := y
• skip
(where x and y are variables in Var)

Omitted (for now)
• Dynamic memory allocation
• Pointer arithmetic
• Structures and fields
• Procedures

18

PWhile operational semantics

• State : (Var®Z) 4 (Var®Var4{null})
• ’ x = y ÷ s =
• ’ x = *y ÷ s =
• ’ *x = y ÷ s =
• ’ x = null ÷ s =
• ’ x = &y ÷ s =

19

PWhile operational semantics

• State : (Var®Z) 4 (Var®Var4{null})
• ’ x = y ÷ s = s[xhs(y)]
• ’ x = *y ÷ s = s[xhs(s(y))]
• ’ *x = y ÷ s = s[s(x)hs(y)]
• ’ x = null ÷ s = s[xhnull]
• ’ x = &y ÷ s = s[xhy]

must say what
happens if null is

dereferenced

20

PWhile collecting semantics

• CS[u] = set of concrete states that can reach
program point u (CFG node)

21

Ideal PT Analysis: formal definition

• Let u denote a node in the CFG

• Define IdealMustPT(u) to be
{ (p,x) | forall s in CS[u]. s(p) = x }

• Define IdealMayPT(u) to be
{ (p,x) | exists s in CS[u]. s(p) = x }

22

May-point-to analysis:
formal Requirement specification

For every vertex u in the CFG,
compute a set R(u) such that

R(u) ⊆ { (p,x) | $sÎCS[u]. s(p) = x }

Compute R: V -> 2Vars’ such that
R(u)⊇IdealMayPT(u)

May/Must Point-To Analysis

23

may

must

Var’ = Var U {null}

May-point-to analysis:
formal Requirement specification

• An algorithm is said to be correct if the solution R it
computes satisfies

"uÎV. R(u) ⊇ IdealMayPT(u)
• An algorithm is said to be precise if the solution R it

computes satisfies
"uÎV. R(u) = IdealMayPT(u)

• An algorithm that computes a solution R1 is said to be more
precise than one that computes a solution R2 if

"uÎV. R1(u) Í R2(u)

Compute R: V -> 2Vars’ such that
R(u) ⊇ IdealMayPT(u)

24

(May-point-to analysis)
Algorithm A

• Is this algorithm correct?
• Is this algorithm precise?

• Let’s first completely and formally define the
algorithm

25

Points-to graphs

26

x = &a;
y = &b;
if (?) {
p = &x;

} else {
p = &y;

}

*x = &c;
*p = &c;

{x=&a . y=&b . (p=&x-p=&y)}

{x=&a . y=&b . (p=&x-p=&y) . a=&c}
{(x=&a-x=&c) . (y=&b-y=&c) . (p=&x-p=&y) . a=&c}

a
x

c

b
y

p
The points-to
set of x

Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

• Define join-semilattice of abstract-values
– PTGraph ::= (Var, Var%Var’)
– g1 7 g2 = ?
– z = ?
– º = ?

• Define transformers for primitive statements
– ’stmt÷# : PTGraph ® PTGraph

27

Algorithm A: A formal definition
the “Data Flow Analysis” Recipe

• Define join-semilattice of abstract-values
– PTGraph ::= (Var, Var%Var’)
– g1 7 g2 = (Var, E1 4 E2)
– z = (Var, {})
– º = (Var, Var%Var’)

• Define transformers for primitive statements
– ’stmt÷# : PTGraph ® PTGraph

28

Algorithm A: transformers

• Abstract transformers for primitive statements
– ’ stmt ÷# : PTGraph ® PTGraph

• ’ x := y ÷# (Var, E) = ?
• ’ x := null ÷# (Var, E) = ?
• ’ x := &y ÷# (Var, E) = ?
• ’ x := *y ÷# (Var, E) = ?
• ’ *x := &y ÷# (Var, E) = ?

29

Algorithm A: transformers

• Abstract transformers for primitive statements
– ’ stmt ÷# : PTGraph ® PTGraph

• ’ x := y ÷# (Var, E) = (Var, E[succ(x)=succ(y)]
• ’ x := null ÷# (Var, E) = (Var, E[succ(x)={null}]
• ’ x := &y ÷# (Var, E) = (Var, E[succ(x)={y}]
• ’ x := *y ÷# (Var, E) = (Var, E[succ(x)=succ(succ(y))]
• ’ *x := &y ÷# (Var, E) = ???

30

Correctness & precision

• We have a complete & formal definition of the
problem

• We have a complete & formal definition of a
proposed solution

• How do we reason about the correctness &
precision of the proposed solution?

