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Basic	Compiler	Phases
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IR	Optimization
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IR	Optimization

• Making	code	better
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IR	Optimization

• Making	code	“better”
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“Optimized”	evaluation
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But	what	about…

a	:=	1	+	2;
y	:=	a	+	b;
x	:=	a	+	b		+	8;
z	:=	b	+	a;

a	:=	a	+	1;
w:=	a	+	b;
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Overview	of	IR	optimization

• Formalisms	and	Terminology
– Control-flow	graphs
– Basic	blocks

• Local	optimizations
– Speeding	up	small	pieces	of	a	procedure

• Global	optimizations
– Speeding	up	procedure	as	a	whole

• The	dataflow	framework
– Defining	and	implementing	a	wide	class	of	
optimizations
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Program	Analysis

• In	order	to	optimize	a	program,	the	
compiler	has	to	be	able	to	reason	about	the	
properties	of	that	program

• An	analysis	is	called	sound if	it	never	
asserts	an	incorrect	fact	about	a	program

• All	the	analyses	we	will	discuss	in	this	class	
are	sound
– (Why?)
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Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x holds	some

integer	value”
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Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	either	137	

or	42”
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(Un)Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	137”
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Soundness	&	Precision
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	either	137,

42,	or	271”
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Semantics-preserving	optimizations

• An	optimization	is	semantics-preserving if	it	does	not	
alter	the	semantics	of	the	original	program

• Examples:
– Eliminating	unnecessary	temporary	variables
– Computing	values	that	are	known	statically	at	compile-time	

instead	of	runtime
– Evaluating	constant	expressions	outside	of	a	loop	instead	of	

inside
• Non-examples:

– Replacing	bubble	sort	with	quicksort (why?)
– The	optimizations	we	will	consider	in	this	class	are	all	

semantics-preserving

15



A	formalism	for	IR	optimization

• Every	phase	of	the	compiler	uses	some	new	
abstraction:
– Scanning	uses	regular	expressions
– Parsing	uses	CFGs
– Semantic	analysis	uses	proof	systems	and	symbol	
tables

– IR	generation	uses	ASTs
• In	optimization,	we	need	a	formalism	that	
captures	the	structure	of	a	program	in	a	way	
amenable	to	optimization
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Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;
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Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;
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Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start
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Basic	blocks

• A	basic	block is	a	sequence	of	IR	instructions	
where
– There	is	exactly	one	spot	where	control	enters	the	
sequence,	which	must	be	at	the	start	of	the	
sequence

– There	is	exactly	one	spot	where	control	leaves	the	
sequence,	which	must	be	at	the	end	of	the	
sequence

• Informally,	a	sequence	of	instructions	that	
always	execute	as	a	group
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Control-Flow	Graphs

• A	control-flow	graph	(CFG)	is	a	graph	of	the	
basic	blocks	in	a	function

• The	term	CFG	is	overloaded	– from	here	on	
out,	we'll	mean	“control-flow	graph”	and	not	
“context	free	grammar”

• Each	edge	from	one	basic	block	to	another	
indicates	that	control	can	flow	from	the	end	of	
the	first	block	to	the	start	of	the	second	block

• There	is	a	dedicated	node	for	the	start	and	
end	of	a	function
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Types	of	optimizations

• An	optimization	is	local if	it	works	on	just	a	
single	basic	block

• An	optimization	is	global if	it	works	on	an	
entire	control-flow	graph

• An	optimization	is	interprocedural if	it	
works	across	the	control-flow	graphs	of	
multiple	functions
– We	won't	talk	about	this	in	this	course
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Basic	blocks	exercise
int main() {

int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

START:
_t0 = 137;
y = _t0;
IfZ x Goto _L0;
t1 = y;
z = _t1;
Goto END:

_L0:
_t2 = y;
x = _t2;

END:

Divide	the	code	into	basic	blocks
23



Control-flow	graph	exercise
START:

_t0 = 137;
y = _t0;
IfZ x Goto _L0;
t1 = y;
z = _t1;
Goto END:

_L0:
_t2 = y;
x = _t2;

END:

Draw	the	control-flow	graph

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Control-flow	graph	exercise

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Local	optimizations

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

end

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Local	optimizations

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Local	optimizations

y = 137;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Local	optimizations

y = 137;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y;
_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y;
_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Global	optimizations

y = 137;
IfZ x Goto _L0;

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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Global	optimizations

y = 137;
IfZ x Goto _L0;

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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start



Global	optimizations

y = 137;
IfZ x Goto _L0;

z = 137; x = 137;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}
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start



Local	Optimizations
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Optimization	path

IR Control-Flow
Graph

CFG
builder

Program
Analysis

Annotated
CFG

Optimizing
Transformation

Target
Code

Code
Generation

(+optimizations)

done
with	IR

optimizations

IR
optimizations
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Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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For	brevity:	
Simplified IR	for	procedure	returns



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Class	Object	{
method	fn(int);
}

Explaining	the	program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Size of	Object

Object	Class

Class	Object	{
method	fn(int);
}

For	simplicity,	ignore
Popping	return	value,	

parameters	etc.

Explaining	the	program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Class	Object	{
method	fn(int);
}

Explaining	the	program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Class	Object	{
method	fn(int);
}

Explaining	the	program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Points	to	ObjectC

Start	of	fn

Class	Object	{
method	fn(int);
}

Explaining	the	program



Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b						
…
v2	=	a	op	b						

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b
…
v2	=	v1

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

44



Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b					[or:		v1	=	a]
…
v2	=	a	op	b					[or:		v2	=	a]	

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b					[or:		v1	=	a]	
…
v2	=	v1												

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations
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Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

47

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation

• If	we	have	a	variable	assignment
v1	=	v2
then	as	long	as	v1	and	v2	are	not	
reassigned,	we	can	rewrite	expressions	of	
the	form
a	=	…	v1	…
as
a	=	…	v2	…
provided	that	such	a	rewrite	is	legal
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Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Is	this	transformation	OK?
What	do	we	need	to	know?



