Compilation
 0368-3133

Lecture 6:
Attribute Grammars
IR
Noam Rinetzky

Context Analysis

- Identification
- Gather information about each named item in the program
- e.g., what is the declaration for each usage
- Context checking
- Type checking
- e.g., the condition in an if-statement is a Boolean

Symbol table

```
month : integer RANGE [1..12];
month := 1;
while (month <= 12) {
    print(month_name[month]);
        month : = month + 1;
}
```

name	pos	type	\ldots
month	1	RANGE[1..12]	
month_name	\ldots	\ldots	
\ldots			

- A table containing information about identifiers in the program
- Single entry for each named item

Semantic Checks

- Scope rules
- Use symbol table to check that
- Identifiers defined before used
- No multiple definition of same identifier
- ...
- Type checking
- Check that types in the program are consistent
- How?
- Why?

Scope Info

Scope stack

Type System

- A type system of a programming language is a way to define how "good" program "behave"
- Good programs = well-typed programs
- Bad programs = not well typed
- Type checking
- Static typing - most checking at compile time
- Dynamic typing - most checking at runtime
- Type inference
- Automatically infer types for a program (or show that there is no valid typing)

Typing Rules

If E1 has type int and E2 has type int, then E1 + E2 has type int

E1: int E2: int
E1 + E2 : int

So far...

- Static correctness checking
- Identification
- Type checking
- Identification matches applied occurrences of identifier to its defining occurrence
- The symbol table maintains this information
- Type checking checks which type combinations are legal
- Each node in the AST of an expression represents either an l-value (location) or an r-value (value)

How does this magic happen?

- We probably need to go over the AST?
- how does this relate to the clean formalism of the parser?

Syntax Directed Translation

- Semantic attributes
- Attributes attached to grammar symbols
- Semantic actions
- How to update the attributes
- Attribute grammars

Attribute grammars

- Attributes
- Every grammar symbol has attached attributes
- Example: Expr.type
- Semantic actions
- Every production rule can define how to assign values to attributes
- Example:

$$
\begin{aligned}
& \text { Expr } \rightarrow \text { Expr }+ \text { Term } \\
& \text { Expr.type }=\text { Expr1.type when (Expr1.type }==\text { Term.type }) \\
& \text { Error otherwise }
\end{aligned}
$$

Indexed symbols

- Add indexes to distinguish repeated grammar symbols
- Does not affect grammar
- Used in semantic actions
- Expr \rightarrow Expr + Term Becomes Expr \rightarrow Expr1 + Term

Example

Production	Semantic Rule
$\mathrm{D} \rightarrow$ T L	L.in $=$ T.type
$\mathrm{T} \rightarrow$ int	T.type = integer
$\mathrm{T} \rightarrow$ float	T.type $=$ float
L \rightarrow L1, id	L1.in $=$ L.in addType(id.entry,L.in)
$\mathrm{L} \rightarrow$ id	addType(id.entry,L.in)

Attribute Evaluation

- Build the AST
- Fill attributes of terminals with values derived from their representation
- Execute evaluation rules of the nodes to assign values until no new values can be assigned
- In the right order such that
- No attribute value is used before its available
- Each attribute will get a value only once

Dependencies

- A semantic equation $a=b 1, \ldots, b m$ requires computation of $b 1, \ldots, b m$ to determine the value of a
- The value of a depends on $b 1, \ldots, b m$
- We write a \rightarrow bi

Cycles

- Cycle in the dependence graph
- May not be able to compute attribute values

AST

Dependence graph

$$
\begin{aligned}
& \text { E.s = T.i } \\
& \text { T. } \mathrm{i}=\mathrm{E} . \mathrm{s}+1
\end{aligned}
$$

Attribute Evaluation

- Build the AST
- Build dependency graph
- Compute evaluation order using topological ordering
- Execute evaluation rules based on topological ordering
- Works as long as there are no cycles

Building Dependency Graph

- All semantic equations take the form
attr1 = func1(attr1.1, attr1.2,...)
attr2 = func2(attr2.1, attr2.2,...)
- Actions with side effects use a dummy attribute
- Build a directed dependency graph G
- For every attribute a of a node n in the AST create a node n.a
- For every node n in the AST and a semantic action of the form $b=f(c 1, c 2, \ldots c k)$ add edges of the form (ci, b)

Production	Semantic Rule
$\mathrm{D} \rightarrow \mathrm{T}$ L	L.in = T.type
$\mathrm{T} \rightarrow$ int	T.type = integer
$\mathrm{T} \rightarrow$ float	T.type = float
$\mathrm{L} \rightarrow$ L1, id	L1.in $=$ L.in addType(id.entry,L.in)
$L \rightarrow$ id	addType(id.entry,L.in)

Convention:
Add dummy variables for side effects.

Production	Semantic Rule
$\mathrm{D} \rightarrow \mathrm{T}$ L	L.in = T.type
$\mathrm{T} \rightarrow$ int	T.type = integer
$\mathrm{T} \rightarrow$ float	T.type = float
$\mathrm{L} \rightarrow$ L1, id	L1.in $=$ L.in L.dmy $=$ addType(id.entry,L.in)
$L \rightarrow$ id	L.dmy = addType(id.entry, L.in)

Example

Example

Topological Order

- For a graph $G=(V, E),|V|=k$
- Ordering of the nodes v1,v2,...vk such that for every edge (vi, vj) $\in \mathrm{E}, \mathrm{i}<\mathrm{j}$

Example topological orderings: 14325,41352

Example

But what about cycles?

- For a given attribute grammar hard to detect if it has cyclic dependencies
- Exponential cost
- Special classes of attribute grammars
- Our "usual trick"
- sacrifice generality for predictable performance

Inherited vs. Synthesized Attributes

- Synthesized attributes
- Computed from children of a node
- Inherited attributes
- Computed from parents and siblings of a node
- Attributes of tokens are technically considered as synthesized attributes

example

Production	Semantic Rule
$\mathrm{D} \rightarrow \mathrm{T}$ L	L.in $=$ T.type
$\mathrm{T} \rightarrow$ int	T.type = integer
$\mathrm{T} \rightarrow$ float	T.type $=$ float
L \rightarrow L1, id	L1.in $=$ L.in addType(id.entry,L.in)
L \rightarrow id	addType(id.entry,L.in)

inherited
\longrightarrow synthesized

S-attributed Grammars

- Special class of attribute grammars
- Only uses synthesized attributes (S-attributed)
- No use of inherited attributes
- Can be computed by any bottom-up parser during parsing
- Attributes can be stored on the parsing stack
- Reduce operation computes the (synthesized) attribute from attributes of children

