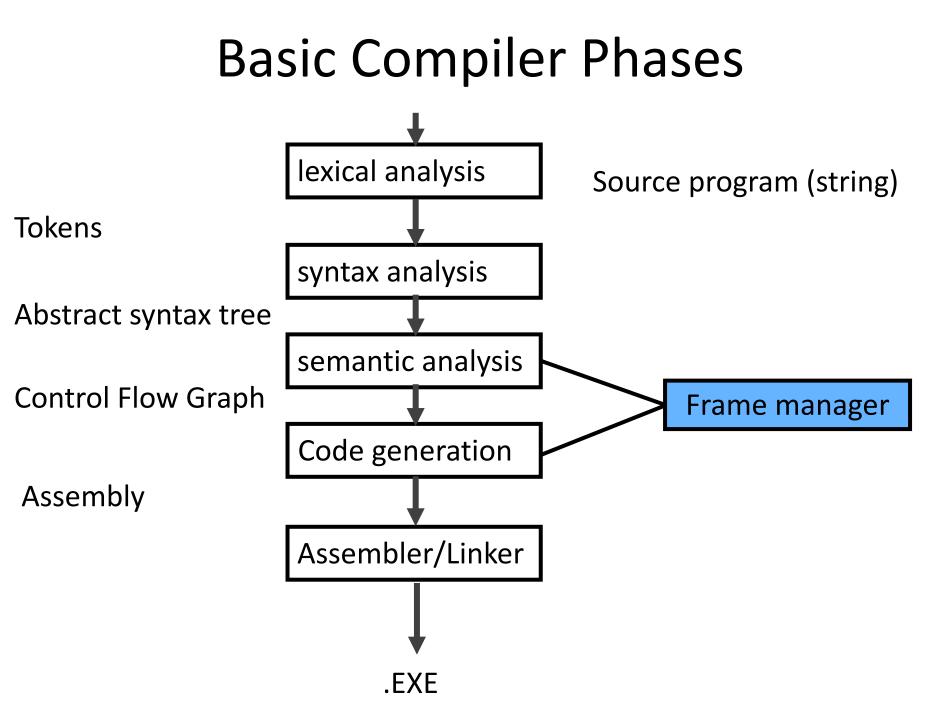
# Compilation Lecture 7



IR + Optimizations Noam Rinetzky

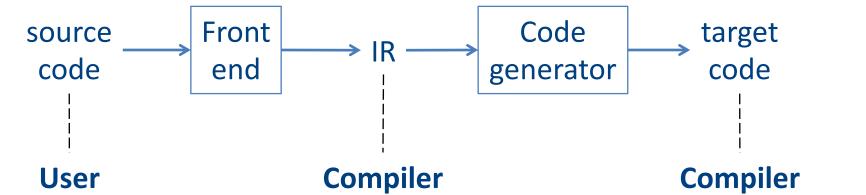
1



## **IR** Optimization



## **Optimization points**



profile program change algorithm Compiler intraprocedural IR Interprocedural IR IR optimizations

register allocation instruction selection peephole transformations



## **IR** Optimization

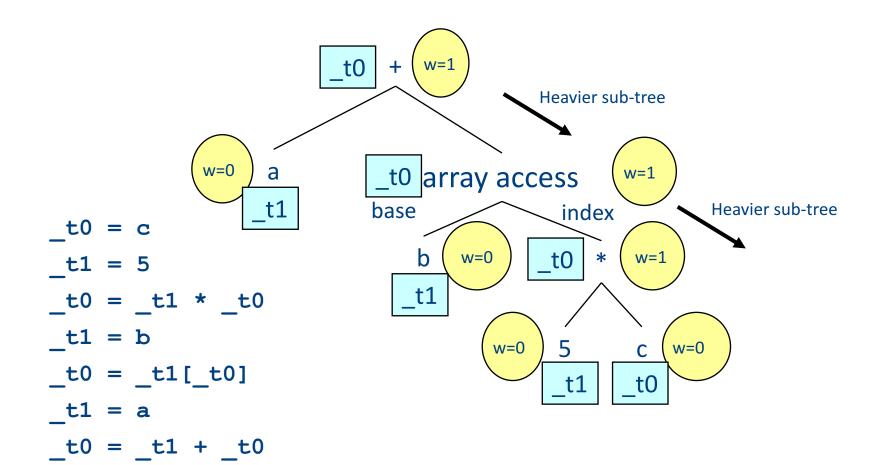
• Making code better

## **IR** Optimization

• Making code "better"

# "Optimized" evaluation \_t0 = cgen( a+b[5\*c] )

Phase 2: - use weights to decide on order of translation



### But what about...

- a := 1 + 2; y := a + b; x := a + b + 8; z := b + a; a := a + 1;
- w:= a + b;

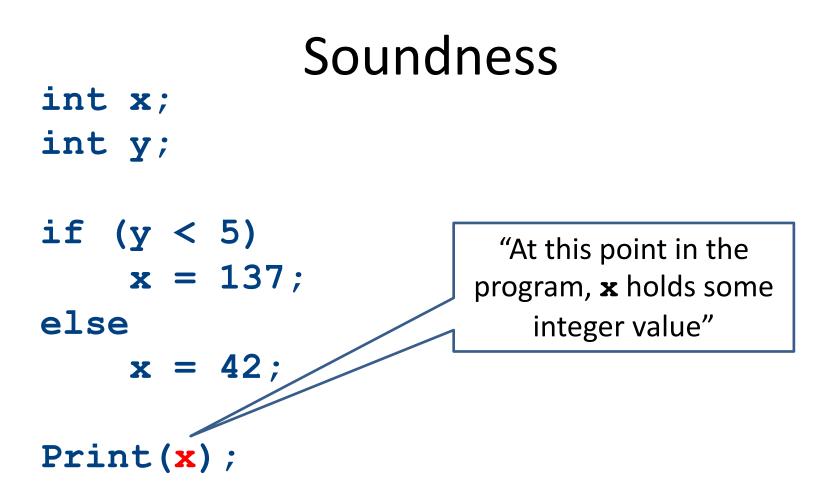
# **Overview of IR optimization**

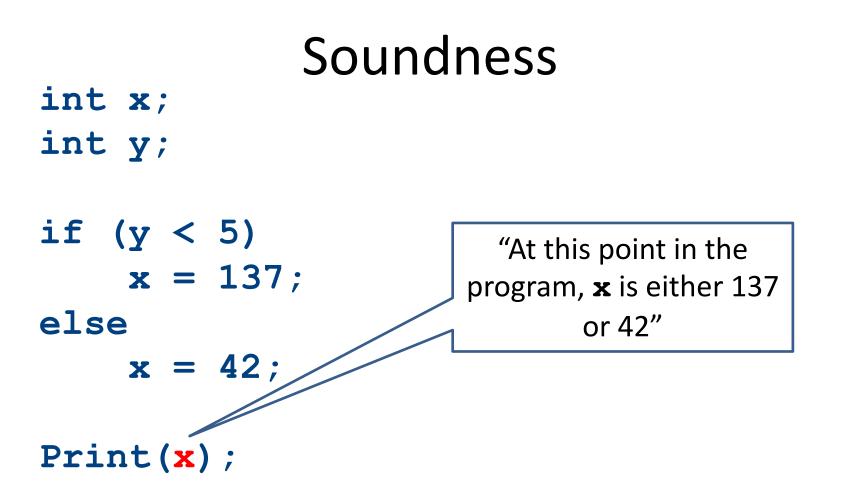
#### • Formalisms and Terminology

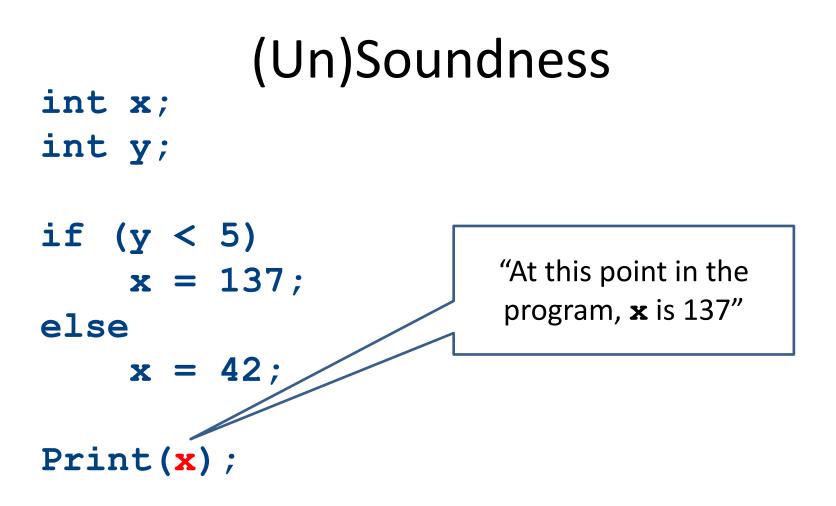
- Control-flow graphs
- Basic blocks
- Local optimizations
  - Speeding up small pieces of a procedure
- Global optimizations
  - Speeding up procedure as a whole
- The dataflow framework
  - Defining and implementing a wide class of optimizations

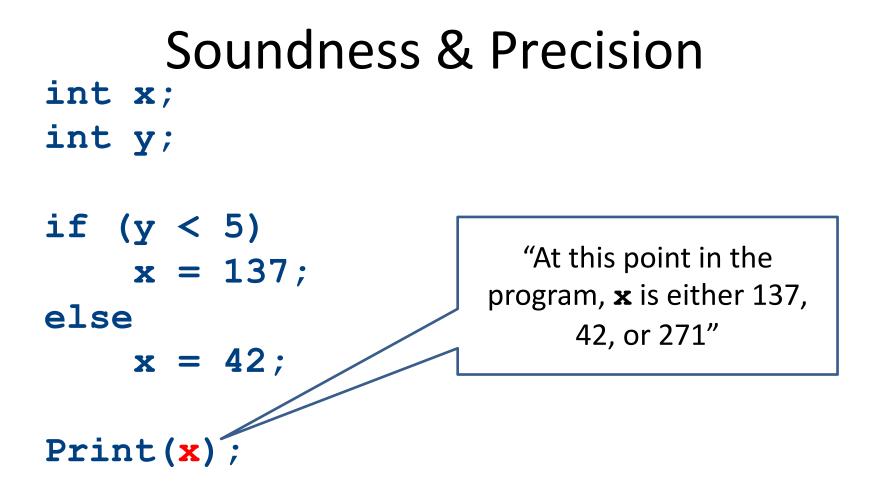
## **Program Analysis**

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called **sound** if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
  - (Why?)









## Semantics-preserving optimizations

- An optimization is semantics-preserving if it does not alter the semantics of the original program
- Examples:
  - Eliminating unnecessary temporary variables
  - Computing values that are known statically at compile-time instead of runtime
  - Evaluating constant expressions outside of a loop instead of inside
- Non-examples:
  - Replacing bubble sort with quicksort (why?)
  - The optimizations we will consider in this class are all semantics-preserving

# A formalism for IR optimization

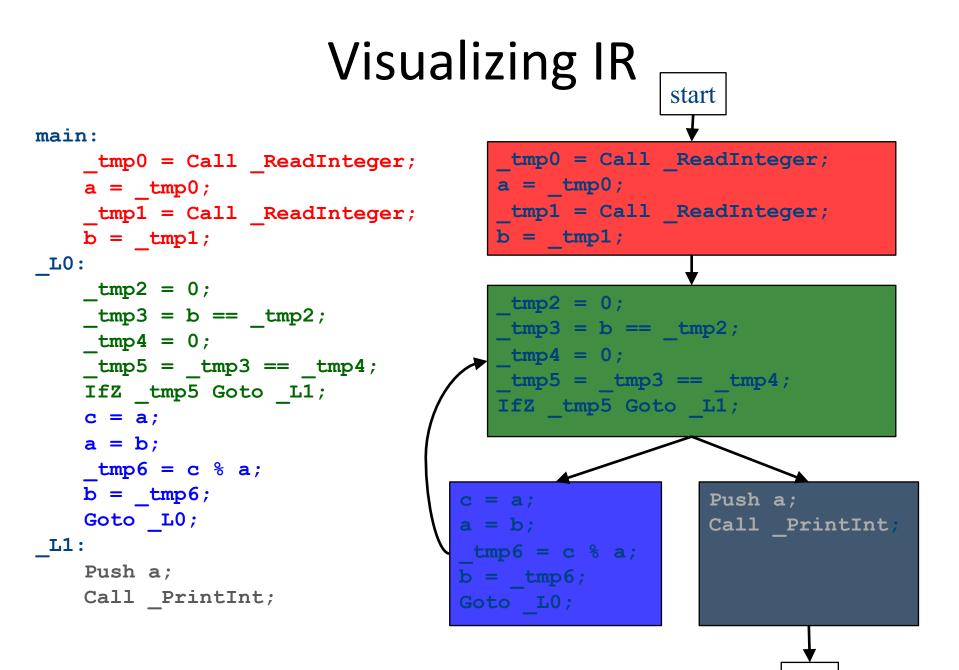
- Every phase of the compiler uses some new abstraction:
  - Scanning uses regular expressions
  - Parsing uses CFGs
  - Semantic analysis uses proof systems and symbol tables
  - IR generation uses ASTs
- In optimization, we need a formalism that captures the structure of a program in a way amenable to optimization

# Visualizing IR

```
main:
   _tmp0 = Call _ReadInteger;
   a = tmp0;
   _tmp1 = Call _ReadInteger;
   b = tmp1;
L0:
   _{tmp2} = 0;
   _tmp3 = b == _tmp2;
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
   IfZ tmp5 Goto L1;
   c = a;
   a = b;
   _tmp6 = c % a;
   b = tmp6;
   Goto L0;
L1:
   Push a;
   Call PrintInt;
```

# Visualizing IR

```
main:
   tmp0 = Call ReadInteger;
   a = tmp0;
    tmp1 = Call _ReadInteger;
   b = tmp1;
L0:
   _{tmp2} = 0;
   tmp3 = b == tmp2;
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
   IfZ _tmp5 Goto _L1;
   c = a;
   a = b;
   _tmp6 = c % a;
   b = tmp6;
   Goto L0;
L1:
   Push a;
   Call PrintInt;
```



enc

## Basic blocks

- A basic block is a sequence of IR instructions where
  - There is exactly one spot where control enters the sequence, which must be at the start of the sequence
  - There is exactly one spot where control leaves the sequence, which must be at the end of the sequence
- Informally, a sequence of instructions that always execute as a group

## **Control-Flow Graphs**

- A control-flow graph (CFG) is a graph of the basic blocks in a function
- The term CFG is overloaded from here on out, we'll mean "control-flow graph" and not "context free grammar"
- Each edge from one basic block to another indicates that control can flow from the end of the first block to the start of the second block
- There is a dedicated node for the start and end of a function

# Types of optimizations

- An optimization is local if it works on just a single basic block
- An optimization is global if it works on an entire control-flow graph
- An optimization is interprocedural if it works across the control-flow graphs of multiple functions
  - We won't talk about this in this course

## Basic blocks exercise

| <pre>int main() {</pre>    | START:                                 |
|----------------------------|----------------------------------------|
| <pre>int x;</pre>          | t0 = 137;                              |
| <pre>int y;</pre>          | $\overline{\mathbf{y}} = \mathbf{t}0;$ |
| <pre>int z;</pre>          | IfZ x Goto L0;                         |
|                            | t1 = y;                                |
| y = 137;                   | z = t1;                                |
| if (x == 0)                | Goto END:                              |
| z = y;                     | _L0:                                   |
| else                       | t2 = y;                                |
| $\mathbf{x} = \mathbf{y};$ | $\mathbf{x} = \mathbf{t}2;$            |
| }                          | END:                                   |

#### Divide the code into basic blocks

## Control-flow graph exercise

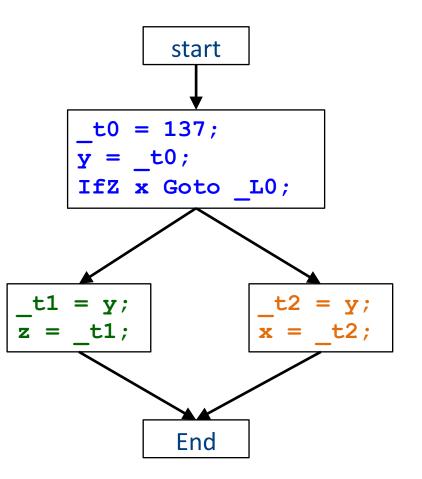
int main() {
 int x;
 int y;
 int z;
 y = 137;
 if (x == 0)
 z = y;
 else
 x = y;
}

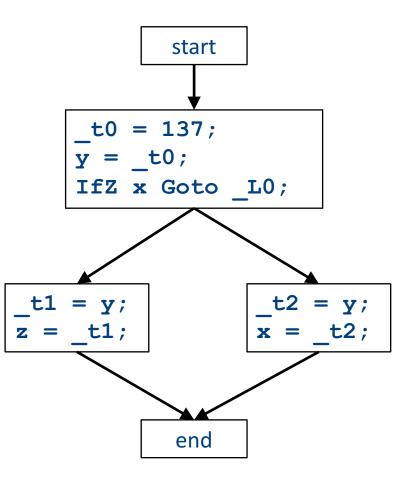
**START**:

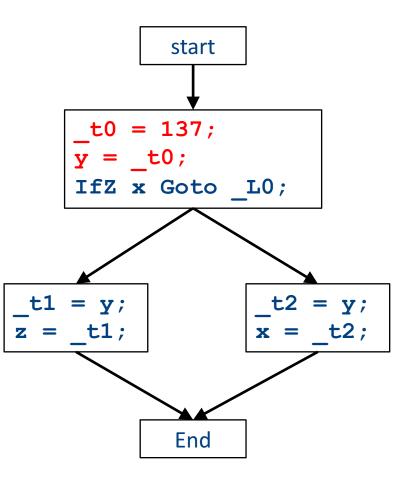
\_t0 = 137; y = \_t0; IfZ x Goto \_L0; t1 = y; z = \_t1; Goto END: \_t2 = y; x = \_t2; END:

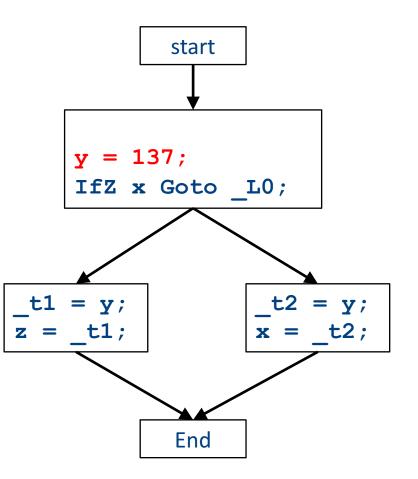
#### Draw the control-flow graph

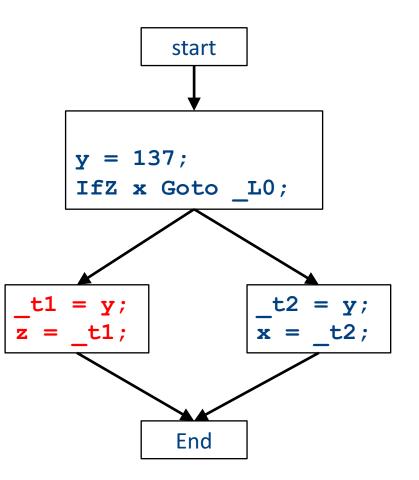
## Control-flow graph exercise

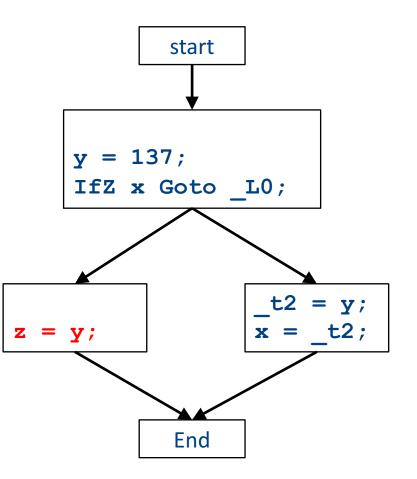


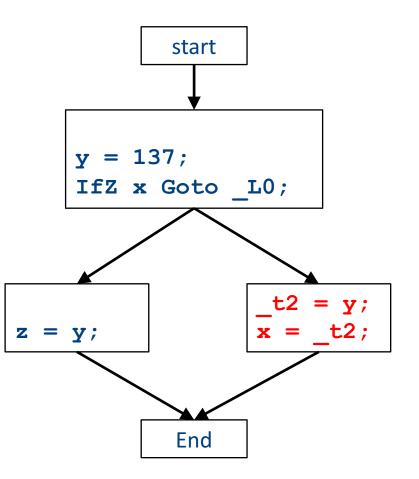


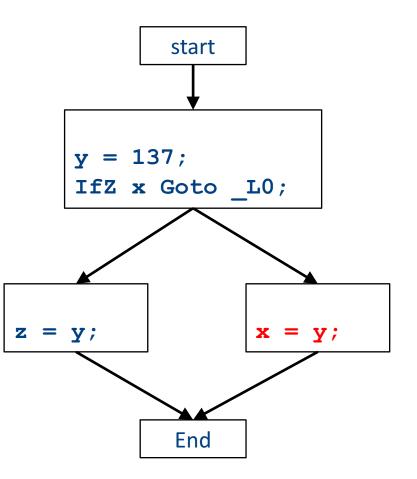




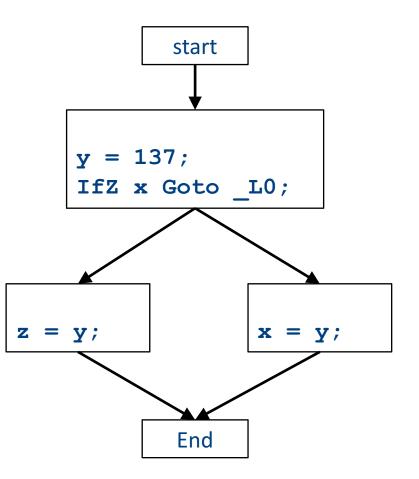




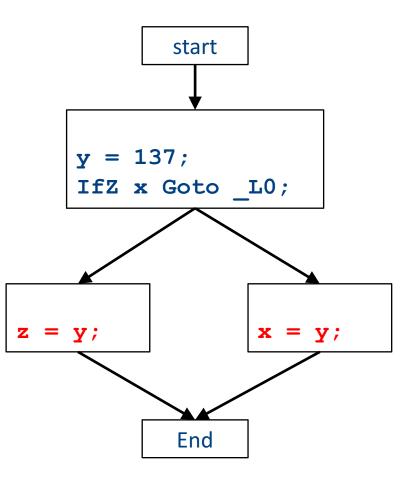




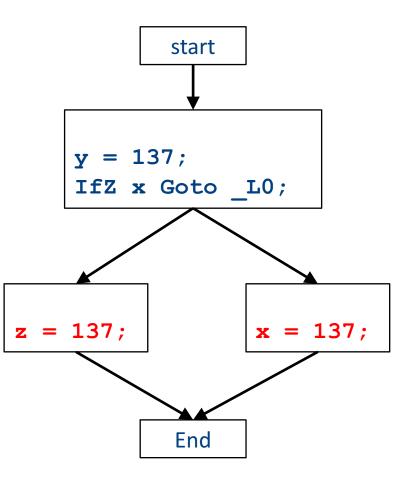
## **Global optimizations**



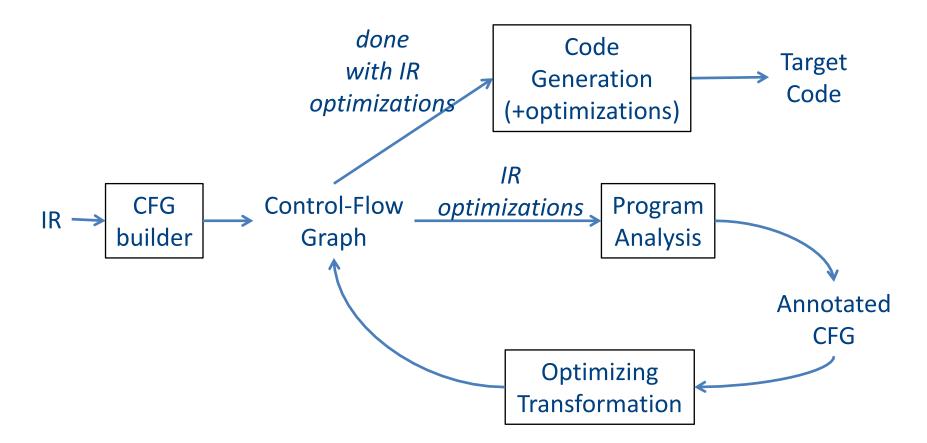
## **Global optimizations**

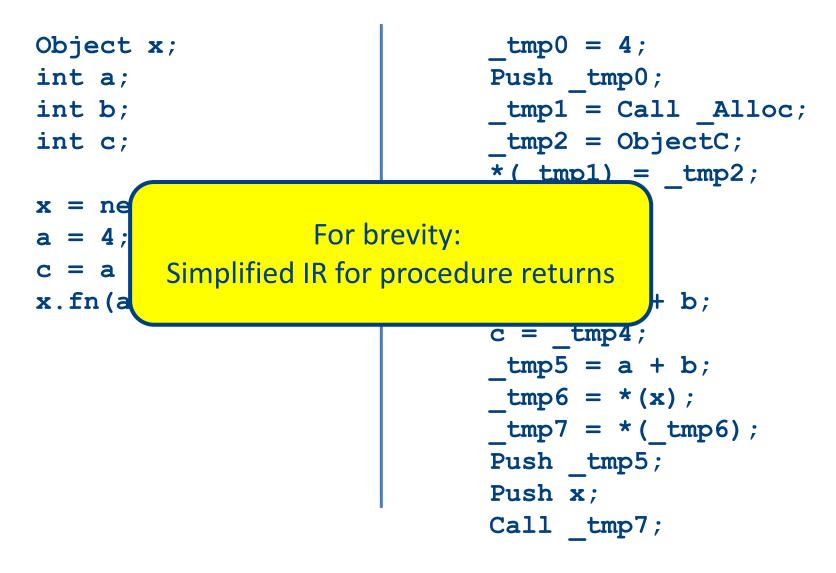


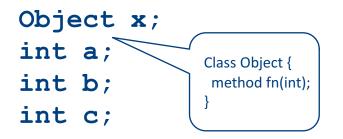
## **Global optimizations**

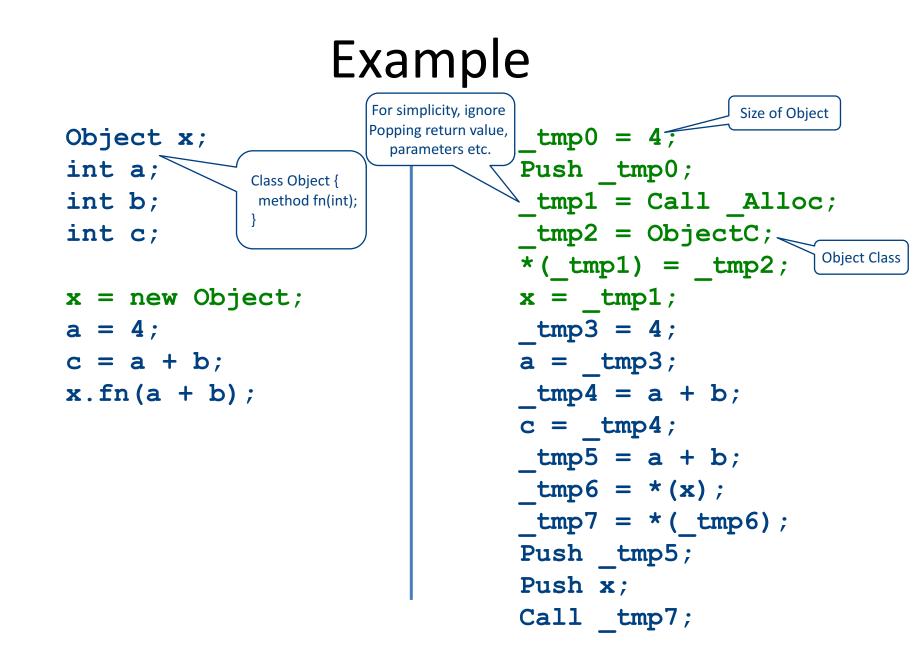


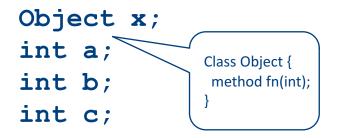
#### **Optimization path**

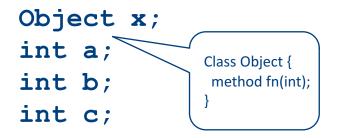




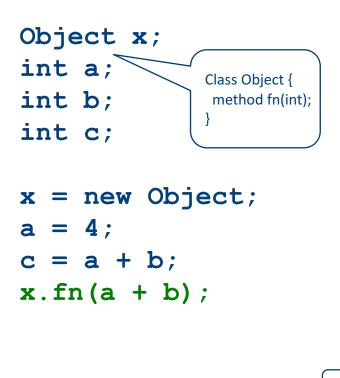








Start



If we have two variable assignments
 v1 = a op b

... v2 = a op b

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b

... v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

If we have two variable assignments
 v1 = a op b [or: v1 = a]

... v2 = a op b [or: v2 = a]

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b [or: v1 = a]

v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

Object x; int a; int b; int c; x = new Obj

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = a + b;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

Object x; int a; int b; int c; x = new Obj

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;
x = new Obj
```

```
x = new Object;

a = 4;

c = a + b;

x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

Object x; int a; int b; int c; x = new Object;

a = 4; c = a + b; x.fn(a + b);

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

Object x; int a; int b; int c; x = new Ob-

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

- If we have a variable assignment v1 = v2 then as long as v1 and v2 are not reassigned, we can rewrite expressions of the form
  - a = ... v1 ...