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Dead	Code	Elimination

• An	assignment	to	a	variable	v	is	called	dead
if	the	value	of	that	assignment	is	never	
read	anywhere

• Dead	code	elimination	removes	dead	
assignments	from	IR

• Determining	whether	an	assignment	is	
dead	depends	on	what	variable	is	being	
assigned	to	and	when	it's	being	assigned
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Dead	Code	Elimination
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;



Dead	Code	Elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Dead	Code	Elimination
Object x;
int a;
int b;
int c;

x = new 
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

values	
never	
read

values	
never	
read
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Dead	Code	Elimination
Object x;
int a;
int b;
int c;

x = new 
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;

*(_tmp1) = ObjectC;

_tmp4 = _tmp0 + b;
c = _tmp4;

_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Applying	local	optimizations

• The	different	optimizations	we've	seen	so	far	
all	take	care	of	just	a	small	piece	of	the	
optimization

• Common	subexpression	elimination	eliminates	
unnecessary	statements

• Copy	propagation	helps	identify	dead	code
• Dead	code	elimination	removes	statements	
that	are	no	longer	needed

• To	get	maximum	effect,	we	may	have	to	apply	
these	optimizations	numerous	times
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Applying	local	optimizations	
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;
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Applying	local	optimizations	
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

Which	optimization	should	we	apply	here?
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Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Common	sub-expression	elimination

Which	optimization	should	we	apply	here?
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Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Which	optimization	should	we	apply	here?
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Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which	optimization	should	we	apply	here?

Copy	propagation
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Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which	optimization	should	we	apply	here?
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Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = d;

Which	optimization	should	we	apply	here?

Common	sub-expression	elimination	(again)
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Other	types	of	local	
optimizations

• Arithmetic	Simplification
– Replace	“hard”	operations	with	easier	ones
– e.g.	rewrite	x = 4 * a; as	x = a << 2;

• Constant	Folding
– Evaluate	expressions	at	compile-time	if	they	
have	a	constant	value.

– e.g.	rewrite	x = 4 * 5; as	x = 20;
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Optimizations	and	analyses

• Most	optimizations	are	only	possible	given	
some	analysis	of	the	program's	behavior

• In	order	to	implement	an	optimization,	we	
will	talk	about	the	corresponding	program	
analyses
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Available	expressions

• Both	common	subexpression	elimination	and	copy	
propagation	depend	on	an	analysis	of	the	available	
expressions	in	a	program

• An	expression	is	called	available if	some	variable	in	
the	program	holds	the	value	of	that	expression

• In	common	subexpression	elimination,	we	replace	
an	available	expression	by	the	variable	holding	its	
value

• In	copy	propagation,	we	replace	the	use	of	a	
variable	by	the	available	expression	it	holds
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Finding	available	expressions

• Initially,	no	expressions	are	available
• Whenever	we	execute	a	statement
a	=	b	op c:
– Any	expression	holding	a is	invalidated
– The	expression	a	=	b	op c	becomes	available

• Idea:	Iterate	across	the	basic	block,	beginning	
with	the	empty	set	of	expressions	and	
updating	available	expressions	at	each	
variable
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Available	expressions	example
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a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Common	sub-expression	elimination
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a = b + 2;

b = x;

d = a + b;

e = d;

d = b;

f = e;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Common	sub-expression	elimination
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a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Common	sub-expression	elimination
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a = b + 2;

b = 1;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ b = 1, d = b, e = a + b }

{ b = 1, d = a + b, e = a + b }

{ b = 1, d = a + b }

{ b = 1}

{ a = b + 2}

{  }

{ a = b, c = b, d = b, e = a + b, f = a + b }



Common	sub-expression	elimination
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a = b + 2;

b = 1;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ b = 1, d = b, e = a + b }

{ b = 1, d = a + b, e = a + b }

{ b = 1, d = a + b }

{ b = 1}

{ a = b + 2}

{  }

{ a = b, c = b, d = b, e = a + b, f = a + b }



Common	sub-expression	elimination

89

a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ a = b, c = b, d = b, e = a + b }

{ a = b, c = b, d = a + b, e = a + b }

{ a = b, c = b, d = a + b }

{ a = b, c = b }

{ a = b }

{  }

{ a = b, c = b, d = b, e = a + b, f = a + b }
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a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;
{ a = b, c = b, d = b, e = a + b }

{ a = b, c = b, d = a + b, e = a + b }

{ a = b, c = b, d = a + b }

{ a = b, c = b }

{ a = b }

{  }

{ a = b, c = b, d = b, e = a + b, f = a + b }

Common	sub-expression	elimination
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a = b;

b = 1;

d = a + b;

e = d;

d = a;

f = e;
{ a = b, c = b, d = b, e = a + b }

{ a = b, c = b, d = a + b, e = a + b }

{ a = b, c = b, d = a + b }

{ a = b, b = b }

{ a = b }

{  }

{ a = b, c = b, d = b, e = a + b, f = a + b }

Common	sub-expression	elimination



Live	variables

• The	analysis	corresponding	to	dead	code	
elimination	is	called	liveness	analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again

• Dead	code	elimination	works	by	computing	
liveness	for	each	variable,	then	eliminating	
assignments	to	dead	variables
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Computing	live	variables
• To	know	if	a	variable	will	be	used	at	some	point,	
we	iterate	across	the	statements	in	a	basic	block	
in	reverse	order

• Initially,	some	small	set	of	values	are	known	to	be	
live	(which	ones	depends	on	the	particular	
program)

• When	we	see	the	statement	a	=	b	op	c:
– Just	before	the	statement,	a	is	not	alive,	since	its	value	
is	about	to	be	overwritten

– Just	before	the	statement,	both	b	and	c	are	alive,	since	
we're	about	to	read	their	values

– (what	if	we	have	a	=	a	+	b?) 93



Liveness	analysis
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d } - given

Which	statements	are	dead?
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Dead	Code	Elimination
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }

Which	statements	are	dead?
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Dead	Code	Elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }
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Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which	statements	are	dead?

