
Compilation
Lecture	7

IR	+	Optimizations
Noam	Rinetzky

1

Basic	Compiler	Phases

2

Source	program	(string)

.EXE

lexical	analysis

syntax	analysis

semantic	analysis

Code	generation

Assembler/Linker

Tokens

Abstract	syntax	tree

Assembly

Frame	managerControl	Flow	Graph

IR	Optimization

3

Optimization	points

source
code

Front
end IR Code

generator
target
code

User
profile	program
change	algorithm

Compiler
intraprocedural IR
Interprocedural IR
IR	optimizations

Compiler
register	allocation
instruction	selection

peephole	transformations

now 4

IR	Optimization

• Making	code	better

5

IR	Optimization

• Making	code	“better”

6

“Optimized”	evaluation

b

5 c

*

array	access

+

a
base index

w=0

w=0 w=0

w=1w=0	

w=1

w=1

_t0	= cgen(a+b[5*c])
Phase	2:	- use	weights	to	decide	on	order	of	translation

_t0

_t0

_t0
Heavier	sub-tree

Heavier	sub-tree

_t0 = _t1 * _t0

_t0 = _t1[_t0]

_t0 = _t1 + _t0

_t0_t1

_t1

_t1
_t0 = c

_t1 = 5

_t1 = b

_t1 = a
7

But	what	about…

a	:=	1	+	2;
y	:=	a	+	b;
x	:=	a	+	b		+	8;
z	:=	b	+	a;

a	:=	a	+	1;
w:=	a	+	b;

8

Overview	of	IR	optimization

• Formalisms	and	Terminology
– Control-flow	graphs
– Basic	blocks

• Local	optimizations
– Speeding	up	small	pieces	of	a	procedure

• Global	optimizations
– Speeding	up	procedure	as	a	whole

• The	dataflow	framework
– Defining	and	implementing	a	wide	class	of	
optimizations

9

Program	Analysis

• In	order	to	optimize	a	program,	the	
compiler	has	to	be	able	to	reason	about	the	
properties	of	that	program

• An	analysis	is	called	sound if	it	never	
asserts	an	incorrect	fact	about	a	program

• All	the	analyses	we	will	discuss	in	this	class	
are	sound
– (Why?)

10

Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x holds	some

integer	value”

11

Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	either	137	

or	42”

12

(Un)Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	137”

13

Soundness	&	Precision
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	either	137,

42,	or	271”

14

Semantics-preserving	optimizations

• An	optimization	is	semantics-preserving if	it	does	not	
alter	the	semantics	of	the	original	program

• Examples:
– Eliminating	unnecessary	temporary	variables
– Computing	values	that	are	known	statically	at	compile-time	

instead	of	runtime
– Evaluating	constant	expressions	outside	of	a	loop	instead	of	

inside
• Non-examples:

– Replacing	bubble	sort	with	quicksort (why?)
– The	optimizations	we	will	consider	in	this	class	are	all	

semantics-preserving

15

A	formalism	for	IR	optimization

• Every	phase	of	the	compiler	uses	some	new	
abstraction:
– Scanning	uses	regular	expressions
– Parsing	uses	CFGs
– Semantic	analysis	uses	proof	systems	and	symbol	
tables

– IR	generation	uses	ASTs
• In	optimization,	we	need	a	formalism	that	
captures	the	structure	of	a	program	in	a	way	
amenable	to	optimization

16

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

17

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

18

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 19

Basic	blocks

• A	basic	block is	a	sequence	of	IR	instructions	
where
– There	is	exactly	one	spot	where	control	enters	the	
sequence,	which	must	be	at	the	start	of	the	
sequence

– There	is	exactly	one	spot	where	control	leaves	the	
sequence,	which	must	be	at	the	end	of	the	
sequence

• Informally,	a	sequence	of	instructions	that	
always	execute	as	a	group

20

Control-Flow	Graphs

• A	control-flow	graph	(CFG)	is	a	graph	of	the	
basic	blocks	in	a	function

• The	term	CFG	is	overloaded	– from	here	on	
out,	we'll	mean	“control-flow	graph”	and	not	
“context	free	grammar”

• Each	edge	from	one	basic	block	to	another	
indicates	that	control	can	flow	from	the	end	of	
the	first	block	to	the	start	of	the	second	block

• There	is	a	dedicated	node	for	the	start	and	
end	of	a	function

21

Types	of	optimizations

• An	optimization	is	local if	it	works	on	just	a	
single	basic	block

• An	optimization	is	global if	it	works	on	an	
entire	control-flow	graph

• An	optimization	is	interprocedural if	it	
works	across	the	control-flow	graphs	of	
multiple	functions
– We	won't	talk	about	this	in	this	course

22

Basic	blocks	exercise
int main() {

int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

START:
_t0 = 137;
y = _t0;
IfZ x Goto _L0;
t1 = y;
z = _t1;
Goto END:

_L0:
_t2 = y;
x = _t2;

END:

Divide	the	code	into	basic	blocks
23

Control-flow	graph	exercise
START:

_t0 = 137;
y = _t0;
IfZ x Goto _L0;
t1 = y;
z = _t1;
Goto END:

_L0:
_t2 = y;
x = _t2;

END:

Draw	the	control-flow	graph

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

24

Control-flow	graph	exercise

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

25

Local	optimizations

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

end

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

26

Local	optimizations

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

27

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

28

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

29

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y;
_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

30

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y;
_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

31

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

32

Global	optimizations

y = 137;
IfZ x Goto _L0;

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

33

start

Global	optimizations

y = 137;
IfZ x Goto _L0;

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

34

start

Global	optimizations

y = 137;
IfZ x Goto _L0;

z = 137; x = 137;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

35

start

Local	Optimizations

36

Optimization	path

IR Control-Flow
Graph

CFG
builder

Program
Analysis

Annotated
CFG

Optimizing
Transformation

Target
Code

Code
Generation

(+optimizations)

done
with	IR

optimizations

IR
optimizations

37

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

38

For	brevity:	
Simplified IR	for	procedure	returns

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

39

Class	Object	{
method	fn(int);
}

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

40

Size of	Object

Object	Class

Class	Object	{
method	fn(int);
}

For	simplicity,	ignore
Popping	return	value,	

parameters	etc.

