Compilation

0368-3133 2014/15a
Lecture /7

w3 STANDARD ||
\ OPERATING | |
| 'PROCEDURE :

Activation Records
Noam Rinetzky

Code generation
for procedure calls
(+ a few words on the runtime system)

W STANDARD || |
\ JOPERATING | |
'PROCEDURE .

Code generation for procedure calls

e Compile time generation of code for
procedure invocations

e Activation Records (aka Stack Frames)

Supporting Procedures

e Stack: a new computing environment

— e.g., temporary memory for local variables

e Passing information into the new
environment

— Parameters

* Transfer of control to/from procedure
e Handling return values

Calling Conventions

e In general, compiler can use any
convention to handle procedures

e |In practice, CPUs specify standards

e Aka calling conventios

— Allows for compiler interoperability

e Libraries!

Abstract Register Machine

CPU

Control

r

General purpose\

(data) registers

registers

I Register 00

I Register 01 I

I Register xx

Register PC

J

(High Level View)

Code

Data

High
addresses

{
|

Low
addresses

Abstract Register Machine

CPU

General purpose\

(data) registers

Control
registers

r

I Register 00

I Register 01 I

I Register xx

Register PC

Register Stack I

J

(High Level View)

Code

Global Variables

Stack

Heap

High
addresses

{
|

Low
addresses

Abstract Activation Record Stack

Stack _
grows this| Main
way Proc,
M Proc,

Proc
Stack frame for

Procy,, — procedure

Proc,,,
Proc,,,(ay,...,ay)

Proc,,,

Proc,,,

Abstract Stack Frame

Parameters
(actual
arguments)

Locals and
temporaries

—_—

Proc,

Param N

Param N-1

Param 1

t0

tk

X

———

Proc,,,

Stack frame for
procedure
Proc,,,(ay,...,ay)

Handling Procedures

Store local variables/temporaries in a stack

A function call instruction pushes arguments to
stack and jumps to the function label
A statement x=£f (al,..,an) ; looks like
Push al; .. Push an;
Call f£;
Pop x; // copy returned value

Returning a value is done by pushing it to the
stack (return x;)

Push x;

Return control to caller (and roll up stack)
Return;

10

Abstract Register Machine

CPU

General purpose\
(data) registers

Control
registers

r

I Register 00

I Register 01 I

I Register xx I

Register PC

Code

Global Variables

Stack

J

Heap

High
addresses

{
|

Low
addresses

11

Abstract Register Machine

CPU

General purpose\

Control

r

(data) registers

registers

I Register 00

I Register 01 I

I Register xx

Register PC

Register Stack I

Code

Global Variables

Stack

J

Heap

High
addresses

{
|

Low
addresses

12

Intro: Functions Example

int SimpleFn (int z) ({
int x, y;
X =x *y * z;

return x;

void main() {
int w;

w = SimpleFunction(137);

_SimpleFn:

t0 = x * y;
_tl = t0 * z;
x = tl;

Push x;
Return;

main:

_to0 137;

Push tO0;

Call SimpleFn;
Pop w;

13

What Can We Do with Procedures?

e Declarations & Definitions
e Call & Return

14

Design Decisions

e Scoping rules

— Static scoping vs. dynamic scoping

e Caller/callee conventions
— Parameters

— Who saves register values?

e Allocating space for local variables

15

Static (lexical) Scoping

main ()
¢
. inta=0;
intb=0;
{
© intb=1;
f

: E inta=2;
printf (“%d %d\n”, a, b)

: }
B

intb=3;

&8 printf (“%d %d\n”, a, b) ;
-}

printf (“%d %d\n”, a, b) ;

)
printf (“%d %d\n”, a, b) ;

/a name refers to\

its (closest)
enclosing scope

known at

\ compile time /

a=0 BO,B1,B3
b=0 BO

b=1 B1,B2
a=2 B2

b=3 B3

16

Dynamic Scoping

Each identifier is associated with a global stack of
bindings

When entering scope where identifier is declared
— push declaration on identifier stack

When exiting scope where identifier is declared
— pop identifier stack

Evaluating the identifier in any context binds to
the current top of stack

Determined at runtime

17

Example

intx =42;

int f() { return x; }
intg() {intx=1; return f(); }

th main() { return g(); }

J

e What value is returned from main?
— Static scoping?
— Dynamic scoping?