31

Points-to analysis
(abstract interpretation)

a(Y) = { (p,x) | exists s in Y. s(p) = x }

CS(u)

2State PTGraph

IdealMayPT(u)

MayPT(u)

Ía
a

IdealMayPT (u) = a (CS(u))
32

Concrete transformers

• CS[stmt] : State ® State
• ’ x = y ÷ s = s[xhs(y)]
• ’ x = *y ÷ s = s[xhs(s(y))]
• ’ *x = y ÷ s = s[s(x)hs(y)]
• ’ x = null ÷ s = s[xhnull]
• ’ x = &y ÷ s = s[xhy]

• CS*[stmt] : 2State ® 2State

• CS*[st] X = { CS[st]s | s Î X }

33

Abstract transformers
• ’ stmt ÷# : PTGraph ® PTGraph
• ’ x := y ÷# (Var, E) = (Var, E[succ(x)=succ(y)]
• ’ x := null ÷# (Var, E) = (Var, E[succ(x)={null}]
• ’ x := &y ÷# (Var, E) = (Var, E[succ(x)={y}]
• ’ x := *y ÷# (Var, E) = (Var, E[succ(x)=succ(succ(y))]
• ’ *x := &y ÷# (Var, E) = ???

34

Algorithm A: transformers
Weak/Strong Update

x: {&y} y: {&x,&z} z: {&a}

x: &b y: &x z: &a

x: &y y: &z z: &b
x: {&y,&b} y: {&x,&z} z: {&a,&b}

x: &y y: &x z: &a

x: &y y: &z z: &a

*y = &b;f#*y = &b;f

a

g

35

Algorithm A: transformers
Weak/Strong Update

x: {&y} y: {&x,&z} z: {&a}

x: &y y: &b z: &a

x: &y y: &b z: &a
x: {&y} y: {&b} z: {&a}

x: &y y: &x z: &a

x: &y y: &z z: &a

*x := &b;f#*x := &b;f

a

g

36

Abstract transformers
• ’ *x := &y ÷# (Var, E) =

if succ(x) = {z} then (Var, E[succ(z)={y}]
else succ(x)={z1,…,zk} where k>1

(Var, E[succ(z1)=succ(z1)4{y}]
…

[succ(zk)=succ(zk)4{y}]

37

Some dimensions of pointer analysis

• Intra-procedural / inter-procedural
• Flow-sensitive / flow-insensitive
• Context-sensitive / context-insensitive
• Definiteness
– May vs. Must

• Heap modeling
– Field-sensitive / field-insensitive

• Representation (e.g., Points-to graph)

38

Andersen’s Analysis

• A flow-insensitive analysis
– Computes a single points-to solution valid at all

program points
– Ignores control-flow – treats program as a set of

statements
– Equivalent to merging all vertices into one (and

applying Algorithm A)
– Equivalent to adding an edge between every pair of

vertices (and applying Algorithm A)

– A (conservative) solution R: Vars ® 2Vars’ such that
R ⊇ IdealMayPT(u) for every vertex u

39

Flow-sensitive analysis
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

40

x
a ybz

L1

x
a ybz

L2

x
a ybz

L3

x
a ybz

L4

x
a ybz

L5

Flow-insensitive analysis
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

41

x
a ybz

L1-5

Andersen’s analysis

• Strong updates?

• Initial state?

42

Why flow-insensitive analysis?
• Reduced space requirements
– A single points-to solution

• Reduced time complexity
– No copying

• Individual updates more efficient
– No need for joins
– Number of iterations?
– A cubic-time algorithm

• Scales to millions of lines of code
– Most popular points-to analysis

• Conventionally used as an upper bound for precision
for pointer analysis

43

Andersen’s analysis as set constraints
• ’ x := y ÷# PT[x] Ê PT[y]
• ’ x := null ÷# PT[x] Ê {null}
• ’ x := &y ÷# PT[x] Ê {y}
• ’ x := *y ÷# PT[x] Ê PT[z] for all zÎPT[y]
• ’ *x := &y ÷# PT[z] Ê {y} for all zÎPT[x]
• ’ *x := y ÷# PT[z] Ê PT[y] for all zÎPT[x]

44

Cycle elimination

• Andersen-style pointer analysis is O(n3) for
number of nodes in graph
– Improve scalability by reducing n

• Important optimization
– Detect strongly-connected components in

PTGraph and collapse to a single node
• Why? In the final result all nodes in SCC have same PT

– How to detect cycles efficiently?
• Some statically, some on-the-fly

45

Steensgaard’s Analysis

• Unification-based analysis
• Inspired by type inference
– An assignment lhs := rhs is interpreted as a

constraint that lhs and rhs have the same type
– The type of a pointer variable is the set of

variables it can point-to
• “Assignment-direction-insensitive”
– Treats lhs := rhs as if it were both lhs := rhs

and rhs := lhs

46

Steensgaard’s Analysis

• An almost-linear time algorithm
– Uses union-find data structure
– Single-pass algorithm; no iteration required

• Sets a lower bound in terms of performance

47

Steensgaard’s analysis initialization
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

48

x

b

y

a

z

Steensgaard’s analysis x=&a
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

49

x

b

y

a

z

Steensgaard’s analysis y=x
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

50

x y

ba

z

Steensgaard’s analysis x=&b
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

51

x y

ba

z

Automatically
sets y=&b

Steensgaard’s analysis z=x
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

52

z x y

ba

Automatically sets
z=&a and z=&b

Steensgaard’s analysis final result
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