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

41

Class	Object	{
method	fn(int);
}

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

42

Class	Object	{
method	fn(int);
}

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

43

Points	to	ObjectC

Start	of	fn

Class	Object	{
method	fn(int);
}

Explaining	the	program

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b						
…
v2	=	a	op	b						

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b
…
v2	=	v1

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

44

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b					[or:		v1	=	a]
…
v2	=	a	op	b					[or:		v2	=	a]	

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b					[or:		v1	=	a]	
…
v2	=	v1												

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

45

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

46

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

47

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

48

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

49

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

50

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

51

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation

• If	we	have	a	variable	assignment
v1	=	v2
then	as	long	as	v1	and	v2	are	not	
reassigned,	we	can	rewrite	expressions	of	
the	form
a	=	…	v1	…
as
a	=	…	v2	…
provided	that	such	a	rewrite	is	legal

52

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

53

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

54

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

55

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

56

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

57

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

58

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

59

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

60

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

61

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

62

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Is	this	transformation	OK?
What	do	we	need	to	know?

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

63

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

64

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

65

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

66

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Dead	Code	Elimination

• An	assignment	to	a	variable	v	is	called	dead
if	the	value	of	that	assignment	is	never	
read	anywhere

• Dead	code	elimination	removes	dead	
assignments	from	IR

• Determining	whether	an	assignment	is	
dead	depends	on	what	variable	is	being	
assigned	to	and	when	it's	being	assigned

67

Dead	Code	Elimination

68

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

Dead	Code	Elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

69

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Dead	Code	Elimination
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

values	
never	
read

values	
never	
read

70

Dead	Code	Elimination
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;

*(_tmp1) = ObjectC;

_tmp4 = _tmp0 + b;
c = _tmp4;

_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

71

Applying	local	optimizations

• The	different	optimizations	we've	seen	so	far	
all	take	care	of	just	a	small	piece	of	the	
optimization

• Common	subexpression	elimination	eliminates	
unnecessary	statements

• Copy	propagation	helps	identify	dead	code
• Dead	code	elimination	removes	statements	
that	are	no	longer	needed

• To	get	maximum	effect,	we	may	have	to	apply	
these	optimizations	numerous	times

72

Applying	local	optimizations	
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

73

Applying	local	optimizations	
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

Which	optimization	should	we	apply	here?

74

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Common	sub-expression	elimination

Which	optimization	should	we	apply	here?

75

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Which	optimization	should	we	apply	here?

76

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which	optimization	should	we	apply	here?

Copy	propagation

77

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which	optimization	should	we	apply	here?

78

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = d;

Which	optimization	should	we	apply	here?

Common	sub-expression	elimination	(again)

79

Other	types	of	local	
optimizations

• Arithmetic	Simplification
– Replace	“hard”	operations	with	easier	ones
– e.g.	rewrite	x = 4 * a; as	x = a << 2;

• Constant	Folding
– Evaluate	expressions	at	compile-time	if	they	
have	a	constant	value.

– e.g.	rewrite	x = 4 * 5; as	x = 20;

80

Optimizations	and	analyses

• Most	optimizations	are	only	possible	given	
some	analysis	of	the	program's	behavior

• In	order	to	implement	an	optimization,	we	
will	talk	about	the	corresponding	program	
analyses

81

Available	expressions

• Both	common	subexpression	elimination	and	copy	
propagation	depend	on	an	analysis	of	the	available	
expressions	in	a	program

• An	expression	is	called	available if	some	variable	in	
the	program	holds	the	value	of	that	expression

• In	common	subexpression	elimination,	we	replace	
an	available	expression	by	the	variable	holding	its	
value

• In	copy	propagation,	we	replace	the	use	of	a	
variable	by	the	available	expression	it	holds

82

Finding	available	expressions

• Initially,	no	expressions	are	available
• Whenever	we	execute	a	statement
a	=	b	op c:
– Any	expression	holding	a is	invalidated
– The	expression	a	=	b	op c	becomes	available

• Idea:	Iterate	across	the	basic	block,	beginning	
with	the	empty	set	of	expressions	and	
updating	available	expressions	at	each	
variable

83

Available	expressions	example

84

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common	sub-expression	elimination

85

a = b + 2;

b = x;

d = a + b;

e = d;

d = b;

f = e;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common	sub-expression	elimination

86

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common	sub-expression	elimination

87

a = b + 2;

b = 1;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ b = 1, d = b, e = a + b }

{ b = 1, d = a + b, e = a + b }

{ b = 1, d = a + b }

{ b = 1}

{ a = b + 2}

{ }

{ a = b, c = b, d = b, e = a + b, f = a + b }

Common	sub-expression	elimination

88

a = b + 2;

b = 1;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ b = 1, d = b, e = a + b }

{ b = 1, d = a + b, e = a + b }

{ b = 1, d = a + b }

{ b = 1}

{ a = b + 2}

{ }

{ a = b, c = b, d = b, e = a + b, f = a + b }

Common	sub-expression	elimination

89

a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ a = b, c = b, d = b, e = a + b }

{ a = b, c = b, d = a + b, e = a + b }

{ a = b, c = b, d = a + b }

{ a = b, c = b }

{ a = b }

{ }

{ a = b, c = b, d = b, e = a + b, f = a + b }

90

a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ a = b, c = b, d = b, e = a + b }

{ a = b, c = b, d = a + b, e = a + b }

{ a = b, c = b, d = a + b }

{ a = b, c = b }

{ a = b }

{ }

{ a = b, c = b, d = b, e = a + b, f = a + b }

Common	sub-expression	elimination

91

a = b;

b = 1;

d = a + b;

e = d;

d = a;

f = e;
{ a = b, c = b, d = b, e = a + b }

{ a = b, c = b, d = a + b, e = a + b }

{ a = b, c = b, d = a + b }

{ a = b, b = b }

{ a = b }

{ }

{ a = b, c = b, d = b, e = a + b, f = a + b }

Common	sub-expression	elimination

Live	variables

• The	analysis	corresponding	to	dead	code	
elimination	is	called	liveness	analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again