S-attributed Grammar: example

Production	Semantic Rule
$\mathrm{S} \rightarrow \mathrm{E} ;$	print(E.val)
$\mathrm{E} \rightarrow \mathrm{E} 1+\mathrm{T}$	E.val $=$ E1.val + T.val
$\mathrm{E} \rightarrow \mathrm{T}$	E.val $=$ T.val
$\mathrm{T} \rightarrow$ T1 * F	T.val $=$ T1.val * F.val
$\mathrm{T} \rightarrow \mathrm{F}$	T.val $=$ F.val
$\mathrm{F} \rightarrow$ (E)	F.val $=$ E.val
$\mathrm{F} \rightarrow$ digit	F.val $=$ digit.lexval

example

L-attributed grammars

- L-attributed attribute grammar when every attribute in a production $A \rightarrow X 1$... Xn is
- A synthesized attribute, or
- An inherited attribute of $\mathrm{Xj}, 1$ <= j <=n that only depends on
- Attributes of $\mathrm{X} 1 . . . \mathrm{Xj}-1$ to the left of Xj , or
- Inherited attributes of A

Example: typesetting

- Each box is built from smaller boxes from which it gets the height and depth, and to which it sets the point size.
- pointsize (ps) - size of letters in a box. Subscript text has smaller point size of 0.7 p .
- height (ht) - distance from top of the box to the baseline
- depth (dp) - distance from baseline to the bottom of the box.

Example: typesetting

production	semantic rules
$S \rightarrow B$	B.ps $=10$
$\mathrm{B} \rightarrow \mathrm{B} 1 \mathrm{~B} 2$	$\begin{aligned} & \text { B1.ps }=\text { B.ps } \\ & \text { B2.ps }=\text { B.ps } \\ & \text { B.ht }=\max (\text { B1.ht,B2.ht }) \\ & \text { B.dp }=\max (\text { B1.dp,B2.dp }) \end{aligned}$
$B \rightarrow B 1$ sub B2	$\begin{aligned} & \text { B1.ps }=\text { B.ps } \\ & \text { B2.ps }=0.7^{*} \text { B.ps } \\ & \text { B.ht }=\max \left(\text { B1.ht }, \text { B2.ht }-0.25^{*} \text { B.ps }\right) \\ & \text { B. dp }=\max \left(\text { B1.dp,B2.dp }-0.25^{*} \text { B.ps }\right) \end{aligned}$
$\mathrm{B} \rightarrow$ text	B.ht $=$ getHt(B.ps,text.lexval) B.dp $=$ getDp(B.ps,text.lexval)

Computing the attributes from left to right during a DFS traversal
procedure dfvisit (n: node);
begin
for each child m of n, from left to right begin
evaluate inherited attributes of m; dfvisit (m)
end;
evaluate synthesized attributes of n
end

Summary

- Contextual analysis can move information between nodes in the AST
- Even when they are not "local"
- Attribute grammars
- Attach attributes and semantic actions to grammar
- Attribute evaluation
- Build dependency graph, topological sort, evaluate
- Special classes with pre-determined evaluation order: S-attributed, L-attributed

The End

- Front-end

Compilation 0368-3133 2014/15a Lecture 6a

Getting into the back-end Noam Rinetzky

But first, a short reminder

What is a compiler?

"A compiler is a computer program that transforms source code written in a programming language (source language) into another language (target language).

The most common reason for wanting to transform source code is to create an executable program."
--Wikipedia

Where we were

Lexical Analysis

From scanning to parsing

Context Analysis

Semantic Error

Valid + Symbol Table

Code Generation

Valid Abstract Syntax Tree Symbol Table

Verification (possible runtime) Errors/Warnings

\longmapsto Executable Code

What is a compiler?

"A compiler is a computer program that transforms source code written in a programming language (source language) into another language (target language).

The most common reason for wanting to transform source code is to create an executable program."

A CPU is (a sort of) an Interpreter

> "A compiler is a computer program that transforms source code written in a programming language (source language) into another language (target language).

The most common reason for wanting to transform source code is to create an executable program."

- Interprets machine code ...
- Why not AST?
- Do we want to go from AST directly to MC?
- We can, but ...
- Machine specific
- Very low level

Code Generation in Stages

Valid Abstract Syntax Tree Symbol Table

Verification (possible runtime) Errors/Warnings

Intermediate Representation (IR)

Where we are

1 Note: Compile Time vs Runtime

- Compile time: Data structures used during program compilation
- Runtime: Data structures used during program execution
- Activation record stack
- Memory management
- The compiler generates code that allows the program to interact with the runtime

Intermediate Representation

Code Generation: IR

Bloliz

- Translating from abstract syntax (AST) to intermediate representation (IR)
- Three-Address Code

Three-Address Code IR

- A popular form of IR
- High-level assembly where instructions have at most three operands

IR by example

Sub-expressions example

Source
int a;
int b;
int c;
int d;
$\mathrm{a}=\mathrm{b}+\mathrm{c}+\mathrm{d} ;$
b = a * $\mathbf{a}+\mathbf{b}^{*} \mathbf{b}$;

IR

$$
\begin{aligned}
& \text { _t0 = b + c; } \\
& \text { a = _t0 + d; } \\
& \text { _t1 = a * } a ; \\
& \text { _t2 = b * b; } \\
& \text { b = _t1 + _t2; }
\end{aligned}
$$

Sub-expressions example

Source
int a;
int b;
int c;
int d;
$\mathrm{a}=\mathrm{b}+\mathrm{c}+\mathrm{d} ;$
b $=\mathbf{a}$ * $\mathbf{a}+\mathbf{b}^{*} \mathbf{b}$;

LIR (unoptimized)

$$
\begin{aligned}
& \quad \mathrm{t} 0=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{a}=_\mathrm{t} 0+\mathrm{d} ; \\
& \mathrm{t}^{\mathrm{t}}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{t} 2=\mathrm{b} * \mathrm{~b} ; \\
& \mathrm{b}=_\mathrm{t} 1+\ldots \mathrm{t} 2 ;
\end{aligned}
$$

Temporaries explicitly store intermediate values resulting from sub-expressions

Variable assignments

- var = constant ;
- $\operatorname{var}_{1}=\operatorname{var}_{2}$;
- $\operatorname{var}_{1}=$ var $_{2}$ op var ${ }_{3}$;
- var $_{1}=$ constant op var ${ }_{2}$;
- $\operatorname{var}_{1}=$ var $_{2}$ op constant ;
- var $=$ constant $_{1}$ op constant ${ }_{2}$;
- Permitted operators are +, -, *, /, \%

Booleans

- Boolean variables are represented as integers that have zero or nonzero values
- In addition to the arithmetic operator, TAC supports <, ==, ||, and \&\&
- How might you compile the following?

$$
\mathrm{b}=(\mathrm{x}<=\mathrm{y}) ; \quad \left\lvert\, \begin{aligned}
& \mathrm{t0}=\mathrm{x}<\mathrm{y} \\
& \mathrm{t}=\mathrm{x}==\mathrm{y} \\
& \mathrm{~b}=\ldots \mathrm{t0}| | \quad \mathrm{t1}
\end{aligned}\right.
$$

Unary operators

- How might you compile the following assignments from unary statements?