97



Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?
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Dead	code	elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?
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Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }
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Liveness	analysis	III
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?

101



Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?
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Dead	code	elimination
a = b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }
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Dead	code	elimination
a = b;

d = a;

104

If	we	further	apply	
copy	propagation	
this	statement	can	
be	eliminated	too



A	combined	algorithm

• Start	with	initial	live	variables	at	end	of	
block

• Traverse	statements	from	end	to	beginning
• For	each	statement

– If	assigns	to	dead	variables	– eliminate	it
– Otherwise,	compute	live	variables	before	
statement	and	continue	in	reverse
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A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
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A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d }
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A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d }
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A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

{ b, d }
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A	combined	algorithm
a = b;

c = a;

d = a + b;

e = d;

d = a;

{ b, d }

{ a, b }
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A	combined	algorithm
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a = b;

c = a;

d = a + b;

e = d;

d = a;

{ b, d }

{ a, b }



A	combined	algorithm
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a = b;

c = a;

d = a + b;

d = a;

{ b, d }

{ a, b }



A	combined	algorithm
a = b;

c = a;

d = a + b;

d = a;

{ b, d }

{ a, b }
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A	combined	algorithm
a = b;

c = a;

d = a;

{ b, d }

{ a, b }
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A	combined	algorithm
a = b;

c = a;

d = a;

{ b, d }

{ a, b }
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A	combined	algorithm
a = b;

d = a;

{ b, d }

{ a, b }
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A	combined	algorithm
a = b;

d = a;

{ b, d }

{ a, b }
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{ b }



A	combined	algorithm
a = b;

d = a;
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High-level	goals

• Generalize	analysis	mechanism
– Reuse	common	ingredients	for	many	analyses
– Reuse	proofs	of	correctness

• Generalize	from	basic	blocks	to	entire	CFGs
– Go	from	local	optimizations	to	global	
optimizations

119



Program	Analysis

• Reasons	about	the	behavior of	a	program
• An	analysis	is	sound if	it	only	asserts	an	
correct	facts	about	a	program

• An	analysis	is	precise if	it	asserts	all	correct	
facts	(of	interests)

• Sound	analysis	allows	for	semantic-
preserving	optimizations
– “More	precise”	analyses	are	“more	useful”:	
may	enable	more	optimizations 120



Examples

• Available	expressions,	allows:
ØCommon	sub-expressions	elimination
ØCopy	propagation

• Constant	propagation,	allows:
ØConstant	folding

• Liveness analysis
ØDead-code	elimination
ØRegister	allocation



Local	vs.	global	optimizations

• An	optimization	is	local if	it	works	on	just	a	
single	basic	block

• An	optimization	is	global if	it	works	on	an	
entire	control-flow	graph	of	a	procedure

• An	optimization	is	interprocedural if	it	
works	across	the	control-flow	graphs	of	
multiple	procedure
– We	won't	talk	about	this	in	this	course
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Formalizing	local	analyses
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vout = fa=b+c(Vin) 

Transfer	Function



Available	Expressions
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vout =	(Vin \ {e	|	e	contains	a})	4 {a=b+c}	

Expressions	of	the	forms
a=…								and							x=…a…



Live	Variables
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) 4 {b,c}

Vin

Vout



Live	Variables
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) 4 {b,c}

Vin

Vout



Information	for	a	local	analysis

• What	direction	are	we	going?
– Sometimes	forward	(available	expressions)
– Sometimes	backward	(liveness	analysis)

• How	do	we	update	information	after	
processing	a	statement?
– What	are	the	new	semantics?
– What	information	do	we	know	initially?
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Formalizing	local	analyses

• Define	an	analysis	of	a	basic	block	as	a	
quadruple	(D,	V,	F,	I)	where
– D is	a	direction	(forwards	or	backwards)
– V is	a	set	of	values	the	program	can	have	at	any	
point

– F is	a	family	of	transfer	functions	defining	the	
meaning	of	any	expression	as	a	function	f	:	Vt V

– I is	the	initial	information	at	the	top	(or	bottom)	of	
a	basic	block
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Available	Expressions

• Direction: Forward
• Values: Sets	of	expressions	assigned	to	variables
• Transfer	functions: Given	a	set	of	variable	
assignments	V	and	statement	a	=	b	+	c:
– Remove	from	V	any	expression	containing	a	as	a	
subexpression

– Add	to	V	the	expression	a	=	b	+	c
– Formally:	Vout =	(Vin \ {e	|	e	contains	a})	4 {a	=	b	+	c}	

• Initial	value: Empty	set	of	expressions
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Liveness	Analysis

• Direction: Backward
• Values: Sets	of	variables
• Transfer	functions: Given	a	set	of	variable	assignments	V	

and	statement	a	=	b	+	c:
• Remove	a	from	V	(any	previous	value	of	a	is	now	dead.)
• Add	b	and	c	to	V	(any	previous	value	of	b	or	c	is	now	live.)
• Formally:	Vin =	(Vout \ {a})	4 {b,c}
• Initial	value: Depends	on	semantics	of	language

– E.g.,	function	arguments	and	return	values	(pushes)
– Result	of	local	analysis	of	other	blocks	as	part	of	a	
global	analysis 130