#### as

provided that such a rewrite is legal

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

Object x; int a; int b; int c; x = new Ob

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

Object x; int a; int b; int c; x = new Ob

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call _tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call _tmp7;
```

Object x; int a; int b; int c; x = new Object; a = 4; c = a + b; x.fn(a + b);

Is this transformation OK?

What do we need to know?

tmp0 = 4;Push tmp0; tmp1 = Call Alloc; tmp2 = ObjectC;\*( tmp1) = ObjectC; x = tmp1;tmp3 = tmp0;a = tmp3;tmp4 = tmp3 + b;c = tmp4;tmp5 = c;tmp6 = ObjectC; tmp7 = \*(tmp6);Push c; Push tmp1; Call tmp7;

Object x; int a; int b; int c; x = new Ob

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call tmp7;
```

Object x; int a; int b; int c; x = new Ob

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```

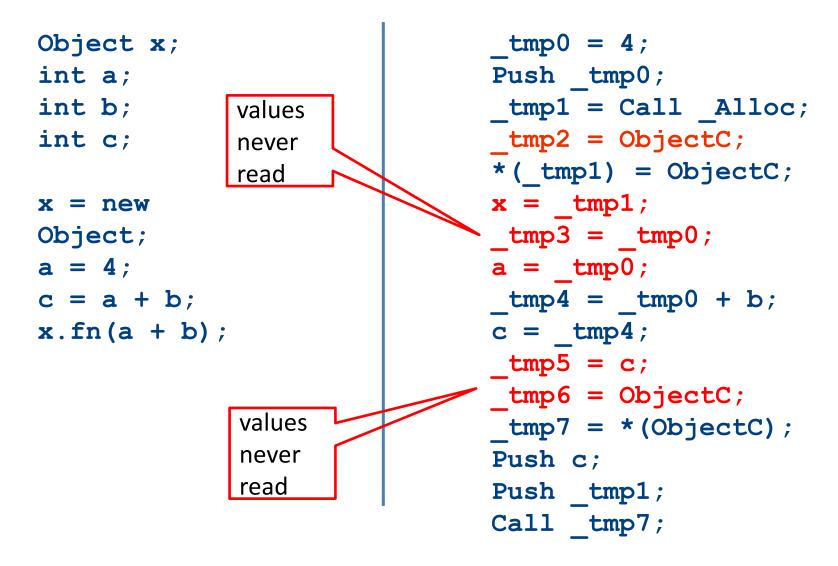
- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Object x; int a; int b; int c;

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call _tmp7;
```

Object x; int a; int b; int c;

```
tmp0
      = 4;
Push tmp0;
 tmp1 = Call Alloc;
tmp2 = ObjectC;
* tmp1) = ObjectC;
\mathbf{x} = \_tmp1;
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
 tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```



Object x; int a; int b; int c; x = new Object; a = 4; c = a + b; x.fn(a + b); \_tmp0 = 4; Push \_tmp0; \_tmp1 = Call \_Alloc;

\*(\_tmp1) = ObjectC;

```
tmp4 = tmp0 + b;
c = tmp4;
```

```
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
```

# Applying local optimizations

- The different optimizations we've seen so far all take care of just a small piece of the optimization
- Common subexpression elimination eliminates unnecessary statements
- Copy propagation helps identify dead code
- Dead code elimination removes statements that are no longer needed
- To get maximum effect, we may have to apply these optimizations numerous times

b = a \* a; c = a \* a; d = b + c; e = b + b;

b = a \* a; c = a \* a; d = b + c; e = b + b;

Which optimization should we apply here?

b = a \* a; c = b; d = b + c; e = b + b;

Which optimization should we apply here?

**Common sub-expression elimination** 

b = a \* a; c = b; d = b + c; e = b + b;

Which optimization should we apply here?

b = a \* a; c = b; d = b + b; e = b + b;

Which optimization should we apply here?

Copy propagation

b = a \* a; c = b; d = b + b; e = b + b;

Which optimization should we apply here?

b = a \* a; c = b; d = b + b; e = d;

Which optimization should we apply here?

Common sub-expression elimination (again)

# Other types of local optimizations

- Arithmetic Simplification
  - Replace "hard" operations with easier ones
  - e.g. rewrite x = 4 \* a; as x = a << 2;</pre>
- Constant Folding
  - Evaluate expressions at compile-time if they have a constant value.

-e.g. rewrite x = 4 \* 5; as x = 20;

### Optimizations and analyses

- Most optimizations are only possible given some analysis of the program's behavior
- In order to implement an optimization, we will talk about the corresponding program analyses

### Available expressions

- Both common subexpression elimination and copy propagation depend on an analysis of the available expressions in a program
- An expression is called available if some variable in the program holds the value of that expression
- In common subexpression elimination, we replace an available expression by the variable holding its value
- In copy propagation, we replace the use of a variable by the available expression it holds

### Finding available expressions

- Initially, no expressions are available
- Whenever we execute a statement
   a = b op c:
  - Any expression holding **a** is invalidated
  - The expression **a** = **b** op **c** becomes available
- Idea: Iterate across the basic block, beginning with the empty set of expressions and updating available expressions at each variable

| Available expressions example              |
|--------------------------------------------|
| <pre>{ }</pre>                             |
| a = b + 2;                                 |
| $\{ a = b + 2 \}$                          |
| b = x;                                     |
| $\{ b = x \}$                              |
| d = a + b;                                 |
| $\{ b = x, d = a + b \}$                   |
| e = a + b;                                 |
| $\{ b = x, d = a + b, e = a + b \}$        |
| d = x;                                     |
| $\{ b = x, d = x, e = a + b \}$            |
| f = a + b;                                 |
| $\{ b = x, d = x, e = a + b, f = a + b \}$ |

#### Common sub-expression elimination **{ }** a = b + 2; $\{ a = b + 2 \}$ $\mathbf{b} = \mathbf{x};$ $\{ b = x \}$ d = a + b; $\{ b = x, d = a + b \}$ e = d; $\{ b = x, d = a + b, e = a + b \}$ d = b; $\{ b = x, d = x, e = a + b \}$ f = e; $\{ b = x, d = x, e = a + b, f = a + b \}$

#### **Common sub-expression elimination { }** a = b + 2; $\{ a = b + 2 \}$ $\mathbf{b} = \mathbf{x};$ $\{ b = x \}$ d = a + b; $\{ b = x, d = a + b \}$ e = a + b; $\{ b = x, d = a + b, e = a + b \}$ d = x; $\{ b = x, d = x, e = a + b \}$ f = a + b; $\{ b = x, d = x, e = a + b, f = a + b \}$

#### **Common sub-expression elimination { }** a = b + 2; $\{ a = b + 2 \}$ b = 1; $\{ b = 1 \}$ d = a + b; $\{ b = 1, d = a + b \}$ e = a + b; $\{ b = 1, d = a + b, e = a + b \}$ d = b; $\{ b = 1, d = b, e = a + b \}$ f = a + b; $\{a = b, c = b, d = b, e = a + b, f = a + b \}$

#### **Common sub-expression elimination { }** a = b + 2; $\{ a = b + 2 \}$ b = 1; $\{ b = 1 \}$ d = a + b; $\{ b = 1, d = a + b \}$ e = a + b; $\{ b = 1, d = a + b, e = a + b \}$ d = b; $\{ b = 1, d = b, e = a + b \}$ f = a + b; $\{a = b, c = b, d = b, e = a + b, f = a + b \}$

#### **Common sub-expression elimination { }** a = b; $\{ a = b \}$ c = b; $\{ a = b, c = b \}$ d = a + b; $\{ a = b, c = b, d = a + b \}$ e = a + b; $\{a = b, c = b, d = a + b, e = a + b\}$ d = b; $\{a = b, c = b, d = b, e = a + b\}$ f = a + b; $\{a = b, c = b, d = b, e = a + b, f = a + b \}$

#### **Common sub-expression elimination { }** a = b; $\{ a = b \}$ c = b; $\{ a = b, c = b \}$ d = a + b; $\{ a = b, c = b, d = a + b \}$ e = a + b; $\{a = b, c = b, d = a + b, e = a + b\}$ d = b; $\{a = b, c = b, d = b, e = a + b\}$ f = a + b; $\{a = b, c = b, d = b, e = a + b, f = a + b \}$

#### **Common sub-expression elimination { }** a = b; $\{ a = b \}$ b = 1; $\{ a = b, b = b \}$ d = a + b; $\{ a = b, c = b, d = a + b \}$ e = d; $\{a = b, c = b, d = a + b, e = a + b\}$ d = a; $\{a = b, c = b, d = b, e = a + b\}$ f = e; $\{a = b, c = b, d = b, e = a + b, f = a + b \}$

### Live variables

- The analysis corresponding to dead code elimination is called liveness analysis
- A variable is live at a point in a program if later in the program its value will be read before it is written to again
- Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

### Computing live variables

- To know if a variable will be used at some point, we iterate across the statements in a basic block in reverse order
- Initially, some small set of values are known to be live (which ones depends on the particular program)
- When we see the statement a = b op c:
  - Just before the statement, a is not alive, since its value is about to be overwritten
  - Just before the statement, both b and c are alive, since we're about to read their values
  - (what if we have a = a + b?)

{ b } a = b;{ a, b } c = a;{ a, b } d = a + b;{ a, b, d } e = d;{ a, b, e } d = a;{ b, d, e } f = e;{ b, d } - given

### Liveness analysis

#### { b } **Dead Code Elimination** a = b;{ a, b } c = a;Which statements are dead? { a, b } d = a + b;{ a, b, d } e = d;{ a, b, e } d = a;{ b, d, e }

f = e;

{ b, d }

```
{ b }
        Dead Code Elimination
a = b;
 { a, b }
{ a, b }
d = a + b;
 { a, b, d }
e = d;
 { a, b, e }
d = a;
 { b, d, e }
 { b, d }
```

## { b } a = b; Liveness analysis II

```
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

## { b } a = b; Liveness analysis II