Control flow instructions

- Label introduction _label_name:
Indicates a point in the code that can be jumped to
- Unconditional jump: go to instruction following label L Goto L;
- Conditional jump: test condition variable t; if 0 , jump to label L

IfZ t Goto L;

- Similarly : test condition variable t; if not zero, jump to label L

IfNZ t Goto L;

Control-flow example - conditions

$$
\begin{aligned}
& \text { int } x ; \\
& \text { int } y ; \\
& \text { int } z ; \\
& \text { if }(x<y) \\
& z=x ; \\
& \text { else } \\
& \quad z=y ; \\
& z=z * z ;
\end{aligned}
$$

Control-flow example - loops

int x;
int y;
while ($\mathrm{x}<\mathrm{y}$) \{
$\mathbf{x}=\mathbf{x}$ * 2;
\}
$\mathbf{y}=\mathbf{x} ;$
_LO:
t0 $=x<y ;$
IfZ to Goto L1;
$x=\bar{x} * 2 ;$
Goto 工0;
L1:

$$
\mathrm{y}=\mathrm{x} ;
$$

Procedures / Functions

$$
\begin{aligned}
& \mathrm{p}()\{ \\
& \text { int } \mathrm{y}=1, \mathrm{x}=0 \text {; } \\
& \mathrm{x}=\mathrm{f}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \text {; } \\
& \text { print }(\mathrm{x}) ; \\
& \}
\end{aligned}
$$

- What happens in runtime?

Memory Layout (popular convention)

High addresses

A logical stack frame

Stack frame for function $f\left(a_{1}, \ldots, a_{n}\right)$

Procedures / Functions

- A procedure call instruction pushes arguments to stack and jumps to the function label
 Push a1; ... Push an; Call f; Pop \mathbf{x}; // pop returned value, and copy to it
- Returning a value is done by pushing it to the stack (return \mathbf{x};)

Push x;

- Return control to caller (and roll up stack) Return;

Functions example

```
int SimpleFn(int z) {
    int x, y;
    x = x * y * z;
    return x;
}
void main() {
    int w;
    w = SimpleFunction(137);
}
```

_SimpleFn:
_t0 $=x$ * y;
_t1 $=$ _t0 * z;
$\mathbf{x}=-\mathrm{t}$;
Push x;
Return;
main:
t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;

Memory access instructions

- Copy instruction: $a=b$
- Load/store instructions:

$$
a=* b \quad * a=b
$$

- Address of instruction $a=\& b$
- Array accesses:

$$
a=b[i] \quad a[i]=b
$$

- Field accesses:

$$
a=b[f] \quad a[f]=b
$$

- Memory allocation instruction:
a = alloc(size)
- Sometimes left out (e.g., malloc is a procedure in C)

Memory access instructions

- Copy instruction: $a=b$
- Load/store instructions:

$$
\dot{a}=* \mathrm{~b} \quad * \mathrm{a}=\mathrm{b}
$$

- Address of instruction $a=\& b$
- Array accesses:

$$
a=b[i] \quad a[i]=b
$$

- Field accesses:

$$
a=b[f] \quad a[f]=b
$$

- Memory allocation instruction:
a = alloc(size)
- Sometimes left out (e.g., malloc is a procedure in C)

Array operations

$$
\begin{aligned}
& \mathrm{x}:=\mathrm{y}[\mathrm{i}] \\
& \mathrm{t} 1:=\& \mathrm{y} \quad ; \mathrm{t} 1=\text { address-of } \mathrm{y} \\
& \mathrm{t} 2:=\mathrm{t} 1+\mathrm{i} \\
& \mathrm{x}: \mathrm{t} 2=\text { address of } \mathrm{y}[\mathrm{i}] \\
& \mathrm{x}:=\text { *t2 } \quad ; \text { loads the value located at } \mathrm{y}[\mathrm{i}]
\end{aligned}
$$

$$
x[i]:=y
$$

$$
\begin{array}{ll}
\mathrm{t} 1:=\& \mathrm{x} & ; \mathrm{t} 1=\operatorname{address}-\mathrm{of} \mathrm{x} \\
\mathrm{t} 2:=\mathrm{t} 1+\mathrm{i} & ; \mathrm{t} 2=\text { address of } \mathrm{x}[\mathrm{i}] \\
* \mathrm{t} 2:=\mathrm{y} & ; \text { store through pointer }
\end{array}
$$

IR Summary

Intermediate representation

- A language that is between the source language and the target language - not specific to any machine
- Goal 1: retargeting compiler components for different source languages/target machines

Intermediate representation

- A language that is between the source language and the target language - not specific to any machine
- Goal 1: retargeting compiler components for different source languages/target machines
- Goal 2: machine-independent optimizer
- Narrow interface: small number of instruction types

Multiple IRs

- Some optimizations require high-level structure
- Others more appropriate on low-level code
- Solution: use multiple IR stages

AST vs. LIR for imperative languages

Rich set of language constructs	An abstract machine language
Rich type system	Very limited type system
Declarations: types (classes, interfaces), functions, variables	Only computation-related code
Control flow statements: if-then-else, while-do, break-continue, switch, exceptions	Labels and conditional/ unconditional jumps, no looping
Data statements: assignments, array access, field access	Data movements, generic memory access statements
Expressions: variables, constants, arithmetic operators, logical operators, function calls	No sub-expressions, logical as numeric, temporaries, constants, function calls - explicit argument passing

Lowering AST to TAC

IR Generation

Valid Abstract Syntax Tree Symbol Table

Intermediate Representation (IR)

\longmapsto Executable Code

TAC generation

- At this stage in compilation, we have
- an AST
- annotated with scope information
- and annotated with type information
- To generate TAC for the program, we do recursive tree traversal
- Generate TAC for any subexpressions or substatements
- Using the result, generate TAC for the overall expression