• Dead	code	elimination	works	by	computing	
liveness	for	each	variable,	then	eliminating	
assignments	to	dead	variables

92

Computing	live	variables
• To	know	if	a	variable	will	be	used	at	some	point,	
we	iterate	across	the	statements	in	a	basic	block	
in	reverse	order

• Initially,	some	small	set	of	values	are	known	to	be	
live	(which	ones	depends	on	the	particular	
program)

• When	we	see	the	statement	a	=	b	op	c:
– Just	before	the	statement,	a	is	not	alive,	since	its	value	
is	about	to	be	overwritten

– Just	before	the	statement,	both	b	and	c	are	alive,	since	
we're	about	to	read	their	values

– (what	if	we	have	a	=	a	+	b?) 93

Liveness	analysis
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d } - given

Which	statements	are	dead?

94

Dead	Code	Elimination
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }

Which	statements	are	dead?

95

Dead	Code	Elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }
96

Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which	statements	are	dead?

97

Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?

98

Dead	code	elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?

99

Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

100

Liveness	analysis	III
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?

101

Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?

102

Dead	code	elimination
a = b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

103

Dead	code	elimination
a = b;

d = a;

104

If	we	further	apply	
copy	propagation	
this	statement	can	
be	eliminated	too

A	combined	algorithm

• Start	with	initial	live	variables	at	end	of	
block

• Traverse	statements	from	end	to	beginning
• For	each	statement

– If	assigns	to	dead	variables	– eliminate	it
– Otherwise,	compute	live	variables	before	
statement	and	continue	in	reverse

105

A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;

106

A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d }

107

A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d }

108

A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

{ b, d }
109

A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

{ b, d }

{ a, b }

110

A	combined	algorithm

111

a = b;

c = a;

d = a + b;

e = d;

d = a;

{ b, d }

{ a, b }

A	combined	algorithm

112

a = b;

c = a;

d = a + b;

d = a;

{ b, d }

{ a, b }

A	combined	algorithm
a = b;

c = a;

d = a + b;

d = a;

{ b, d }

{ a, b }

113

A	combined	algorithm
a = b;

c = a;

d = a;

{ b, d }

{ a, b }

114

A	combined	algorithm
a = b;

c = a;

d = a;

{ b, d }

{ a, b }

115

A	combined	algorithm
a = b;

d = a;

{ b, d }

{ a, b }

116

A	combined	algorithm
a = b;

d = a;

{ b, d }

{ a, b }

117

{ b }

A	combined	algorithm
a = b;

d = a;

118

High-level	goals

• Generalize	analysis	mechanism
– Reuse	common	ingredients	for	many	analyses
– Reuse	proofs	of	correctness

• Generalize	from	basic	blocks	to	entire	CFGs
– Go	from	local	optimizations	to	global	
optimizations

119

Program	Analysis

• Reasons	about	the	behavior of	a	program
• An	analysis	is	sound if	it	only	asserts	an	
correct	facts	about	a	program

• An	analysis	is	precise if	it	asserts	all	correct	
facts	(of	interests)

• Sound	analysis	allows	for	semantic-
preserving	optimizations
– “More	precise”	analyses	are	“more	useful”:	
may	enable	more	optimizations 120

Examples

• Available	expressions,	allows:
ØCommon	sub-expressions	elimination
ØCopy	propagation

• Constant	propagation,	allows:
ØConstant	folding

• Liveness analysis
ØDead-code	elimination
ØRegister	allocation

Local	vs.	global	optimizations

• An	optimization	is	local if	it	works	on	just	a	
single	basic	block

• An	optimization	is	global if	it	works	on	an	
entire	control-flow	graph	of	a	procedure

• An	optimization	is	interprocedural if	it	
works	across	the	control-flow	graphs	of	
multiple	procedure
– We	won't	talk	about	this	in	this	course

122

Formalizing	local	analyses

123

a = b + c

Output	Value
Vout

Input	Value
Vin

Vout = fa=b+c(Vin)

Transfer	Function

Available	Expressions

124

a = b + c

Output	Value
Vout

Input	Value
Vin

Vout =	(Vin \ {e	|	e	contains	a})	4 {a=b+c}	

Expressions	of	the	forms
a=…								and							x=…a…

Live	Variables

125

a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) 4 {b,c}

Vin

Vout

Live	Variables

126

a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) 4 {b,c}

Vin

Vout

Information	for	a	local	analysis

• What	direction	are	we	going?
– Sometimes	forward	(available	expressions)
– Sometimes	backward	(liveness	analysis)

• How	do	we	update	information	after	
processing	a	statement?
– What	are	the	new	semantics?
– What	information	do	we	know	initially?

127

Formalizing	local	analyses

• Define	an	analysis	of	a	basic	block	as	a	
quadruple	(D,	V,	F,	I)	where
– D is	a	direction	(forwards	or	backwards)
– V is	a	set	of	values	the	program	can	have	at	any	
point

– F is	a	family	of	transfer	functions	defining	the	
meaning	of	any	expression	as	a	function	f	:	Vt V

– I is	the	initial	information	at	the	top	(or	bottom)	of	
a	basic	block

128

Available	Expressions

• Direction: Forward
• Values: Sets	of	expressions	assigned	to	variables
• Transfer	functions: Given	a	set	of	variable	
assignments	V	and	statement	a	=	b	+	c:
– Remove	from	V	any	expression	containing	a	as	a	
subexpression

– Add	to	V	the	expression	a	=	b	+	c
– Formally:	Vout =	(Vin \ {e	|	e	contains	a})	4 {a	=	b	+	c}	