Running	local	analyses

• Given	an	analysis	(D,	V,	F,	I)	for	a	basic	block
• Assume	that	D is	“forward;”	analogous	for	the	
reverse	case

• Initially,	set	OUT[entry]	to	I
• For	each	statement	s,	in	order:

– Set	IN[s]	to	OUT[prev],	where	prev is	the	previous	
statement

– Set	OUT[s]	to	fs(IN[s]),	where	fs is	the	transfer	
function	for	statement	s
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Kill/Gen

132



Global	Optimizations
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High-level	goals

• Generalize	analysis	mechanism
– Reuse	common	ingredients	for	many	analyses
– Reuse	proofs	of	correctness

• Generalize	from	basic	blocks	to	entire	CFGs
– Go	from	local	optimizations	to	global	
optimizations

134



Global	analysis

• A	global	analysis	is	an	analysis	that	works	
on	a	control-flow	graph	as	a	whole

• Substantially	more	powerful	than	a	local	
analysis
– (Why?)

• Substantially	more	complicated	than	a	local	
analysis
– (Why?)
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Local	vs.	global	analysis
• Many	of	the	optimizations	from	local	analysis	can	still	

be	applied	globally
– Common	sub-expression	elimination
– Copy	propagation
– Dead	code	elimination

• Certain	optimizations	are	possible	in	global	analysis	that	
aren't	possible	locally:
– e.g.	code	motion:	Moving	code	from	one	basic	block	into	

another	to	avoid	computing	values	unnecessarily
• Example	global	optimizations:

– Global	constant	propagation
– Partial	redundancy	elimination
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Loop	invariant	code	motion	example

137

while (t < 120) {
z = z + x - y;

}

w = x – y;
while (t < 120) {
z = z + w;

}

value	of	expression	x	– y	is	
not	changed	by	loop	body



Why	global	analysis	is	hard

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value	(but	the	analysis	still	needs	to	
terminate!)

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it
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Global	dead	code	elimination

• Local	dead	code	elimination	needed	to	
know	what	variables	were	live	on	exit	from	
a	basic	block

• This	information	can	only	be	computed	as	
part	of	a	global	analysis

• How	do	we	modify	our	liveness	analysis	to	
handle	a	CFG?
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CFGs	without	loops

140Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry



CFGs	without	loops

141Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

?

Which	variables	may
be	live	on	some
execution	path?



CFGs	without	loops

142Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}



CFGs	without	loops

143Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry



CFGs	without	loops

144Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry



Major	changes	– part	1

• In	a	local	analysis,	each	statement	has	
exactly	one	predecessor

• In	a	global	analysis,	each	statement	may	
have	multiple	predecessors

• A	global	analysis	must	have	some	means	of	
combining	information	from	all	
predecessors	of	a	basic	block
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CFGs	without	loops

146Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{b, c, d}

{c, d} Need	to	combine	
currently-
computed	value	
with	new	value

Need	to	combine	
currently-
computed	value	
with	new	value



CFGs	without	loops

147Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{c, d}



CFGs	without	loops

148Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}



Major	changes	– part	2

• In	a	local	analysis,	there	is	only	one	possible	
path	through	a	basic	block

• In	a	global	analysis,	there	may	be	many	paths	
through	a	CFG

• May	need	to	recompute	values	multiple	times	
as	more	information	becomes	available

• Need	to	be	careful	when	doing	this	not	to	loop	
infinitely!
– (More	on	that	later)

• Can	order	of	computation	affect	result?
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CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

150

IfZ x goto Top

x = 1;

Top:

x = 0;

x = 2;



CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

• Sound	approximation:	Assume	that	every	possible	
path	through	the	CFG	corresponds	to	a	valid	execution
– Includes	all	realizable	paths,	but	some	additional	paths	as	
well

– May	make	our	analysis	less	precise	(but	still	sound)
– Makes	the	analysis	feasible;	we'll	see	how	later
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CFGs	with	loops

152Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;
IfZ ...

Entry

{a}

?



Major	changes	– part	3

• In	a	local	analysis,	there	is	always	a		well	
defined	“first”	statement	to	begin	
processing

• In	a	global	analysis	with	loops,	every	basic	
block	might	depend	on	every	other	basic	
block

• To	fix	this,	we	need	to	assign	initial	values	
to	all	of	the	blocks	in	the	CFG
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CFGs	with	loops	- initialization

154Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}



CFGs	with	loops	- iteration

155Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

{a}



CFGs	with	loops	- iteration

156Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}



CFGs	with	loops	- iteration

157Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}



CFGs	with	loops	- iteration

158Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}



CFGs	with	loops	- iteration

159Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}



CFGs	with	loops	- iteration

160Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

161Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

162Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

163Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

164Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

165Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

166Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

167Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



CFGs	with	loops	- iteration

168Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



CFGs	with	loops	- iteration

169Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



Summary	of	differences

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value
– But	the	analysis	still	needs	to	terminate!

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it
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Global	liveness	analysis
• Initially,	set	IN[s]	=	{	}	for	each	statement	s
• Set	IN[exit]	to	the	set	of	variables	known	to	be	
live	on	exit	(language-specific	knowledge)

• Repeat	until	no	changes	occur:
– For	each	statement	s of	the	form	a	=	b	+	c,	in	any	
order	you'd	like:
• Set	OUT[s]	to	set	union	of	IN[p]	for	each	successor	p of	s
• Set	IN[s]	to	(OUT[s]	– a)	4 {b,	c}.