TAC generation for expressions

- Define a function cgen(expr) that generates TAC that computes an expression, stores it in a temporary variable, then hands back the name of that temporary
- Define cgen directly for atomic expressions (constants, this, identifiers, etc.)
- Define cgen recursively for compound expressions (binary operators, function calls, etc.)

cgen for basic expressions

$\operatorname{cgen}(k)=\{/ / k$ is a constant
Choose a new temporary t
Emit ($t=k$)
Return t
\}
cgen(id) $=\{/ /$ id is an identifier
Choose a new temporary t
$\operatorname{Emit}(t=i d)$
Return t
\}

cgen for binary operators

$$
\begin{aligned}
& \operatorname{cgen}\left(\mathrm{e}_{1}+\mathrm{e}_{2}\right)=\{ \\
& \text { Choose a new temporary } t \\
& \text { Let } t_{1}=\operatorname{cgen}\left(e_{1}\right) \\
& \text { Let } t_{2}=\operatorname{cgen}\left(e_{2}\right) \\
& \text { Emit }\left(t=t_{1}+t_{2}\right) \\
& \text { Return } t \\
& \}
\end{aligned}
$$

cgen example

$\operatorname{cgen}(5+x)=\{$
Choose a new temporary t
Let $t_{1}=\operatorname{cgen}(5)$
Let $t_{2}=\operatorname{cgen}(x)$
$\operatorname{Emit}\left(t=t_{1}+t_{2}\right)$
Return t
$\}$

cgen example

```
cgen(5 + x) = {
    Choose a new temporary t
    Let }\mp@subsup{t}{1}{}=
    Choose a new temporary t
    Emit(t=5; )
    Return t
    }
    Let t
    Emit(t=t
    Return t
}
```


cgen example

```
cgen(5 + x) ={
    Choose a new temporary t Returns an arbitrary
    Let }\mp@subsup{t}{1}{}=
    Choose a new temporary t
    Emit(t = 5; )
    Return t
    }
    Let t}\mp@subsup{t}{2}{={
    Choose a new temporary t
    Emit(t = x; )
    Return t
}
Emit(t=t t + t ; ; )
Return t

\section*{cgen example}
```

cgen(5 + x) = {
Choose a new temporary t Returns an arbitrary
Let }\mp@subsup{t}{1}{}=
Choose a new temporary t
Emit(t=5;)
Return t
}
Let t2 = {
Choose a new temporary t
Emit(t=x;)
Return t
}
Emit(t=t t + t ; ;)
Return t

cgen as recursive AST traversal

cgen $(5+x)$

Naive cgen for expressions

- Maintain a counter for temporaries in c
- Initially: c = 0
- $\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let $A=\operatorname{cgen}\left(e_{1}\right)$
$\mathrm{c}=\mathrm{c}+1$
Let $B=\operatorname{cgen}\left(e_{2}\right)$
$\mathrm{c}=\mathrm{c}+1$
Emit(_tc = A op B;)
Return _tc
\}

Example

$\operatorname{cgen}((a * b)-d)$

Example

$$
\begin{aligned}
& c=0 \\
& \operatorname{cgen}((a * b)-d)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{c}=0 \\
& \mathrm{cgen}\left(\left(\mathrm{a}^{*} \mathrm{~b}\right)-\mathrm{d}\right)=\{ \\
& \quad \text { Let } \mathrm{A}=\operatorname{cgen}\left(\mathrm{a}^{*} \mathrm{~b}\right) \\
& \mathrm{c}=\mathrm{c}+1 \\
& \text { Let } \mathrm{B}=\operatorname{cgen}(\mathrm{d}) \\
& \mathrm{c}=\mathrm{c}+1 \\
& \text { Emit }\left(_\mathrm{tc}=\mathrm{A}-\mathrm{B} ;\right) \\
& \text { Return _tc } \\
& \}
\end{aligned}
$$

Example

```
c=0
cgen( (a*b)-d) = {
    Let A = {
        Let A= cgen(a)
        c = C + 1
        Let B = cgen(b)
        c = c + 1
        Emit( _tc = A * B; )
        Return tc
    }
    c = c + 1
    Let B= cgen(d)
    c = c + 1
    Emit( _tc = A - B; )
    Return _tc
}
```


Example

```
c=0
cgen( (a*b)-d) = {
    Let A = {
        Let A = { Emit(_tc = a;), return _tc }
        c = C + 1
        Let B = { Emit(_tc = b;), return _tc }
        c = c + 1
        Emit(_tc = A * B; )
        Return _tc
    }
    c = c + 1
    Let B = { Emit(_tc = d;), return _tc }
    c = c + 1
    Emit( _tc = A - B; )
    Return _tc
}
```


Example

```
c=0
cgen( (a*b)-d) = {
    Let }A={\quad\mathrm{ here }A=_t
    Code
    _t0=a;
        Let A = { Emit(_tc = a;), return _tc }
        c = c + 1
        Let B = { Emit(_tc = b;), return _tc }
        c = c + 1
        Emit(_tc = A * B; )
        Return _tc
    }
    c = c + 1
    Let B = { Emit(_tc = d;), return _tc }
    c = c + 1
    Emit( _tc = A - B; )
    Return _tc
}
```


Example

```
c=0
cgen( (a*b)-d) = {
    Let }A={\quad\mathrm{ here A=_t0
        Let A = { Emit(_tc = a;), return _tc }
        c = c + 1
        Let B = { Emit(_tc = b;), return _tc }
        c = c + 1
        Emit( _tc = A * B; )
        Return _tc
    }
    c = c + 1
    Let B = { Emit(_tc = d;), return _tc }
    c = c + 1
    Emit( _tc = A - B; )
    Return _tc
}
```


Example

```
c=0
cgen( (a*b)-d) = {
    Let }A={\quad\mathrm{ here A=_t0
        Let A = { Emit(_tc = a;), return _tc }
        c = C + 1
        Let B={ Emit(_tc = b;), return _tc }
        c = c + 1
        Emit(_tc = A * B; )
        Return _tc
    }
    c = c + 1
    Let B = { Emit(_tc = d;), return _tc }
    c = c + 1
    Emit( _tc = A - B; )
    Return _tc
}
```