```
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

#### { b } a = b; Dead code elimination

```
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

#### { b } a = b; Dead code elimination

{ a, b }
d = a + b;
{ a, b, d }
{ a, b }
d = a;

{ b, d }

## { b } a = b; Liveness analysis III

{ a, b } d = a + b; Which statements are dead?

{ a, b }
d = a;
{ b, d }

## { b } a = b; Dead code elimination

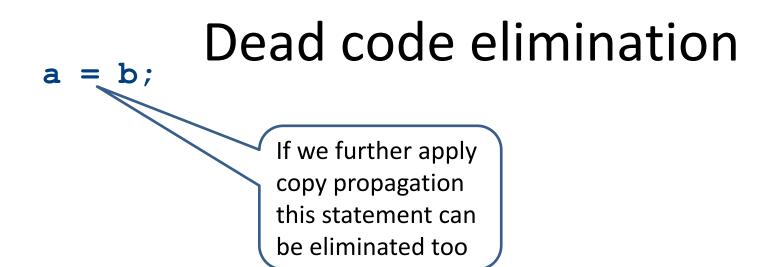
{ a, b } d = a + b; Which statements are dead?

{ a, b }
d = a;
{ b, d }

### { b } a = b; Dead code elimination

{ a, b }

{ a, b }
d = a;
{ b, d }



#### d = a;

### A combined algorithm

- Start with initial live variables at end of block
- Traverse statements from end to beginning
- For each statement
  - If assigns to dead variables eliminate it
  - Otherwise, compute live variables before statement and continue in reverse

c = a;

{ a, b } d = a;

c = a;

{ a, b } d = a;

{ a, b } d = a;

# { b } a = b; A combined algorithm

{ a, b } d = a;

$$d = a;$$

# High-level goals

- Generalize analysis mechanism
  - Reuse common ingredients for many analyses
  - Reuse proofs of correctness
- Generalize from basic blocks to entire CFGs
  - Go from local optimizations to global optimizations

#### **Program Analysis**

- Reasons about the **behavior** of a program
- An analysis is **sound** if it only asserts an correct facts about a program
- An analysis is **precise** if it asserts all correct facts (of interests)
- Sound analysis allows for semanticpreserving optimizations
  - "More precise" analyses are "more useful": may enable more optimizations

#### Examples

• Available expressions, allows:

Common sub-expressions elimination

Copy propagation

- Constant propagation, allows:
   Constant folding
- Liveness analysis

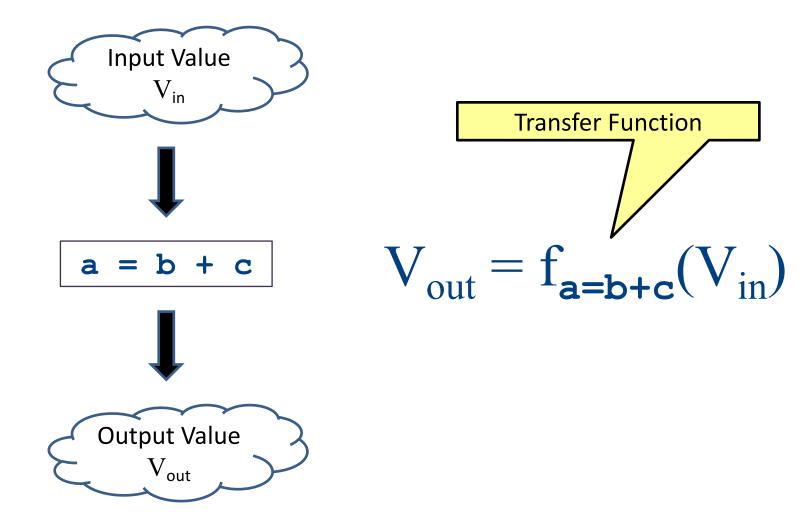
Dead-code elimination

➢ Register allocation

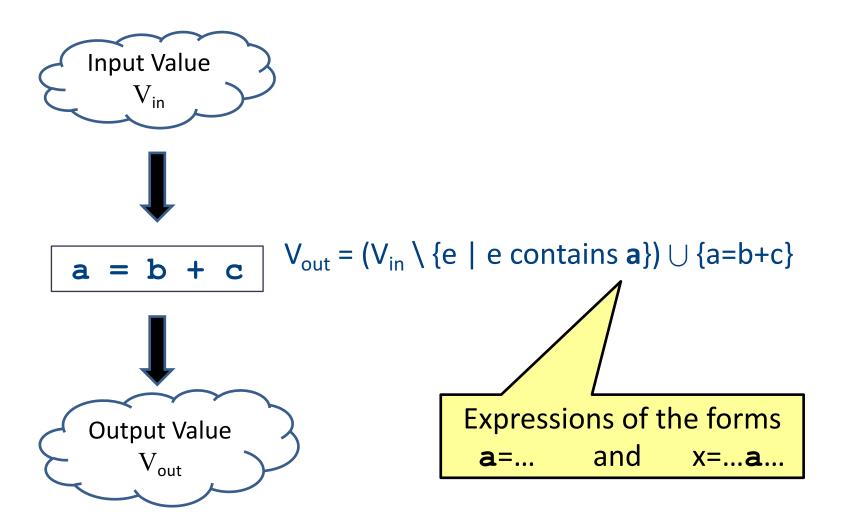
# Local vs. global optimizations

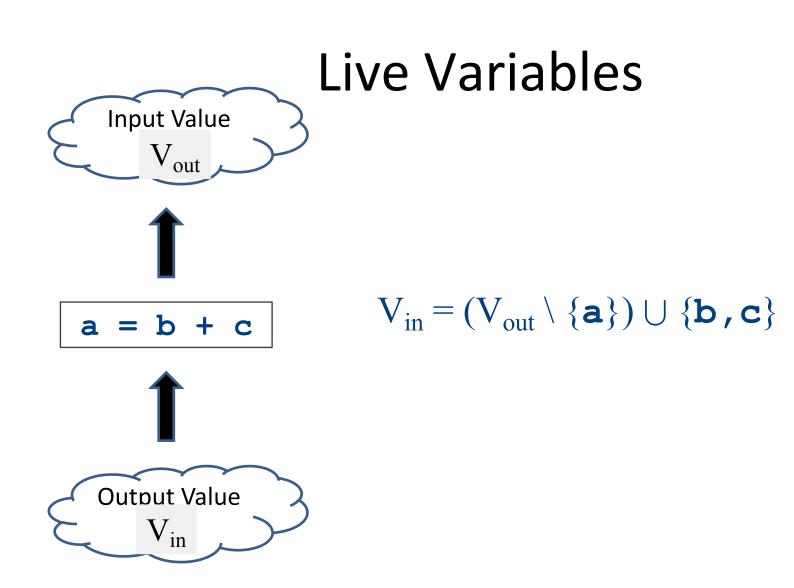
- An optimization is local if it works on just a single basic block
- An optimization is global if it works on an entire control-flow graph of a procedure
- An optimization is interprocedural if it works across the control-flow graphs of multiple procedure
  - We won't talk about this in this course

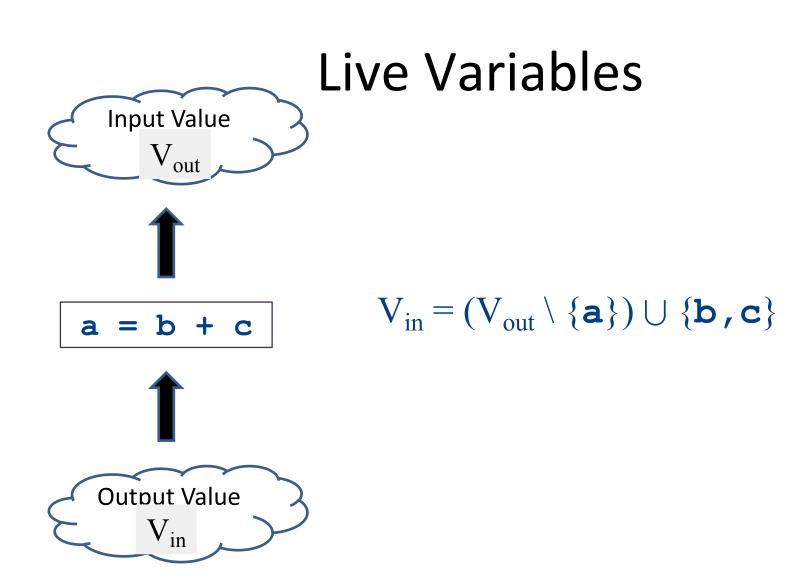
# Formalizing local analyses



#### **Available Expressions**







# Information for a local analysis

- What direction are we going?
  - Sometimes forward (available expressions)
  - Sometimes backward (liveness analysis)
- How do we update information after processing a statement?
  - What are the new semantics?
  - What information do we know initially?

# Formalizing local analyses

- Define an analysis of a basic block as a quadruple (D, V, F, I) where
  - **D** is a direction (forwards or backwards)
  - V is a set of values the program can have at any point
  - F is a family of transfer functions defining the meaning of any expression as a function f :  $V \rightarrow V$
  - I is the initial information at the top (or bottom) of a basic block

## **Available Expressions**

- **Direction:** Forward
- Values: Sets of expressions assigned to variables
- **Transfer functions:** Given a set of variable assignments V and statement a = b + c:
  - Remove from V any expression containing a as a subexpression
  - Add to V the expression a = b + c
  - Formally:  $V_{out} = (V_{in} \setminus \{e \mid e \text{ contains } a\}) \cup \{a = b + c\}$
- Initial value: Empty set of expressions

#### **Liveness Analysis**

- **Direction:** Backward
- Values: Sets of variables
- Transfer functions: Given a set of variable assignments V and statement a = b + c:
- Remove a from V (any previous value of a is now dead.)
- Add b and c to V (any previous value of b or c is now live.)
- Formally:  $V_{in} = (V_{out} \setminus \{a\}) \cup \{b, c\}$
- Initial value: Depends on semantics of language
  - E.g., function arguments and return values (pushes)
  - Result of local analysis of other blocks as part of a global analysis

# Running local analyses

- Given an analysis (D, V, F, I) for a basic block
- Assume that **D** is "forward;" analogous for the reverse case
- Initially, set OUT[entry] to I
- For each statement **s**, in order:
  - Set IN[s] to OUT[prev], where prev is the previous statement
  - Set OUT[s] to f<sub>s</sub>(IN[s]), where f<sub>s</sub> is the transfer function for statement s

# Kill/Gen

#### **Global Optimizations**

# High-level goals

- Generalize analysis mechanism
  - Reuse common ingredients for many analyses
  - Reuse proofs of correctness
- Generalize from basic blocks to entire CFGs
  - Go from local optimizations to global optimizations

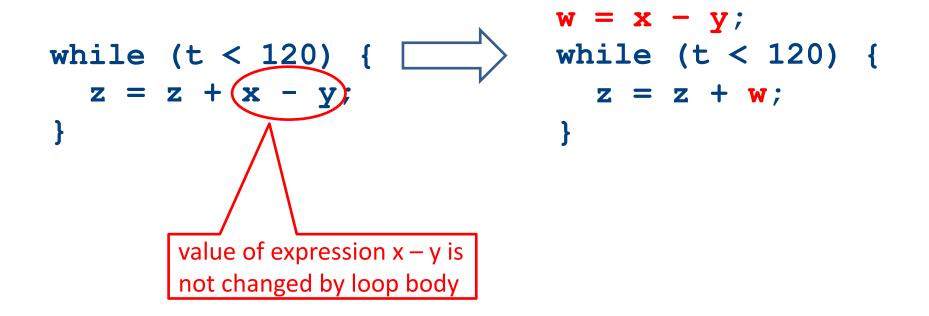
# Global analysis

- A global analysis is an analysis that works on a control-flow graph as a whole
- Substantially more powerful than a local analysis
  - (Why?)
- Substantially more complicated than a local analysis
  - (Why?)

# Local vs. global analysis

- Many of the optimizations from local analysis can still be applied globally
  - Common sub-expression elimination
  - Copy propagation