53

z x y

ba

Andersen’s analysis final result
L1: x = &a;
L2: y = x;
L3: x = &b;
L4: z = x;
L5:

54

x

b

y

a

z

Another example
L1: x = &a;
L2: y = x;
L3: y = &b;
L4: b = &c;
L5:

55

Andersen’s analysis result = ?
L1: x = &a;
L2: y = x;
L3: y = &b;
L4: b = &c;
L5:

56

Another example
L1: x = &a;
L2: y = x;
L3: y = &b;
L4: b = &c;
L5:

57

x

b

y

a

c

Steensgaard’s analysis result = ?
L1: x = &a;
L2: y = x;
L3: y = &b;
L4: b = &c;
L5:

58

Steensgaard’s analysis result =
L1: x = &a;
L2: y = x;
L3: y = &b;
L4: b = &c;
L5:

59

x

b

y

a

c

May-points-to analyses
Ideal-May-Point-To

Algorithm A

Andersen’s

Steensgaard’s

more efficient / less precise

???

more efficient / less precise

60

Ideal points-to analysis

• A sequence of states s1s2 … sn is said to be an
execution (of the program) iff
– s1 is the Initial-State
– si | si+1 for 1 <= I < n

• A state s is said to be a reachable state iff there exists
some execution s1s2 … sn is such that sn = s.

• CS(u) = { s | (u,s) is reachable }
• IdealMayPT (u) = { (p,x) | $ s Î CS(u). s(p) = x }
• IdealMustPT (u) = { (p,x) | " s Î CS(u). s(p) = x }

61

Does Algorithm A compute
the most precise solution?

62

Ideal vs. Algorithm A

• Abstracts away correlations
between variables
– Relational analysis vs.
– Independent attribute (Cartesian)

x: &b y: &x

x: &y y: &z

x: {&y,&b} y: {&x,&z}

a

g

x: &y y: &x

x: &b y: &z

x: &y y: &z

x: &b y: &x

63

Does Algorithm A compute
the most precise solution?

64

Is the precise solution computable?

• Claim: The set CS(u) of reachable concrete
states (for our language) is computable

• Note: This is true for any collecting semantics
with a finite state space

65

Computing CS(u)

66

Precise points-to analysis: decidability

• Corollary: Precise may-point-to analysis is computable.

• Corollary: Precise (demand) may-alias analysis is
computable.
– Given ptr-exp1, ptr-exp2, and a program point u, identify if

there exists some reachable state at u where ptr-exp1 and
ptr-exp2 are aliases.

• Ditto for must-point-to and must-alias

• … for our restricted language!

67

Precise Points-To Analysis:
Computational Complexity

• What’s the complexity of the least-fixed point
computation using the collecting semantics?

• The worst-case complexity of computing reachable
states is exponential in the number of variables.
– Can we do better?

• Theorem: Computing precise may-point-to is
PSPACE-hard even if we have only two-level
pointers

68

May-Point-To Analyses
Ideal-May-Point-To

Algorithm A

Andersen’s

Steensgaard’s

more efficient / less precise

more efficient / less precise

more efficient / less precise

69

Precise points-to analysis: caveats

• Theorem: Precise may-alias analysis is
undecidable in the presence of dynamic
memory allocation
– Add “x = new/malloc ()” to language
– State-space becomes infinite

• Digression: Integer variables + conditional-
branching also makes any precise analysis
undecidable

70

High-level classification

Ideal (no Int, no Malloc)

Algorithm A

Andersen’s

Steensgaard’s

Ideal (with Int, with Malloc)

Ideal (with Int) Ideal (with Malloc)

71

Handling memory allocation
• s: x = new () / malloc ()
• Assume, for now, that allocated object stores one

pointer
– s: x = malloc (sizeof(void*))

• Introduce a pseudo-variable Vs to represent objects
allocated at statement s, and use previous algorithm
– Treat s as if it were “x = &Vs”
– Also track possible values of Vs
– Allocation-site based approach

• Key aspect: Vs represents a set of objects (locations),
not a single object
– referred to as a summary object (node)

72

Dynamic memory allocation example

L1: x = new O;
L2: y = x;
L3: *y = &b;
L4: *y = &a;

x

b

L1

y

a
How should we handle
these statements

73

Summary object update

L1: x = new O;
L2: y = x;
L3: *y = &b;
L4: *y = &a;

x

b

L1

y

a

74

Object fields
• Field-insensitive analysis
class Foo {

A* f;
B* g;

}
L1: x = new Foo()

x->f = &b;

x->g = &a;

x

b

L1

a

75

Object fields
• Field-sensitive analysis
class Foo {

A* f;
B* g;

}
L1: x = new Foo()

x->f = &b;

x->g = &a;

x

b

L1

a

f g

76

Other Aspects

• Context-sensitivity
• Indirect (virtual) function calls and call-graph

construction
• Pointer arithmetic
• Object-sensitivity

77