Example

```
\(c=0\)
cgen ( \(a * b)\) here \(A=+t 2\)
Let \(A=\{\)
    Let \(A=\left\{\operatorname{Emit}\left(\_t c=a ;\right)\right.\), return _tc \(\}\)
    \(\mathrm{c}=\mathrm{c}+1\)
    Let \(B=\{\) Emit(_tc \(=\mathrm{b} ;\) ), return _tc \(\}\)
    \(\mathrm{c}=\mathrm{c}+1\)
    Emit(_tc = A * B; )
    Return _tc
    \}
    \(\mathrm{c}=\mathrm{c}+1\)
    Let \(B=\{\) Emit(_tc \(=d ;\) ), return _tc \(\}\)
    \(\mathrm{c}=\mathrm{c}+1\)
    Emit (_tc = A - B; )
    Return _tc
\}
```

$$
\begin{aligned}
& \text { Code } \\
& \text { t } 0=a ; \\
& \text { t1 }=\mathrm{b} ; \\
& \text { t2 }=\text { t } 0 * _t 1
\end{aligned}
$$

Example

```
\(\mathrm{c}=0\)
Let \(A=\{\)
here \(A=\_t 0\)
    Let \(A=\{\) Emit(_tc = a; ), return _tc \(\}\)
        \(\mathrm{c}=\mathrm{C}+1\)
        Let \(B=\{\) Emit(_tc \(=b ;\) ), return _tc \(\}\)
        \(\mathrm{c}=\mathrm{c}+1\)
        Emit(_tc = A * B; )
        Return _tc
    \}
    \(\mathrm{c}=\mathrm{c}+1\)
    Let \(B=\{\) Emit (_tc \(=d ;\) ), return _tc \(\}\)
    \(\mathrm{c}=\mathrm{c}+1\)
    Emit( _tc = A - B; )
    Return _tc
\}
```

Code
_t0=a;
_t1=b;

$$
+t 2=_t 0 * _t 1
$$

$$
\text { _t } 3=d \text {; }
$$

Example

$\mathrm{c}=0$

Let $A=\{$
Let $A=\{$ Emit(_tc = a;), return _tc \}

$$
c=c+1
$$

$$
\text { Let } B=\{\text { Emit (_tc = b;), return_tc }\}
$$

$$
c=c+1
$$

Emit (_tc = A * B;)
Return _tc

$$
\}
$$

$$
c=c+1
$$

$$
\text { Let } B=\left\{\text { Emit }\left(_t c=d ;\right), \text { return _tc }\right\}
$$

$$
c=c+1
$$

Emit(_tc = A - B;)
Return _tc

Code

$$
\text { to }=a ;
$$

$$
\text { _t }=\mathrm{b} ;
$$

$$
-t 2=+0 * t^{t 1}
$$

$$
t 3=d
$$

$$
-t 4=-t 2-\quad t 3
$$

cgen for statements

- We can extend the cgen function to operate over statements as well
- Unlike cgen for expressions, cgen for statements does not return the name of a temporary holding a value.
- (Why?)

cgen for simple statements

cgen(expr;) = \{ cgen(expr)
 \}

cgen for if-then-else

cgen(if (e) s_{1} else s_{2})

Let _t = cgen(e)
Let $L_{\text {true }}$ be a new label
Let $L_{\text {false }}$ be a new label
Let $\mathrm{L}_{\text {atter }}$ be a new label
Emit(IfZ _t Goto Lalse;)
cgen(s_{1})
Emit(Goto $L_{\text {after }}$)
Emit(Lalse: $^{\text {: }}$)
cgen $\left(s_{2}\right)$
Emit(Goto $L_{\text {after }}$)
Emit($\mathrm{L}_{\text {after }}$)

cgen for while loops

cgen(while (expr) stmt)
Let $L_{\text {before }}$ be a new label.
Let $L_{\text {after }}$ be a new label.
Emit($L_{\text {before }}$:)
Let $\mathrm{t}=\mathbf{c g e n}$ (expr)
Emit(IfZ t Goto Lafter;)
cgen(stmt)
Emit(Goto $L_{\text {before }}$)
Emit($\mathrm{L}_{\text {after: }}$)

cgen for short-circuit disjunction

Emit(_t1 = 0; _t2 = 0;)
Let $L_{\text {after }}$ be a new label
Let _t1 = cgen(e1)
Emit(IfNZ _t1 Goto $L_{\text {after }}$)
Let _t2 = cgen(e2)
Emit($\mathrm{L}_{\text {after }}$:)
Emit(_t = _t1 || _t2;)
Return _t

Our first optimization

Naive cgen for expressions

- Maintain a counter for temporaries in c
- Initially: c = 0
- $\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let $A=\operatorname{cgen}\left(e_{1}\right)$
$\mathrm{c}=\mathrm{c}+1$
Let $B=\operatorname{cgen}\left(e_{2}\right)$
$\mathrm{c}=\mathrm{c}+1$
Emit(_tc = A op B;)
Return _tc
\}

Naïve translation

- cgen translation shown so far very inefficient
- Generates (too) many temporaries - one per subexpression
- Generates many instructions - at least one per subexpression
- Expensive in terms of running time and space
- Code bloat
- We can do much better ...

Naive cgen for expressions

- Maintain a counter for temporaries in c
- Initially: $\mathrm{c}=0$
- $\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let $A=\operatorname{cgen}\left(\mathrm{e}_{1}\right)$
$\mathrm{c}=\mathrm{c}+1$
Let $B=\operatorname{cgen}\left(e_{2}\right)$
$\mathrm{c}=\mathrm{c}+1$
Emit(_tc = A op B;)
Return _tc
\}

- Observation: temporaries in cgen $\left(\mathrm{e}_{1}\right)$ can be reused in cgen(e_{2})

Improving cgen for expressions

- Observation - naïve translation needlessly generates temporaries for leaf expressions
- Observation - temporaries used exactly once
- Once a temporary has been read it can be reused for another sub-expression
- $\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let _t1 = cgen $\left(\mathrm{e}_{1}\right)$
Let _t2 $=\operatorname{cgen}\left(\mathrm{e}_{2}\right)$
Emit (_t =_t1 op_t2;)
Return t
\}

- Temporaries $\operatorname{cgen}\left(\mathrm{e}_{1}\right)$ can be reused in $\operatorname{cgen}\left(\mathrm{e}_{2}\right)$

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
- Minimizes number of temporaries
- Main data structure in algorithm is a stack of temporaries
- Stack corresponds to recursive invocations of _t = cgen(e)
- All the temporaries on the stack are live
- Live = contain a value that is needed later on