• Initial	value: Empty	set	of	expressions

129

Liveness	Analysis

• Direction: Backward
• Values: Sets	of	variables
• Transfer	functions: Given	a	set	of	variable	assignments	V	

and	statement	a	=	b	+	c:
• Remove	a	from	V	(any	previous	value	of	a	is	now	dead.)
• Add	b	and	c	to	V	(any	previous	value	of	b	or	c	is	now	live.)
• Formally:	Vin =	(Vout \ {a})	4 {b,c}
• Initial	value: Depends	on	semantics	of	language

– E.g.,	function	arguments	and	return	values	(pushes)
– Result	of	local	analysis	of	other	blocks	as	part	of	a	
global	analysis 130

Running	local	analyses

• Given	an	analysis	(D,	V,	F,	I)	for	a	basic	block
• Assume	that	D is	“forward;”	analogous	for	the	
reverse	case

• Initially,	set	OUT[entry]	to	I
• For	each	statement	s,	in	order:

– Set	IN[s]	to	OUT[prev],	where	prev is	the	previous	
statement

– Set	OUT[s]	to	fs(IN[s]),	where	fs is	the	transfer	
function	for	statement	s

131

Kill/Gen

132

Global	Optimizations

133

High-level	goals

• Generalize	analysis	mechanism
– Reuse	common	ingredients	for	many	analyses
– Reuse	proofs	of	correctness

• Generalize	from	basic	blocks	to	entire	CFGs
– Go	from	local	optimizations	to	global	
optimizations

134

Global	analysis

• A	global	analysis	is	an	analysis	that	works	
on	a	control-flow	graph	as	a	whole

• Substantially	more	powerful	than	a	local	
analysis
– (Why?)

• Substantially	more	complicated	than	a	local	
analysis
– (Why?)

135

Local	vs.	global	analysis
• Many	of	the	optimizations	from	local	analysis	can	still	

be	applied	globally
– Common	sub-expression	elimination
– Copy	propagation
– Dead	code	elimination

• Certain	optimizations	are	possible	in	global	analysis	that	
aren't	possible	locally:
– e.g.	code	motion:	Moving	code	from	one	basic	block	into	

another	to	avoid	computing	values	unnecessarily
• Example	global	optimizations:

– Global	constant	propagation
– Partial	redundancy	elimination

136

Loop	invariant	code	motion	example

137

while (t < 120) {
z = z + x - y;

}

w = x – y;
while (t < 120) {
z = z + w;

}

value	of	expression	x	– y	is	
not	changed	by	loop	body

Why	global	analysis	is	hard

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value	(but	the	analysis	still	needs	to	
terminate!)

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it

138

Global	dead	code	elimination

• Local	dead	code	elimination	needed	to	
know	what	variables	were	live	on	exit	from	
a	basic	block

• This	information	can	only	be	computed	as	
part	of	a	global	analysis

• How	do	we	modify	our	liveness	analysis	to	
handle	a	CFG?

139

CFGs	without	loops

140Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

CFGs	without	loops

141Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

?

Which	variables	may
be	live	on	some
execution	path?

CFGs	without	loops

142Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

CFGs	without	loops

143Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

CFGs	without	loops

144Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

Major	changes	– part	1

• In	a	local	analysis,	each	statement	has	
exactly	one	predecessor

• In	a	global	analysis,	each	statement	may	
have	multiple	predecessors

• A	global	analysis	must	have	some	means	of	
combining	information	from	all	
predecessors	of	a	basic	block

145

CFGs	without	loops

146Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{b, c, d}

{c, d} Need	to	combine	
currently-
computed	value	
with	new	value

Need	to	combine	
currently-
computed	value	
with	new	value

CFGs	without	loops

147Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{c, d}

CFGs	without	loops

148Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

Major	changes	– part	2

• In	a	local	analysis,	there	is	only	one	possible	
path	through	a	basic	block

• In	a	global	analysis,	there	may	be	many	paths	
through	a	CFG

• May	need	to	recompute	values	multiple	times	
as	more	information	becomes	available

• Need	to	be	careful	when	doing	this	not	to	loop	
infinitely!
– (More	on	that	later)

• Can	order	of	computation	affect	result?
149

CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

150

IfZ x goto Top

x = 1;

Top:

x = 0;

x = 2;

CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

• Sound	approximation:	Assume	that	every	possible	
path	through	the	CFG	corresponds	to	a	valid	execution
– Includes	all	realizable	paths,	but	some	additional	paths	as	
well

– May	make	our	analysis	less	precise	(but	still	sound)
– Makes	the	analysis	feasible;	we'll	see	how	later

151

CFGs	with	loops

152Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;
IfZ ...

Entry

{a}

?

Major	changes	– part	3

• In	a	local	analysis,	there	is	always	a		well	
defined	“first”	statement	to	begin	
processing

• In	a	global	analysis	with	loops,	every	basic	
block	might	depend	on	every	other	basic	
block

• To	fix	this,	we	need	to	assign	initial	values	
to	all	of	the	blocks	in	the	CFG

153

CFGs	with	loops	- initialization

154Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

CFGs	with	loops	- iteration

155Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

{a}

CFGs	with	loops	- iteration

156Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

CFGs	with	loops	- iteration

157Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}

CFGs	with	loops	- iteration

158Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

CFGs	with	loops	- iteration

159Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}

CFGs	with	loops	- iteration

160Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

161Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

162Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

163Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

164Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

165Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

166Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

167Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs	with	loops	- iteration

168Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs	with	loops	- iteration

169Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

Summary	of	differences

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value
– But	the	analysis	still	needs	to	terminate!

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it

170

Global	liveness	analysis
• Initially,	set	IN[s]	=	{	}	for	each	statement	s
• Set	IN[exit]	to	the	set	of	variables	known	to	be	
live	on	exit	(language-specific	knowledge)

• Repeat	until	no	changes	occur:
– For	each	statement	s of	the	form	a	=	b	+	c,	in	any	
order	you'd	like:
• Set	OUT[s]	to	set	union	of	IN[p]	for	each	successor	p of	s
• Set	IN[s]	to	(OUT[s]	– a)	4 {b,	c}.