  - Dead code elimination
- Certain optimizations are possible in global analysis that aren't possible locally:
  - e.g. code motion: Moving code from one basic block into another to avoid computing values unnecessarily
- Example global optimizations:
  - Global constant propagation
  - Partial redundancy elimination

#### Loop invariant code motion example



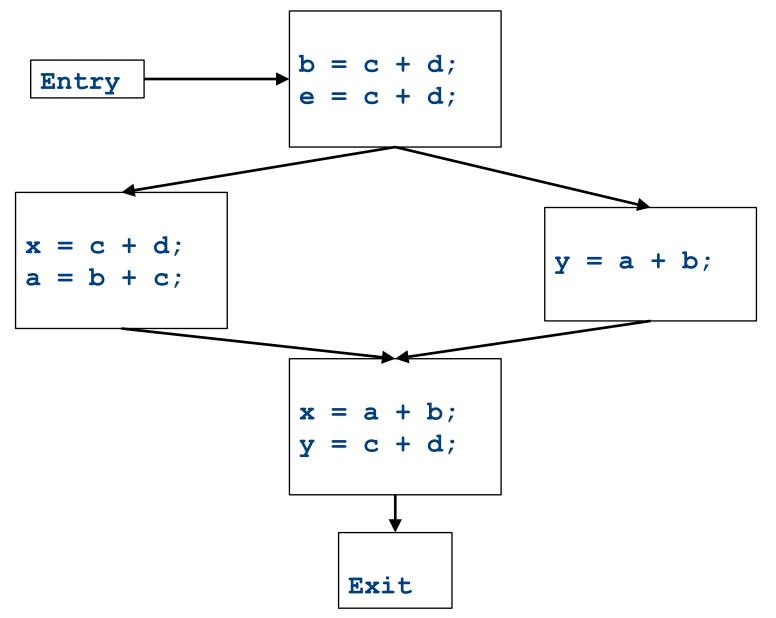
# Why global analysis is hard

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value (but the analysis still needs to terminate!)
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

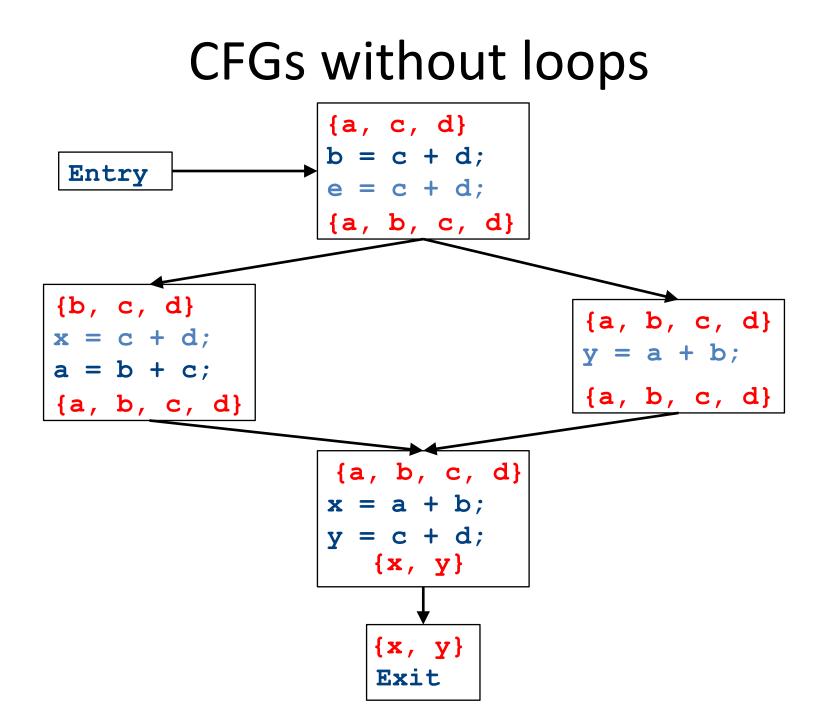
# Global dead code elimination

- Local dead code elimination needed to know what variables were live on exit from a basic block
- This information can only be computed as part of a global analysis
- How do we modify our liveness analysis to handle a CFG?

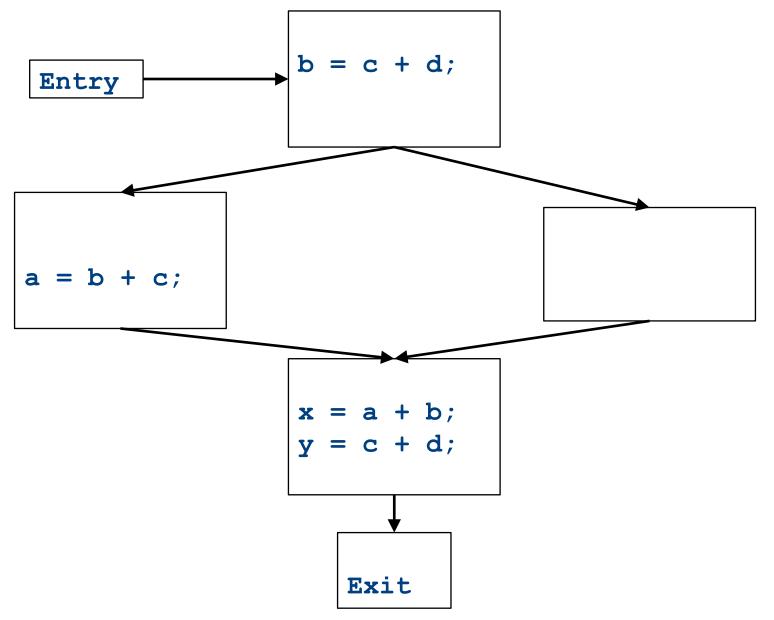
#### CFGs without loops



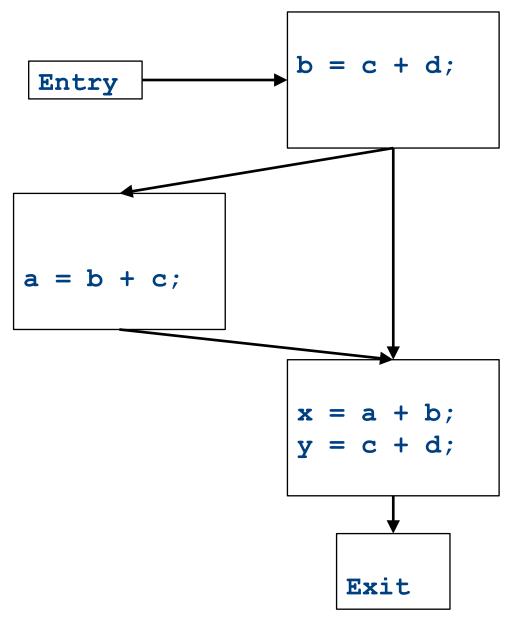
#### CFGs without loops $\{a, c, d\}$ Which variables may b = c + d;Entry be live on **some** e = c + d;execution path? ${a, b, c, d}$ {b, c, d} {a, b, c, d} $\mathbf{x} = \mathbf{c} + \mathbf{d};$ y = a + b;a = b + c;{a, b, c, d} {a, b, c, d} ${a, b, c, d}$ x = a + b;y = c + d; $\{\mathbf{x}, \mathbf{y}\}$ $\{x, y\}$ Exit



#### CFGs without loops



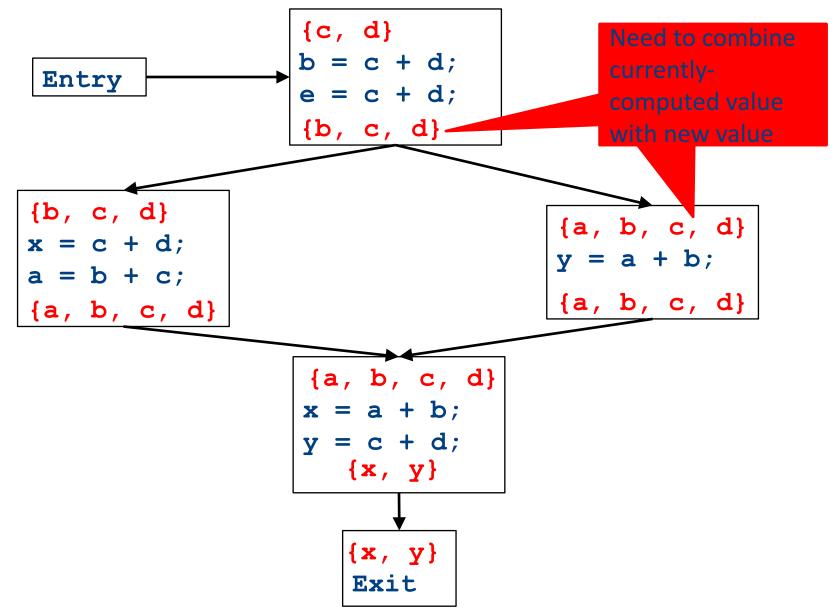
#### CFGs without loops

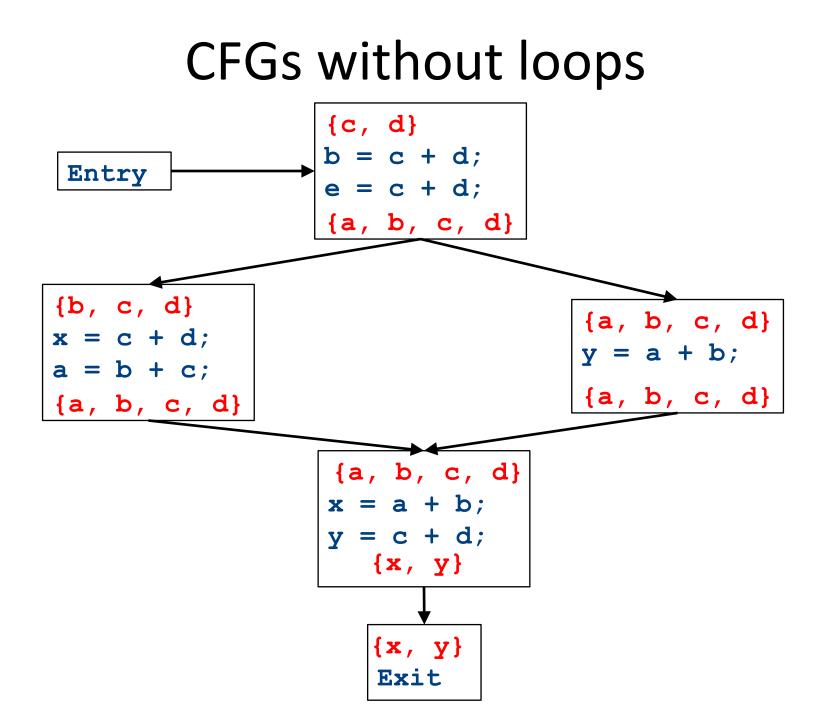


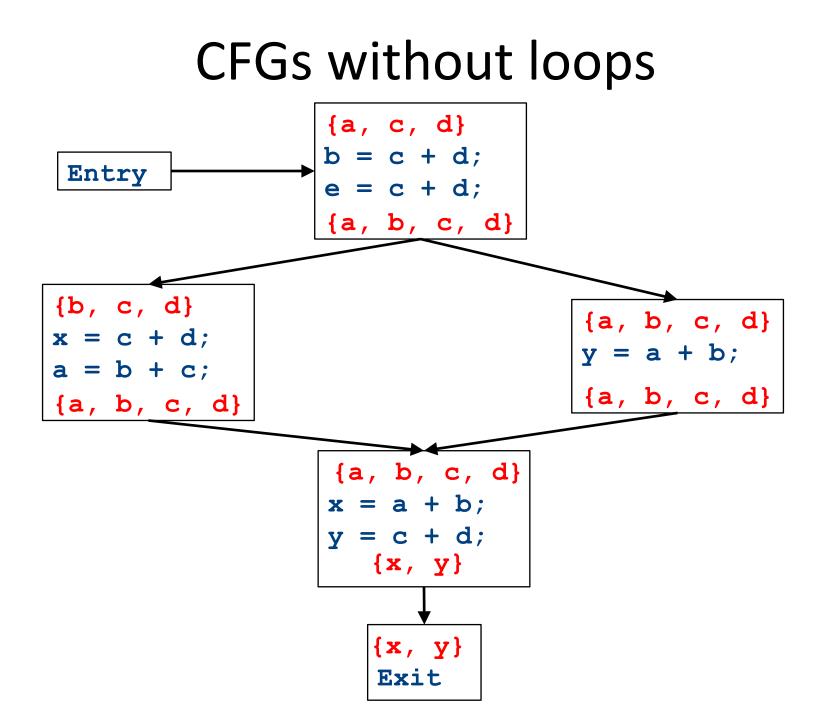
## Major changes – part 1

- In a local analysis, each statement has exactly one predecessor
- In a global analysis, each statement may have multiple predecessors
- A global analysis must have some means of combining information from all predecessors of a basic block

#### CFGs without loops





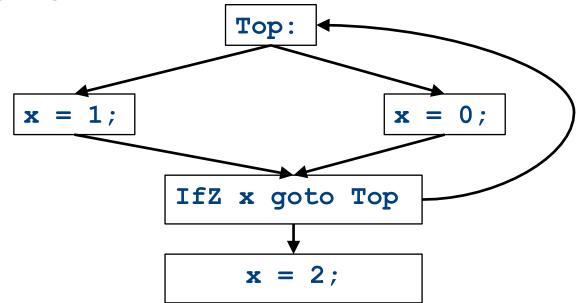


# Major changes – part 2

- In a local analysis, there is only one possible path through a basic block
- In a global analysis, there may be **many** paths through a CFG
- May need to recompute values multiple times as more information becomes available
- Need to be careful when doing this not to loop infinitely!
  - (More on that later)
- Can order of computation affect result?

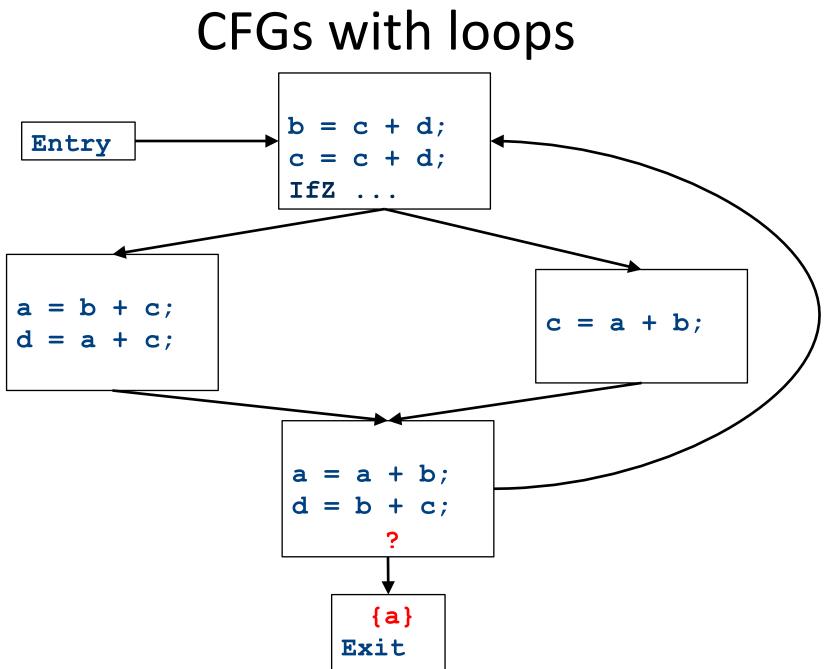
## CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program



# CFGs with loops

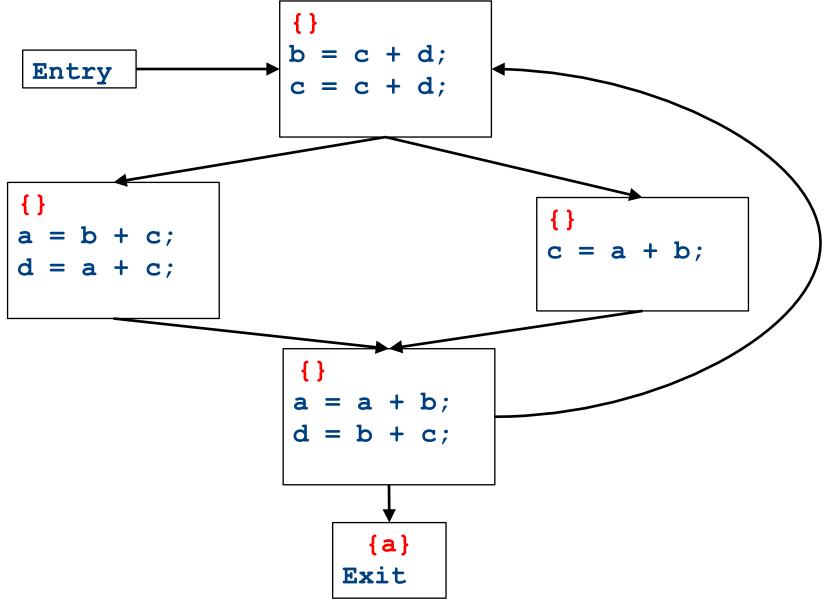
- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program
- Sound approximation: Assume that every possible path through the CFG corresponds to a valid execution
  - Includes all realizable paths, but some additional paths as well
  - May make our analysis less precise (but still sound)
  - Makes the analysis feasible; we'll see how later



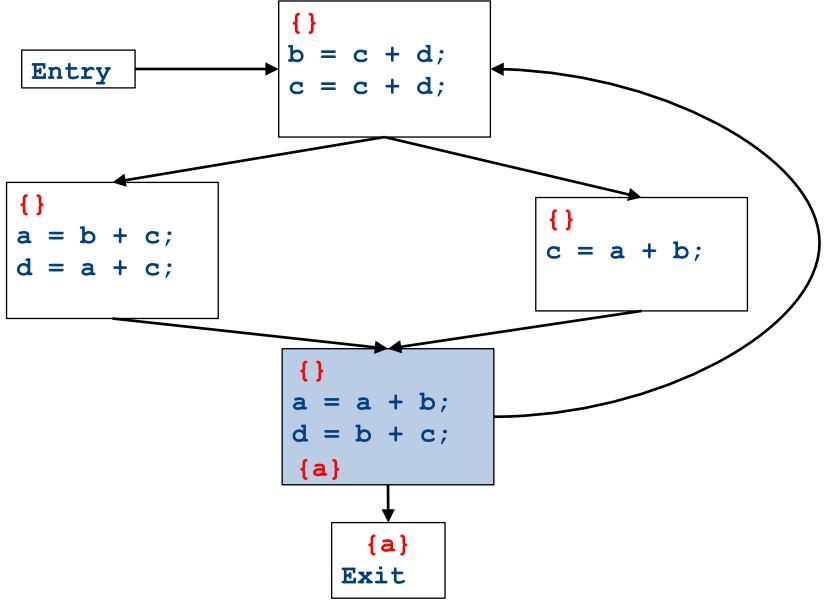
## Major changes – part 3

- In a local analysis, there is always a well defined "first" statement to begin processing
- In a global analysis with loops, every basic block might depend on every other basic block
- To fix this, we need to assign initial values to all of the blocks in the CFG

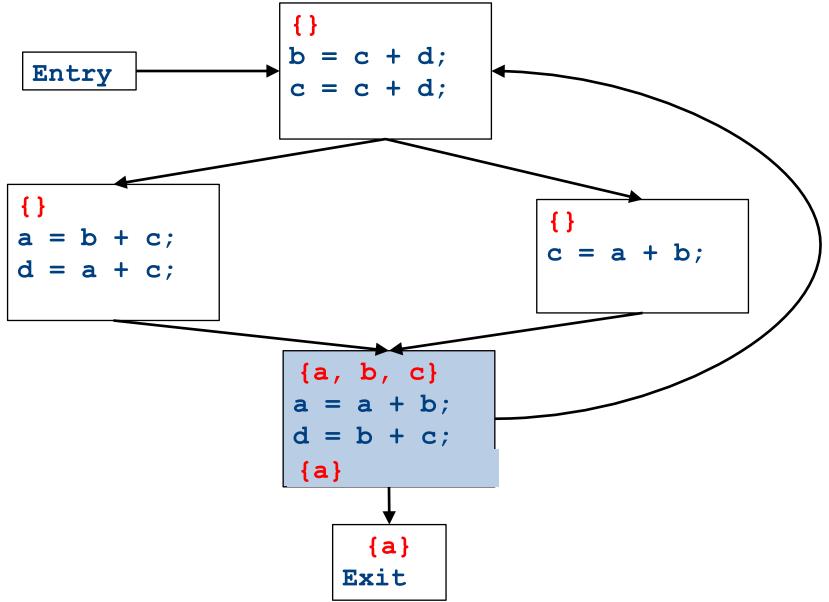
CFGs with loops - initialization



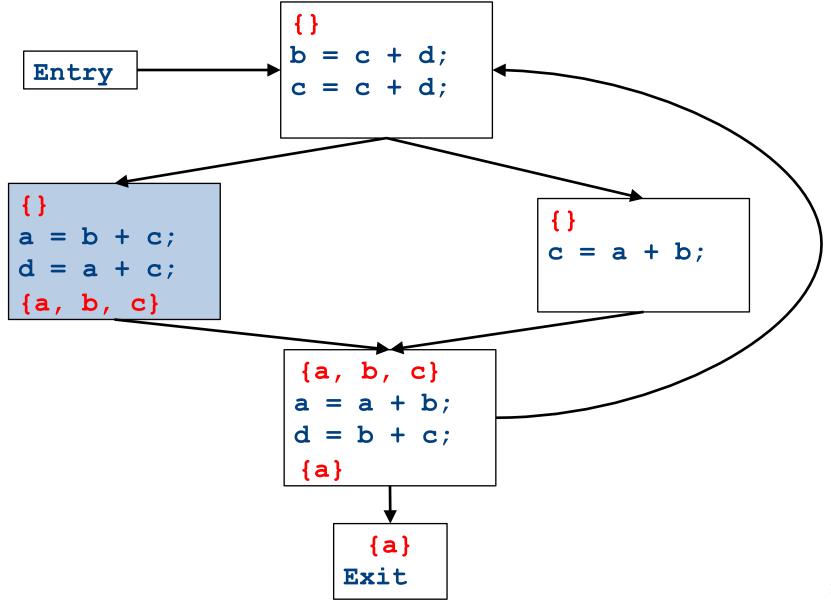
CFGs with loops - iteration



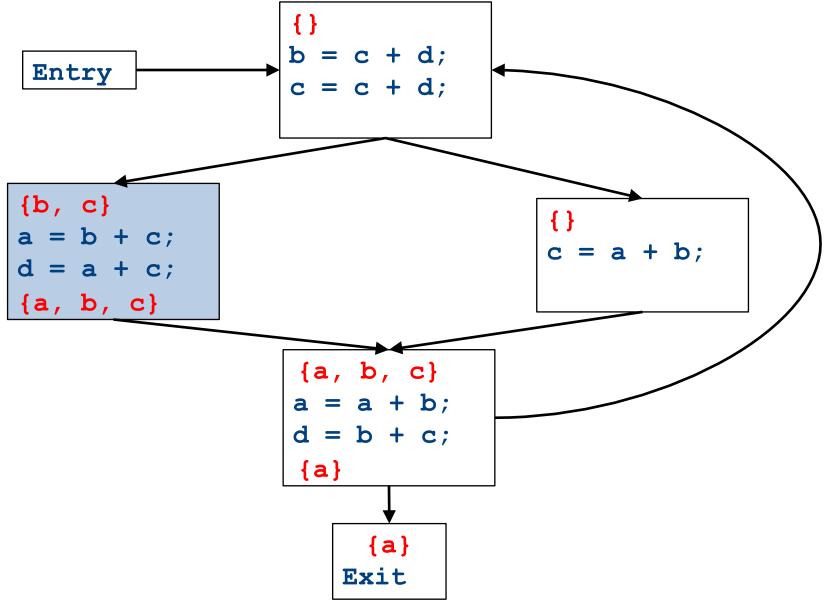
CFGs with loops - iteration



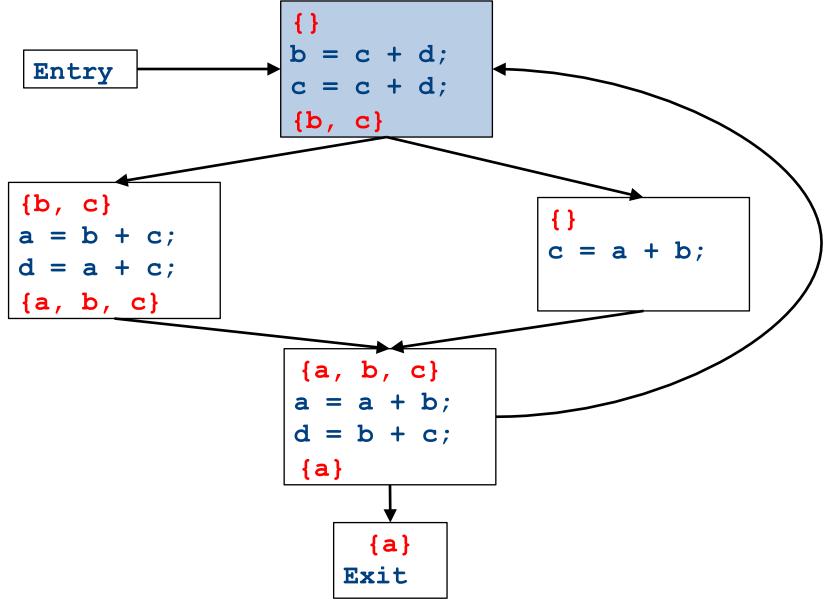
CFGs with loops - iteration



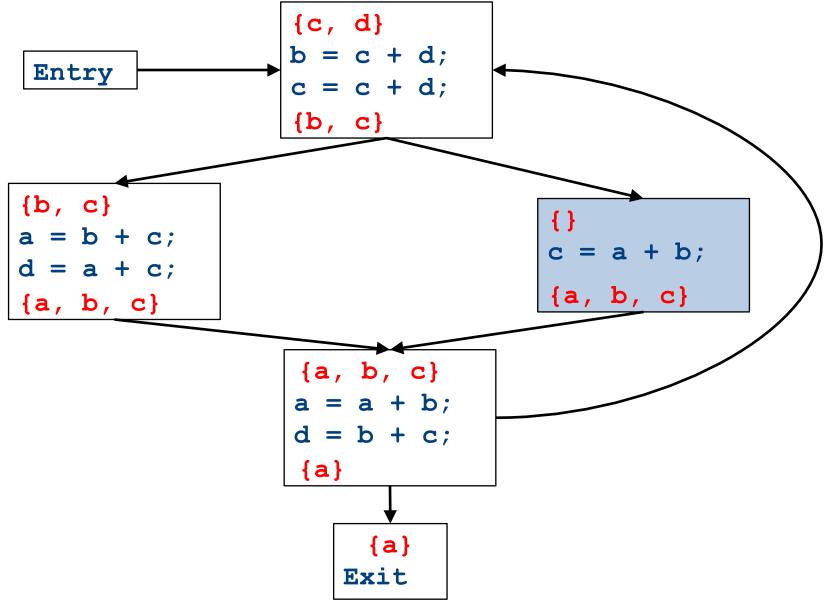
CFGs with loops - iteration



CFGs with loops - iteration



CFGs with loops - iteration



CFGs with loops - iteration {c, d}  $\mathbf{b} = \mathbf{c} + \mathbf{d};$ Entry c = c + d;{b, c} {b, c} {a, b} a = b + c;c = a + b;d = a + c;{a, b, c} {a, b, c} {a, b, c} a = a + b;

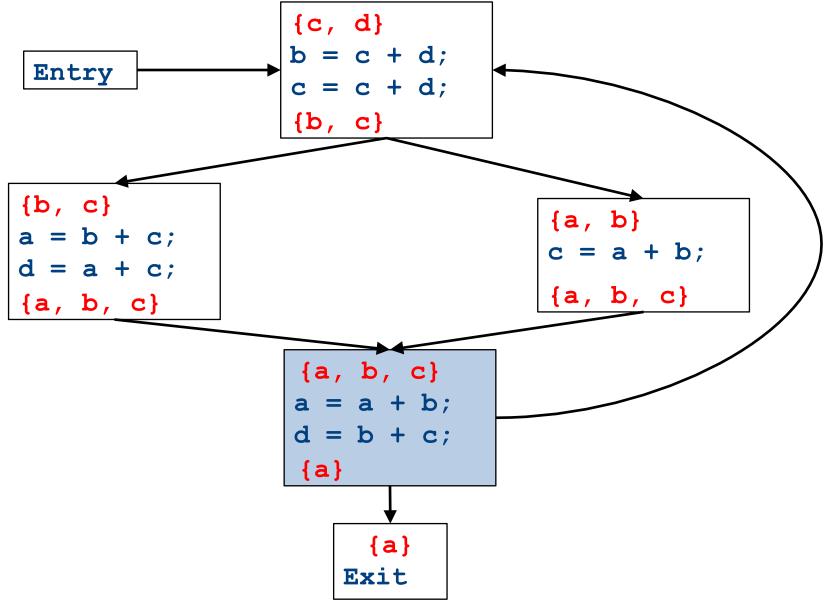
d = b + c;

{a}

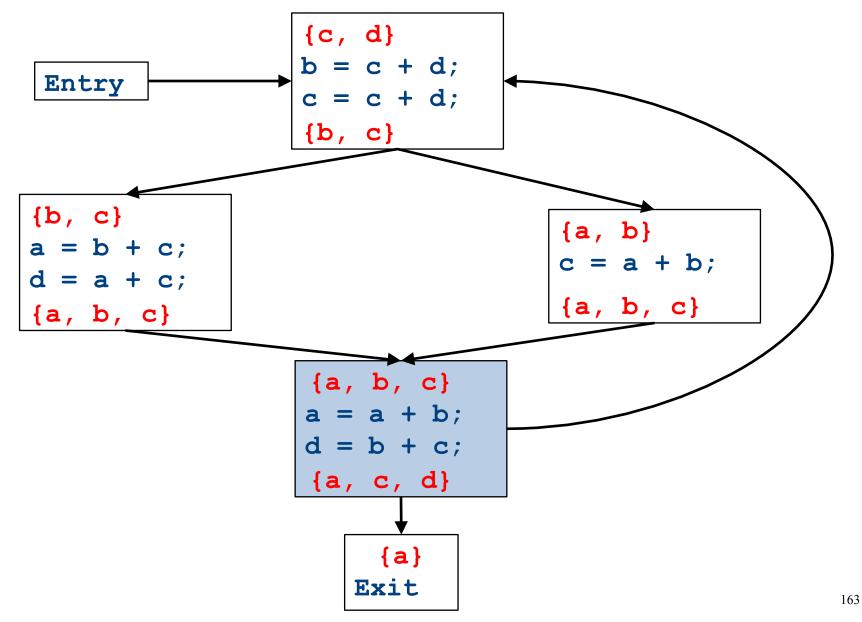
Exit

{**a**}

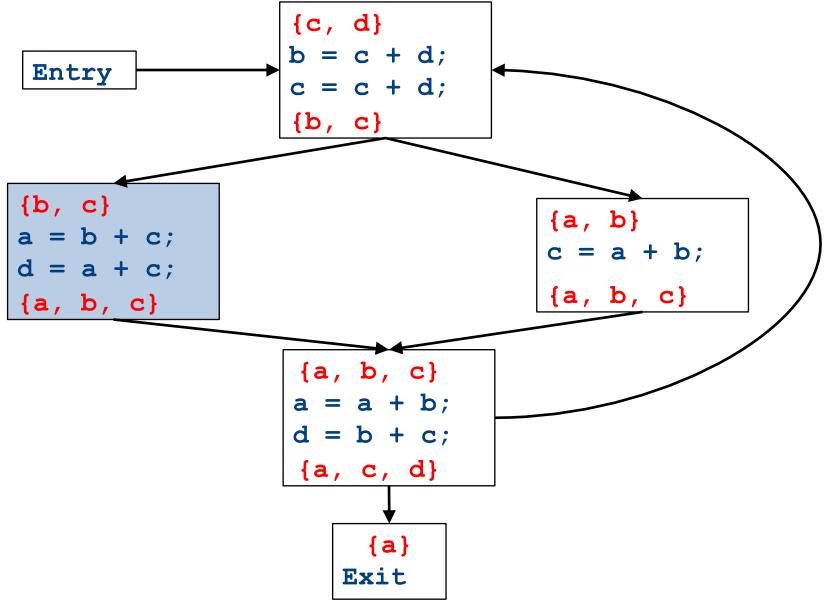
CFGs with loops - iteration



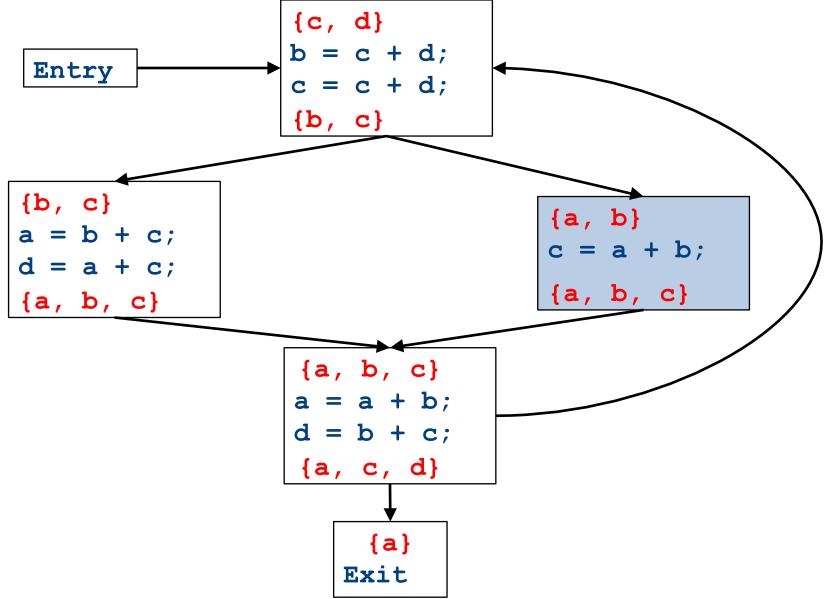
CFGs with loops - iteration



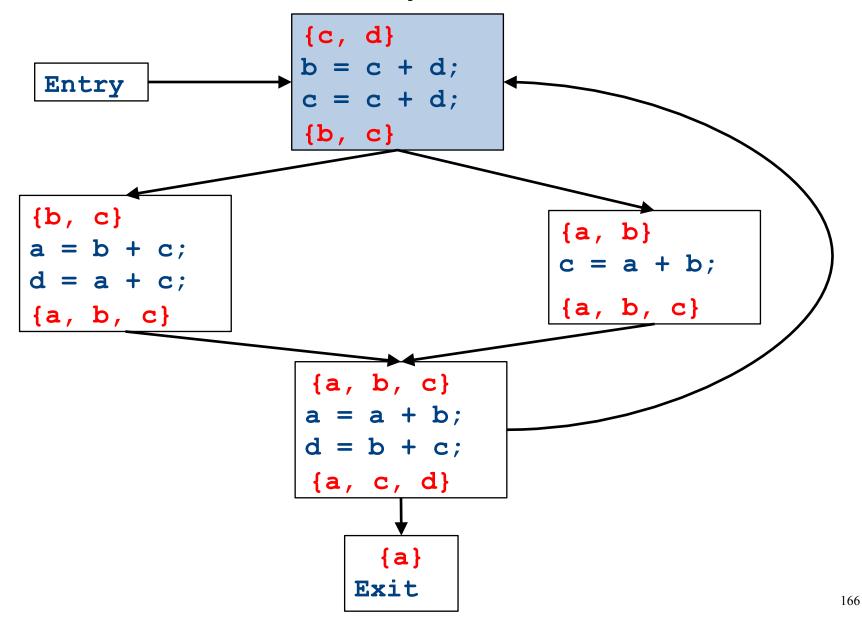
CFGs with loops - iteration



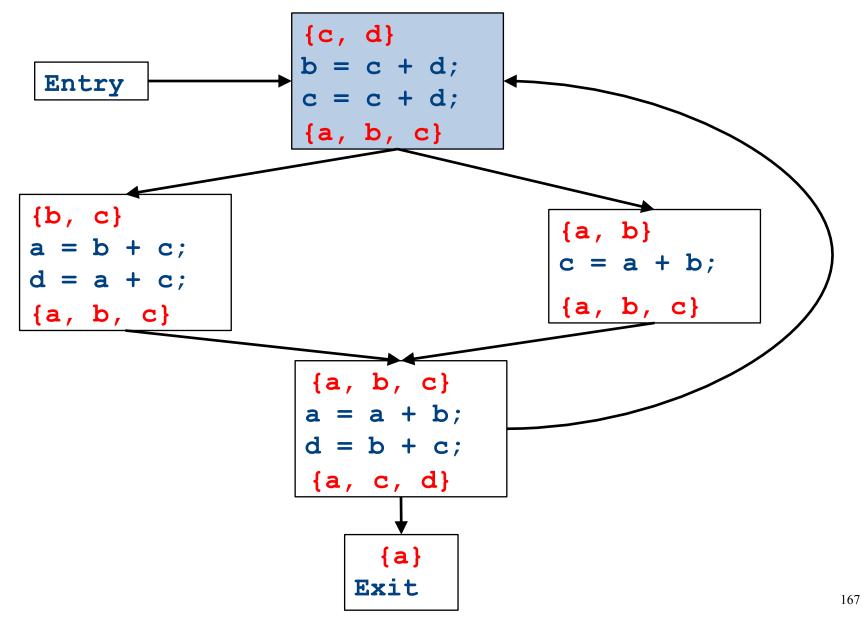
CFGs with loops - iteration



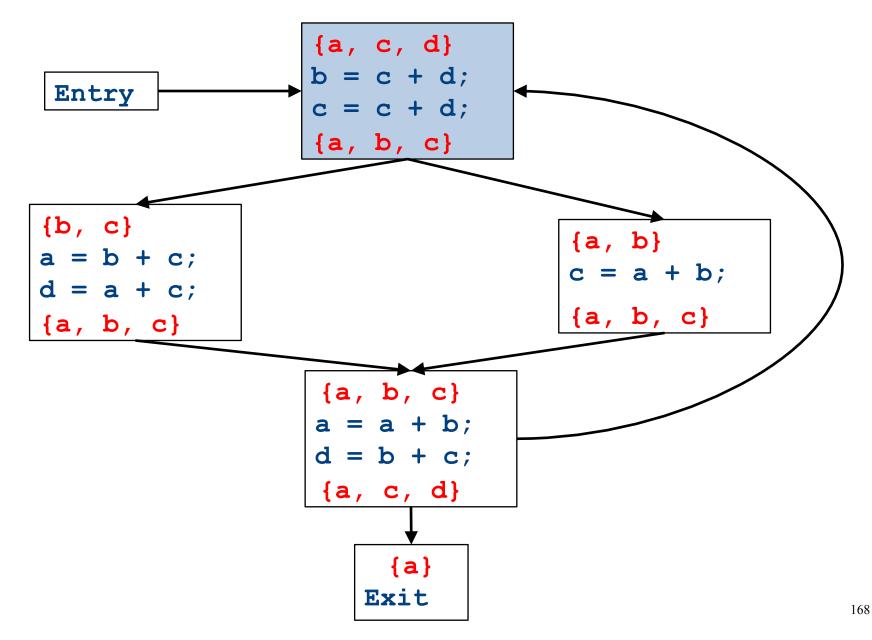
CFGs with loops - iteration



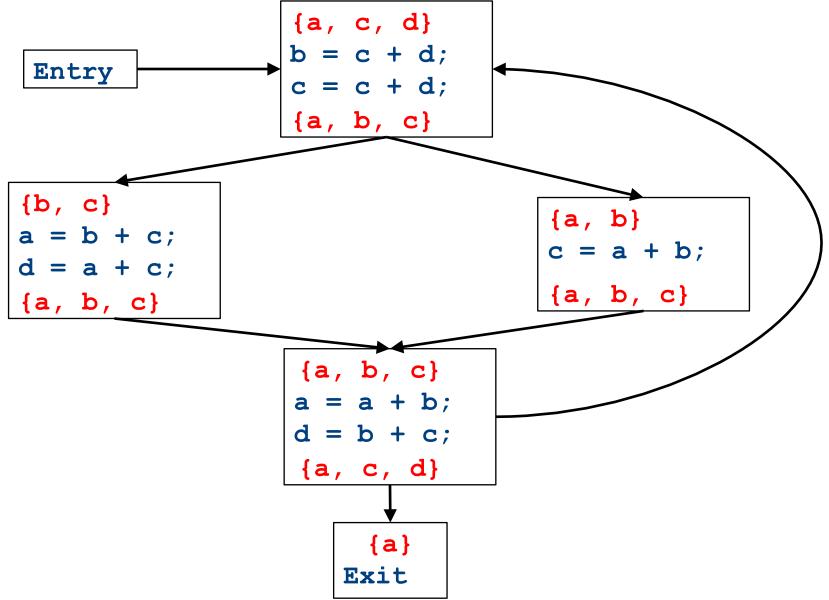
CFGs with loops - iteration



CFGs with loops - iteration



CFGs with loops - iteration

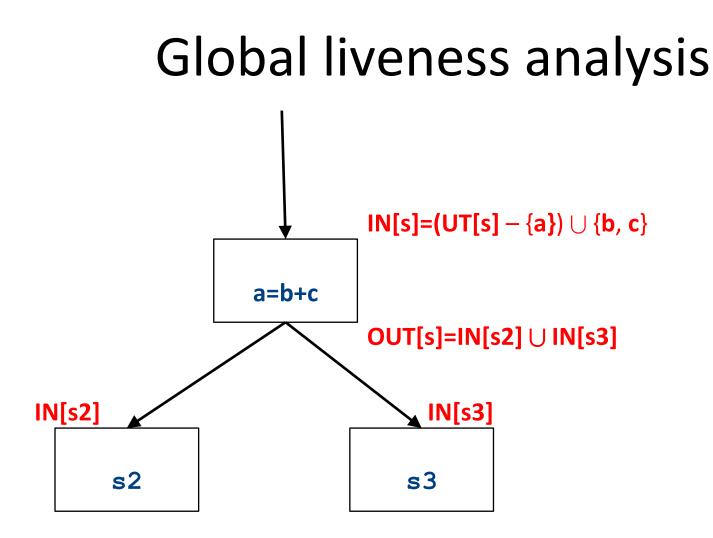


## Summary of differences

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value
  - But the analysis still needs to terminate!
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

## Global liveness analysis

- Initially, set IN[s] = { } for each statement s
- Set IN[**exit**] to the set of variables known to be live on exit (language-specific knowledge)
- Repeat until no changes occur:
  - For each statement s of the form a = b + c, in any order you'd like:
    - Set OUT[s] to set union of IN[p] for each successor p of s
    - Set IN[**s**] to (OUT[**s**] − **a**) ∪ {**b**, **c**}.
- Yet another fixed-point iteration!



## Why does this work?

- To show correctness, we need to show that
  - The algorithm eventually terminates, and
  - When it terminates, it has a sound answer
- Termination argument:
  - Once a variable is discovered to be live during some point of the analysis, it always stays live
  - Only finitely many variables and finitely many places where a variable can become live
- Soundness argument (sketch):
  - Each individual rule, applied to some set, correctly updates liveness in that set
  - When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

#### Abstract Interpretation

 Theoretical foundations of program analysis

• Cousot and Cousot 1977

Abstract meaning of programs
 – Executed at compile time

# Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

# Properties of local analysis

- The only way to find out what a program will actually do is to run it
- Problems:
  - The program might not terminate
  - The program might have some behavior we didn't see when we ran it on a particular input
- However, this is not a problem inside a basic block
  - Basic blocks contain no loops
  - There is only one path through the basic block

## Assigning new semantics

- Example: Available Expressions
- Redefine the statement a = b + c to mean "a now holds the value of b + c, and any variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

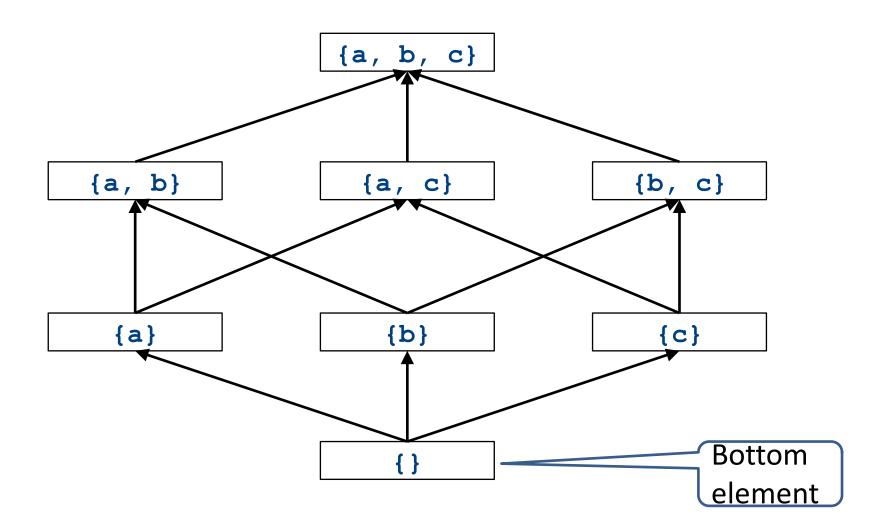
#### Theory to the rescue

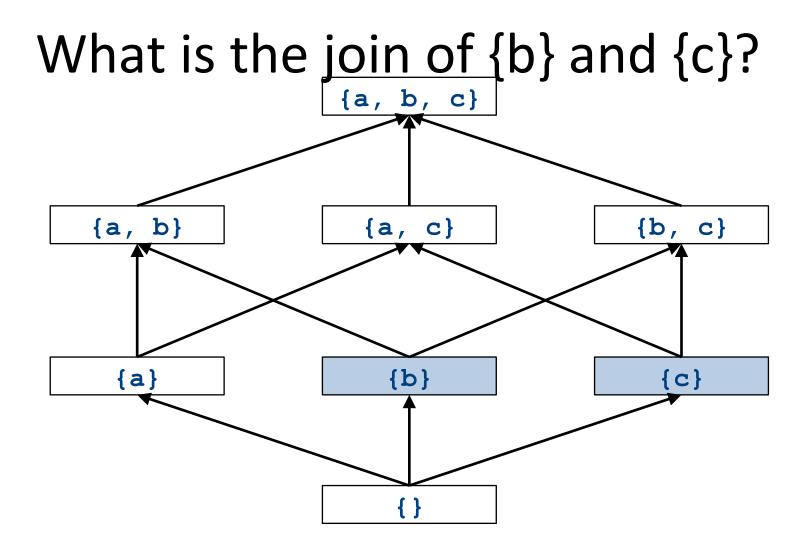
- Building up all of the machinery to design this analysis was tricky
- The key ideas, however, are mostly independent of the analysis:
  - We need to be able to compute functions describing the behavior of each statement
  - We need to be able to merge several subcomputations together
  - We need an initial value for all of the basic blocks
- There is a beautiful formalism that captures many of these properties

## Join semilattices

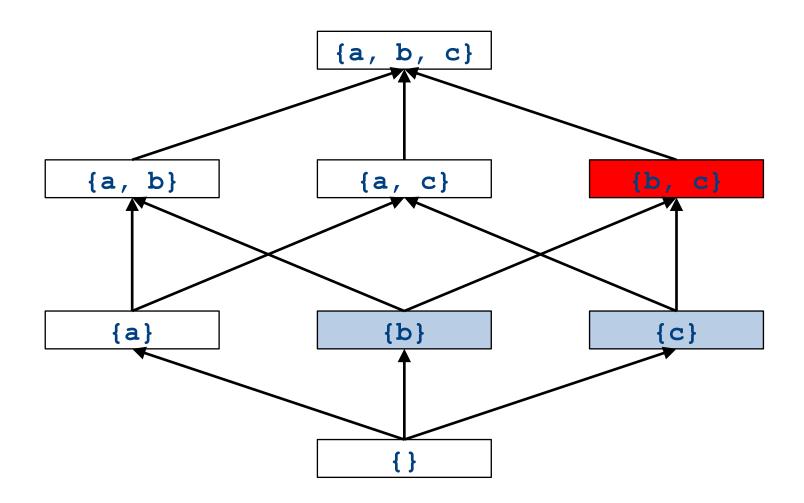
- A join semilattice is a ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
  - The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

#### Join semilattice for liveness

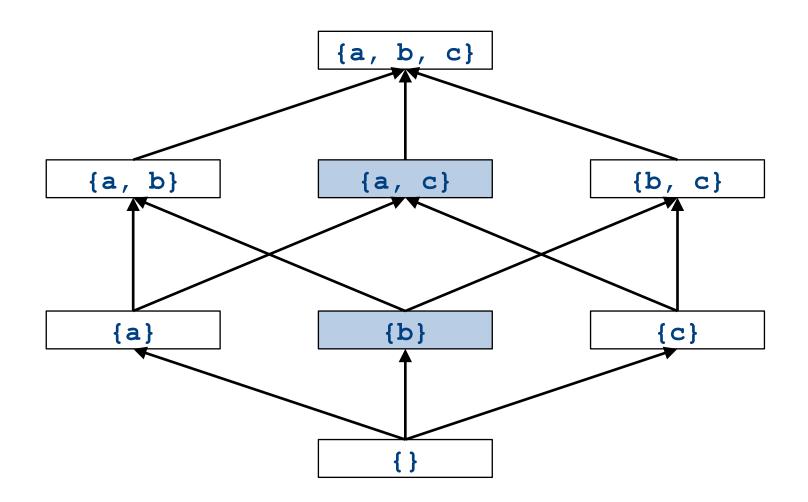




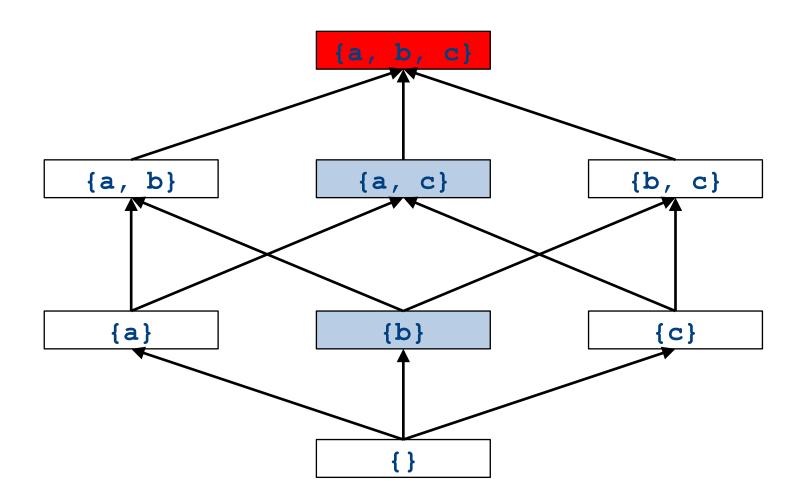
## What is the join of {b} and {c}?



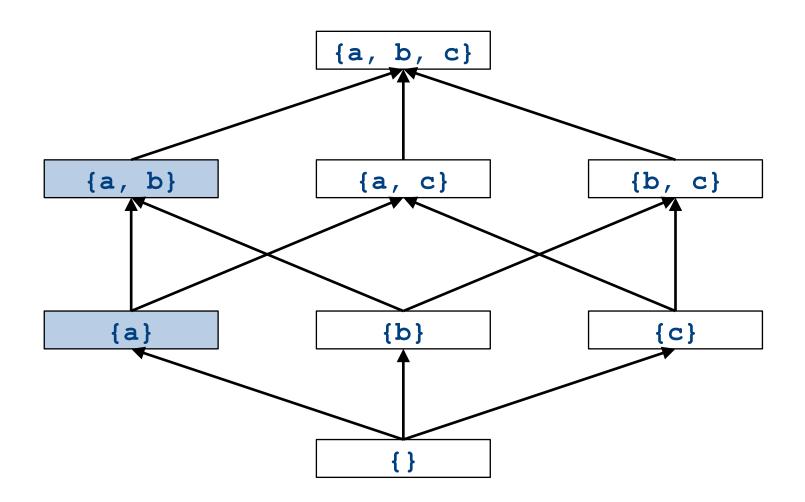
### What is the join of {b} and {a,c}?



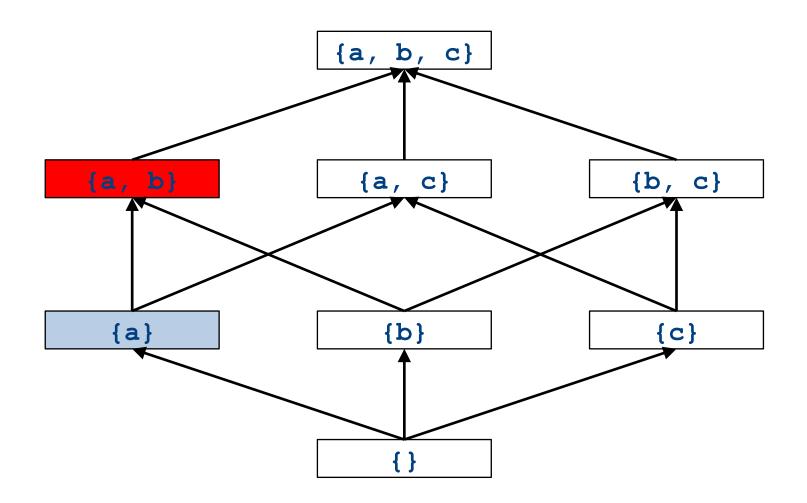
## What is the join of {b} and {a,c}?



## What is the join of {a} and {a,b}?



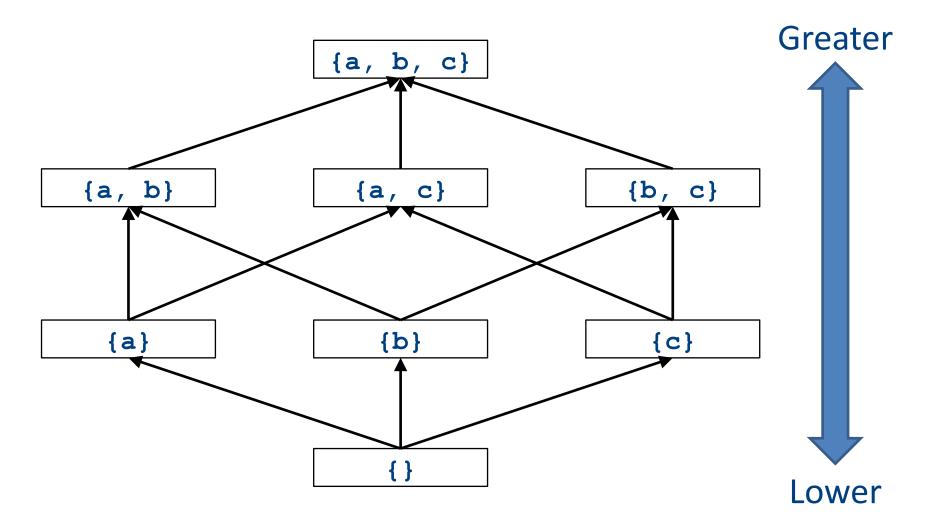
## What is the join of {a} and {a,b}?



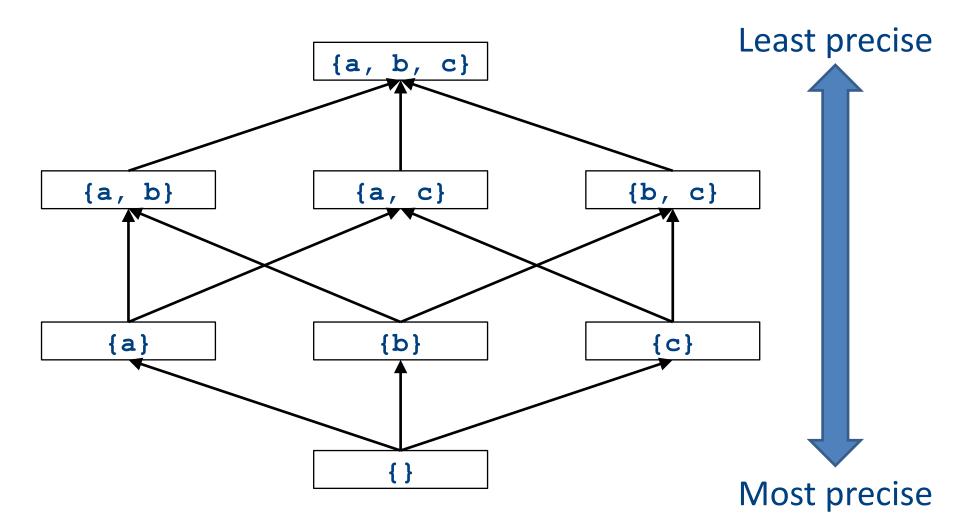
## Formal definitions

- A join semilattice is a pair (V, ⊔), where
- V is a domain of elements
- 📋 is a join operator that is
  - commutative:  $x \sqcup y = y \sqcup x$
  - associative:  $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
  - idempotent:  $x \sqcup x = x$
- If x □ y = z, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted ⊥ such that ⊥ □ x = x for all x

### Join semilattices and ordering



### Join semilattices and ordering



## Join semilattices and orderings

- Every join semilattice (V, □) induces an ordering relationship □ over its elements
- Define  $x \sqsubseteq y$  iff  $x \sqcup y = y$
- Need to prove
  - Reflexivity:  $x \sqsubseteq x$
  - Antisymmetry: If  $x \sqsubseteq y$  and  $y \sqsubseteq x$ , then x = y
  - Transitivity: If  $x \sqsubseteq y$  and  $y \sqsubseteq z$ , then  $x \sqsubseteq z$

# An example join semilattice

- The set of natural numbers and the **max** function
- Idempotent
  - max{a, a} = a
- Commutative
  - max{a, b} = max{b, a}
- Associative
  - max{a, max{b, c}} = max{max{a, b}, c}
- Bottom element is 0:

- max{0, a} = a

• What is the ordering over these elements?

# A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

 $- \mathbf{x} \cup \mathbf{x} = \mathbf{x}$ 

- Commutative:
  - $\mathbf{x} \cup \mathbf{y} = \mathbf{y} \cup \mathbf{x}$
- Associative:

 $- (x \cup y) \cup z = x \cup (y \cup z)$ 

• Bottom element:

– The empty set:  $\emptyset \cup x = x$ 

• What is the ordering over these elements?

# Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- What value do we give to basic blocks we haven't seen yet?
- How do we know that the algorithm always terminates?

# Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
  - Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
  - Use the bottom element
- How do we know that the algorithm always terminates?
  - Actually, we still don't! More on that later

# Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
  - Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
  - Use the bottom element
- How do we know that the algorithm always terminates?
  - Actually, we still don't! More on that later

## A general framework

- A global analysis is a tuple (D, V,  $\sqcup$ , F, I), where
  - D is a direction (forward or backward)
    - The order to visit statements within a basic block, not the order in which to visit the basic blocks
  - V is a set of values
  - $\sqcup$  is a join operator over those values
  - F is a set of transfer functions  $f: \mathbf{V} \rightarrow \mathbf{V}$
  - I is an initial value
- The only difference from local analysis is the introduction of the join operator

## Running global analyses

- Assume that (D, V, ⊔, F, I) is a forward analysis
- Set OUT[**s**] = ⊥ for all statements **s**
- Set OUT[entry] = I