Live temporaries stack

- Implementation: use counter c to implement live temporaries stack
- Temporaries _t(0), ... , _t(c) are alive
- Temporaries _t(c+1), _t(c+2)... can be reused
- Push means increment c, pop means decrement c
- In the translation of _t $(c)=\operatorname{cgen}\left(e_{1}\right.$ op $\left.e_{2}\right)$

$$
\begin{aligned}
& \text { _t }(c)=\operatorname{cgen}\left(e_{1}\right) \\
& { }_{-} \mathrm{t}(\mathrm{c})=\boldsymbol{\operatorname { c g e n }}\left(\mathrm{e}_{2}\right) \\
& \text {-------------- } C=C-1 \\
& Z^{t(c)}=\text { _t }^{t(c)} \text { op } \quad \underbrace{t(c+1)}
\end{aligned}
$$

Using stack of temporaries example

$$
\begin{aligned}
& \text { _t0 }=\operatorname{cgen}\left(\left(\left(c^{*} d\right)-\left(e^{* f}\right)\right)+\left(a^{*} b\right)\right) \\
& \text {------ c = } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { - ----- } C=C+1 \\
& \text { _t1 }=a * b \\
& \text {------ } \quad \mathrm{C}=\mathrm{C} \text { - } 1 \\
& \text { _t0 }=\text { _t } 0+{ }^{t 1}
\end{aligned}
$$

Temporaries
 Weighted register allocation

- Suppose we have expression e_{1} op e_{2}
$-e_{1}, e_{2}$ without side-effects
- That is, no function calls, memory accesses, $++x$
$-\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\operatorname{cgen}\left(\mathrm{e}_{2}\right.$ op $\left.\mathrm{e}_{1}\right)$
- Does order of translation matter?
- Sethi \& Ullman's algorithm translates heavier sub-tree first
- Optimal local (per-statement) allocation for side-effect-free statements

Example

$$
\begin{aligned}
& \quad-\mathrm{t} 0=\mathrm{cgen}(\mathrm{a}+(\mathrm{b}+(\mathrm{c} * \mathrm{~d}))) \\
& + \text { and }
\end{aligned}
$$

right child first

4 temporaries
2 temporary

Weighted register allocation

- Can save registers by re-ordering subtree computations
- Label each node with its weight
- Weight = number of registers needed
- Leaf weight known
- Internal node weight
- $w($ left $)>w($ right $)$ then $w=$ left
- w (right) $>w$ (left) then $w=$ right
- $w($ right $)=w($ left $)$ then $w=$ left +1
- Choose heavier child as first to be translated
- WARNING: have to check that no side-effects exist before attempting to apply this optimization
- pre-pass on the tree

Weighted reg. alloc. example _t0 = cgen ($\mathrm{a}+\mathrm{b}\left[5{ }^{*} \mathrm{c}\right]$)

Phase 1: - check absence of side-effects in expression tree - assign weight to each AST node

Weighted reg. alloc. example

$$
\text { _t0 = cgen }(a+b[5 * c])
$$

Phase 2: - use weights to decide on order of translation

Note on weighted register allocation

- Must reset temporaries counter after every statement: $x=y ; y=z$
- should not be translated to

$$
\begin{aligned}
& \text { _t0 = y; } \\
& \text { x = _t0; } \\
& \mathrm{y}^{\mathrm{t} 1}=\mathrm{z}=\mathrm{z} \text {; }
\end{aligned}
$$

- But rather to

```
\(\mathrm{t} 0=\mathrm{y} ;\)
\(\mathrm{x}=\mathrm{ta}\);
                            \# Finished translating statement. Set c=0
\(\mathrm{tO}=\)
\(\mathrm{y}=\ldots \mathrm{tO} ;\)
```


Code generation

 for procedure calls
(+ a few words on the runtime system)

Code generation for procedure calls

- Compile time generation of code for procedure invocations
- Activation Records (aka Stack Frames)

Supporting Procedures

- Stack: a new computing environment - e.g., temporary memory for local variables
- Passing information into the new environment
- Parameters
- Transfer of control to/from procedure
- Handling return values

Calling Conventions

- In general, compiler can use any convention to handle procedures
- In practice, CPUs specify standards
- Aka calling conventios
- Allows for compiler interoperability
- Libraries!

Abstract Register Machine (High Level View)

Abstract Register Machine (High Level View)

High addresses
 addresses

Abstract Activation Record Stack

Stack frame for
procedure
$\operatorname{Proc}_{k+1}\left(a_{1}, \ldots, a_{N}\right)$

Abstract Stack Frame

Handling Procedures

- Store local variables/temporaries in a stack
- A function call instruction pushes arguments to stack and jumps to the function label A statement $\mathbf{x = f (a 1 , \ldots , a n) ; ~ l o o k s ~ l i k e ~}$ Push al; ... Push an; Call f; Pop \mathbf{x}; // copy returned value
- Returning a value is done by pushing it to the stack (return \mathbf{x};)

Push x;

- Return control to caller (and roll up stack) Return;

Abstract Register Machine

CPU

High addresses
 addresses

Abstract Register Machine

CPU

High addresses
 addresses

Intro: Functions Example

```
int SimpleFn(int z) {
    int x, y;
    x = x * y * z;
    return x;
}
void main() {
    int w;
    w = SimpleFunction(137);
}
```

SimpleFn:
_t0 $=x$ * y;
_t1 = _七0 * z;
$\mathbf{x}=\mathrm{t}$;
Push x;
Return;
main:
t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;

What Can We Do with Procedures?

- Declarations \& Definitions
- Call \& Return
- Jumping out of procedures - Passing \& Returning procedures as

Design Decisions

- Scoping rules
- Static scoping vs. dynamic scoping
- Caller/callee conventions
- Parameters
- Who saves register values?
- Allocating space for local variables

Static (lexical) Scoping

```
main ()
int a = 0; ; {
```

a name refers to its (closest) enclosing scope

known at compile time

Declaration	Scopes
$a=0$	B0,B1,B3
$b=0$	B0
$b=1$	B1,B2
$a=2$	B2
$b=3$	B3

Dynamic Scoping

- Each identifier is associated with a global stack of bindings
- When entering scope where identifier is declared
- push declaration on identifier stack
- When exiting scope where identifier is declared
- pop identifier stack
- Evaluating the identifier in any context binds to the current top of stack
- Determined at runtime

Example

```
int x = 42;
int f() { return x; }
int g() { int x = 1; return f(); }
int main() { return g(); }
```

- What value is returned from main?
- Static scoping?
- Dynamic scoping?

Why do we care?