• Yet	another	fixed-point	iteration!

171

Global	liveness	analysis

172

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2]	4 IN[s3]

IN[s]=(UT[s] – {a})	4 {b,	c}

Why	does	this	work?
• To	show	correctness,	we	need	to	show	that

– The	algorithm	eventually	terminates,	and
– When	it	terminates,	it	has	a	sound	answer

• Termination	argument:
– Once	a	variable	is	discovered	to	be	live	during	some	point	of	the	

analysis,	it	always	stays	live
– Only	finitely	many	variables	and	finitely	many	places	where	a	

variable	can	become	live
• Soundness	argument	(sketch):

– Each	individual	rule,	applied	to	some	set,	correctly	updates	
liveness	in	that	set

– When	computing	the	union	of	the	set	of	live	variables,	a	variable	
is	only	live	if	it	was	live	on	some	path	leaving	the	statement

173

Abstract	Interpretation

• Theoretical	foundations	of	program	
analysis

• Cousot and	Cousot 1977

• Abstract	meaning	of	programs
– Executed	at	compile	time	

174

Another	view	of	local	
optimization

• In	local	optimization,	we	want	to	reason	
about	some	property	of	the	runtime	
behavior	of	the	program

• Could	we	run	the	program	and	just	watch	
what	happens?

• Idea:	Redefine	the	semantics	of	our	
programming	language	to	give	us	
information	about	our	analysis

175

Properties	of	local	analysis

• The	only	way	to	find	out	what	a	program	will	
actually	do	is	to	run	it

• Problems:
– The	program	might	not	terminate
– The	program	might	have	some	behavior	we	didn't	
see	when	we	ran	it	on	a	particular	input

• However,	this	is	not	a	problem	inside	a	basic	
block
– Basic	blocks	contain	no	loops
– There	is	only	one	path	through	the	basic	block

176

Assigning	new	semantics

• Example:	Available	Expressions
• Redefine	the	statement	a	=	b	+	c	to	mean	
“a	now	holds	the	value	of	b	+	c,	and	any	
variable	holding	the	value	a	is	now	invalid”

• Run	the	program	assuming	these	new	
semantics

• Treat	the	optimizer	as	an	interpreter	for	
these	new	semantics

177

Theory	to	the	rescue

• Building	up	all	of	the	machinery	to	design	this	
analysis	was	tricky

• The	key	ideas,	however,	are	mostly	independent	of	
the	analysis:
– We	need	to	be	able	to	compute	functions	describing	
the	behavior	of	each	statement

– We	need	to	be	able	to	merge	several	subcomputations	
together

– We	need	an	initial	value	for	all	of	the	basic	blocks
• There	is	a	beautiful	formalism	that	captures	many	
of	these	properties

178

Join	semilattices
• A	join	semilattice	is	a	ordering	defined	on	a	set	of	

elements
• Any	two	elements	have	some	join	that	is	the	smallest	

element	larger	than	both	elements
• There	is	a	unique	bottom	element,	which	is	smaller	

than	all	other	elements
• Intuitively:

– The	join	of	two	elements	represents	combining	information	
from	two	elements	by	an	overapproximation

• The	bottom	element	represents	“no	information	yet”	or	
“the	least	conservative	possible	answer”

179

Join	semilattice	for	liveness

180

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element

What	is	the	join	of	{b}	and	{c}?

181

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{b}	and	{c}?

182

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{b}	and	{a,c}?

183

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{b}	and	{a,c}?

184

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{a}	and	{a,b}?

185

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{a}	and	{a,b}?

186

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Formal	definitions

• A	join	semilattice	is	a	pair	(V,	7),	where
• V	is	a	domain	of	elements
• 7 is	a	join	operator	that	is

– commutative:	x	7 y	=	y	7 x
– associative:	(x	7 y)	7 z	=	x	7 (y	7 z)
– idempotent:	x	7 x	=	x

• If	x	7 y	=	z,	we	say	that	z	is	the	join
or	(least	upper	bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	z such	that	z 7 x	=	x	for	all	x

187

Join	semilattices	and	ordering

188

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Greater

Lower

Join	semilattices	and	ordering

189

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least	precise

Most	precise

Join	semilattices	and	orderings

• Every	join	semilattice	(V,	7)	induces	an	
ordering	relationship	b over	its	elements

• Define	x	b y	iff	x	7 y	=	y
• Need	to	prove

– Reflexivity:	x	b x
– Antisymmetry:	If	x	b y	and	y	b x,	then	x	=	y
– Transitivity:	If	x	b y	and	y	b z,	then	x	b z

190

An	example	join	semilattice

• The	set	of	natural	numbers	and	the	max function
• Idempotent

– max{a,	a}	=	a
• Commutative

– max{a,	b}	=	max{b,	a}
• Associative

– max{a,	max{b,	c}}	=	max{max{a,	b},	c}
• Bottom	element	is	0:

– max{0,	a}	=	a
• What	is	the	ordering	over	these	elements?

191

A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	4 x	=	x
• Commutative:

– x	4 y	=	y	4 x
• Associative:

– (x	4 y)	4 z	=	x	4 (y	4 z)
• Bottom	element:

– The	empty	set:	Ø	4 x	=	x
• What	is	the	ordering	over	these	elements?

192

Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	
problems	we	encounter	in	global	analysis

• How	do	we	combine	information	from	
multiple	basic	blocks?

• What	value	do	we	give	to	basic	blocks	we	
haven't	seen	yet?

• How	do	we	know	that	the	algorithm	always	
terminates?