18

Why do we care?

e We need to generate code to access variables

e Static scoping
— ldentifier binding is known at compile time
— “Address” of the variable is known at compile time

— Assigning addresses to variables is part of code
generation

— No runtime errors of “access to undefined variable”
— Can check types of variables

19

Variable addresses for static scoping: first attempt

(it x= 42, N [(Bentifer [address |

x (global) 0x42

int f() { return x; } x (inside g) | 0x73
intg() {intx=1; return f(); }

int main() { return g(); }

-

)

Variable addresses for static scoping: first attempt

ma [11] ;

void quicksort(int m, int n) {
inti;
if (n>m){
i = partition(m, n);
quicksort (m, i-1) ;
quicksort (i+1, n) ;

}

main() {

Qcksort (1, 9) ;
i

~

-

~

what is the address

a“n

of the variable “i” in

_

the procedure

quicksort?

J

21

Compile-Time Information on Variables

Name

Type

Scope

— when is it recognized
Duration

— Until when does its value exist
Size

— How many bytes are required at runtime
Address

— Fixed

— Relative

— Dynamic

22

Activation Record (Stack Frames)

e separate space for each procedure invocation

e managed at runtime
— code for managing it generated by the compiler

e desired properties

— efficient allocation and deallocation
e procedures are called frequently

— variable size
e different procedures may require different memory sizes

23

Semi-Abstract Register Machine

CPU

General purpose\
(data) registers

Control
registers registers

Stack

r

I Register 00

I Register 01 I

I Register xx I

Register PC

D
O
©

esp

Main Memory

High addresses

Global Variables

Stack ﬂ

_

Heap ﬂ

Low addresses 24

A Logical Stack Frame (Simplified)

Parameters
(actual
arguments)

Locals and
temporaries

—

—_—

—_—

Param N

Param N-1

Param 1

t0

tk

X

—_

—

Stack frame
for function
f(al,...,aN)

25

Runtime Stack

e Stack of activation records
e Call = push new activation record
e Return = pop activation record

e Only one “active” activation record — top of
stack

e How do we handle recursion?

26

Activation Record (frame)

parameter k

addresses

high T [

parameter 1

]\>

return information

V.

Y

administrative |

lexical pointer

y

Y

part

dynamic link

A

Y

registers & misc

A

Y

local variables
temporaries

A

PR

low
addresses

next frame would be here

H oEmm n Em R EEm o S R Em E o Em f Em f mw o omm

incoming
parameters

stack
grows
down

frame (base)
pointer

stack
pointer

27

Runtime Stack

SP — stack pointer
— top of current frame

FP — frame pointer
— base of current frame

— Sometimes called BP
(base pointer)

— Usually points to a “fixed” offset
from the “start” of the frame

stack
grows
down

28

Code Blocks

e Programming language provide code

blocks
void foo()

{
intx=8;vy=9;//1
{intx=y*y,;//2}
{intx=y*7,//3}
X=y+1;

x1

yl
X2
x3

29

L-Values of Local Variables

e The offset in the stack is known at compile
time
e L-val(x) = FP+offset(x)
e x=5= Load _Constant5, R3
Store R3, offset(x)(FP)

30

Pentium Runtime Stack

ESP Stack pointer push, pusha,... | push on runtime stack
EBP Base pointer pop,popa,... Base pointer
Pentium stack registers call transfer control to called routine
return transfer control back to caller

Pentium stack and call/ret instructions

31

Accessing Stack Variables

Use offset from FP (%ebp)

— Remember: stack grows
downwards

Above FP = parameters
Below FP = locals
Examples

— %e
— %e
— %e

op + 4 = return address
bp + 8 = first parameter

op —4 = first local

FP+8 —

FP

FP-4 ——

SP

32

Factorial - fact (int n)

fact:

pushl %ebp # save ebp

movl %esp, $ebp # ebp=esp

pushl %ebx # save ebx

movl 8 (%ebp), $ebx # ebx = n

cmpl $1,%ebx # n=127

Jjle .lresult # then done FEBp+8§——
leal -1 (%ebx), %eax # eax = n-1

pushl %$eax id

call fact # fact (n-1) EBP —
imull %ebx, $eax # eax=retv*n ggpg4——
jmp .lreturn #

.lresult:

movl $1, %eax # retv

.lreturn: ESP—
movl -4 (%ebp) ’ sebx # restore ebx (stack in intermediate point)
movl %Sebp, sesp # restore esp

popl %ebp # restore ebp

(disclaimer: real compiler can do better than that)

Call Sequences

e The processor does not save the content of
registers on procedure calls

e So who will?
— Caller saves and restores registers

— Callee saves and restores registers

— But can also have both save/restore some
registers

34

caller

caller

Call Sequences

Caller push code

Push caller-save registers

Push actual parameters (in reverse order) }

callee

call

push return address (+ other admin info)