- We need to generate code to access variables
- Static scoping
- Identifier binding is known at compile time
- "Address" of the variable is known at compile time
- Assigning addresses to variables is part of code generation
- No runtime errors of "access to undefined variable"
- Can check types of variables

Variable addresses for static scoping: first attempt

```
int x = 42;
int f() { return x; }
int g() { int x = 1; return f(); }
int main() { return g(); }
```

identifier	address
x (global)	0×42
x (inside g)	0×73

Variable addresses for static scoping: first attempt

what is the address of the variable " i " in the procedure quicksort?

Compile-Time Information on Variables

- Name
- Type
- Scope
- when is it recognized
- Duration
- Until when does its value exist
- Size
- How many bytes are required at runtime
- Address
- Fixed
- Relative
- Dynamic

Activation Record (Stack Frames)

- separate space for each procedure invocation
- managed at runtime
- code for managing it generated by the compiler
- desired properties
- efficient allocation and deallocation
- procedures are called frequently
- variable size
- different procedures may require different memory sizes

Semi-Abstract Register Machine

High addresses

Main Memory

A Logical Stack Frame (Simplified)

Stack frame for function f(a1,...,aN)

Runtime Stack

- Stack of activation records
- Call = push new activation record
- Return = pop activation record
- Only one "active" activation record - top of stack
- How do we handle recursion?

Activation Record (frame)

Runtime Stack

- SP - stack pointer
- top of current frame
- FP - frame pointer
- base of current frame
- Sometimes called BP (base pointer)
- Usually points to a "fixed" offset from the "start" of the frame

Code Blocks

- Programming language provide code blocks
void foo()
\{
int $x=8 ; y=9 ; / / 1$
$\{$ int $x=y * y ; / / 2\}$
$\{$ int $x=y * 7 ; / / 3\}$
$x=y+1 ;$
\}

adminstrative
$x 1$
$y 1$
$x 2$
$x 3$
\ldots

L-Values of Local Variables

- The offset in the stack is known at compile time
- L-val(x) $=$ FP+offset(x)
- $x=5 \Rightarrow$ Load_Constant 5, R3 Store R3, offset(x)(FP)

Pentium Runtime Stack

Register	Usage
ESP	Stack pointer
EBP	Base pointer
Pentium stack registers	

Instruction	Usage
push, pusha,...	push on runtime stack
pop,popa,...	Base pointer
call	transfer control to called routine
return	transfer control back to caller

Pentium stack and call/ret instructions

Accessing Stack Variables

- Use offset from FP (\%ebp)
- Remember: stack grows downwards
- Above FP = parameters
- Below FP = locals
- Examples
- \%ebp + 4 = return address
$-\% e b p+8$ = first parameter
- \%ebp - 4 = first local

Factorial-fact(int n)

fact:

```
pushl %elop
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ebx
cmpl $1,%ebx
jle .lresult
leal -1(%ebx),%eax
pushl %eax
call fact
imull %ebx,%eax
jmp .lreturn
    .lresult:
movl $1,%eax
    .lreturn:
movl -4(%ebp),%ebx
movl %ebp,%esp
popl %ebp
```

\# save ebp
\# ebp=esp
\# retv
\# restore ebx
\# restore esp
\# save ebp
\# ebp=esp
\# save ebx
\# ebx $=\mathrm{n}$
\# $\mathrm{n}=1$?
\# then done \quad E
\# eax $=\mathrm{n}-1$
\#
\# fact $\mathrm{n}-1)$
\# eax=retv*n
\#
\# retv
\# restore ebx
\# restore esp
\# restore ebp

Call Sequences

- The processor does not save the content of registers on procedure calls
- So who will?
- Caller saves and restores registers
- Callee saves and restores registers
- But can also have both save/restore some registers

Call Sequences

"To Callee-save or to Caller-save?"

- Callee-saved registers need only be saved when callee modifies their value
- Some heuristics and conventions are followed

Caller-Save and Callee-Save Registers

- Callee-Save Registers
- Saved by the callee before modification
- Values are automatically preserved across calls
- Caller-Save Registers
- Saved (if needed) by the caller before calls
- Values are not automatically preserved across calls
- Usually the architecture defines caller-save and calleesave registers
- Separate compilation
- Interoperability between code produced by different compilers/languages
- But compiler writers decide when to use caller/callee registers

Callee-Save Registers

- Saved by the callee before modification
- Usually at procedure prolog
- Restored at procedure epilog
- Hardware support may be available
- Values are automatically preserved across calls
int foo(int a) \{ .global _foo
int $b=a+1$;
f1();
g1(b);
return(b+2);

```
Add_Constant -K, SP //allocate space for foo
Store_Local R5, -14(FP) // save R5
Load_Reg R5, R0; Add_Constant R5, 1
JSR f1 ; JSR g1;
Add_Constant R5, 2; Load_Reg R5, R0
Load_Local -14(FP), R5 // restore R5
Add_Constant K, SP; RTS // deallocate
```


Caller-Save Registers

- Saved by the caller before calls when needed
- Values are not automatically preserved across calls

void bar (int y) \{	Add_Constant -K, SP //allocate space for bar
int $x=y+1$;	Add_Constant R0, 1
f2(x);	JSR f2
g2(2);	Load_Constant 2, R0 ; JSR g2;
g2(8);	Load_Constant 8, R0; JSR g2
\}	Add_Constant K, SP // deallocate space for bar RTS

Parameter Passing

- 1960s
- In memory
- No recursion is allowed
- 1970s
- In stack
- 1980s
- In registers
- First k parameters are passed in registers ($\mathrm{k}=4$ or $\mathrm{k}=6$)
- Where is time saved?
- Most procedures are leaf procedures
- Interprocedural register allocation
- Many of the registers may be dead before another invocation
- Register windows are allocated in some architectures per call (e.g., sun Sparc)

Activation Records \& Language Design

Compile-Time Information on Variables

- Name, type, size
- Address kind
- Fixed (global)
- Relative (local)
- Dynamic (heap)
- Scope
- when is it recognized
- Duration
- Until when does its value exist

Scoping

```
int x = 42;
int f() { return x; }
int g() { int x=1; return f();}
int main() { return g(); }
```

- What value is returned from main?
- Static scoping?
- Dynamic scoping?

Nested Procedures

- For example - Pascal
- Any routine can have sub-routines
- Any sub-routine can access anything that is defined in its containing scope or inside the sub-routine itself
- "non-local" variables

Example: Nested Procedures

program p() \{

```
    int x;
    procedure a() {
        int y;
    [ procedure b(){ ... c() ... };
    [ procedure c() {
        int z;
            [procedure d() {
                y := x + z
                };
            ... b() ... d() ...
        }
        ... a() ... c()
    }
    a()
```


Nested Procedures

- can call a sibling, ancestor
- when "c" uses (non-local) variables from "a", which instance of "a" is it?
- how do you find the right activation record at runtime?