193

Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later

194

Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later

195

A	general	framework

• A	global	analysis	is	a	tuple	(D,	V,	7,	F,	I),	where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,	not	the	
order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values
– 7 is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	f	:	Vt V
– I is	an	initial	value

• The	only	difference	from	local	analysis	is	the	
introduction	of	the	join	operator

196

Running	global	analyses

• Assume	that	(D,	V,	7,	F,	I)	is	a	forward	analysis
• Set	OUT[s]	=	z for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	7 OUT[p2]	7 …	7 OUT[pn]
• Set	OUT[s]	=	fs (IN[s])

• The	order	of	this	iteration	does	not	matter
– This	is	sometimes	called	chaotic	iteration

197

For	comparison
• Set	OUT[s]	=	z for	all	

statements	s
• Set	OUT[entry]	=	I

• Repeat	until	no	values	
change:
– For	each	statement	s

with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	7
OUT[p2]	7 …	7 OUT[pn]

• Set	OUT[s]	=	fs (IN[s])

• Set	IN[s]	=	{} for	all	
statements	s

• Set	OUT[exit]	=	the	set	of	
variables	known	to	be	live	
on	exit

• Repeat	until	no	values	
change:
– For	each	statement	s of	the	

form	a=b+c:
• Set	OUT[s]	=	set	union	of	IN[x]	
for	each	successor	x of	s

• Set	IN[s]	=	(OUT[s]-{a}) 4 {b,c}

198

The	dataflow	framework

• This	form	of	analysis	is	called	the	dataflow	
framework

• Can	be	used	to	easily	prove	an	analysis	is	
sound

• With	certain	restrictions,	can	be	used	to	
prove	that	an	analysis	eventually	
terminates
– Again,	more	on	that	later

199

Global	constant	propagation

• Constant	propagation	is	an	optimization	
that	replaces	each	variable	that	is	known	to	
be	a	constant	value	with	that	constant

• An	elegant	example	of	the	dataflow	
framework

200

Global	constant	propagation

201

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global	constant	propagation

202

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global	constant	propagation

203

exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry

Constant	propagation	analysis

• In	order	to	do	a	constant	propagation,	we	need	to	
track	what	values	might	be	assigned	to	a	variable	at	
each	program	point

• Every	variable	will	either
– Never	have	a	value	assigned	to	it,
– Have	a	single	constant	value	assigned	to	it,
– Have	two	or	more	constant	values	assigned	to	it,	or
– Have	a	known	non-constant	value.
– Our	analysis	will	propagate	this	information	
throughout	a	CFG	to	identify	locations	where	a	value	is	
constant

204

Properties	of	constant	
propagation

• For	now,	consider	just	some	single	variable	x
• At	each	point	in	the	program,	we	know	one	of	three	

things	about	the	value	of	x:
– x is	definitely	not	a	constant,	since	it's	been	assigned	two	

values	or	assigned	a	value	that	we	know	isn't	a	constant
– x is	definitely	a	constant	and	has	value	k
– We	have	never	seen	a	value	for	x

• Note	that	the	first	and	last	of	these	are	not the	same!
– The	first	one	means	that	there	may	be	a	way	for	x to	have	

multiple	values
– The	last	one	means	that	x never	had	a	value	at	all

205

Defining	a	join	operator
• The	join	of	any	two	different	constants	is	Not-a-Constant

– (If	the	variable	might	have	two	different	values	on	entry	to	a	
statement,	it	cannot	be	a	constant)

• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-
Constant
– (If	on	some	path	the	value	is	known	not	to	be	a	constant,	then	on	

entry	to	a	statement	its	value	can't	possibly	be	a	constant)
• The	join	of	Undefined and	any	other	value	is	that	other	value

– (If	x has	no	value	on	some	path	and	does	have	a	value	on	some	
other	path,	we	can	just	pretend	it	always	had	the	assigned	value)

206

A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

207

Undefined

0-1-2 1 2

Not-a-constant

The lattice is infinitely wide

A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

208

Undefined

0-1-2 1 2

Not-a-constant

• Note:
• The	join	of	any	two	different	constants	is	Not-a-Constant
• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-Constant
• The	join	of	Undefined and	any	other	value	is	that	other	value

Global	constant	propagation

209

exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry

Global	constant	propagation

210

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

x=Undefined
y=Undefined
z=Undefined
w=Undefined

Global	constant	propagation

211

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

Global	constant	propagation

212

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
Undefined

entry
Undefined

Global	constant	propagation

213

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=Ω

entry
Undefined

Global	constant	propagation

214

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=Ω

entry
Undefined

Global	constant	propagation

215

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

216

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

217

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

y=6	7 y=Undefined	
gives		what?

Global	constant	propagation

218

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

219

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

220

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

221

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

222

exit x = 4;
Undefined

x=y=w=6
z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

223

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

224

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

225

exit
x=y=w=z=6
x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

226

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

227

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

228

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

229

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

230

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

231

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

x=6	7 x=4	gives		
what?

Global	constant	propagation

232

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6, x=º
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

233

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

234

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

235

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

236

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	analysis
reached	fixpoint

Global	constant	propagation

237

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

238

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Dataflow	for	constant	
propagation

• Direction:	Forward
• Semilattice:	Varst {Undefined,	0,	1,	-1,	2,	-2,	…,	
Not-a-Constant}
– Join	mapping	for	variables	point-wise
{xh1,yh1,zh1}	7 {xh1,yh2,zhNot-a-Constant}	=	
{xh1,yhNot-a-Constant,zhNot-a-Constant}

• Transfer	functions:
– fx=k(V)	=	V|xhk (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|xhNot-a-Constant (assign	Not-a-Constant)

• Initial	value:	x	is	Undefined
– (When	might	we	use	some	other	value?)

239

Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Given	this,	how	do	we	know	the	analyses	
will	eventually	terminate?
– In	general,	we	don‘t

240

Terminates?