Jump to call address

~

)

Callee push code

(prologue)

Callee pop code

(epilogue)

Push current base-pointer
bp = sp
Push local variables
Push callee-save registers

~

VAN

return

Pop callee-save registers
Pop callee activation record
Pop old base-pointer

-

Caller pop code

pop return address
Jump to address

A LA\

Pop return value + parameters
Pop caller-save registers

35

“To Callee-save or to Caller-save?”

e Callee-saved registers need only be saved
when callee modifies their value

e Some heuristics and conventions are
followed

36

Caller-Save and Callee-Save Registers

e Callee-Save Registers
— Saved by the callee before modification
— Values are automatically preserved across calls

e Caller-Save Registers
— Saved (if needed) by the caller before calls
— Values are not automatically preserved across calls

e Usually the architecture defines caller-save and callee-
save registers

e Separate compilation

e |nteroperability between code produced by different
compilers/languages

e But compiler writers decide when to use caller/callee
registers 3

Callee-Save Registers

e Saved by the callee before modification

e Usually at procedure prolog

e Restored at procedure epilog

e Hardware support may be available

e Values are automatically preserved across calls

int foo(inta) { -global _foo
. Add Constant -K, SP //allocate space for foo
int b=a+1;
Store Local R5, -14(FP) // save R5
fl(); Load Reg R5, RO; Add Constant R5, 1
. JSR f1 ; JSR gl;
g1(b);
Add Constant R5, 2; Load Reg R5, RO
return(b+2); Load Local -14(FP), R5 // restore RS

} Add Constant K, SP; RTS // deallocate

38

Caller-Save Registers

e Saved by the caller before calls when
needed

e Values are not automatically preserved
across calls

.global bar
Add Constant -K, SP //allocate space for bar

void bar (inty) {
Add Constant RO, 1

int x=y+1;

£2(); JSR 12

g2 (2); ioaj_Constant 2, RO. ; JSR g2;
g2(8); oad Constant 8, RO ; JSR g2

Add Constant K, SP // deallocate space for bar

RTS
39

Parameter Passing

e 1960s

— In memory

e No recursion is allowed

e 1970s

— In stack

e 1980s

— Inregisters
— First k parameters are passed in registers (k=4 or k=6)
— Where is time saved?

e Most procedures are leaf procedures

e Interprocedural register allocation

e Many of the registers may be dead before another invocation

e Register windows are allocated in some architectures per call (e.g., sun Sparc)

40

Activation Records &
Language Design

Compile-Time Information on Variables

e Name, type, size
e Address kind
— Fixed (global)

— Relative (local)
— Dynamic (frame — unknown size)

e Scope
— when is it recognized

e Duration
— Until when does its value exist

42

Scoping

intx =42;

int f() { return x; }
intg() {intx=1; return f(); }

th main() { return g(); }

J

e What value is returned from main?
e Static scoping?
e Dynamic scoping?

43

Nested Procedures

e For example — Pascal
e Any routine can have sub-routines

e Any sub-routine can access anything that is
defined in its containing scope or inside the
sub-routine itself

|H

— “non-local” variables

44

Example: Nested Procedures

-program p () {

int x;

Possible call sequence:

_procedure a () {
p—-a—-a—->c—-b->c->d

int y;

C procedure b(){ .. c() .. };

- procedure c () {

int z; / \

[procedure d() { what are the addresses
y :=x + z of variables “x,” “y” and
- b “z” in procedure d?
b() .. d()

. g y

45

Nested Procedures

can call a sibling, ancestor

when “c” uses (non-local)
variables from “a”, which
instance of “a” is it?

how do you find the right
activation record at runtime?

Possible call sequence:

p-a—-»a—->c—>b->c->d

-

~

46

Nested Procedures

e goal: find the closest routine in
the stack from a given nesting
level

e if we reached the same routine
in a sequence of calls
— routine of level k uses variables of

the same nesting level, it uses its
own variables

— if it uses variables of nesting level
j < k then it must be the last
routine called at level j

e |faprocedureis last at level j on
the stack, then it must be
ancestor of the current routine

Possible call sequence:

p-a—-»a—->c—>b->c->d

-

~

47

Nested Procedures

problem: a routine may need to access variables of
another routine that contains it statically

solution: lexical pointer (a.k.a. access link) in the
activation record

lexical pointer points to the last activation record of
the nesting level above it