Possible call sequence:
$\mathrm{p} \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{b} \rightarrow \mathrm{c} \rightarrow \mathrm{d}$

Nested Procedures

- goal: find the closest routine in the stack from a given nesting level
- if we reached the same routine in a sequence of calls
- routine of level k uses variables of the same nesting level, it uses its own variables
- if it uses variables of nesting level $\mathrm{j}<\mathrm{k}$ then it must be the last routine called at level j
- If a procedure is last at level j on the stack, then it must be ancestor of the current routine

Possible call sequence:

$$
\mathrm{p} \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \rightarrow \mathrm{~d}
$$

Nested Procedures

- problem: a routine may need to access variables of another routine that contains it statically
- solution: lexical pointer (a.k.a. access link) in the activation record
- lexical pointer points to the last activation record of the nesting level above it
- in our example, lexical pointer of d points to activation records of c
- lexical pointers created at runtime
- number of links to be traversed is known at compile time

Lexical Pointers

```
program p(){
```

 int x;
 [procedure a() \{
 int y;
 [procedure b() \{c() \};
 [procedure c())
 int z;
 [procedure d()\{
 y := x + z
 \};
 ... b() ... d() ...
 L
 ... a() ... c() ...
 \}
a()

Possible call sequence:

$$
\mathrm{p} \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \rightarrow \mathrm{~d}
$$

Lexical Pointers

```
program p(){
```

 int x;
 [procedure a() \{
 int y;
 [procedure b()\{c()\};
 [procedure c()
 int z;
 [procedure d()\{
 y := x + z
 \};
 ... b() ... d() ...
 - \}
 ... a() ... c() ...
 \}
a()

Possible call sequence:
 $$
\mathrm{p} \rightarrow \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{c} \rightarrow \mathrm{~b} \rightarrow \mathrm{c} \rightarrow \mathrm{~d}
$$

Activation Records: Remarks

Stack Frames

- Allocate a separate space for every procedure incarnation
- Relative addresses
- Provide a simple mean to achieve modularity
- Supports separate code generation of procedures
- Naturally supports recursion
- Efficient memory allocation policy
- Low overhead
- Hardware support may be available
- LIFO policy
- Not a pure stack
- Non local references
- Updated using arithmetic

Non-Local goto in C syntax

```
void level_0(void) {
    void level_1(void) {
            void level_2(void) {
                goto L_1;
            }
            L_1:...
        }
}
```


Non-local gotos in C

- setjmp remembers the current location and the stack frame
- longjmp jumps to the current location (popping many activation records)

Non-Local Transfer of Control in C

```
#+nctuqe <seljmp.n>
void find_div_7(int n, jmp_buf *jmpbuf_ptr) {
    if (n % 7 == 0) longjmp(*jmpbuf_ptr, n);
    find_div_7(n + 1, jmpbuf_ptr);
}
int main(void) {
    jmp_buf jmpbuf; /* type defined in setjmp.h */
    int return_value;
    if ((return_value = setjmp(jmpbuf)) == 0) {
        /* setting up the label for longjmp() lands here */
        find_div_7(1, &jmpbuf);
    }
    else {
        /* returning from a call of longjmp() lands here */
        printf("Answer = %d\n", return_value);
    }
    return 0;
}
```


Variable Length Frame Size

- C allows allocating objects of unbounded size in the stack
void p () \{
int i;
char *p;
scanf("\%d", \&i);
p = (char *) alloca(i*sizeof(int));
\}
- Some versions of Pascal allows conformant array value parameters

Limitations

- The compiler may be forced to store a value on a stack instead of registers
- The stack may not suffice to handle some language features

Frame-Resident Variables

- A variable x cannot be stored in register when:
- x is passed by reference
- Address of x is taken ($\& x$)
- is addressed via pointer arithmetic on the stack-frame (C varags)
- x is accessed from a nested procedure
- The value is too big to fit into a single register
- The variable is an array
- The register of x is needed for other purposes
- Too many local variables
- An escape variable:
- Passed by reference
- Address is taken
- Addressed via pointer arithmetic on the stack-frame
- Accessed from a nested procedure

The Frames in Different Architectures

 $g(x, y, z)$ where x escapes| | Pentium | MIPS | Sparc |
| :---: | :---: | :---: | :---: |
| X | InFrame(8) | InFrame(0) | InFrame(68) |
| y | InFrame(12) | $\ln \operatorname{Reg}\left(\mathrm{X}_{157}\right)$ | $\operatorname{InReg}\left(\mathrm{X}_{157}\right)$ |
| Z | InFrame(16) | $\operatorname{InReg}\left(\mathrm{X}_{158}\right)$ | $\operatorname{InReg}\left(\mathrm{X}_{158}\right)$ |
| View
 Change | $\begin{aligned} & M[s p+0] \leftarrow f p \\ & f p \leftarrow s p \\ & s p \leftarrow s p-K \end{aligned}$ | $\begin{aligned} & s p \leftarrow s p-K \\ & M[s p+K+0] \leftarrow r_{2} \\ & X_{157} \leftarrow r 4 \\ & X_{158} \leftarrow r 5 \end{aligned}$ | save \%sp, $-K$, \%sp $\begin{aligned} & \mathrm{M}[\mathrm{fp}+68] \leftarrow \mathrm{i}_{0} \\ & \mathrm{X}_{157} \leftarrow \mathrm{i}_{1} \\ & \mathrm{X}_{158} \leftarrow \mathrm{i}_{2} \end{aligned}$ |

Limitations of Stack Frames

- A local variable of P cannot be stored in the activation record of P if its duration exceeds the duration of P
- Example 1: Static variables in C (own variables in Algol)
void p(int x)
\{
static int $y=6$;
y $+=x$;
\}
- Example 2: Features of the C language

```
int * f()
{ int x ;
    return &X ;
}
```

- Example 3: Dynamic allocation

```
int * f() { return (int *)
malloc(sizeof(int)); }
```


Compiler Implementation

- Hide machine dependent parts
- Hide language dependent part
- Use special modules

Basic Compiler Phases

Hidden in the frame ADT

- Word size
- The location of the formals
- Frame resident variables
- Machine instructions to implement "shift-of-view" (prologue/epilogue)
- The number of locals "allocated" so far
- The label in which the machine code starts

Activation Records: Summary

- compile time memory management for procedure data
- works well for data with well-scoped lifetime
- deallocation when procedure returns