241

Liveness	Analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again

242

Join	semilattice	definition

• A	join	semilattice	is	a	pair	(V,	7),	where
• V	is	a	domain	of	elements
• 7 is	a	join	operator	that	is

– commutative:	x	7 y	=	y	7 x
– associative:	(x	7 y)	7 z	=	x	7 (y	7 z)
– idempotent:	x	7 x	=	x

• If	x	7 y	=	z,	we	say	that	z	is	the	join
or	(Least	Upper	Bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	z such	that	z 7 x	=	x	for	all	x

243

Partial	ordering	induced	by	join

• Every	join	semilattice	(V,	7)	induces	an	
ordering	relationship	b over	its	elements

• Define	x	b y	iff	x	7 y	=	y
• Need	to	prove

– Reflexivity:	x	b x
– Antisymmetry:	If	x	b y	and	y	b x,	then	x	=	y
– Transitivity:	If	x	b y	and	y	b z,	then	x	b z

244

A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	4 x	=	x
• Commutative:

– x	4 y	=	y	4 x
• Associative:

– (x	4 y)	4 z	=	x	4 (y	4 z)
• Bottom	element:

– The	empty	set:	Ø	4 x	=	x
• Ordering	over	elements	=	subset	relation

245

Join	semilattice	example	for	liveness

246

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element

Dataflow	framework

• A	global	analysis	is	a	tuple	(D,	V,	7,	F,	I),	
where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,
NOT the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values	(sometimes	called	domain)
– 7 is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	fs :	Vt V
(for	every	statement	s)
– I is	an	initial	value

247

Running	global	analyses
• Assume	that	(D,	V,	7,	F,	I)	is	a	forward	analysis
• For	every	statement	s	maintain	values	before		- IN[s]	- and	after	

- OUT[s]
• Set	OUT[s]	=	z for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
PRED[s]={p1,	p2,	…	,	pn}
• Set	IN[s]	=	OUT[p1]	7 OUT[p2]	7 …	7 OUT[pn]
• Set	OUT[s]	=	fs(IN[s])

• The	order	of	this	iteration	does	not	matter
– Chaotic	iteration

248

Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Problem: how	do	we	know	the	analyses	will	
eventually	terminate?

249

A	non-terminating	analysis

• The	following	analysis	will	loop	infinitely	on	
any	CFG	containing	a	loop:

• Direction: Forward
• Domain: ℕ
• Join	operator:	max
• Transfer	function: f(n) = n	+	1
• Initial	value:	0

250

A	non-terminating	analysis

251

start

end

x = y

Initialization

252

start

end

x = y0

0

Fixed-point	iteration

253

start

end

x = y0

0

Choose	a	block

254

start

end

x = y0

0

Iteration	1

255

start

end

x = y0

0

0

Iteration	1

256

start

end

x = y1

0

0

Choose	a	block

257

start

end

x = y1

0

0

Iteration	2

258

start

end

x = y1

0

0

Iteration	2

259

start

end

x = y1

0

1

Iteration	2

260

start

end

x = y2

0

1

Choose	a	block

261

start

end

x = y2

0

1

Iteration	3

262

start

end

x = y2

0

1

Iteration	3

263

start

end

x = y2

0

2

Iteration	3

264

start

end

x = y3

0

2

Why	doesn’t	this	terminate?
• Values	can	increase	without	bound
• Note	that	“increase”	refers	to	the	lattice	
ordering,	not	the	ordering	on	the	natural	
numbers

• The	height of	a	semilattice	is	the	length	of	the	
longest	increasing	sequence	in	that	semilattice

• The	dataflow	framework	is	not	guaranteed	to	
terminate	for	semilattices	of	infinite	height

• Note	that	a	semilattice	can	be	infinitely	large	
but	have	finite	height
– e.g.	constant	propagation

265

0

1

2

3

4

...

Height	of	a	lattice

• An	increasing	chain	is	a	sequence	of	elements
z a a1 a a2 a …	a ak
– The	length	of	such	a	chain	is	k

• The	height	of	a	lattice	is	the	length	of	the	maximal	
increasing	chain

• For	liveness	with	n program	variables:
– {}	_ {v1}	_ {v1,v2}	_ …	_ {v1,…,vn}

• For	available	expressions	it	is	the	number	of	
expressions	of	the	form	a=b	op	c
– For	n program	variables	and	m operator	types:
m$n3

266

Another	non-terminating	
analysis

• This	analysis	works	on	a	finite-height	
semilattice,	but	will	not	terminate	on	
certain	CFGs:

• Direction: Forward
• Domain: Boolean	values	true and	false
• Join	operator:	Logical	OR
• Transfer	function:	Logical	NOT
• Initial	value:	false

267

A	non-terminating	analysis

268

start

end

x = y

Initialization

269

start

end

x = yfalse

false

Fixed-point	iteration

270

start

end

x = yfalse

false

Choose	a	block

271

start

end

x = yfalse

false

Iteration	1

272

start

end

x = yfalse

false

false

Iteration	1

273

start

end

x = ytrue

false

false

Iteration	2

274

start

end

x = ytrue

false

true

Iteration	2

275

start

end

x = yfalse

false

true

Iteration	3

276

start

end

x = yfalse

false

false

Iteration	3

277

start

end

x = ytrue

false

false

Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever

278

false

true

false

true

false

...

Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever

• How	can	we	fix	this?

279

false

true

false

true

false

...

Monotone	transfer	functions

• A	transfer	function	f is	monotone iff
if	x	b y,	then	f(x)	b f(y)

• Intuitively,	if	you	know	less	information	about	a	
program	point,	you	can't	“gain	back”	more	
information	about	that	program	point

• Many	transfer	functions	are	monotone,	including	
those	for	liveness	and	constant	propagation

• Note:	Monotonicity does	notmean	that	
x	b f(x)
– (This	is	a	different	property	called	extensivity)

280

Liveness	and	monotonicity

• A	transfer	function	f is	monotone iff
if	x	b y,	then	f(x)	b f(y)

• Recall	our	transfer	function	for	a	=	b	+	c	is
– fa	=	b	+	c(V)	=	(V	– {a})	4 {b,	c}

• Recall	that	our	join	operator	is	set	union	
and	induces	an	ordering	relationship

X	b Y	iff X	`Y
• Is	this	monotone?