• Yet	another	fixed-point	iteration!
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Global	liveness	analysis

172

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2]	4 IN[s3]

IN[s]=(UT[s] – {a})	4 {b,	c}



Why	does	this	work?
• To	show	correctness,	we	need	to	show	that

– The	algorithm	eventually	terminates,	and
– When	it	terminates,	it	has	a	sound	answer

• Termination	argument:
– Once	a	variable	is	discovered	to	be	live	during	some	point	of	the	

analysis,	it	always	stays	live
– Only	finitely	many	variables	and	finitely	many	places	where	a	

variable	can	become	live
• Soundness	argument	(sketch):

– Each	individual	rule,	applied	to	some	set,	correctly	updates	
liveness	in	that	set

– When	computing	the	union	of	the	set	of	live	variables,	a	variable	
is	only	live	if	it	was	live	on	some	path	leaving	the	statement

173



Abstract	Interpretation

• Theoretical	foundations	of	program	
analysis

• Cousot and	Cousot 1977

• Abstract	meaning	of	programs
– Executed	at	compile	time	
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Another	view	of	local	
optimization

• In	local	optimization,	we	want	to	reason	
about	some	property	of	the	runtime	
behavior	of	the	program

• Could	we	run	the	program	and	just	watch	
what	happens?

• Idea:	Redefine	the	semantics	of	our	
programming	language	to	give	us	
information	about	our	analysis

175



Properties	of	local	analysis

• The	only	way	to	find	out	what	a	program	will	
actually	do	is	to	run	it

• Problems:
– The	program	might	not	terminate
– The	program	might	have	some	behavior	we	didn't	
see	when	we	ran	it	on	a	particular	input

• However,	this	is	not	a	problem	inside	a	basic	
block
– Basic	blocks	contain	no	loops
– There	is	only	one	path	through	the	basic	block
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Assigning	new	semantics

• Example:	Available	Expressions
• Redefine	the	statement	a	=	b	+	c	to	mean	
“a	now	holds	the	value	of	b	+	c,	and	any	
variable	holding	the	value	a	is	now	invalid”

• Run	the	program	assuming	these	new	
semantics

• Treat	the	optimizer	as	an	interpreter	for	
these	new	semantics
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Theory	to	the	rescue

• Building	up	all	of	the	machinery	to	design	this	
analysis	was	tricky

• The	key	ideas,	however,	are	mostly	independent	of	
the	analysis:
– We	need	to	be	able	to	compute	functions	describing	
the	behavior	of	each	statement

– We	need	to	be	able	to	merge	several	subcomputations	
together

– We	need	an	initial	value	for	all	of	the	basic	blocks
• There	is	a	beautiful	formalism	that	captures	many	
of	these	properties

178



Join	semilattices
• A	join	semilattice	is	a	ordering	defined	on	a	set	of	

elements
• Any	two	elements	have	some	join	that	is	the	smallest	

element	larger	than	both	elements
• There	is	a	unique	bottom	element,	which	is	smaller	

than	all	other	elements
• Intuitively:

– The	join	of	two	elements	represents	combining	information	
from	two	elements	by	an	overapproximation

• The	bottom	element	represents	“no	information	yet”	or	
“the	least	conservative	possible	answer”
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Join	semilattice	for	liveness
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element



What	is	the	join	of	{b}	and	{c}?

181

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{b}	and	{c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{b}	and	{a,c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{b}	and	{a,c}?

184

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{a}	and	{a,b}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{a}	and	{a,b}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



Formal	definitions

• A	join	semilattice	is	a	pair	(V,	7),	where
• V	is	a	domain	of	elements
• 7 is	a	join	operator	that	is

– commutative:	x	7 y	=	y	7 x
– associative:	(x	7 y)	7 z	=	x	7 (y	7 z)
– idempotent:	x	7 x	=	x

• If	x	7 y	=	z,	we	say	that	z	is	the	join
or	(least	upper	bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	z such	that	z 7 x	=	x	for	all	x

187



Join	semilattices	and	ordering

188

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Greater

Lower



Join	semilattices	and	ordering

189

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least	precise

Most	precise



Join	semilattices	and	orderings

• Every	join	semilattice	(V,	7)	induces	an	
ordering	relationship	b over	its	elements

• Define	x	b y	iff	x	7 y	=	y
• Need	to	prove

– Reflexivity:	x	b x
– Antisymmetry:	If	x	b y	and	y	b x,	then	x	=	y
– Transitivity:	If	x	b y	and	y	b z,	then	x	b z
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An	example	join	semilattice

• The	set	of	natural	numbers	and	the	max function
• Idempotent

– max{a,	a}	=	a
• Commutative

– max{a,	b}	=	max{b,	a}
• Associative

– max{a,	max{b,	c}}	=	max{max{a,	b},	c}
• Bottom	element	is	0:

– max{0,	a}	=	a
• What	is	the	ordering	over	these	elements?
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A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	4 x	=	x
• Commutative:

– x	4 y	=	y	4 x
• Associative:

– (x	4 y)	4 z	=	x	4 (y	4 z)
• Bottom	element:

– The	empty	set:	Ø	4 x	=	x
• What	is	the	ordering	over	these	elements?
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Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	
problems	we	encounter	in	global	analysis

• How	do	we	combine	information	from	
multiple	basic	blocks?

• What	value	do	we	give	to	basic	blocks	we	
haven't	seen	yet?