- Repeat until no values change:
  - For each statement s with predecessors
    - $p_1, p_2, ..., p_n$ :
      - Set  $IN[s] = OUT[p_1] \sqcup OUT[p_2] \sqcup ... \sqcup OUT[p_n]$
      - Set OUT[**s**] = f<sub>s</sub> (IN[**s**])
- The order of this iteration does not matter
  - This is sometimes called chaotic iteration

#### For comparison

- Set OUT[s] = ⊥ for all statements s
- Set OUT[entry] = I

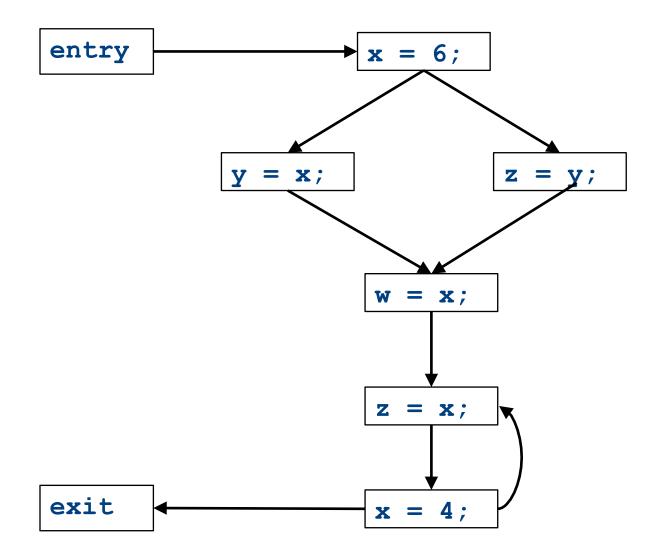
- Repeat until no values change:
  - For each statement s
     with predecessors
    - **p**<sub>1</sub>, **p**<sub>2</sub>, ... , **p**<sub>n</sub>:
      - Set IN[s] = OUT[p<sub>1</sub>] ⊔ OUT[p<sub>2</sub>] ⊔ … ⊔ OUT[p<sub>n</sub>]
      - Set OUT[**s**] = f<sub>s</sub> (IN[**s**])

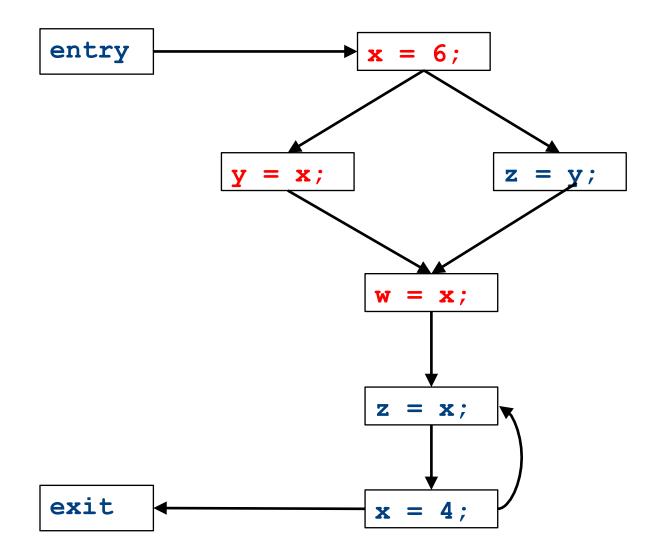
- Set IN[s] = {} for all statements s
- Set OUT[exit] = the set of variables known to be live on exit
- Repeat until no values change:
  - For each statement s of the form a=b+c:
    - Set OUT[s] = set union of IN[x] for each successor x of s
    - Set IN[**s**] = (OUT[**s**]-{a}) ∪ {b,c}

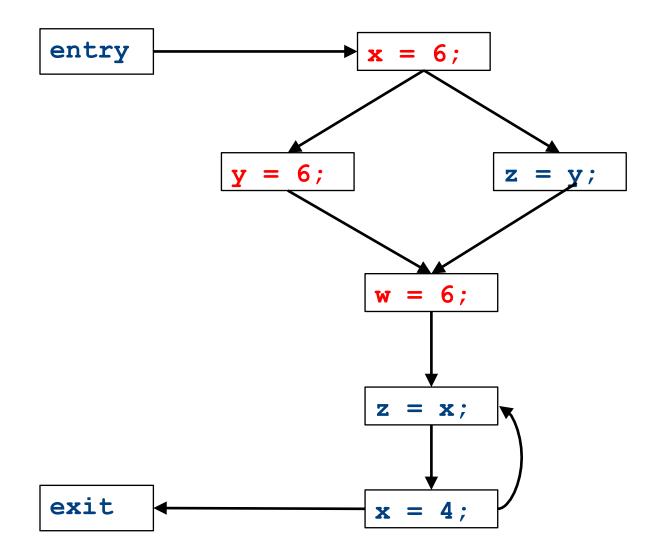
## The dataflow framework

- This form of analysis is called the dataflow framework
- Can be used to easily prove an analysis is sound
- With certain restrictions, can be used to prove that an analysis eventually terminates
  - Again, more on that later

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework







## **Constant propagation analysis**

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point
- Every variable will either
  - Never have a value assigned to it,
  - Have a single constant value assigned to it,
  - Have two or more constant values assigned to it, or
  - Have a known non-constant value.
  - Our analysis will propagate this information throughout a CFG to identify locations where a value is constant

# Properties of constant propagation

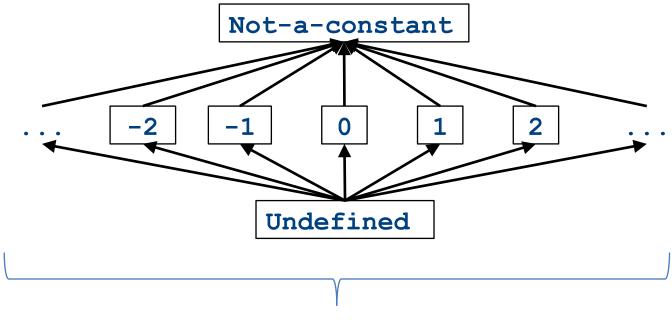
- For now, consider just some single variable **x**
- At each point in the program, we know one of three things about the value of **x**:
  - x is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant
  - **x** is definitely a constant and has value **k**
  - We have never seen a value for x
- Note that the first and last of these are **not** the same!
  - The first one means that there may be a way for x to have multiple values
  - The last one means that x never had a value at all

# Defining a join operator

- The join of any two different constants is **Not-a-Constant** 
  - (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-a-Constant
  - (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of **Undefined** and any other value is that other value
  - (If x has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

# A semilattice for constant propagation

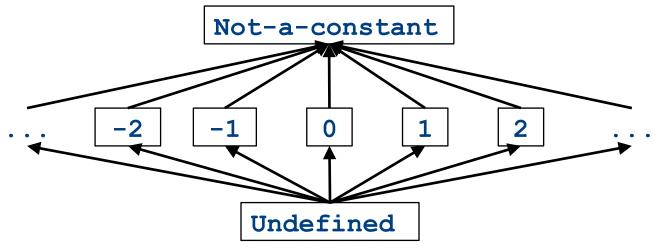
• One possible semilattice for this analysis is shown here (for each variable):



The lattice is infinitely wide

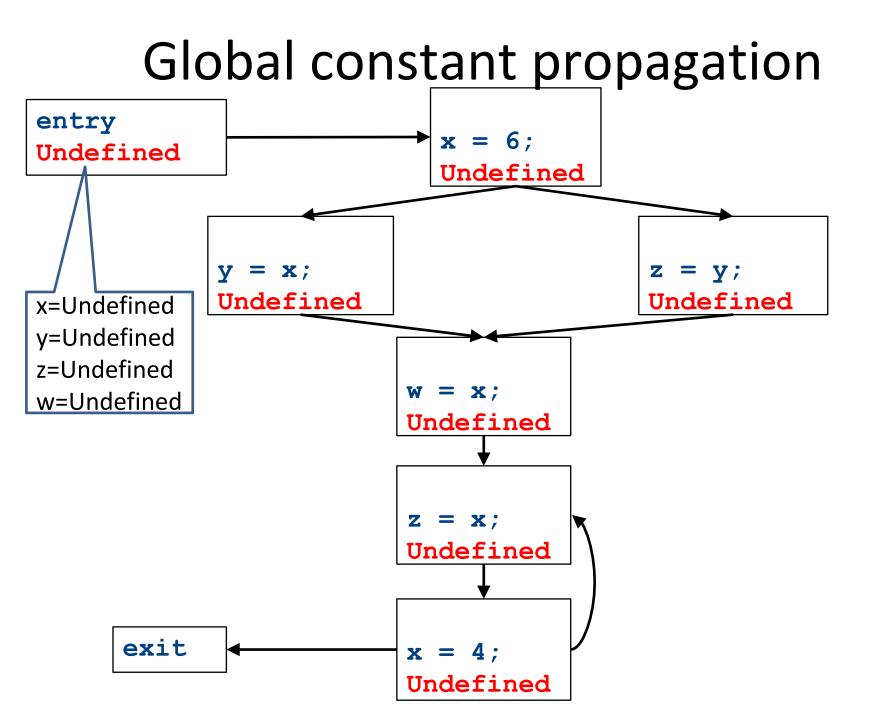
# A semilattice for constant propagation

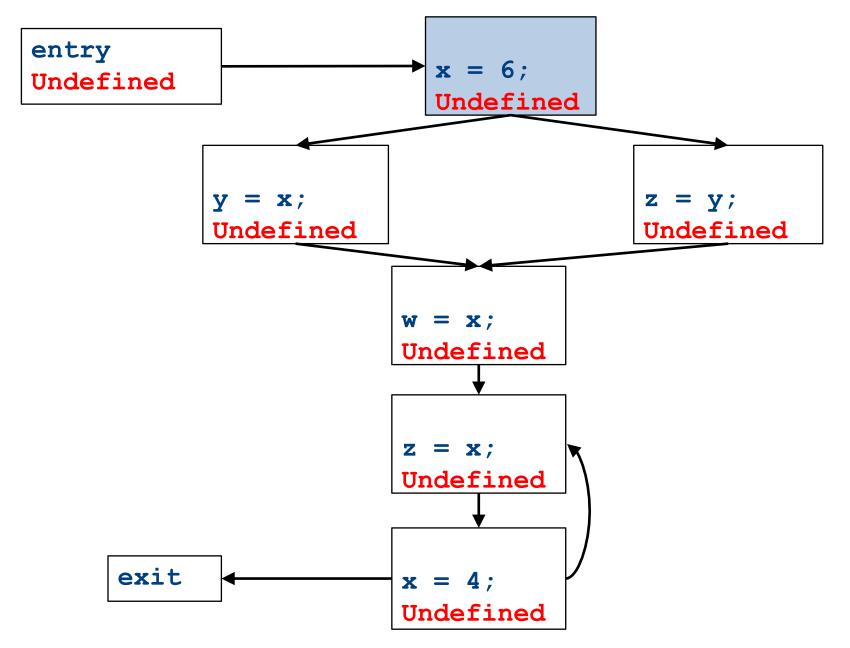
• One possible semilattice for this analysis is shown here (for each variable):

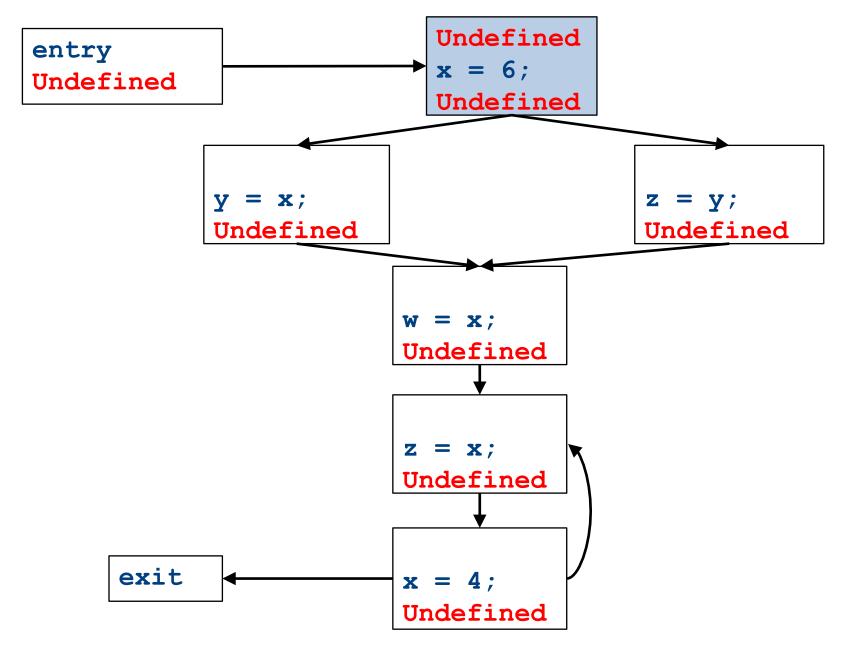


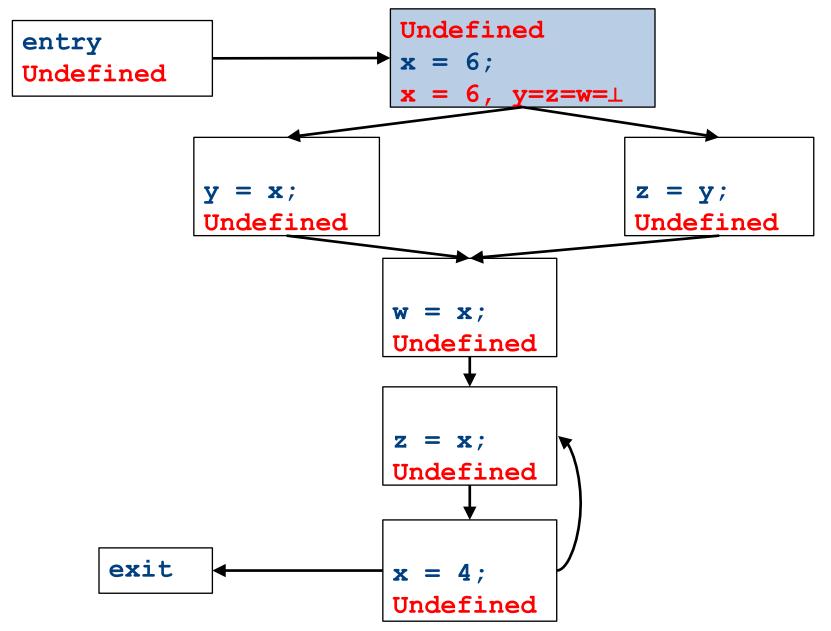
- Note:
  - The join of any two different constants is **Not-a-Constant**
  - The join of Not a Constant and any other value is Not-a-Constant
  - The join of **Undefined** and any other value is that other value

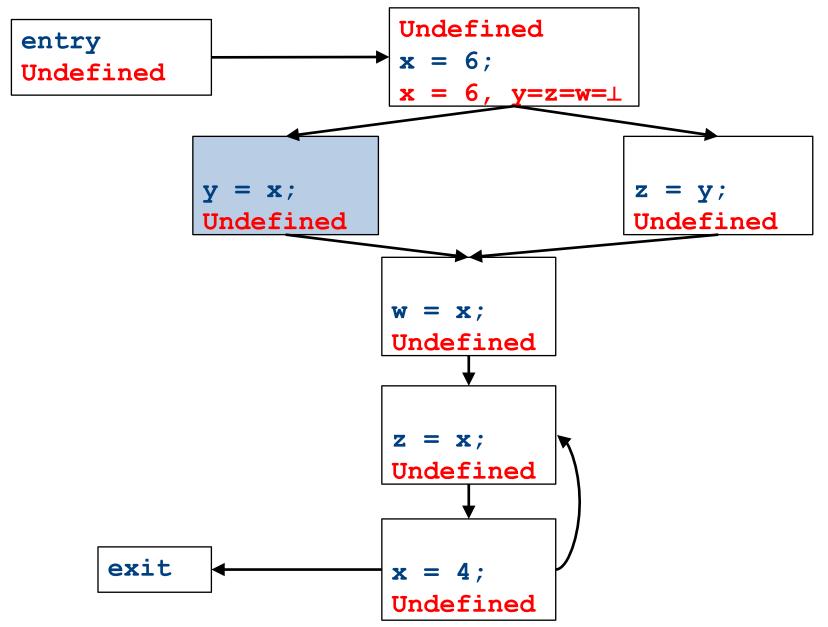


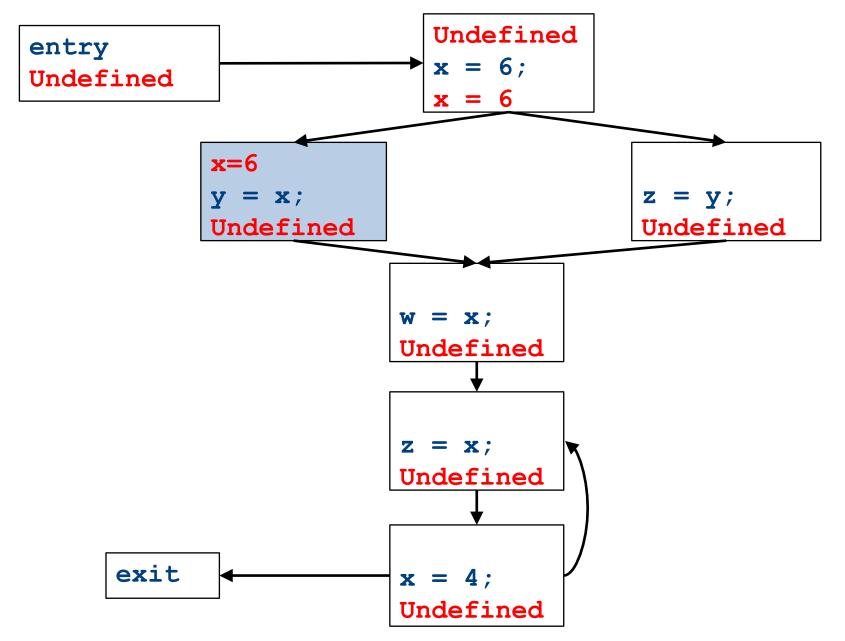


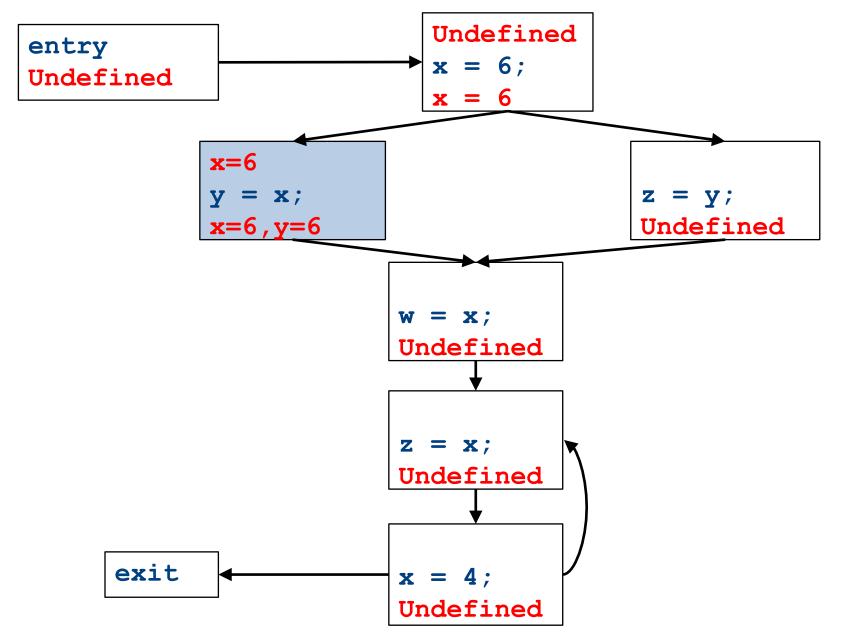


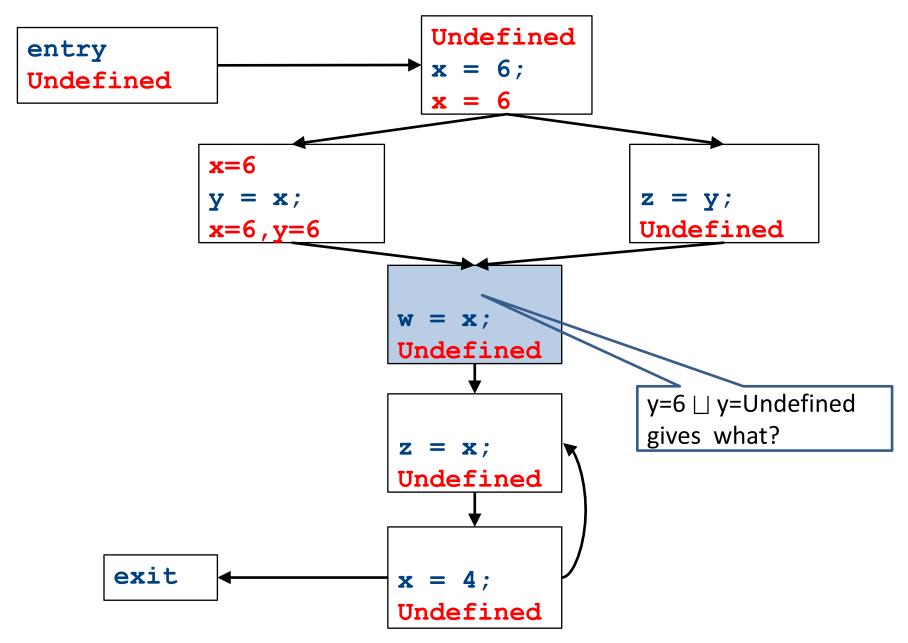


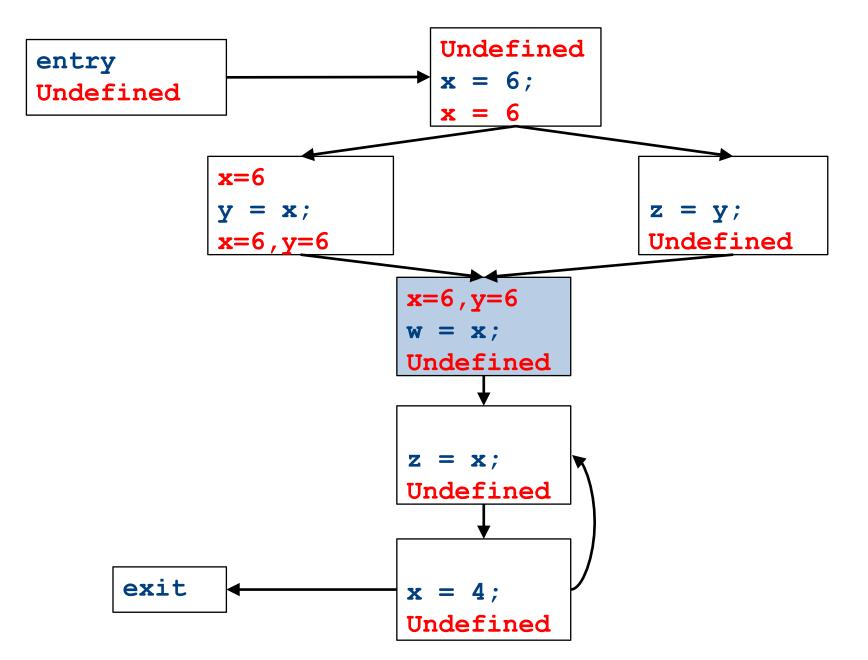


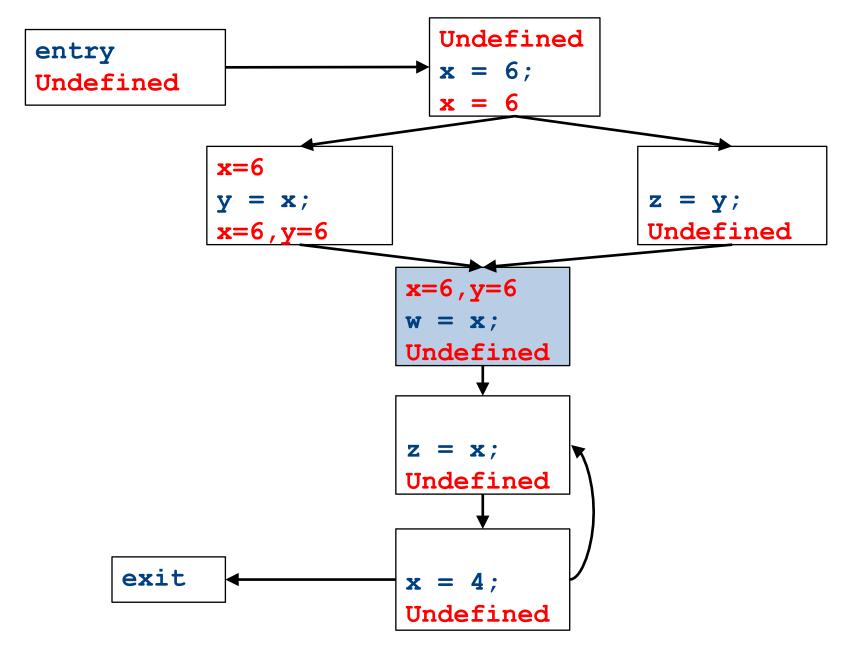


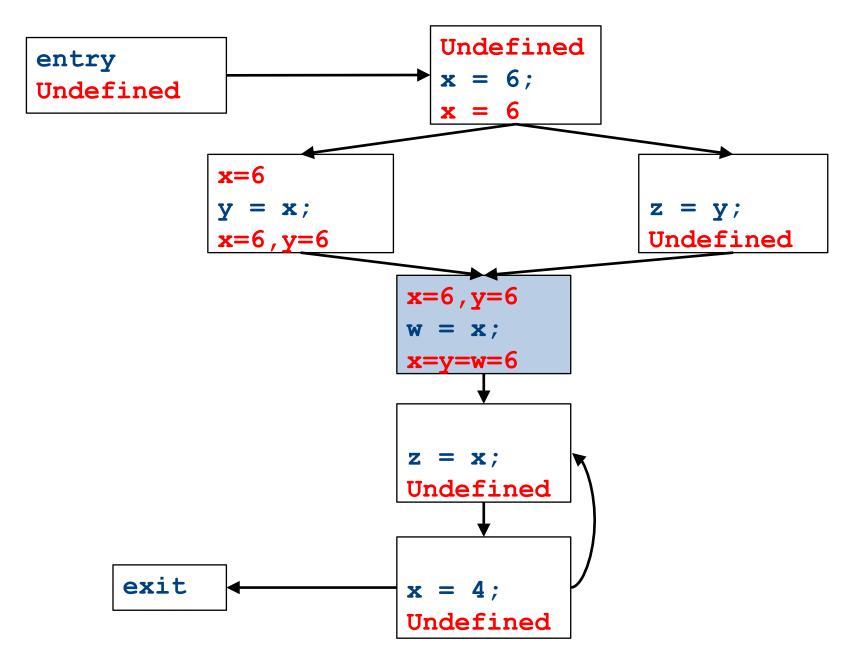


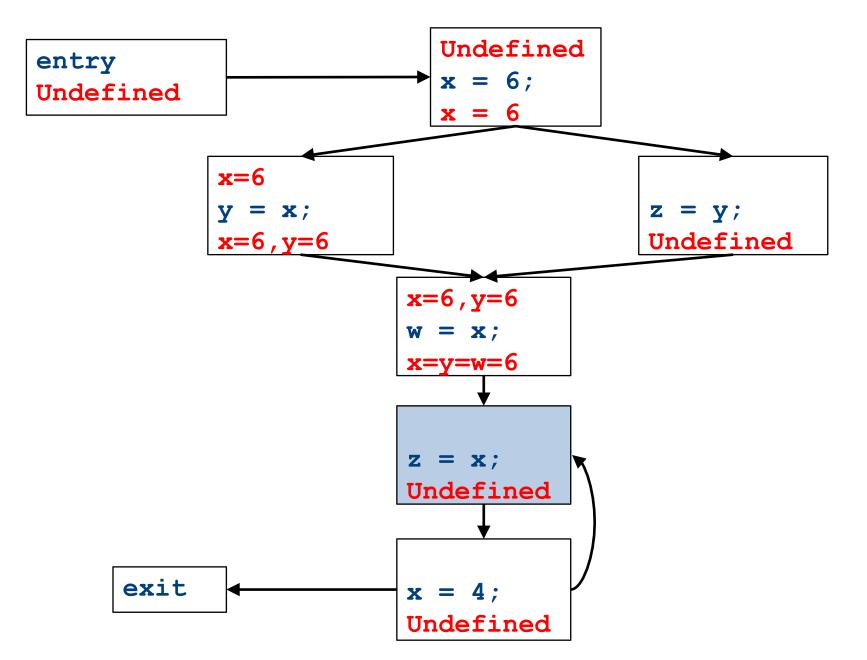


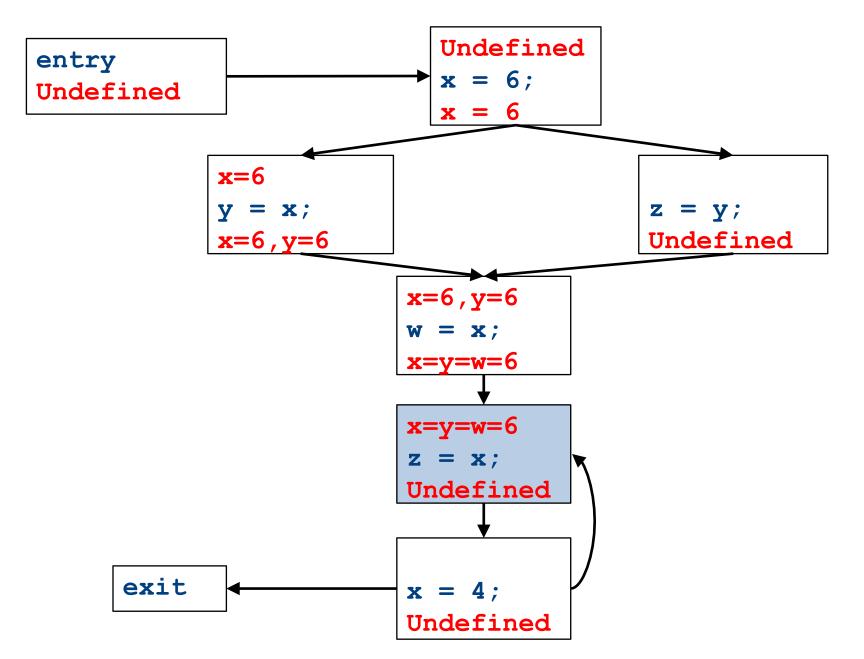


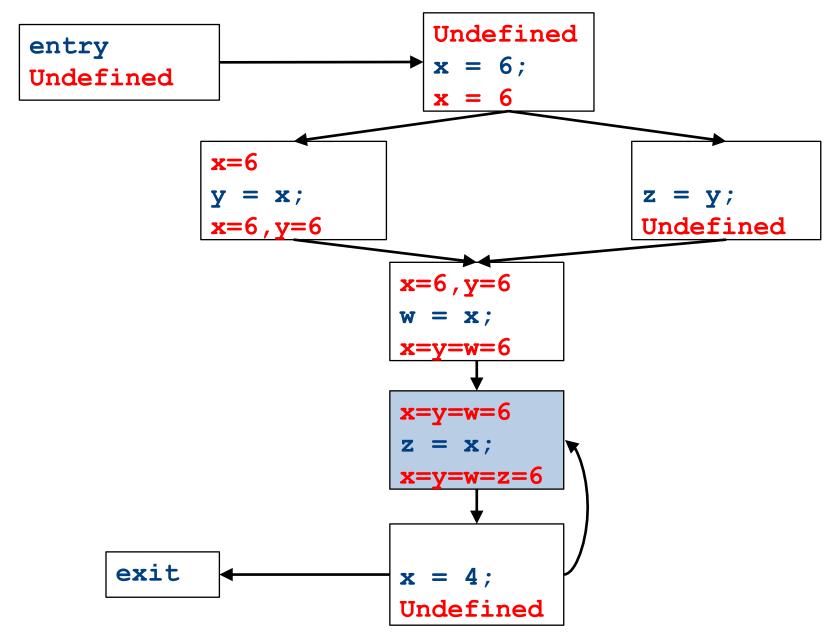


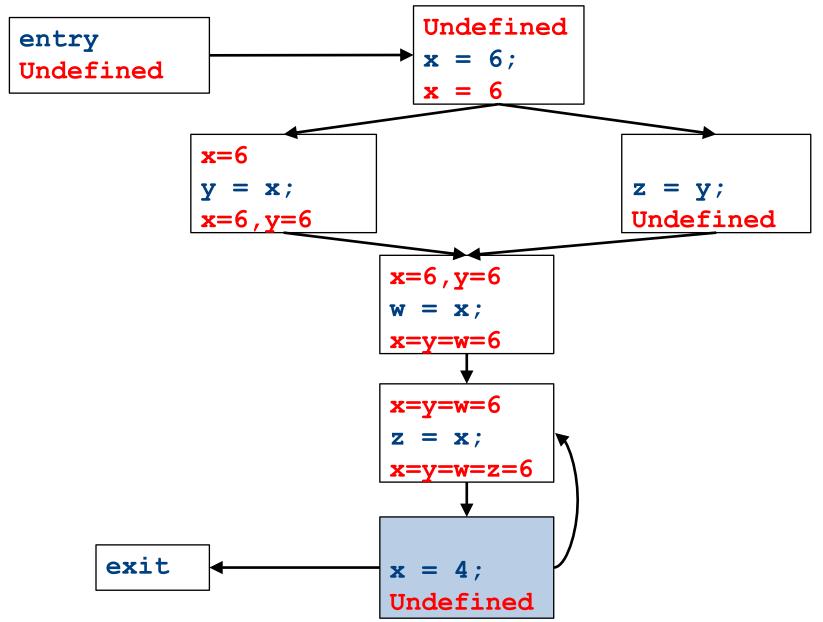


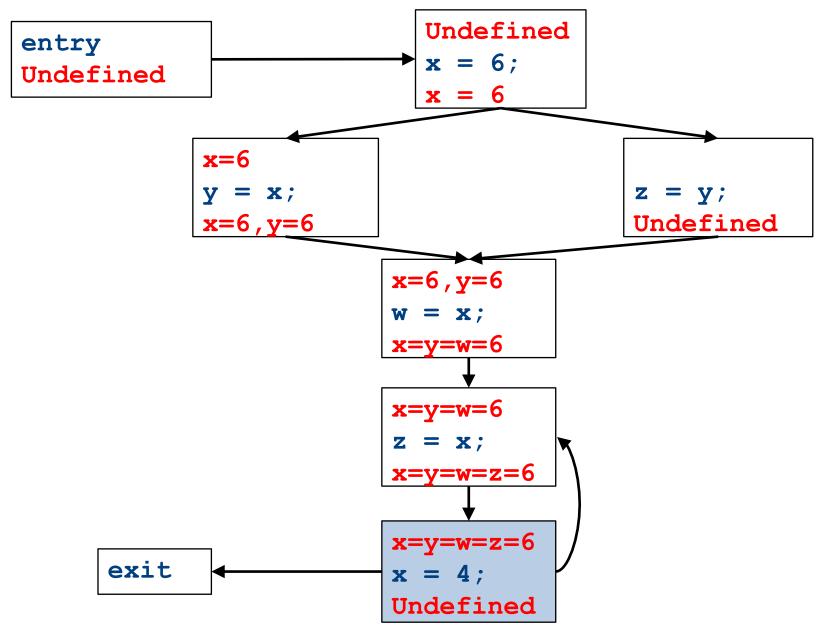


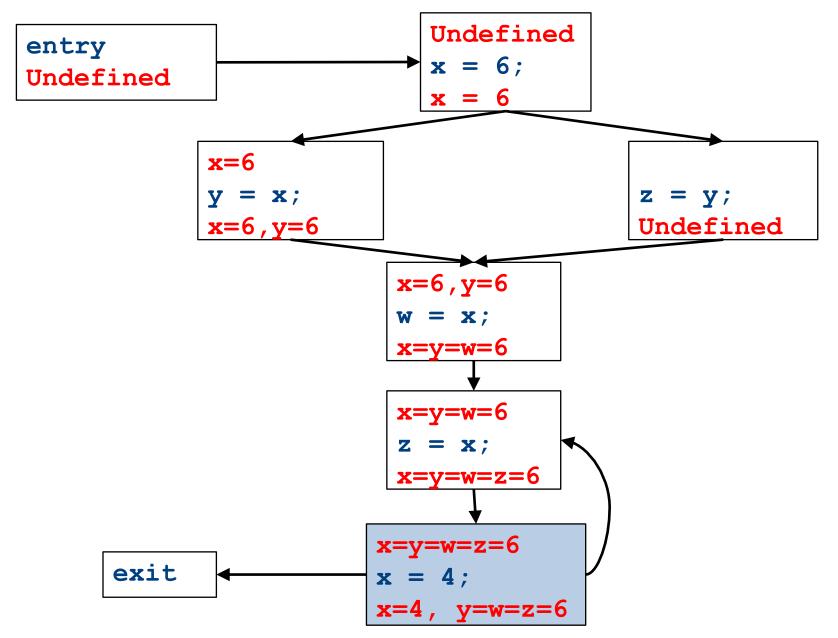


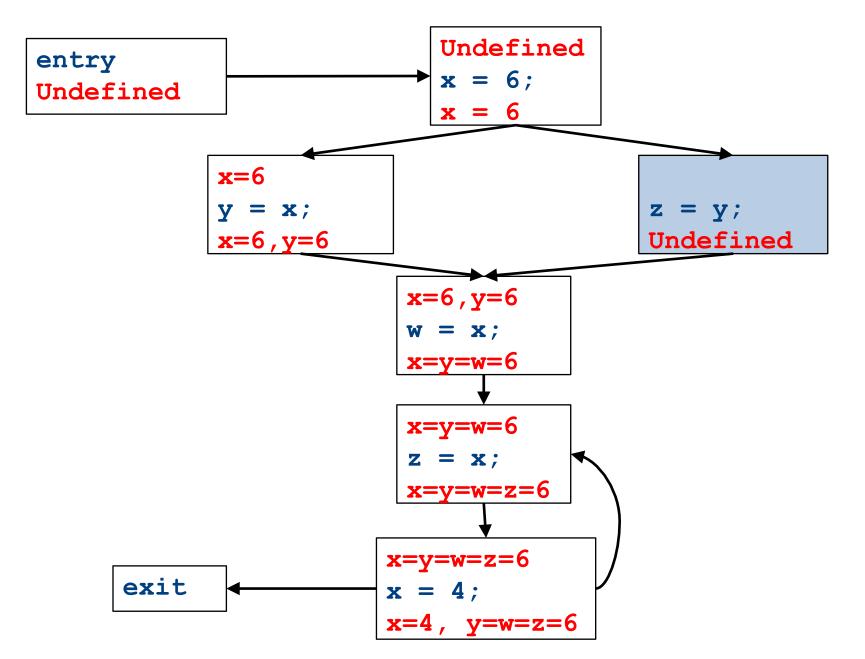


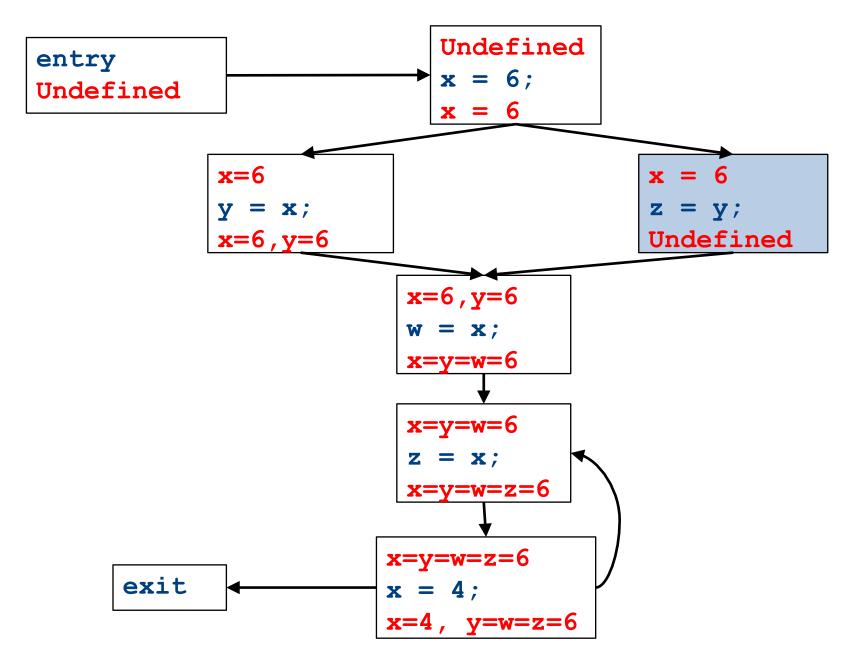


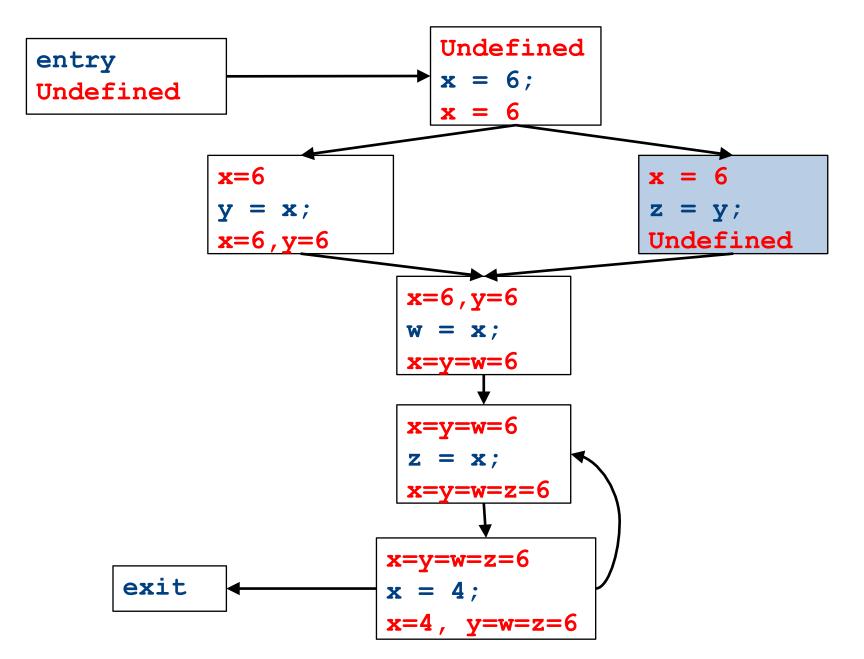


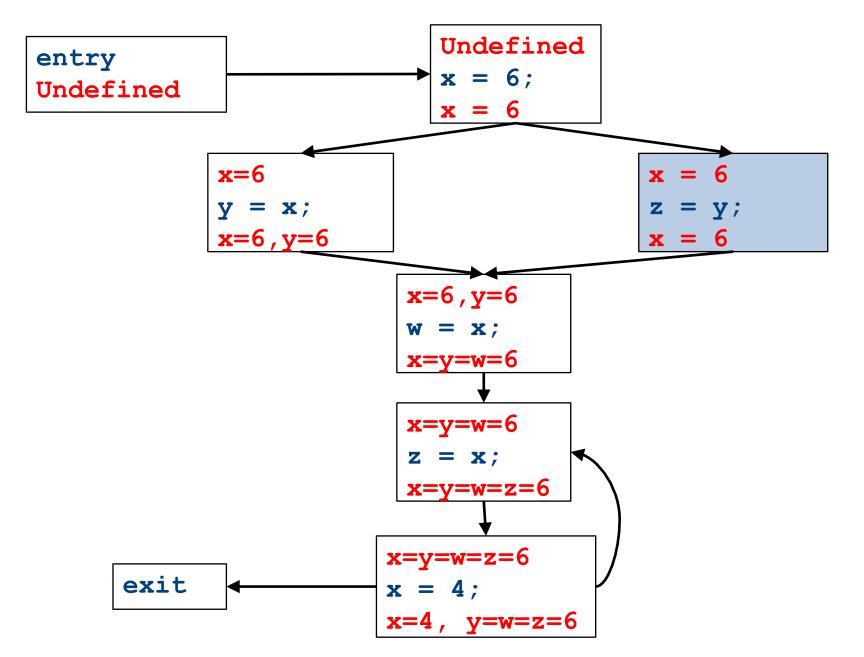


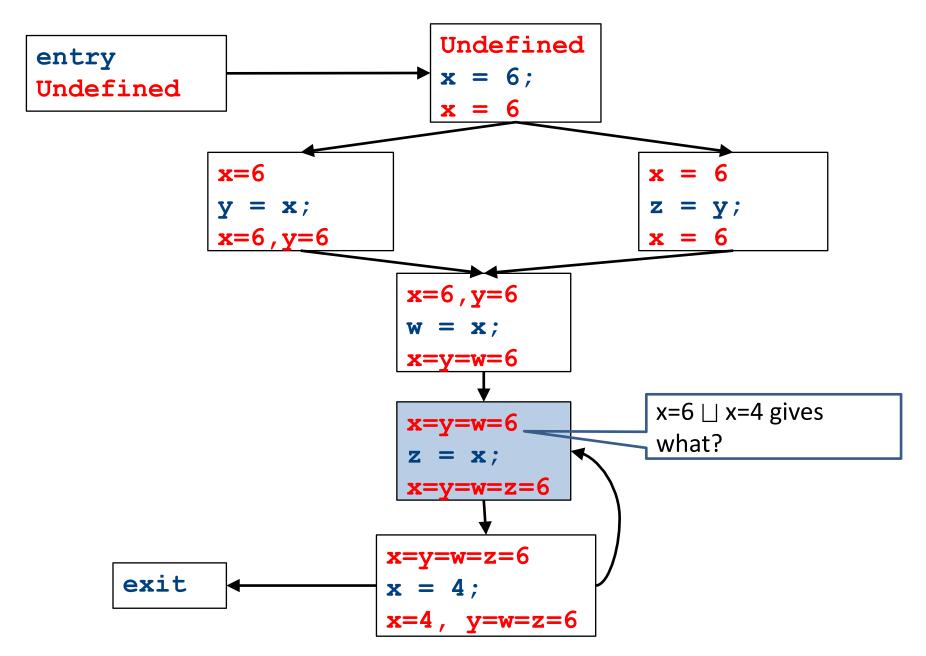


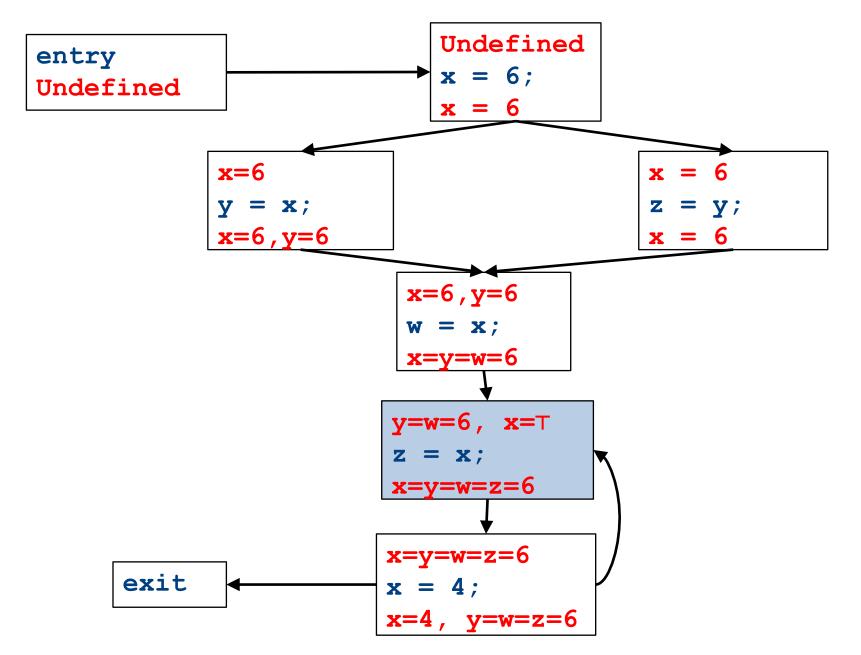


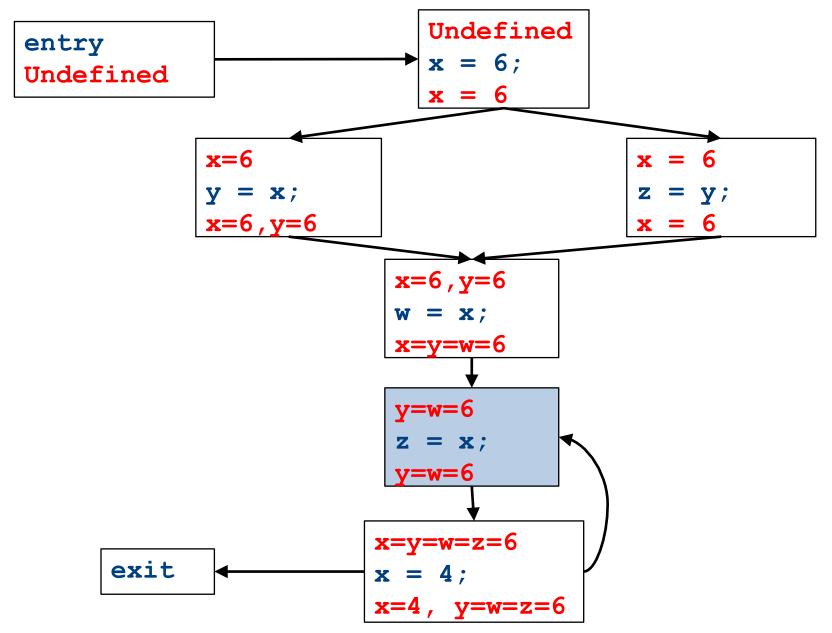


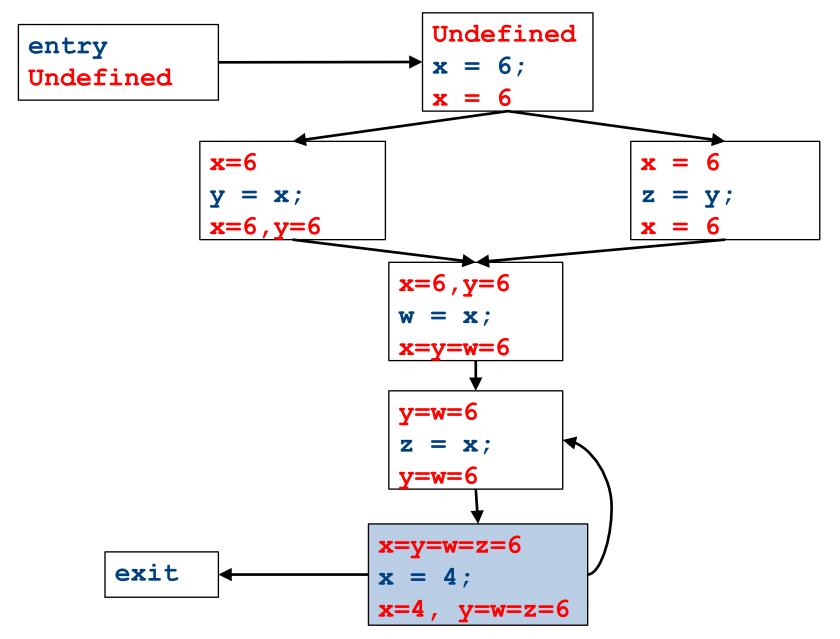


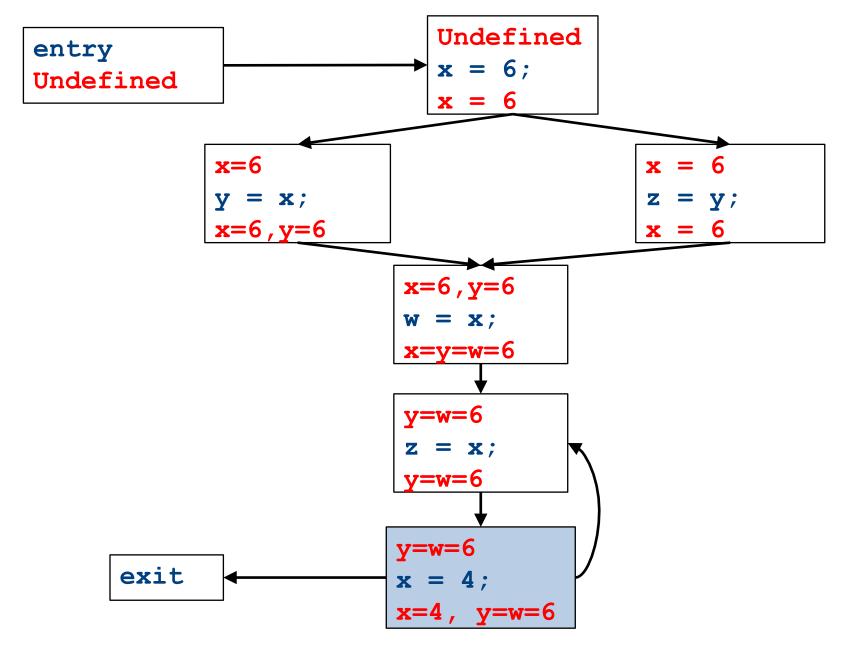


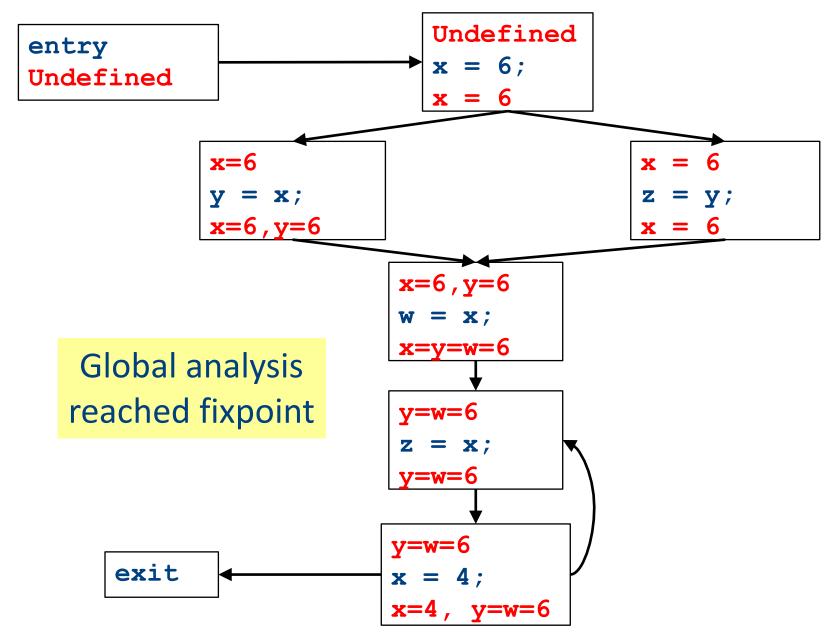


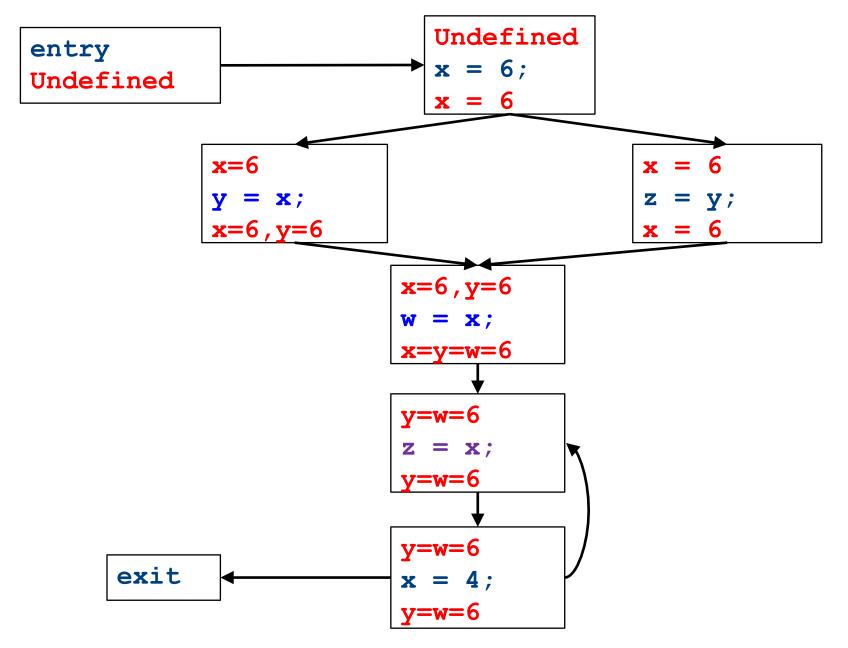


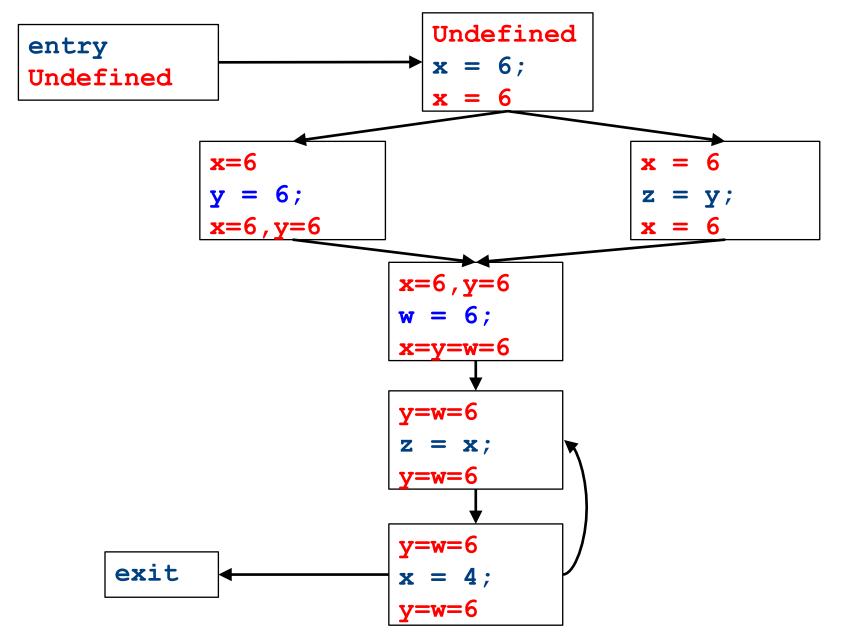












# Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars→ {Undefined, 0, 1, -1, 2, -2, ..., Not-a-Constant}
  - Join mapping for variables point-wise
     {x→1,y→1,z→1} □ {x→1,y→2,z→Not-a-Constant} =
     {x→1,y→Not-a-Constant,z→Not-a-Constant}
- Transfer functions:
  - $f_{\mathbf{x}=\mathbf{k}}(V) = V|_{x \mapsto k}$  (update V by mapping x to k)
  - $f_{x=a+b}(V) = V|_{x \mapsto Not-a-Constant}$  (assign Not-a-Constant)
- Initial value: x is Undefined
  - (When might we use some other value?)

## Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?

– In general, we don't