281

Is	constant	propagation	monotone?
• A	transfer	function	f is	monotone iff

if	x	b y,	then	f(x)	b f(y)
• Recall	our	transfer	functions

– fx=k(V)	=	V|xhk (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|xhNot-a-Constant (assign	Not-a-
Constant)

• Is	this	monotone?

282Undefined

0-1-2 1 2

Not-a-constant

The	grand	result

• Theorem: A	dataflow	analysis	with	a	finite-
height	semilattice and	family	of	monotone	
transfer	functions always	terminates

• Proof	sketch:
– The	join	operator	can	only	bring	values	up
– Transfer	functions	can	never	lower	values	back	
down	below	where	they	were	in	the	past	
(monotonicity)

– Values	cannot	increase	indefinitely	(finite	height)

283

An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a 7 b)	=	f(a)	7 f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	
the	fixed-point	solution	is	the	solution	that	
would	be	computed	by	joining	results	from	all	
(potentially	infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	ignore	program	conditions

284

An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a 7 b)	=	f(a)	7 f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	the	
fixed-point	solution	is	equal	to	the	solution	
computed	by	joining	results	from	all	(potentially	
infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	pretend	all	control-flow	paths	can	be	
executed	by	the	program

• Which	analyses	use	distributive	functions?

285

Loop	optimizations
• Most	of	a	program’s	computations	are	done	inside	

loops
– Focus	optimizations	effort	on	loops

• The	optimizations	we’ve	seen	so	far	are	independent	of	
the	control	structure

• Some	optimizations	are	specialized	to	loops
– Loop-invariant	code	motion
– (Strength	reduction	via	induction	variables)

• Require	another	type	of	analysis	to	find	out	where	
expressions	get	their	values	from
– Reaching	definitions

• (Also	useful	for	improving	register	allocation)

286

Loop	invariant	computation

287

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

Loop	invariant	computation

288

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

t*4	and	y+z
have	same	value	on	
each	iteration

Code	hoisting

289

x < w

endx = x + 1

start

y = …
t = …
z = …
y = t * 4
w = y + z

What	reasoning	did	we	use?

290

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

y	is	defined	inside	loop	but	it	
is	loop	invariant	since	t*4	is	
loop-invariant

Both	t	and	z	are	defined	
only	outside	of	loop

constants	are	trivially	
loop-invariant

What	about	now?

291

y	=	t	*	4
x	<	y	+	z

endx	=	x	+	1
t	=	t	+	1

start

y	=	…
t	=	…
z	=	…

Now	t	is	not	loop-invariant	
and	so	are	t*4	and	y

Loop-invariant	code	motion
• d:	t	=	a1 op	a2

– d is	a	program	location
• a1 op	a2	loop-invariant (for	a	loop	L)	if	computes	the	

same	value	in	each	iteration
– Hard	to	know	in	general

• Conservative	approximation
– Each	ai is	a	constant,	or
– All	definitions	of	ai that	reach	d are	outside	L,	or
– Only	one	definition	of	of ai reaches	d,	and	is	loop-invariant	

itself
• Transformation:	hoist	the	loop-invariant	code	outside	

of	the	loop

292

Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined

293

Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined	

• Direction: Forward
• Domain: sets	of	program	locations	that	are	definitions	`
• Join	operator: union
• Transfer	function:

fd:	a=b	op	c(RD) =	(RD	- defs(a))	4 {d}
fd:	not-a-def(RD) =	RD

– Where	defs(a)	is	the	set	of	locations	defining	a (statements	of	the	
form	a=...)

• Initial	value: {}

294

Reaching	definitions	analysis

295

d4: y = t * 4

d4:x < y + z

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end
{}

Reaching	definitions	analysis

296

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end
{}

Initialization

297

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

Iteration	1

298

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

{}

Iteration	1

299

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{}

{}

{}

Iteration	2

300

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration	2

301

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration	2

302

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}

Iteration	2

303

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration	3

304

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration	3

305

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration	4

306

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration	4

307

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration	4

308

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration	5

309

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration	6

310

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Which	expressions	are	loop	invariant?

311

t	is	defined	only	in	
d2	– outside	of	loop

z	is	defined	only	in	
d3	– outside	of	loop

y	is	defined	only	in	d4	– inside	
of	loop	but	depends	on	t	and	
4,	both	loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{d2, d3, d4, d5}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x	is	defined	only	in	d5	–
inside	of	loop	so	is	not	a	
loop-invariant

Inferring	loop-invariant	
expressions

• For	a	statement	s of	the	form	t	=	a1 op	a2
• A	variable	ai is	immediately	loop-invariant	if	all	
reaching	definitions	IN[s]={d1,…,dk}	for	ai are	
outside	of	the	loop

• LOOP-INV	=	immediately	loop-invariant	variables	
and	constants
LOOP-INV	=	LOOP-INV	4 {x	|	d:	x	=	a1 op	a2, d	is	in	
the	loop,	and	both	a1 and	a2	are	in	LOOP-INV}
– Iterate	until	fixed-point

• An	expression	is	loop-invariant	if	all	operands	are	
loop-invariants

312

Computing	LOOP-INV

313

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{T}

Computing	LOOP-INV

314

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t}

Computing	LOOP-INV

315

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}

Computing	LOOP-INV

316

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}

Computing	LOOP-INV

317

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}

318

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}
LOOP-INV	=	{t,	z}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

Computing	LOOP-INV

Computing	LOOP-INV

319

d4:	y	=	t	*	4

x	<	y	+	z	 end

d5:	x	=	x	+	1

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

LOOP-INV	=	{t,	z,	y}

Induction	variables

320

while (i < x) {
j = a + 4 * i
a[j] = j
i = i + 1

}
i is	incremented	by	a	loop-
invariant	expression	on	each	
iteration	– this	is	called	an	
induction	variable

j	is	a	linear	function	of	
the	induction	variable	
with	multiplier	4

Strength-reduction

321

j = a + 4 * i
while (i < x) {

j = j + 4
a[j] = j
i = i + 1

}

Prepare	initial	
value

Increment	by	
multiplier

The	End