• How	do	we	know	that	the	algorithm	always	
terminates?
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Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later
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Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later
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A	general	framework

• A	global	analysis	is	a	tuple	(D,	V,	7,	F,	I),	where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,	not	the	
order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values
– 7 is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	f	:	Vt V
– I is	an	initial	value

• The	only	difference	from	local	analysis	is	the	
introduction	of	the	join	operator
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Running	global	analyses

• Assume	that	(D,	V,	7,	F,	I)	is	a	forward	analysis
• Set	OUT[s]	=	z for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	7 OUT[p2]	7 …	7 OUT[pn]
• Set	OUT[s]	=	fs (IN[s])

• The	order	of	this	iteration	does	not	matter
– This	is	sometimes	called	chaotic	iteration
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For	comparison
• Set	OUT[s]	=	z for	all	

statements	s
• Set	OUT[entry]	=	I

• Repeat	until	no	values	
change:
– For	each	statement	s

with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	7
OUT[p2]	7 …	7 OUT[pn]

• Set	OUT[s]	=	fs (IN[s])

• Set	IN[s]	=	{} for	all	
statements	s

• Set	OUT[exit]	=	the	set	of	
variables	known	to	be	live	
on	exit

• Repeat	until	no	values	
change:
– For	each	statement	s of	the	

form	a=b+c:
• Set	OUT[s]	=	set	union	of	IN[x]	
for	each	successor	x of	s

• Set	IN[s]	=	(OUT[s]-{a}) 4 {b,c}
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The	dataflow	framework

• This	form	of	analysis	is	called	the	dataflow	
framework

• Can	be	used	to	easily	prove	an	analysis	is	
sound

• With	certain	restrictions,	can	be	used	to	
prove	that	an	analysis	eventually	
terminates
– Again,	more	on	that	later
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Global	constant	propagation

• Constant	propagation	is	an	optimization	
that	replaces	each	variable	that	is	known	to	
be	a	constant	value	with	that	constant

• An	elegant	example	of	the	dataflow	
framework
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Global	constant	propagation
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exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry



Global	constant	propagation

202

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry



Global	constant	propagation
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exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry



Constant	propagation	analysis

• In	order	to	do	a	constant	propagation,	we	need	to	
track	what	values	might	be	assigned	to	a	variable	at	
each	program	point

• Every	variable	will	either
– Never	have	a	value	assigned	to	it,
– Have	a	single	constant	value	assigned	to	it,
– Have	two	or	more	constant	values	assigned	to	it,	or
– Have	a	known	non-constant	value.
– Our	analysis	will	propagate	this	information	
throughout	a	CFG	to	identify	locations	where	a	value	is	
constant
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Properties	of	constant	
propagation

• For	now,	consider	just	some	single	variable	x
• At	each	point	in	the	program,	we	know	one	of	three	

things	about	the	value	of	x:
– x is	definitely	not	a	constant,	since	it's	been	assigned	two	

values	or	assigned	a	value	that	we	know	isn't	a	constant
– x is	definitely	a	constant	and	has	value	k
– We	have	never	seen	a	value	for	x

• Note	that	the	first	and	last	of	these	are	not the	same!
– The	first	one	means	that	there	may	be	a	way	for	x to	have	

multiple	values
– The	last	one	means	that	x never	had	a	value	at	all
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Defining	a	join	operator
• The	join	of	any	two	different	constants	is	Not-a-Constant

– (If	the	variable	might	have	two	different	values	on	entry	to	a	
statement,	it	cannot	be	a	constant)

• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-
Constant
– (If	on	some	path	the	value	is	known	not	to	be	a	constant,	then	on	

entry	to	a	statement	its	value	can't	possibly	be	a	constant)
• The	join	of	Undefined and	any	other	value	is	that	other	value

– (If	x has	no	value	on	some	path	and	does	have	a	value	on	some	
other	path,	we	can	just	pretend	it	always	had	the	assigned	value)
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A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):
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Undefined

0-1-2 1 2 ......

Not-a-constant

The lattice is infinitely wide



A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

208

Undefined

0-1-2 1 2 ......

Not-a-constant

• Note:
• The	join	of	any	two	different	constants	is	Not-a-Constant
• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-Constant
• The	join	of	Undefined and	any	other	value	is	that	other	value



Global	constant	propagation

209

exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry



Global	constant	propagation

210

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

x=Undefined
y=Undefined
z=Undefined
w=Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined



Global	constant	propagation

212

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
Undefined

entry
Undefined



Global	constant	propagation

213

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=Ω

entry
Undefined



Global	constant	propagation

214

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=Ω

entry
Undefined



Global	constant	propagation

215

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation

216

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation

217

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

y=6	7 y=Undefined	
gives		what?



Global	constant	propagation

218

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation

219

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation

222

exit x = 4;
Undefined

x=y=w=6
z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation

223

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation

229

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

x=6	7 x=4	gives		
what?



Global	constant	propagation

232

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6, x=º
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
y=w=6 
x = 4;
x=4, y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
y=w=6 
x = 4;
x=4, y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	analysis
reached	fixpoint
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Dataflow	for	constant	
propagation

• Direction:	Forward
• Semilattice:	Varst {Undefined,	0,	1,	-1,	2,	-2,	…,	
Not-a-Constant}
– Join	mapping	for	variables	point-wise
{xh1,yh1,zh1}	7 {xh1,yh2,zhNot-a-Constant}	=	
{xh1,yhNot-a-Constant,zhNot-a-Constant}

• Transfer	functions:
– fx=k(V)	=	V|xhk (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|xhNot-a-Constant (assign	Not-a-Constant)

• Initial	value:	x	is	Undefined
– (When	might	we	use	some	other	value?)
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Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Given	this,	how	do	we	know	the	analyses	
will	eventually	terminate?
– In	general,	we	don‘t
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Terminates?