#### Terminates?

## **Liveness Analysis**

• A variable is live at a point in a program if later in the program its value will be read before it is written to again

## Join semilattice definition

- A join semilattice is a pair (V, ⊔), where
- V is a domain of elements
- 📋 is a join operator that is
  - commutative:  $x \sqcup y = y \sqcup x$
  - associative:  $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
  - idempotent:  $x \sqcup x = x$
- If x □ y = z, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted ⊥ such that ⊥ □ x = x for all x

# Partial ordering induced by join

- Every join semilattice (V, □) induces an ordering relationship □ over its elements
- Define  $x \sqsubseteq y$  iff  $x \sqcup y = y$
- Need to prove
  - Reflexivity:  $x \sqsubseteq x$
  - Antisymmetry: If  $x \sqsubseteq y$  and  $y \sqsubseteq x$ , then x = y
  - Transitivity: If  $x \sqsubseteq y$  and  $y \sqsubseteq z$ , then  $x \sqsubseteq z$

# A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

 $- \mathbf{x} \cup \mathbf{x} = \mathbf{x}$ 

- Commutative:
  - $\mathbf{x} \cup \mathbf{y} = \mathbf{y} \cup \mathbf{x}$
- Associative:

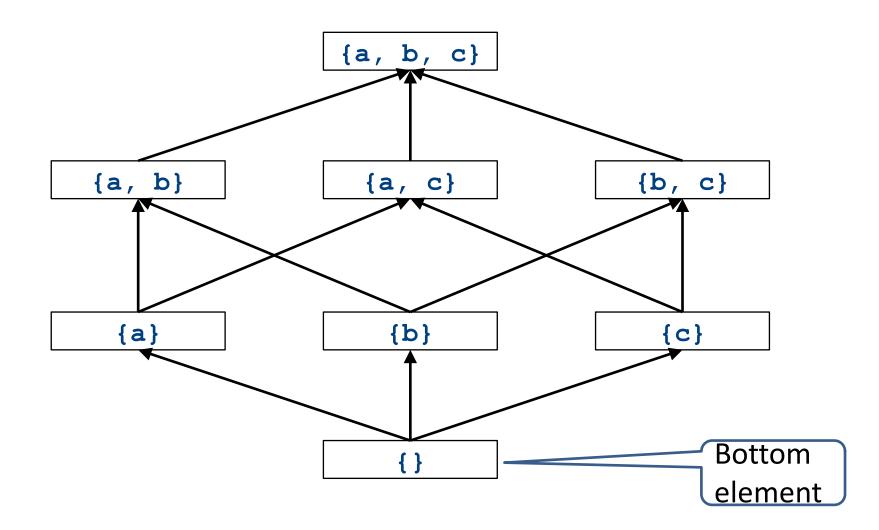
 $- (x \cup y) \cup z = x \cup (y \cup z)$ 

• Bottom element:

– The empty set:  $\emptyset \cup x = x$ 

• Ordering over elements = subset relation

#### Join semilattice example for liveness



# Dataflow framework

- A global analysis is a tuple (D, V, □, F, I), where
  - D is a direction (forward or backward)
    - The order to visit statements within a basic block, **NOT** the order in which to visit the basic blocks
  - V is a set of values (sometimes called domain)
  - $\sqcup$  is a join operator over those values
  - F is a set of transfer functions  $f_s : \mathbf{V} \to \mathbf{V}$  (for every statement s)
  - I is an initial value

# Running global analyses

- Assume that  $(D, V, \sqcup, F, I)$  is a forward analysis
- For every statement s maintain values before IN[s] and after - OUT[s]
- Set OUT[**s**] = ⊥ for all statements **s**
- Set OUT[**entry**] = I
- Repeat until no values change:
  - For each statement s with predecessors PRED[s]={p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>n</sub>}
    - Set  $IN[s] = OUT[p_1] \sqcup OUT[p_2] \sqcup ... \sqcup OUT[p_n]$
    - Set OUT[s] =  $f_s(IN[s])$
- The order of this iteration does not matter
  - Chaotic iteration

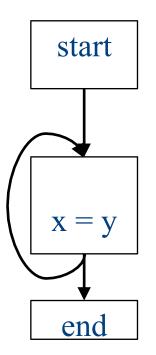
## Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

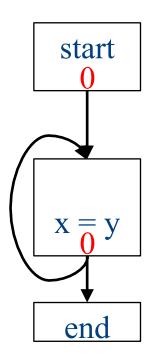
## A non-terminating analysis

- The following analysis will loop infinitely on any CFG containing a loop:
- Direction: Forward
- Domain: ℕ
- Join operator: max
- Transfer function: f(n) = n + 1
- Initial value: 0

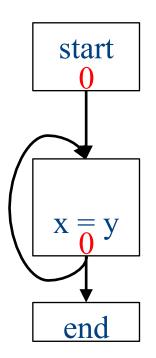
## A non-terminating analysis



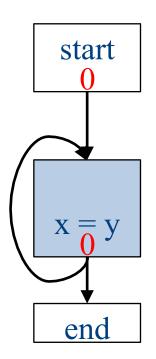
## Initialization

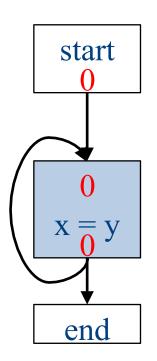


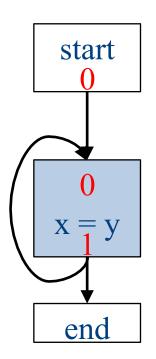
#### **Fixed-point iteration**



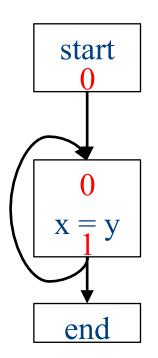
#### Choose a block

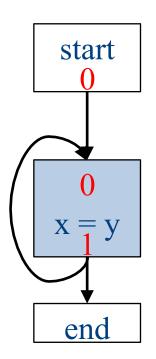


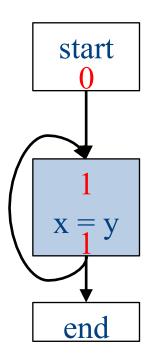


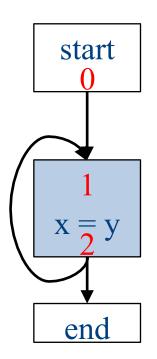


#### Choose a block

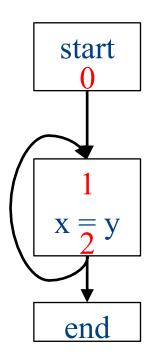


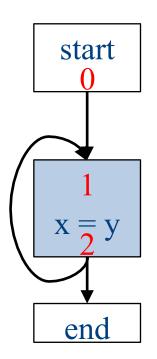


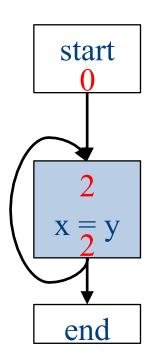


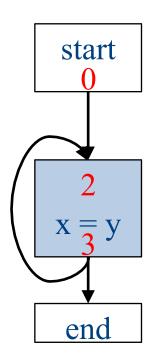


#### Choose a block









# Why doesn't this terminate?

- Values can increase without bound
- Note that "increase" refers to the lattice ordering, not the ordering on the natural numbers
- The height of a semilattice is the length of the longest increasing sequence in that semilattice
- The dataflow framework is not guaranteed to terminate for semilattices of infinite height
- Note that a semilattice can be infinitely large but have finite height
  - e.g. constant propagation



4

3

2

1

 $\mathbf{O}$ 

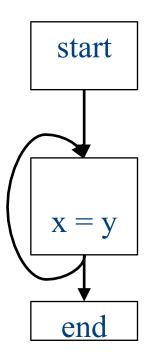
## Height of a lattice

- An increasing chain is a sequence of elements  $\perp \Box a_1 \Box a_2 \Box ... \Box a_k$ 
  - The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with *n* program variables:  $- \{ \} \subset \{v_1\} \subset \{v_1, v_2\} \subset ... \subset \{v_1, ..., v_n\} \}$
- For available expressions it is the number of expressions of the form a=b op c
  - For *n* program variables and *m* operator types:
     *m*•*n*<sup>3</sup>

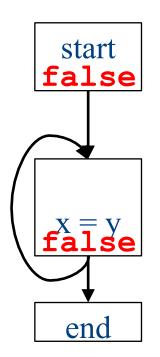
# Another non-terminating analysis

- This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:
- Direction: Forward
- Domain: Boolean values true and false
- Join operator: Logical OR
- Transfer function: Logical NOT
- Initial value: false

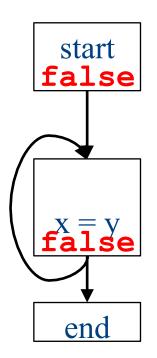
## A non-terminating analysis



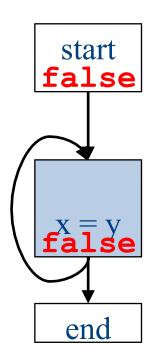
#### Initialization

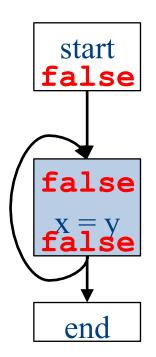


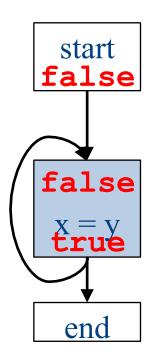
#### **Fixed-point iteration**

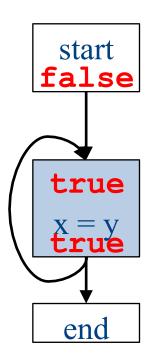


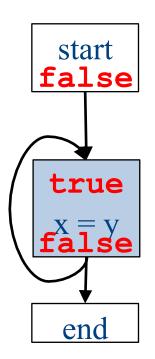
#### Choose a block

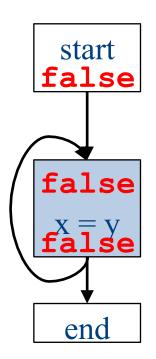


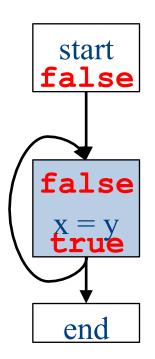






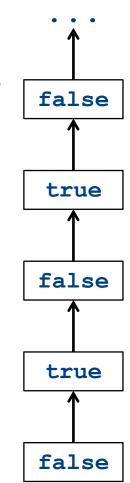






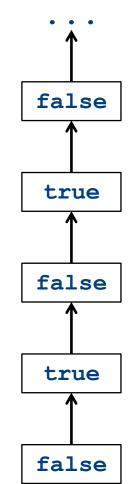
# Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever



# Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?



## Monotone transfer functions

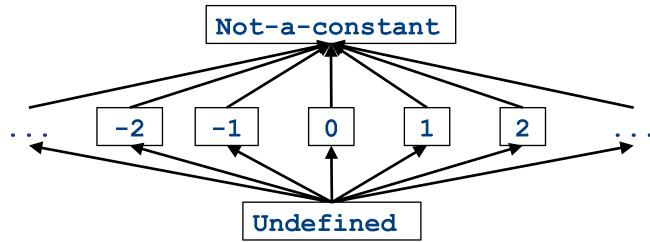
- A transfer function *f* is monotone iff
   if x ⊑ y, then *f*(x) ⊑ *f*(y)
- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does **not** mean that x ⊑ f(x)
  - (This is a different property called extensivity)

## Liveness and monotonicity

- A transfer function f is monotone iff if  $x \sqsubseteq y$ , then  $f(x) \sqsubseteq f(y)$
- Recall our transfer function for  $\mathbf{a} = \mathbf{b} + \mathbf{c}$  is  $-f_{a=b+c}(V) = (V - \{a\}) \cup \{b, c\}$
- Recall that our join operator is set union and induces an ordering relationship X ⊆ Y iff X ⊆Y
- Is this monotone?

#### Is constant propagation monotone?

- A transfer function f is monotone iff if  $x \sqsubseteq y$ , then  $f(x) \sqsubseteq f(y)$
- Recall our transfer functions
  - $-f_{\mathbf{x}=\mathbf{k}}(V) = V|_{x \mapsto k}$  (update V by mapping x to k)
  - $f_{x=a+b}(V) = V|_{x \mapsto Not-a-Constant}$  (assign Not-a-Constant)
- Is this monotone?



## The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
  - The join operator can only bring values up
  - Transfer functions can never lower values back down below where they were in the past (monotonicity)
  - Values cannot increase indefinitely (finite height)

# An "optimality" result

- A transfer function f is distributive if  $\frac{f(a \sqcup b) = f(a) \sqcup f(b)}{f(or every domain elements a and b}$
- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths

- Join over all paths

• Optimal if we ignore program conditions

# An "optimality" result

• A transfer function f is distributive if  $f(a \sqcup b) = f(a) \sqcup f(b)$ 

for every domain elements *a* and *b* 

• If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths

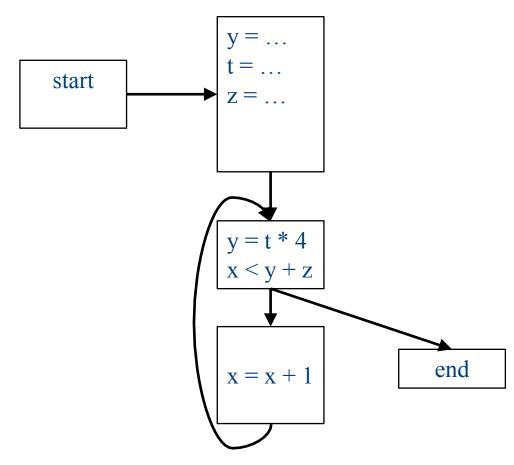
Join over all paths

- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

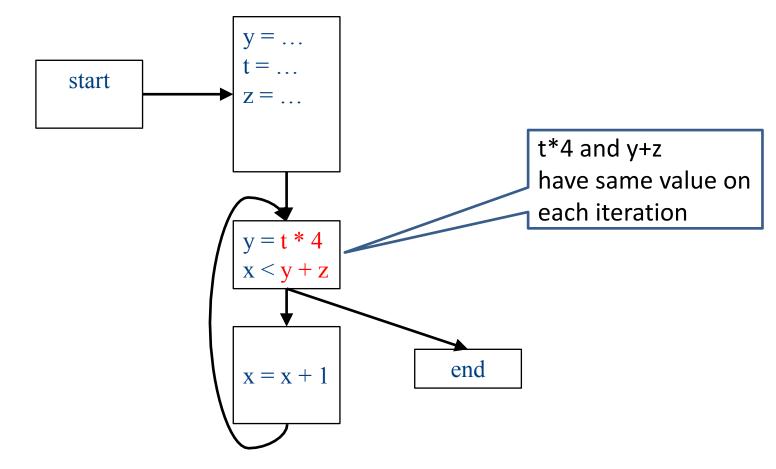
## Loop optimizations

- Most of a program's computations are done inside loops
  - Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
  - Loop-invariant code motion
  - (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
  - Reaching definitions
    - (Also useful for improving register allocation)

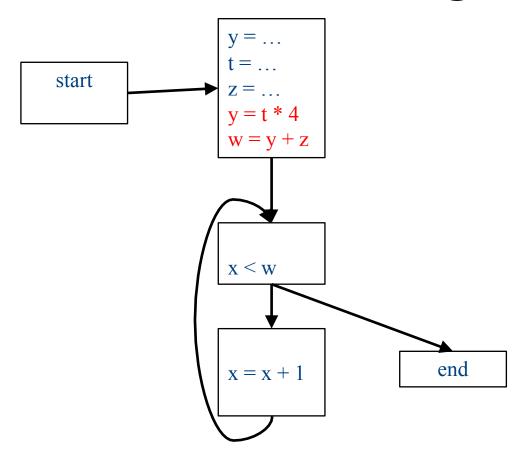
#### Loop invariant computation



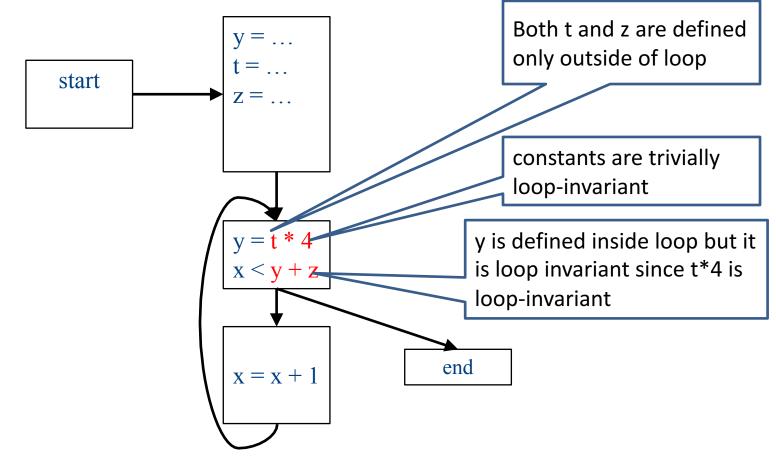
#### Loop invariant computation



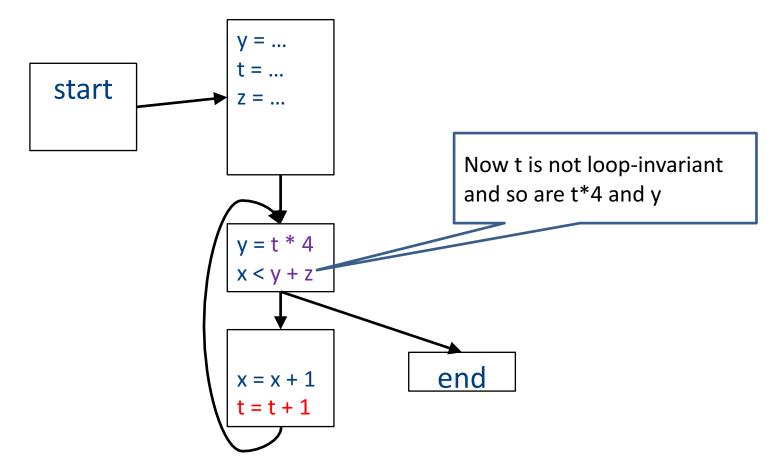
#### Code hoisting



## What reasoning did we use?



#### What about now?



## Loop-invariant code motion

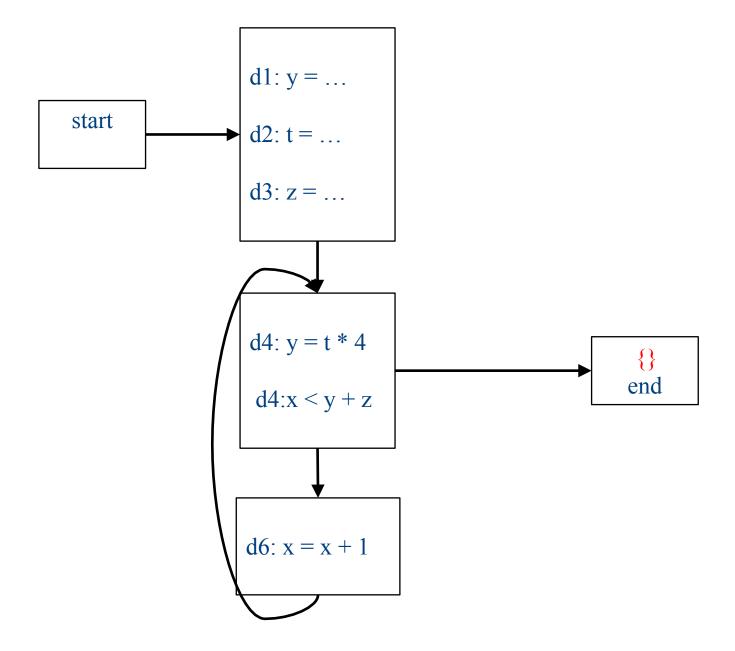
- $d: t = a_1 \text{ op } a_2$ 
  - *d* is a program location
- $a_1 \text{ op } a_2 \text{ loop-invariant}$  (for a loop *L*) if computes the same value in each iteration
  - Hard to know in general
- Conservative approximation
  - Each  $a_i$  is a constant, or
  - All definitions of  $a_i$  that reach d are outside L, or
  - Only one definition of of  $a_i$  reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

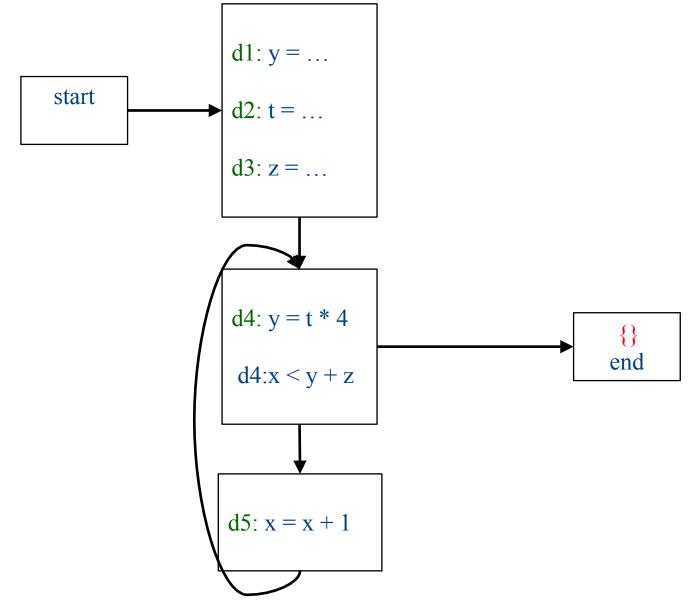
 A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined

- A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions `
- Join operator: union
- Transfer function:

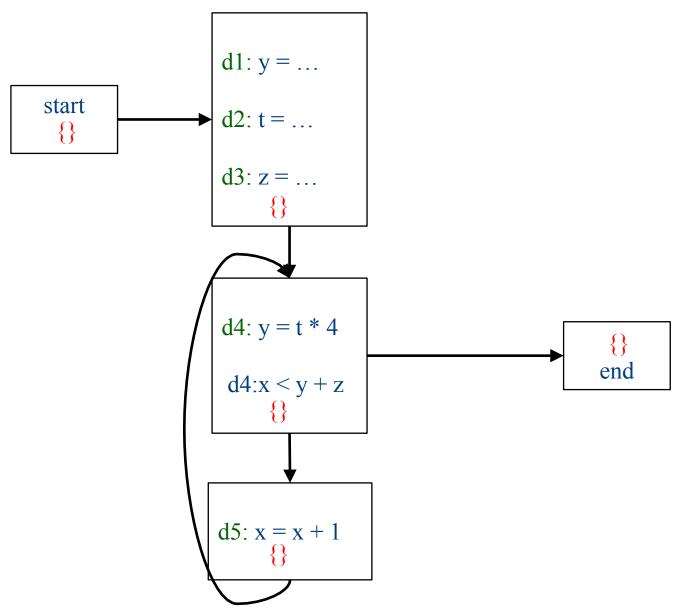
 $f_{d: a=b op c}(\mathsf{RD}) = (\mathsf{RD} - defs(a)) \cup \{d\}$  $f_{d: not-a-def}(\mathsf{RD}) = \mathsf{RD}$ 

- Where *defs(a)* is the set of locations defining *a* (statements of the form *a*=...)
- Initial value: {}

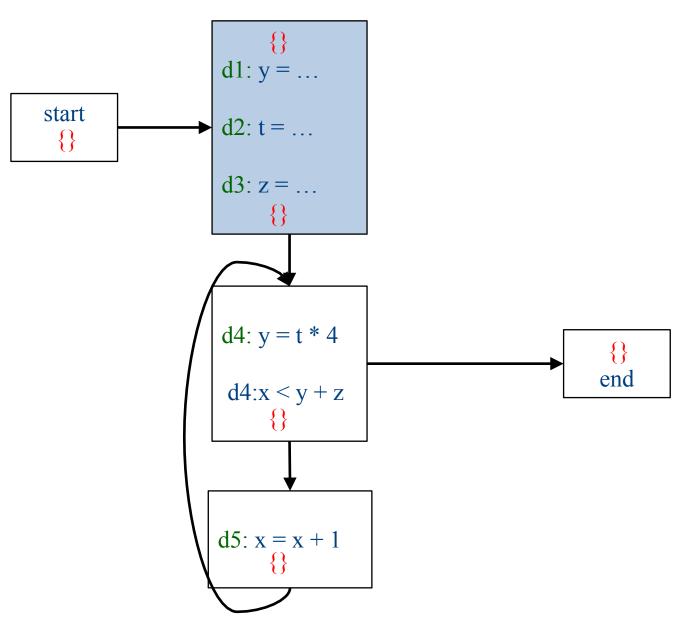


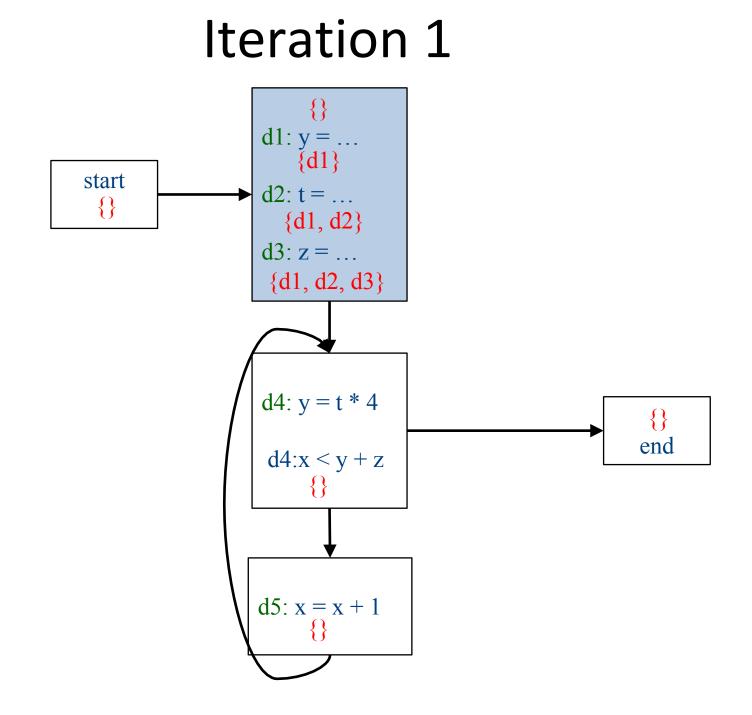


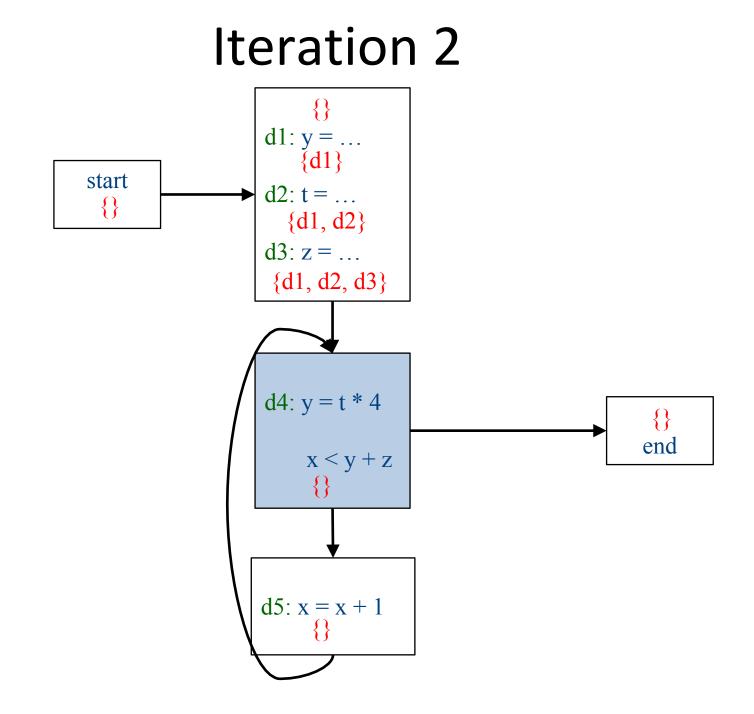
#### Initialization

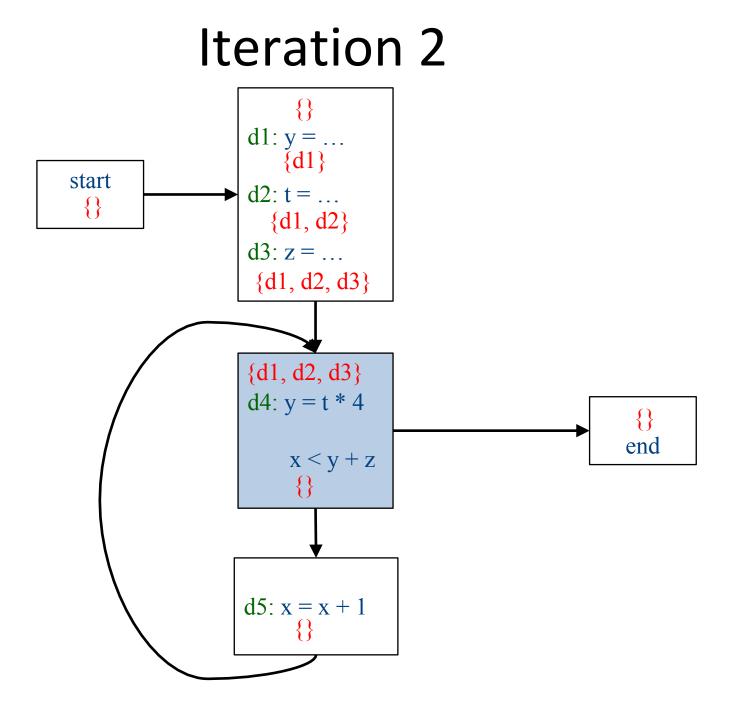


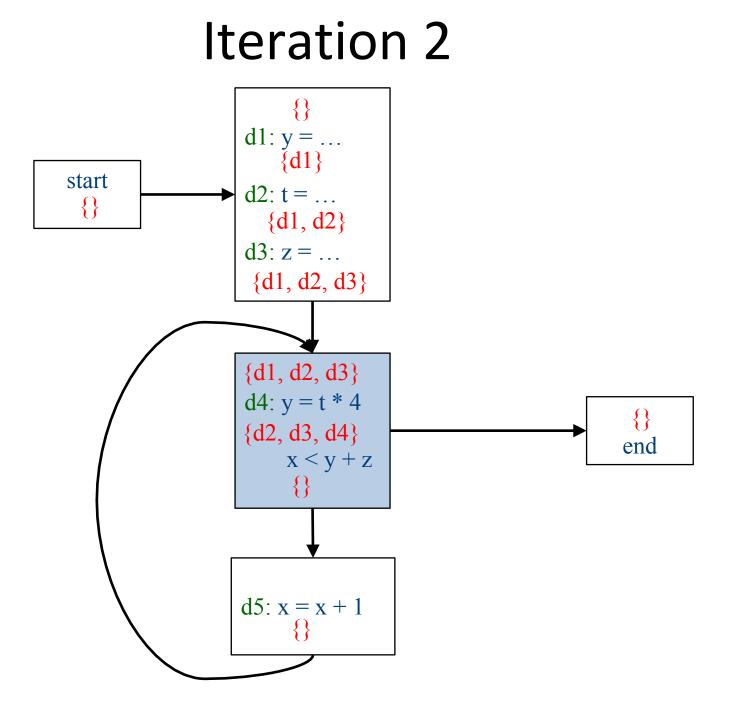
#### **Iteration 1**

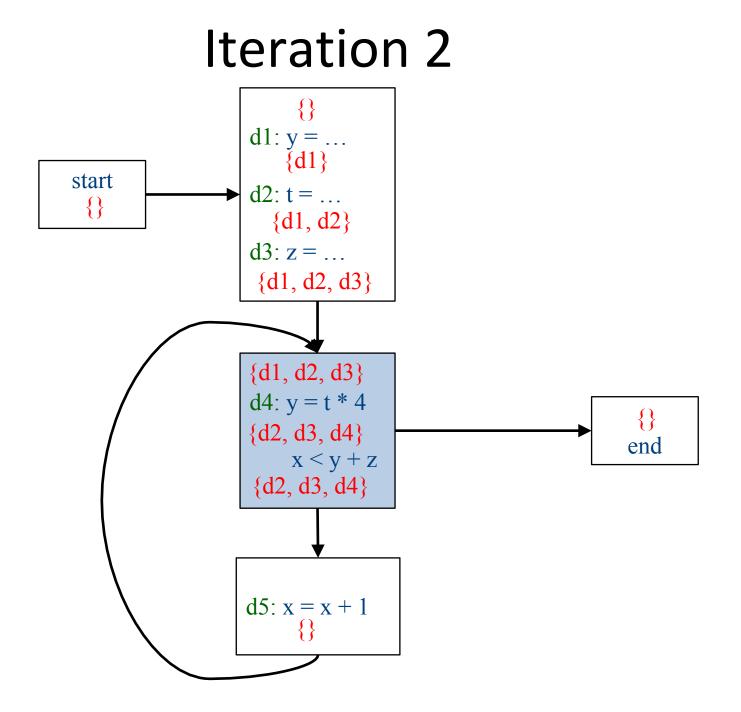


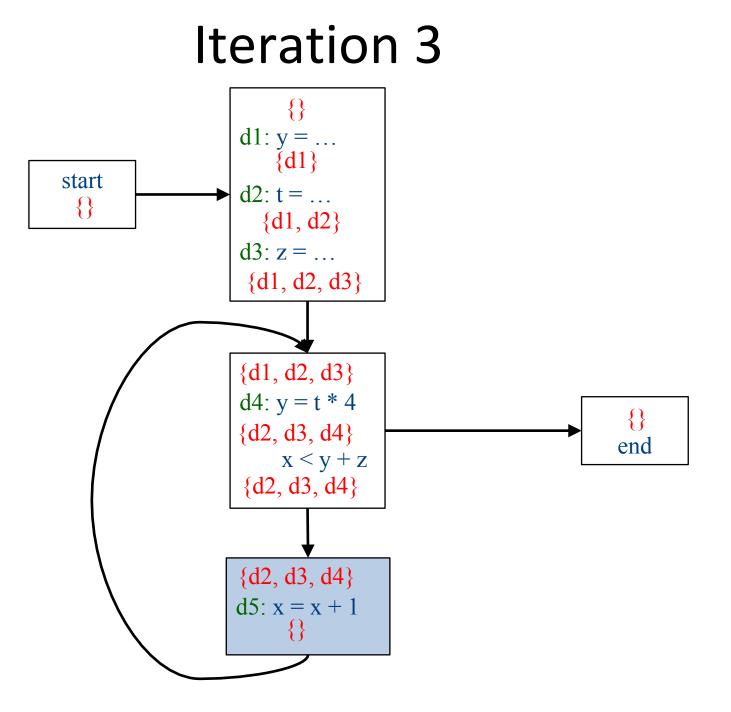


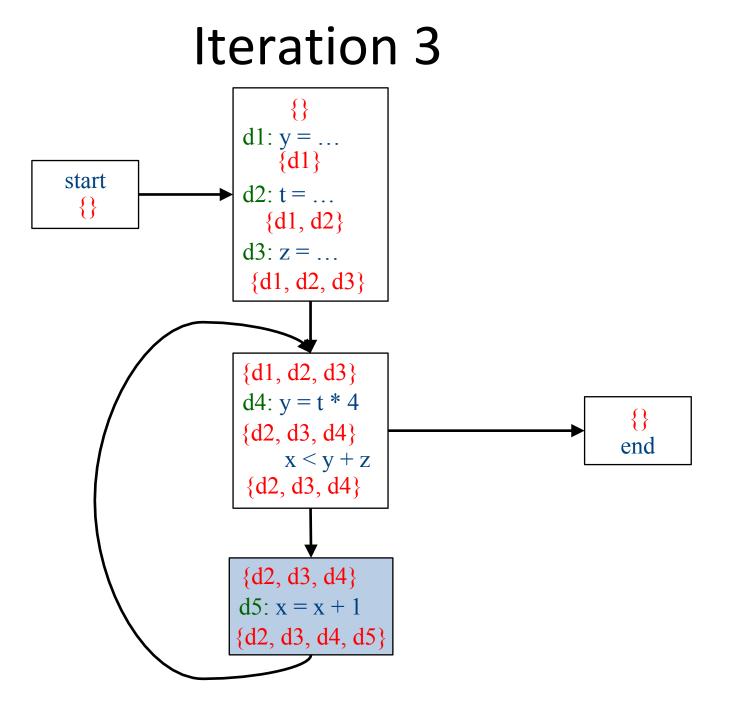


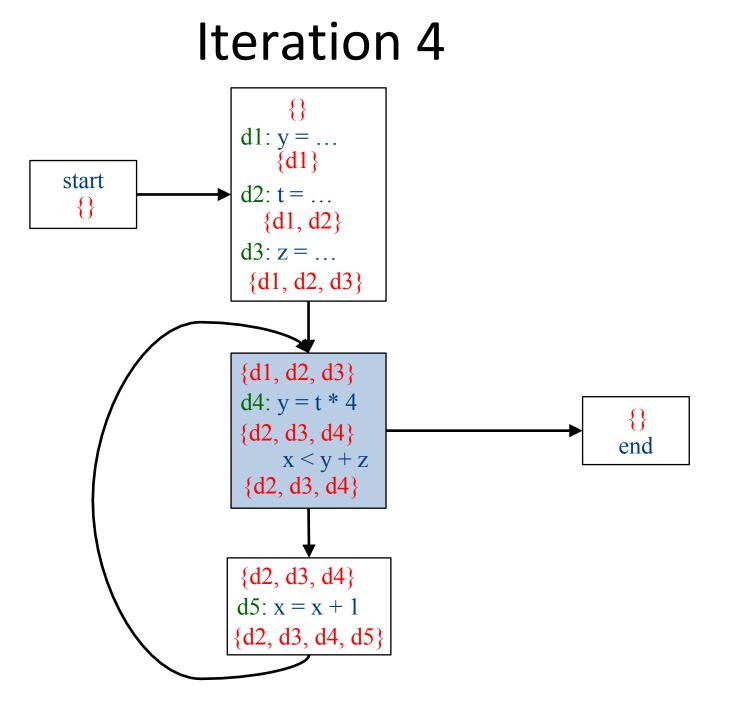


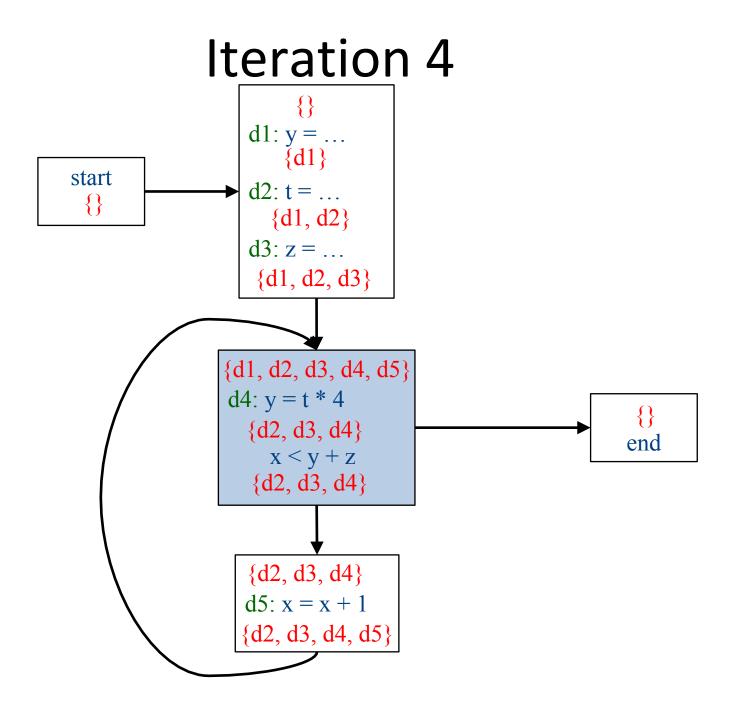


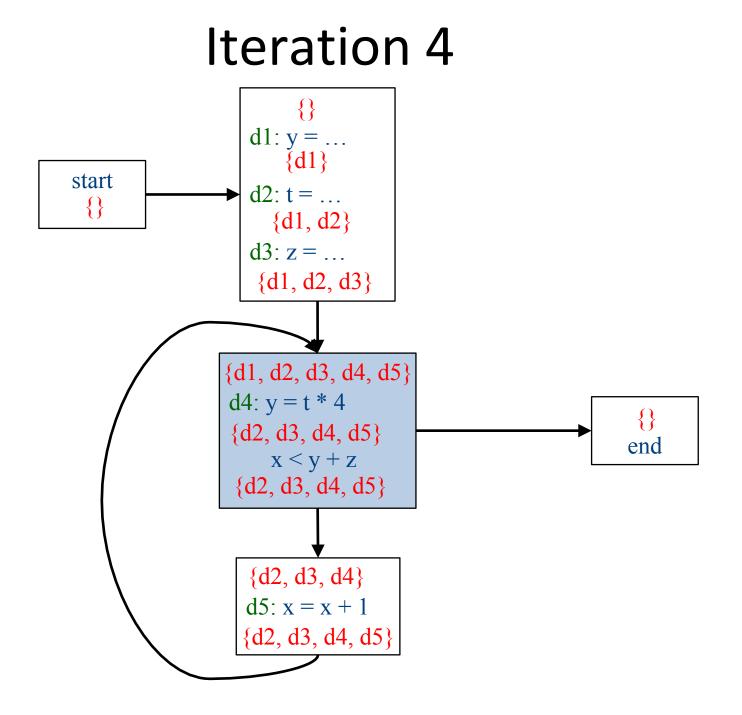


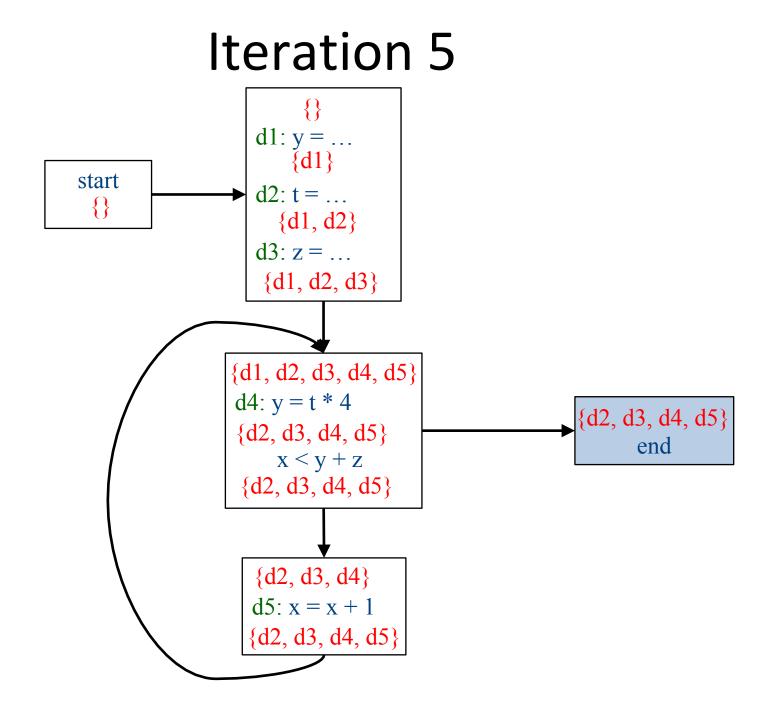




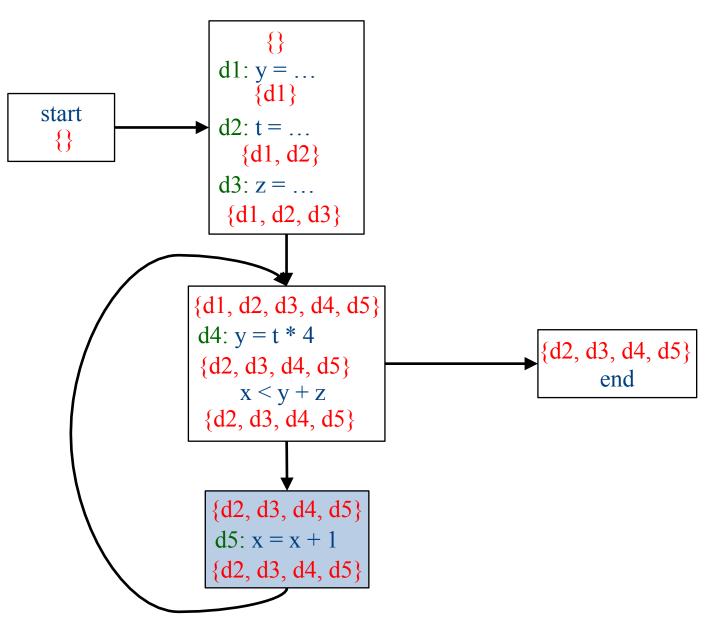




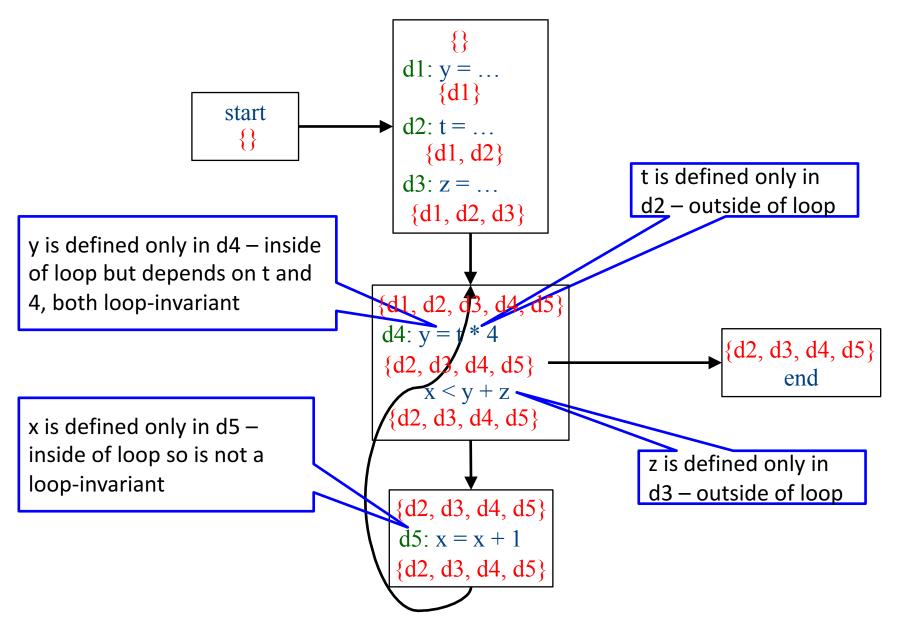




#### **Iteration 6**

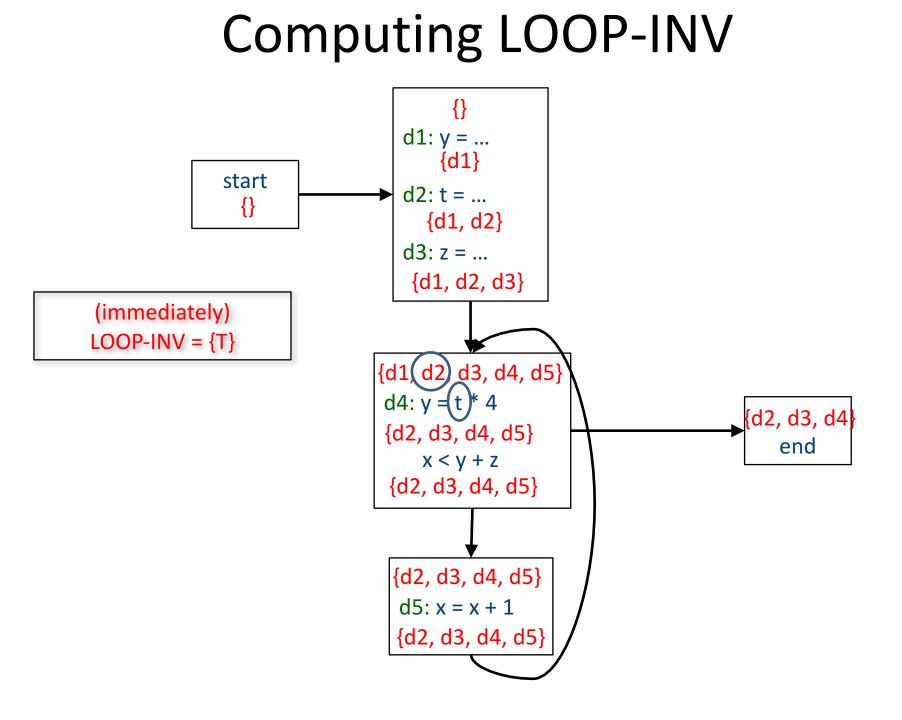


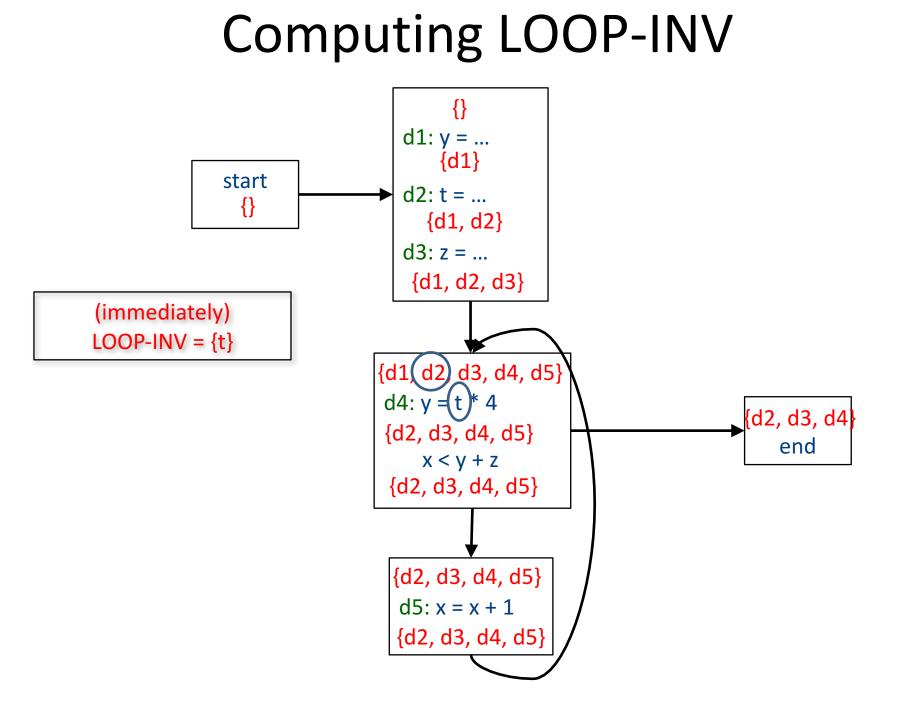
## Which expressions are loop invariant?

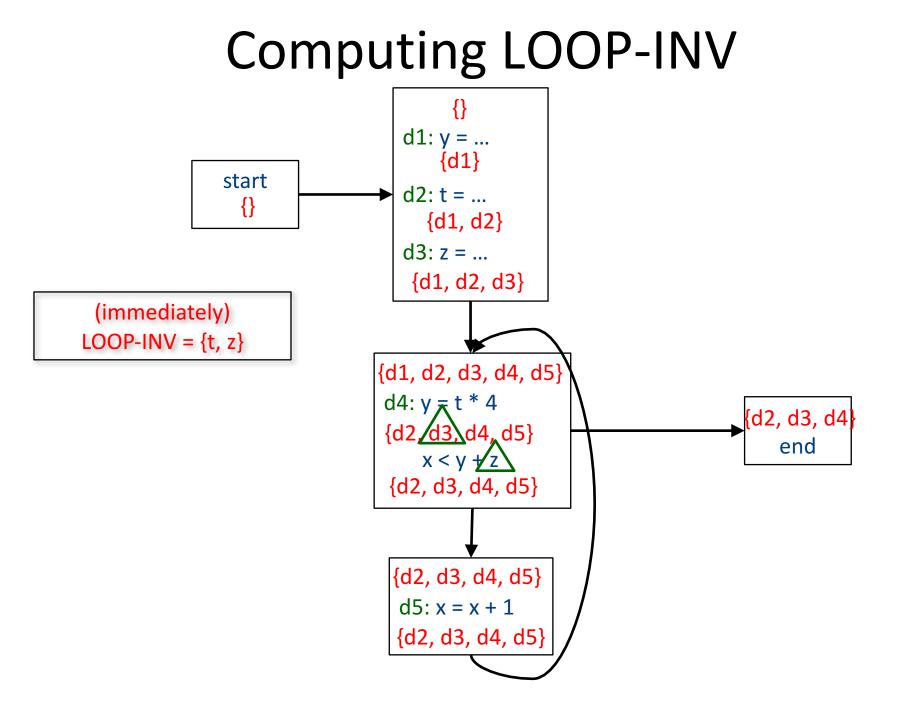


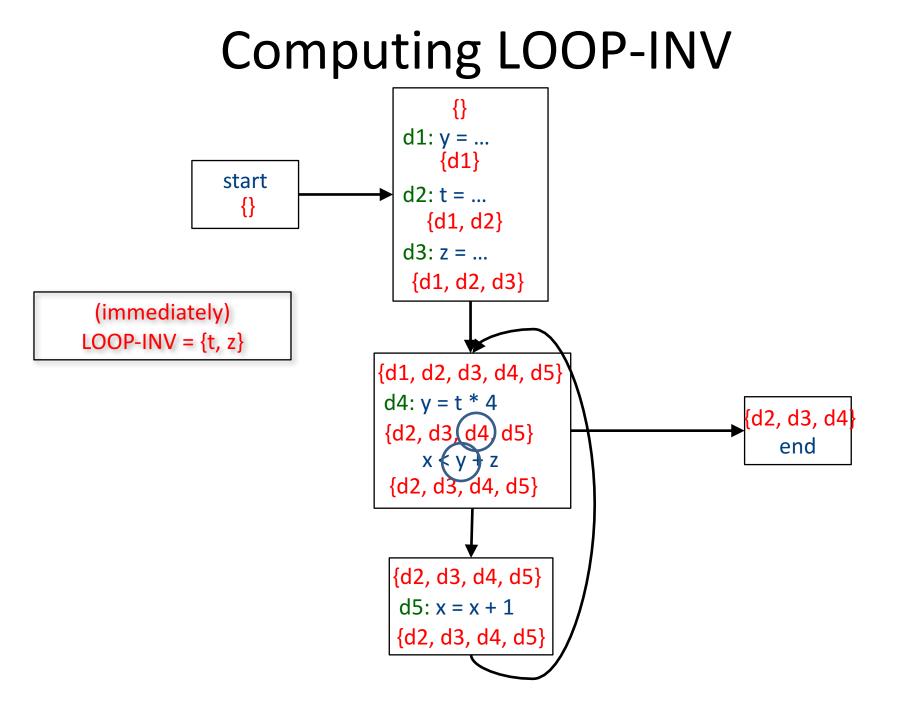
# Inferring loop-invariant expressions

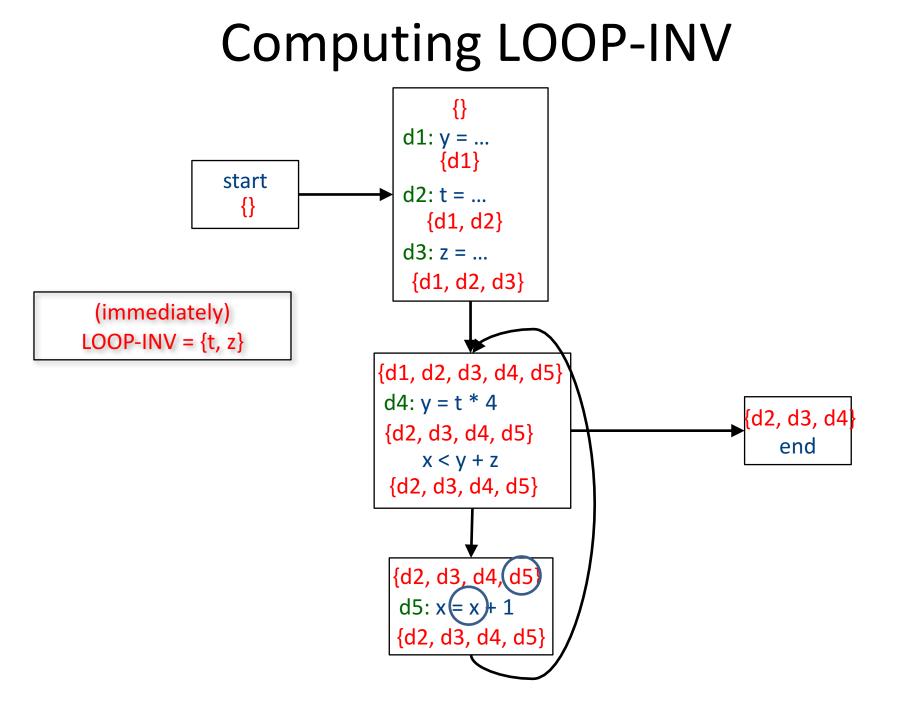
- For a statement *s* of the form  $t = a_1 \text{ op } a_2$
- A variable a<sub>i</sub> is immediately loop-invariant if all reaching definitions IN[s]={d<sub>1</sub>,...,d<sub>k</sub>} for a<sub>i</sub> are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants LOOP-INV = LOOP-INV ∪ {x | d: x = a₁ op a₂, d is in the loop, and both a₁ and a₂ are in LOOP-INV}
   Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants



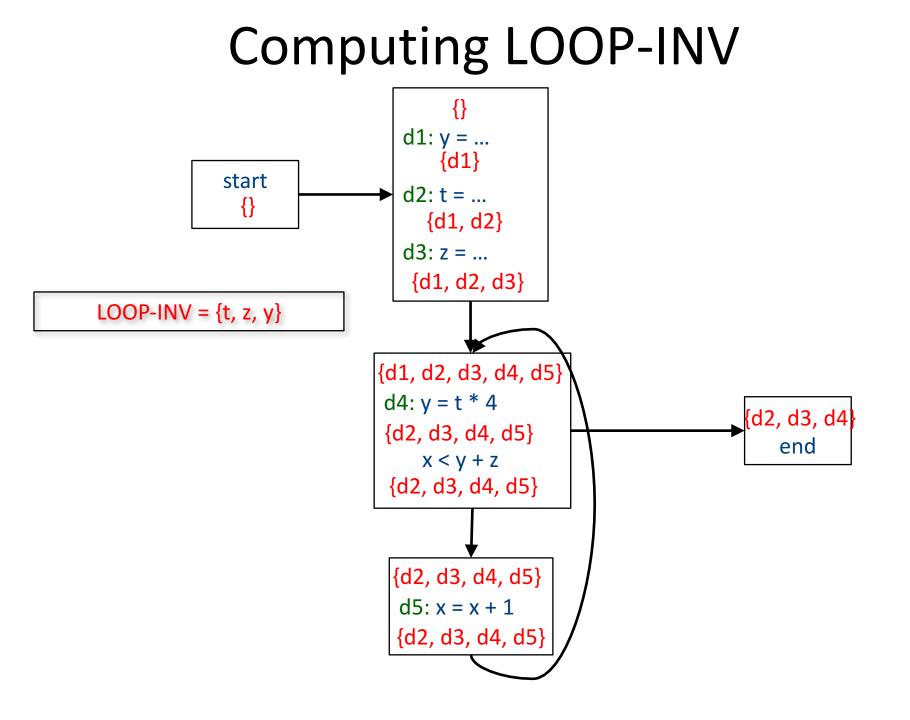




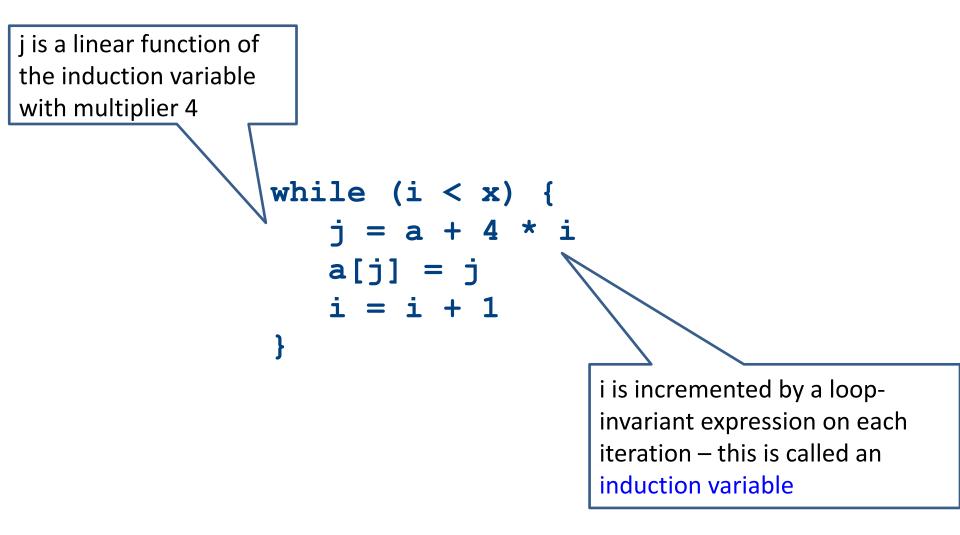




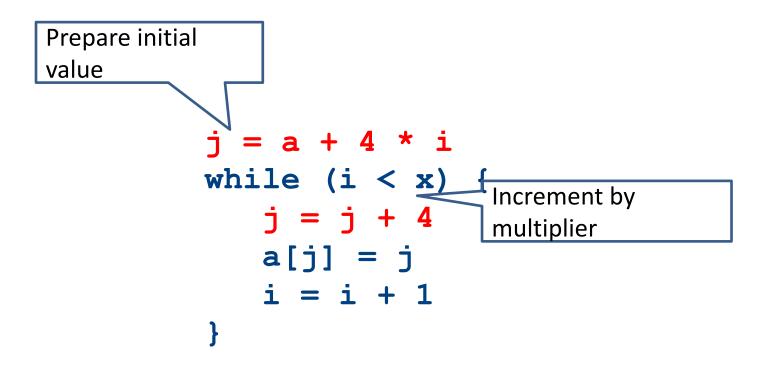




#### Induction variables



#### Strength-reduction



#### The End