— in our example, lexical pointer of d points to activation
records of ¢

lexical pointers created at runtime

number of links to be traversed is known at compile
time

48

Lexical Pointers

-program p () {

int x;
_ procedure a() {
int y;
[procedure b(){ c() };
- procedure c() {
int z;
[procedure d() {
y = X + z
}i

Possible call sequence:

p-a—-»a—->c—->b->c->d

-

~

VAN

Lexical Pointers

-program p () {

int x;
_ procedure a() {
int y;
[procedure b(){ c() };
- procedure c() {
int z;
[procedure d() {
y = X + z
}i

Possible call sequence:
p-a—-»a—->c—->b->c->d

—3 invokes
—> nested in

VAN

Activation Records: Remarks

Stack Frames

Allocate a separate space for every procedure incarnation
Relative addresses

Provide a simple mean to achieve modularity

Supports separate code generation of procedures
Naturally supports recursion

Efficient memory allocation policy
— Low overhead
— Hardware support may be available

LIFO policy
Not a pure stack

— Non local references
— Updated using arithmetic

52

Non-Local goto in C syntax

void level 0(void) {
void level 1(void) {

void level 2(void) {

goto L_1;

53

Non-local gotos in C

e setimp remembers the current location and
the stack frame

e longjmp jumps to the current location
(popping many activation records)

54

Non-Local Transfer of Control in C

#liCclLuac <5< Jmp.n>

void find_div_7(int n, jmp_buf *jmpbuf_ ptr) {

}

if (n $ 7 == 0) longjmp(*jmpbuf ptr, n);
find _div_7(n + 1, jmpbuf_ ptr);

int main(void) {

jmp_buf jmpbuf; /* type defined in setjmp.h */
int return_value;

if ((return_value = setjmp(jmpbuf)) == 0) |
/* setting up the label for longjmp() lands here */
find_div_7(1, &jmpbuf);

}

else {
/* returning from a call of longjmp() lands here */
printf ("Answer = %¥d\n", return_value);

}

return 0;

55

Variable Length Frame Size

e C allows allocating objects of unbounded
size in the stack
void p() {
Int i;
char *p;
scanf(“%d”, &i);
p = (char *) alloca(i*sizeof(int));

J

e Some versions of Pascal allows conformant
array value parameters

56

Limitations

e The compiler may be forced to store a
value on a stack instead of registers

e The stack may not suffice to handle some
language features

57

Frame-Resident Variables

e Avariable x cannot be stored in register when:

X is passed by reference
Address of x is taken (&x)

is addressed via pointer arithmetic on the stack-frame
(C varags)

X is accessed from a nested procedure

The value is too big to fit into a single register
The variable is an array

The register of x is needed for other purposes
Too many local variables

e An escape variable:

Passed by reference

Address is taken

Addressed via pointer arithmetic on the stack-frame
Accessed from a nested procedure

58

The Frames in Different Architectures

g(x, y, z) where x escapes

Pentium MIPS Sparc
X InFrame(8) InFrame(0) InFrame(68)
y InFrame(12) InReg(X;s-) InReg(Xs-)
7 InFrame(16) InReg(Xsg) InReg(Xsg)
M[sp+0]«fp sp <—sp-K save %sp, -K, %sp
View fp «<sp .
|V|[Sp+K+O] (_rz M[fp+68](_|0
Change [SP <sp-K :
X €1
Xi57 < rd 157~ 1
X g €15 X158< 15)

Limitations of Stack Frames

A local variable of P cannot be stored in the activation record of P if
its duration exceeds the duration of P

Example 1: Static variables in C
(own variables in Algol)
volid p(int x)
{
static int y = 6 ;
y t= X;
}
Example 2: Features of the C language
int * f£()
{ int x ;
return &x ;

}

Example 3: Dynamic allocation
int * £ () { return (int *)
malloc (sizeof (int)),; }

Compiler Implementation

Hide machine dependent parts
Hide language dependent part

Use special modules

61

Basic Compiler Phases

‘ lexical analysis ‘ Source program (string)
Tokens 1
‘syntax analysis ‘
Abstract syntax tree {
semantic analysis
Control Flow Graph 4 Frame manager
‘ Code generation
Assembly l

‘Assemble_r/Linker ‘

l

.EXE

62

Hidden in the frame ADT

e \Word size
e The location of the formals
e Frame resident variables

e Machine instructions to implement “shift-
of-view” (prologue/epilogue)

e The number of locals “allocated” so far
e The label in which the machine code starts

63

Activation Records: Summary

e compile time memory management for
procedure data

e works well for data with well-scoped
lifetime

— deallocation when procedure returns

64