241



Liveness	Analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again
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Join	semilattice	definition

• A	join	semilattice	is	a	pair	(V,	7),	where
• V	is	a	domain	of	elements
• 7 is	a	join	operator	that	is

– commutative:	x	7 y	=	y	7 x
– associative:	(x	7 y)	7 z	=	x	7 (y	7 z)
– idempotent:	x	7 x	=	x

• If	x	7 y	=	z,	we	say	that	z	is	the	join
or	(Least	Upper	Bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	z such	that	z 7 x	=	x	for	all	x
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Partial	ordering	induced	by	join

• Every	join	semilattice	(V,	7)	induces	an	
ordering	relationship	b over	its	elements

• Define	x	b y	iff	x	7 y	=	y
• Need	to	prove

– Reflexivity:	x	b x
– Antisymmetry:	If	x	b y	and	y	b x,	then	x	=	y
– Transitivity:	If	x	b y	and	y	b z,	then	x	b z
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A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	4 x	=	x
• Commutative:

– x	4 y	=	y	4 x
• Associative:

– (x	4 y)	4 z	=	x	4 (y	4 z)
• Bottom	element:

– The	empty	set:	Ø	4 x	=	x
• Ordering	over	elements	=	subset	relation

245



Join	semilattice	example	for	liveness

246

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element



Dataflow	framework

• A	global	analysis	is	a	tuple	(D,	V,	7,	F,	I),	
where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,
NOT the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values	(sometimes	called	domain)
– 7 is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	fs :	Vt V
(for	every	statement	s)
– I is	an	initial	value
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Running	global	analyses
• Assume	that	(D,	V,	7,	F,	I)	is	a	forward	analysis
• For	every	statement	s	maintain	values	before		- IN[s]	- and	after	

- OUT[s]
• Set	OUT[s]	=	z for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
PRED[s]={p1,	p2,	…	,	pn}
• Set	IN[s]	=	OUT[p1]	7 OUT[p2]	7 …	7 OUT[pn]
• Set	OUT[s]	=	fs(IN[s])

• The	order	of	this	iteration	does	not	matter
– Chaotic	iteration
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Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Problem: how	do	we	know	the	analyses	will	
eventually	terminate?
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A	non-terminating	analysis

• The	following	analysis	will	loop	infinitely	on	
any	CFG	containing	a	loop:

• Direction: Forward
• Domain: ℕ
• Join	operator:	max
• Transfer	function: f(n) = n	+	1
• Initial	value:	0
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A	non-terminating	analysis
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start

end

x = y



Initialization

252

start

end

x = y0

0



Fixed-point	iteration

253

start

end

x = y0

0



Choose	a	block

254

start

end

x = y0

0



Iteration	1

255

start

end

x = y0

0

0



Iteration	1
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start

end

x = y1

0

0



Choose	a	block

257

start

end

x = y1

0

0



Iteration	2

258

start

end

x = y1

0

0



Iteration	2

259

start

end

x = y1

0

1



Iteration	2

260

start

end

x = y2

0

1



Choose	a	block

261

start

end

x = y2

0

1



Iteration	3
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start

end

x = y2

0

1



Iteration	3
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start

end

x = y2

0

2



Iteration	3
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start

end

x = y3

0

2



Why	doesn’t	this	terminate?
• Values	can	increase	without	bound
• Note	that	“increase”	refers	to	the	lattice	
ordering,	not	the	ordering	on	the	natural	
numbers

• The	height of	a	semilattice	is	the	length	of	the	
longest	increasing	sequence	in	that	semilattice

• The	dataflow	framework	is	not	guaranteed	to	
terminate	for	semilattices	of	infinite	height

• Note	that	a	semilattice	can	be	infinitely	large	
but	have	finite	height
– e.g.	constant	propagation
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Height	of	a	lattice

• An	increasing	chain	is	a	sequence	of	elements
z a a1 a a2 a …	a ak
– The	length	of	such	a	chain	is	k

• The	height	of	a	lattice	is	the	length	of	the	maximal	
increasing	chain

• For	liveness	with	n program	variables:
– {}	_ {v1}	_ {v1,v2}	_ …	_ {v1,…,vn}

• For	available	expressions	it	is	the	number	of	
expressions	of	the	form	a=b	op	c
– For	n program	variables	and	m operator	types:
m$n3
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Another	non-terminating	
analysis

• This	analysis	works	on	a	finite-height	
semilattice,	but	will	not	terminate	on	
certain	CFGs:

• Direction: Forward
• Domain: Boolean	values	true and	false
• Join	operator:	Logical	OR
• Transfer	function:	Logical	NOT
• Initial	value:	false
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A	non-terminating	analysis

268

start

end

x = y



Initialization

269

start

end

x = yfalse

false



Fixed-point	iteration

270

start

end

x = yfalse

false



Choose	a	block

271

start

end

x = yfalse

false



Iteration	1

272

start

end

x = yfalse

false

false



Iteration	1

273

start

end

x = ytrue

false

false



Iteration	2

274

start

end

x = ytrue

false

true



Iteration	2

275

start

end

x = yfalse

false

true



Iteration	3

276

start

end

x = yfalse

false

false



Iteration	3
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start

end

x = ytrue

false

false



Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever
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Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever

• How	can	we	fix	this?
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Monotone	transfer	functions

• A	transfer	function	f is	monotone iff
if	x	b y,	then	f(x)	b f(y)

• Intuitively,	if	you	know	less	information	about	a	
program	point,	you	can't	“gain	back”	more	
information	about	that	program	point

• Many	transfer	functions	are	monotone,	including	
those	for	liveness	and	constant	propagation

• Note:	Monotonicity does	notmean	that	
x	b f(x)
– (This	is	a	different	property	called	extensivity)
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Liveness	and	monotonicity

• A	transfer	function	f is	monotone iff
if	x	b y,	then	f(x)	b f(y)

• Recall	our	transfer	function	for	a	=	b	+	c	is
– fa	=	b	+	c(V)	=	(V	– {a})	4 {b,	c}

• Recall	that	our	join	operator	is	set	union	
and	induces	an	ordering	relationship

X	b Y	iff X	`Y
• Is	this	monotone?
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Is	constant	propagation	monotone?
• A	transfer	function	f is	monotone iff

if	x	b y,	then	f(x)	b f(y)
• Recall	our	transfer	functions

– fx=k(V)	=	V|xhk (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|xhNot-a-Constant (assign	Not-a-
Constant)

• Is	this	monotone?

282Undefined

0-1-2 1 2 ......

Not-a-constant



The	grand	result

• Theorem: A	dataflow	analysis	with	a	finite-
height	semilattice and	family	of	monotone	
transfer	functions always	terminates

• Proof	sketch:
– The	join	operator	can	only	bring	values	up
– Transfer	functions	can	never	lower	values	back	
down	below	where	they	were	in	the	past	
(monotonicity)

– Values	cannot	increase	indefinitely	(finite	height)
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An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a 7 b)	=	f(a)	7 f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	
the	fixed-point	solution	is	the	solution	that	
would	be	computed	by	joining	results	from	all	
(potentially	infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	ignore	program	conditions
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An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a 7 b)	=	f(a)	7 f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	the	
fixed-point	solution	is	equal	to	the	solution	
computed	by	joining	results	from	all	(potentially	
infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	pretend	all	control-flow	paths	can	be	
executed	by	the	program

• Which	analyses	use	distributive	functions?
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Loop	optimizations
• Most	of	a	program’s	computations	are	done	inside	

loops
– Focus	optimizations	effort	on	loops

• The	optimizations	we’ve	seen	so	far	are	independent	of	
the	control	structure

• Some	optimizations	are	specialized	to	loops
– Loop-invariant	code	motion
– (Strength	reduction	via	induction	variables)

• Require	another	type	of	analysis	to	find	out	where	
expressions	get	their	values	from
– Reaching	definitions

• (Also	useful	for	improving	register	allocation)
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Loop	invariant	computation
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y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …



Loop	invariant	computation
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y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

t*4	and	y+z
have	same	value	on	
each	iteration



Code	hoisting
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x < w

endx = x + 1

start

y = …
t = …
z = …
y = t * 4
w = y + z



What	reasoning	did	we	use?
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y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

y	is	defined	inside	loop	but	it	
is	loop	invariant	since	t*4	is	
loop-invariant

Both	t	and	z	are	defined	
only	outside	of	loop

constants	are	trivially	
loop-invariant



What	about	now?

291

y	=	t	*	4
x	<	y	+	z

endx	=	x	+	1
t	=	t	+	1

start

y	=	…
t	=	…
z	=	…

Now	t	is	not	loop-invariant	
and	so	are	t*4	and	y



Loop-invariant	code	motion
• d:	t	=	a1 op	a2

– d is	a	program	location
• a1 op	a2	loop-invariant (for	a	loop	L)	if	computes	the	

same	value	in	each	iteration
– Hard	to	know	in	general

• Conservative	approximation
– Each	ai is	a	constant,	or
– All	definitions	of	ai that	reach	d are	outside	L,	or
– Only	one	definition	of	of ai reaches	d,	and	is	loop-invariant	

itself
• Transformation:	hoist	the	loop-invariant	code	outside	

of	the	loop
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Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined

293



Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined	

• Direction: Forward
• Domain: sets	of	program	locations	that	are	definitions	`
• Join	operator: union
• Transfer	function:

fd:	a=b	op	c(RD) =	(RD	- defs(a))	4 {d}
fd:	not-a-def(RD) =	RD

– Where	defs(a)	is	the	set	of	locations	defining	a (statements	of	the	
form	a=...)

• Initial	value: {}

294



Reaching	definitions	analysis

295

d4: y = t * 4

d4:x < y + z 

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end
{}



Reaching	definitions	analysis
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end
{}



Initialization
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}



Iteration	1
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

{}



Iteration	1
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{}

{}

{}



Iteration	2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}



Iteration	2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}



Iteration	2

302

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}



Iteration	2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}



Iteration	3
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}



Iteration	3
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration	4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration	4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration	4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Iteration	5

309

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Iteration	6

310

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Which	expressions	are	loop	invariant?

311

t	is	defined	only	in	
d2	– outside	of	loop

z	is	defined	only	in	
d3	– outside	of	loop

y	is	defined	only	in	d4	– inside	
of	loop	but	depends	on	t	and	
4,	both	loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{d2, d3, d4, d5}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x	is	defined	only	in	d5	–
inside	of	loop	so	is	not	a	
loop-invariant



Inferring	loop-invariant	
expressions

• For	a	statement	s of	the	form	t	=	a1 op	a2
• A	variable	ai is	immediately	loop-invariant	if	all	
reaching	definitions	IN[s]={d1,…,dk}	for	ai are	
outside	of	the	loop

• LOOP-INV	=	immediately	loop-invariant	variables	
and	constants
LOOP-INV	=	LOOP-INV	4 {x	|	d:	x	=	a1 op	a2, d	is	in	
the	loop,	and	both	a1 and	a2	are	in	LOOP-INV}
– Iterate	until	fixed-point

• An	expression	is	loop-invariant	if	all	operands	are	
loop-invariants
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Computing	LOOP-INV

313

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{T}



Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t}



Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}



Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}



Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}



318

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}
LOOP-INV	=	{t,	z}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

Computing	LOOP-INV



Computing	LOOP-INV

319

d4:	y	=	t	*	4

x	<	y	+	z	 end

d5:	x	=	x	+	1

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4}

{d1}

{d1,	d2}

{d1,	d2,	d3}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

LOOP-INV	=	{t,	z,	y}



Induction	variables
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while (i < x) {
j = a + 4 * i
a[j] = j
i = i + 1

}
i is	incremented	by	a	loop-
invariant	expression	on	each	
iteration	– this	is	called	an	
induction	variable

j	is	a	linear	function	of	
the	induction	variable	
with	multiplier	4



Strength-reduction

321

j = a + 4 * i
while (i < x) {

j = j + 4
a[j] = j
i = i + 1

}

Prepare	initial	
value

Increment	by	
multiplier



The	End


